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Abstract

This paper proposes a market basket transformer (MBT), an adaptation of large language

model architectures to market basket data. Our transformer learns purchase patterns in

unordered product sets, predicting basket composition more than twice as accurately as ex-

isting approaches. Three features di!erentiate the MBT from large language models. First,

we incorporate covariates to account for varying purchase probabilities across heterogeneous

shopping trips. Second, we improve the pretraining of the transformer by leveraging available

data more e”ciently. Third, we propose a data curation strategy designed to ensure that the

MBT learns meaningful product representations for all products in the retailer’s assortment.

These extensions ensure that the MBT accurately learns purchase patterns, even for long-tail

products typically underrepresented in the training data. We demonstrate the model’s adapt-

ability by fine-tuning it to predict coupon redemptions using data from a coupon experiment.

Because the MBT learns rich patterns in market basket data, it is a foundation model that

can be easily adapted to various retail analytics applications.

Keywords: Transformer models, foundation models, fine-tuning, retailing analytics, market
basket analysis, long-tail products



1 Introduction

Retail analytics is a cornerstone of modern marketing, providing retailers and manufacturers

with critical insights into consumer behavior, inventory management, and strategic planning.

The growing volume and variety of retail data generated from point-of-sale systems and cus-

tomer interactions create new opportunities for enhancing operational e”ciency and customer

satisfaction (Wedel and Kannan 2016).

However, retail analytics faces three significant challenges. First, the scale of assortments and

the volume of shopping baskets produce high-dimensional data that are di”cult to process

and analyze e!ectively (Bell et al. 2014). Second, data sparsity is a pervasive issue: long-tail

products are purchased infrequently, making pattern detection and prediction challenging (An-

derson 2006, Brynjolfsson et al. 2010). Third, the spectrum of retail analytics tasks is broad

and complex. Many challenges, such as personalized marketing and inventory optimization,

require specialized analytical approaches and expertise (Grewal et al. 2017).

These challenges parallel those encountered in natural language processing (NLP), where high

dimensional and sparse data have historically impeded analysis. Transformer architectures

and foundation models have revolutionized NLP by capturing the structure and meaning

of language through the self-attention mechanism, leading to breakthroughs in sentiment

analysis, machine translation, and conversational AI (Vaswani et al. 2019, Devlin et al. 2019).

Transformers excel at modeling contextual relationships in sequential data, demonstrating

exceptional performance across diverse applications.

Motivated by these advancements, our research adapts transformer architectures to retail

data. By leveraging transformers’ ability to understand assortment structures and shopping

patterns, we address the inherent challenges of scale, sparsity, and task diversity in retailing.

Our model captures complex product relationships and incorporates contextual factors such

as store location and time, improving predictive accuracy and enhancing analytical depth.

Pretrained MBTs can serve as retail foundation models that can be adapted to specific appli-

cations with little e!ort.
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Our contributions are threefold. First, we implement a customized transformer model tailored

to market basket data, and compare its performance with state-of-the-art models. Our results

show that the MBT predicts missing products in shopping baskets with twice the accuracy

of existing approaches. Second, we identify and mitigate a critical limitation in applying

transformers to retail data: low data volume and high data sparsity prevent transformers

from learning market structure and basket composition, particularly for long-tail products. To

ensure that the transformer model performs equally well across all products in the assortment,

we incorporate covariates, modify the training approach, and generate additional training

examples. These modifications substantially improve the predictive accuracy of high-frequency

products. This illustrates how modifying existing machine learning models increases their

value for applications in marketing (Liu 2023). Third, we show that our MBT serves as a

foundation model for retailing by first pretraining it to understand assortment structure and

product relationships, and then fine-tuning it to predict coupon redemptions. The downstream

task di!ers from pretraining objective, and far less data is available. This demonstrates the

model’s adaptability to specialized retail analytics tasks, such as personalized marketing and

promotion optimization.

From a managerial perspective, our model addresses the complexities of retail analytics as-

sociated with handling large-scale and sparse data. Furthermore, the MBT is a foundation

model that can be adapted to a broad spectrum of analytical tasks. This enables retailers to

derive actionable insights with minimal additional training data, facilitating faster implemen-

tation and more e!ective decision-making. Moreover, covariates capture contextual factors

that influence shopping behavior, providing valuable insights for retail analytics.

The remainder of this paper is organized as follows. We start by reviewing the related literature

(Section 2) and introducing the MBT and its architecture (Section 3). After evaluating the

model’s performance empirically (Section 4), we present three model extensions that ensure

consistent performance across the entire product assortment (Section 5). Finally, we illustrate

how our model can be fine-tuned for specific tasks by applying it to coupon redemption
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prediction (Section 6). We conclude with a summary of our contributions and suggest future

research directions.

2 Literature Review

Our research contributes to two literature streams: applications of transformer models in

marketing and methods for market basket analysis. We summarize both literature streams

below and highlight our respective contributions.

2.1 Applications of Transformer Models in Marketing

Applications of transformers in marketing broadly fall into three categories. First, researchers

use pretrained or fine-tuned transformer models such as BERT (Devlin et al. 2019) and GPT

(OpenAI 2023) to generate embeddings of texts or images for downstream applications such

as text classification, topic modeling, or sentiment analysis. For example, Puranam et al.

(2021) examines the e!ect of a mandated minimum wage increase on consumer perceptions of

service quality, leveraging several fine-tuned transformer models to analyze the frequency and

sentiment of discussions about service quality attributes. Schöll et al. (2024) uses BERT to

examine how politicians adjust their responses to citizen feedback on social media. Wei et al.

(2024) encodes responses to open-ended survey questions using a GPT to identify motives for

sustainable behaviors.

Second, researchers use generative tools such as GPT and DALL-E to automate tasks requiring

processing texts or images. For example, Brand et al. (2023) applies large language models

to study consumer preferences; Li et al. (2024) investigates the use of large language models

as substitutes for human participants in perceptual market mapping; Castelo et al. (2024) ex-

plores the creative capabilities of GPT in generating innovative product ideas; Ringel (2023a)

investigates the potential of GPT to replace domain experts in classifying complex marketing

constructs within microblogs; and Le Mens et al. (2023) investigates the potential of GPT to

construct semantic similarity measures for book descriptions and political tweets, specifically

focusing on the typicality of texts.
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Finally, researchers have started to apply transformers to marketing-specific datasets other

than text and images. Unlike the applications discussed above, this research cannot rely on

pretrained models, but requires training the entire transformer model from raw data. Lu and

Kannan (2024) shows that transformers can be used to analyze sequences of customer inter-

actions in multi-channel marketing. Their model learns the relationships between customer

touchpoints, and predicts subsequent interactions and conversion probabilities. Bianchi et al.

(2020) train a transformer on e-commerce clickstreams. The model uses input sequences to

predict two types of events: First, which product is the last product added to a cart? Second,

will the session end with an add-to-cart action or not?

Our research builds on this emerging literature by developing a custom transformer designed

explicitly for market basket data in brick-and-mortar retailing. We extend this literature by

proposing modifications that enable the transformer to handle unordered sets of products and

incorporate covariates such as location and time. These adaptations allow the model to con-

textualize purchase probability predictions to the situational characteristics of the shopping

trip. We further show that the standard transformer does not outperform random prediction

for long-tail products, which account for most of the assortment. To address this crucial

limitation, we improve the masking strategy during model training and develop a new data

curation strategy that generates additional training examples. These changes substantially

enhance the model’s performance across the entire assortment and ensure that the trans-

former models high-frequency and long-tail products equally well. Finally, we illustrate our

model’s adaptability by fine-tuning it to predict coupon redemptions in a field experiment,

demonstrating that our MBT can serve as a foundation model for retail analytics.

2.2 Market Basket Analysis

Our work also adds to the rich literature on market basket analysis (MBA), which seeks

to understand consumer behavior in retail settings. Researchers have proposed a variety

of methods for market basket analysis (MBA) that add to our understanding of consumer
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behavior in retail settings. Agrawal et al. (1993) laid the groundwork for MBA by introducing

an algorithm for mining association rules between products in shopping baskets. Subsequently,

researchers have proposed additional metrics that quantify product co-occurrence in shopping

baskets (for a summary, see Blattberg et al. 2008). For example, Zhang (2000) proposed

an improved association rule metric that normalizes scores against the expected purchase

frequency and di!erentiates between positive and negative associations.

In addition to data mining techniques, researchers have also developed econometric models

for analyzing basket data. Manchanda et al. (1999) proposed a multivariate probit model

for multicategory purchase decisions, providing insight into both complementarity and co-

occurrence in category choice. Russell and Petersen (2000) introduced a multivariate logit

model that allows for any type of demand relationship across product categories. Both studies

apply their model to four grocery categories. These choice models incorporate cross-category

relationships through additional model parameters. Boztuğ and Reutterer (2008) expanded

the scope of MBA by combining multicategory choice models with a data-driven approach

for basket selection, thereby enriching the understanding of market baskets through customer

segmentation. A key benefit of choice models is that their utility framework is grounded in

psychological theory, which makes them a suitable tool for policy evaluation.

Researchers have proposed machine learning approaches for MBA to address the limited scal-

ability of econometric methods. Mild and Reutterer (2003) explored collaborative filtering

for predicting cross-category purchases based on market basket data. To capture (dynamic)

purchase behavior in large-scale retail settings, Jacobs et al. (2016, 2021) developed models

based on Latent Dirichlet Allocation (LDA) that leverage customer-level purchase histories

to identify purchase motivations. They use these purchase motivations to predict customers’

future purchases. Gabel et al. (2019) proposed Product2Vec and P2V-MAP for analyzing

market structure using product embeddings. Ruiz et al. (2020) introduced SHOPPER, a se-

quential probabilistic model of shopping data designed to capture item interactions based on

product embeddings and the e!ect of marketing interventions. Gabel and Timoshenko (2022)
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proposed a scalable deep-learning model for multicategory product choice in large assortments,

focusing on brand-level analysis and coupon personalization of loyalty card customers. The

model captures how a price promotion for a product a!ects products’ purchase probabilities,

not only of the promoted product but of all products in large retail assortments. Ringel

(2023b) used language models to learn product relationships from clickstream data. They

showed that competitive relationships among products can depend on the attributes relevant

in a submarket if products compete in multiple parts of a market.

Our research builds on and extends this literature by applying the transformer architecture to

MBA. Similar to other machine learning methods, the MBT scales well to large retail assort-

ments and requires few assumptions about market structure. We demonstrate that transform-

ers can learn systematic co-occurrence patterns in shopping baskets, similar to multivariate

choice models (Manchanda et al. 1999, Russell and Petersen 2000). Incorporating covariates

into the transformer model, addresses the complexity inherent in marketing environments,

where multiple factors influence consumer behavior simultaneously (Liu 2023). Our analysis

reveals that the MBT learns basket composition more accurately than alternative models. To

ensure that the model performs equally well for high-frequency and long-tail products, we

modify the training approach and develop a new data curation strategy. With these features,

the MBT can serve as a foundation model for retail analytics that can be easily adapted to

various tasks with minimal model changes and additional data.

3 Model Input, Model Architecture, and Training Procedure

Adapting transformers to market basket data requires three steps: First, define a neural net-

work architecture that inputs shopping baskets and learns basket composition through scaled

dot-product attention (Vaswani et al. 2019); Second, implement a robust training approach

that ensures meaningful neural network weights even for rarely observed products; And third,

incorporate covariates that characterize shopping trips and capture how purchase probabilities

vary across these trips. We detail these steps in the following sections.
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3.1 Model Input

We consider a retailer with an assortment that contains J products j “ 1, . . . , J . We model

purchases at the product level, without any further aggregation to brand or category levels. A

shopping basket b of size nb is a set of products xb “ tj1, . . . , jnb
u a customer purchases during

a single shopping trip. We focus on applications in o#ine retailing, so shopping baskets are

unordered sets of products. Retailers track purchases through their checkout systems.

We conduct four data preprocessing steps before we input the market basket data into the

transformer (see Figure 1). The starting point is a batch of B shopping baskets (step 1). For

simplicity, we depict the case B “ 1. We do not input product names, descriptions, or one-hot

encoded vectors, but a set of product IDs, such as UPCs (universal product code).

Next, we add a pad product p to the product set S ´ nb times (step 2). Padding is a common

practice in deep learning and facilitates an e”cient neural network implementation with tensor

multiplication. The pad product is ignored when calculating the loss, so it does not a!ect the

neural network weights. Each padded basket is a set xb “ tj
b
1, . . . , j

b
Su with |xb| “ S.

We further input C covariates (step 3). Product purchase probabilities and basket composition

likely vary with shopping trip characteristics. For example, customers visiting di!erent stores

might have heterogeneous preferences and purchase di!erent products. Customers might also

buy some products more frequently in the morning (e.g., breakfast rolls) and others in the

evening (e.g., refrigerated beer). Covariates allow the transformer to account for varying

purchase frequencies and learn more detailed purchase patterns. The patterns captured by

the covariates can also provide insights to marketers, as we will illustrate in Section 5.2. For

each basket, the covariates form a set of IDs xc “ tx
c
1, . . . , x

c
Cu with |xc| “ C.

In our empirical application, we use the store where the shopping trip takes place (S), the

time of the shopping trip (T), and the day of the week (D) as covariates. Similar to products,

each covariate is encoded as an ID (e.g., S2 representing one of the retailer’s stores) without

providing any additional information about the similarity of covariate levels. The transformer

7



Figure 1: Input Data Preparation

Padding
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Notes: The transformer inputs shopping baskets as unordered product sets (green). We add pad
products p to achieve a fixed set size (light grey). We add shopping trip characteristics such as store
IDs (S2) as covariates. We replace some products with a mask product m (dark purple).

learns the meaning of covariates by observing the content of shopping baskets. It can be

extended to process additional covariates, such as customer characteristics, basket size, basket

value (revenue), promotion indicators, or weather data.

Finally, we randomly mask product IDs in baskets during training (step 4). In Figure 1,

we replaced Product 15 with the mask product m. Masking is part of the self-supervised

transformer training. The learning task is to predict the product replaced with the mask

product, based on the surrounding products and the covariates. In every batch of baskets, we

dynamically determine which IDs are masked, mirroring the masking proposed by Liu (2019)

for NLP transformers. Dynamic masking allows us to learn more from the limited basket data

since di!erent products will be masked across the training in each training epoch. In the base

transformer model, we use a masking probability of pmask “ 15%.1

The transformer forward pass (see Section 3.2) outputs a probability distribution

pjpxbq – ppm “ j | xb, xcq “ tp
b
1, . . . , p

b
Ju (1)

over all products in the assortments. The perfect prediction is a probability of 1 for the true

1Many transformer implementations in NLP first determine whether a word should be masked, and then
replace only 80% of the words with a mask word, replace 10% of the words with another (randomly selected)
word, and keep the original word for the remaining 10% (Devlin et al. 2019). This approach is believed to
improve the model training, so we incorporate it in our transformer implementation.
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(masked) product and a probability of 0 for all other products, so we define the model (log)

loss as

L “
ÿ

j

log pjpxbq. (2)

This learning task forces the model to predict missing products in incomplete baskets, which

ensures that the basket transformer accurately captures patterns in basket data. Understand-

ing purchase patterns and basket composition is the basis for many retailing analytics tasks,

which is an important requirement for a foundation model.

A challenge for training transformers in retailing is that most shopping baskets are small. If

baskets contain four products, a masking probability of 15% would mask one product in every

second basket, while the remaining baskets do not contribute to the training. This amplifies

the problem of data sparsity. We therefore propose and evaluate two additional transformer

modifications in Section 5. We modify the masking procedure by forcing a minimum number

of nmask masked products in each shopping basket, and we propose approaches for generating

additional training examples from the available training data. We show in the empirical

application that these modifications substantially improve model performance, particularly

for long-tail products, for which data is limited (see Section 5.3).

3.2 Model Architecture

Next, we describe the model architecture that calculates the probability distribution in Equa-

tion 1 (see Figure 2). We input the padded product set xb and the basket-specific covariates

xc. The transformer uses a product embedding Ej to turn each product ID in the product

set into a vector of length D. These vectors represent products in a latent attribute space

that captures information such as product categories, brands, prices, etc. (Gabel et al. 2019).

Similarly, covariates, such as store and time of day, are represented by D-dimensional covari-

ate embeddings Ec.2 We then combine product vectors v1..S “ Ejpxbq and covariate vectors

2If covariates are continuous variables, they should first be discretized and then represented in the transformer
by additional embeddings.
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v1..C “ Ecpxcq, resulting in a tensor of size B ˆ pS ` Cq ˆ D for each batch. B is the batch

size, S is the length of the (padded) product set, C is the number of covariates, and D is the

embedding size.

To capture relationships between products and to model products’ context-dependent3 pur-

chase probabilities, we feed the product and covariate vectors into a stack of N (! 1) trans-

former modules. Each module first calculates the scaled dot-product attention (Vaswani et al.

2019):

Attentionpxq “ softmax
ˆpw1 xqpw2 xqT

?
D

˙
w3 x (3)

where x “ rv1..S, v1..Cs is the output of the embedding layer. The attention scores pw1 xqpw2 xqT

model the relationships among products and covariates. Within each attention module, we

use H parallel attention heads. In each head h, the input x is projected using head-specific

weight matrices w
h
1 , w

h
2 , and w

h
3 to create distinct representations for the attention calcula-

tion. Each head independently performs self-attention (see Equation 3), allowing it to focus

on di!erent aspects of basket composition and the e!ects of covariates. The head outputs are

concatenated and linearly projected back to the embedding space by a matrix w4 to produce

a final attention output with the same dimensionality as the attention input. The contextual-

ization by the attention module captures that products’ purchase frequencies can depend on

other products in the basket and the characteristics of the shopping trip.

Following the attention module, each transformer module includes a bottleneck module to pro-

cess contextualized vectors further. The bottleneck only operates on the embedding dimension

and does not change product relationships; it enables the transformer to model non-linear pat-

terns in the data. We stack N transformer modules, each consisting of an attention module

and a bottleneck module, and we use residual connections and layer normalization as proposed

by (Vaswani et al. 2019).

3We use “contextualization” as a technical term to refer to the e!ect of the attention layer on the input
vectors. We do not use “context” to describe the information captured by covariates. Instead, we refer to
the “shopping context” as shopping trip characteristics or covariates.
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Figure 2: Model Architecture
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The last layer of the MBT is a linear projection to expand the D-dimensional vector for the

masked product to the size of the assortment J . The resulting logits vector lj is scaled to

probabilities by a softmax transformation:

pj “ exptlju!
k exptlku . (4)

These probabilities capture the likelihood that product j occurs in a basket characterized by

its products and covariates.

3.3 Training Procedure

We learn the model parameters

ω “
”
Ej, Ec,

´
w

Att,1..H
1..3 , w4, w

F F
, b

F F
¯

1..N

ı
(5)

through batch gradient descent (Hertz 2018). In the backward pass, we calculate the cross-

entropy loss from the predicted probabilities

L “
ÿ

j

log rpjpxbqs “
ÿ

j

log
„

exptlju!
k exptlku

"
, (6)

and calculate the gradients of the loss function with regard to the model parameters. The loss

function compares the predicted probability pjpxbq with the true distribution, a one-hot vector
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indicating the index of the product in the retailer’s assortment that was replaced by the mask

product. Based on the gradients, the model updates the parameters to minimize the loss. We

compute gradients through backpropagation and use the ADAM adaptive moment algorithm

estimation to optimize the model parameters (Kingma 2014). Training the model in batches

allows distributed computing and does not require having all training data in memory, so

model calibration remains feasible for large data sets.

3.4 Discussion

The proposed MBT model di!ers from classic NLP transformers in three ways. First, it op-

erates on unordered sets of products rather than ordered word sequences. In traditional NLP

models, positional encodings are crucial for capturing the sequential nature of language. For

example, grammar rules, the logical structure of the content, and language styles dictate the

order of words in sentences and paragraphs. The positional encoding captures such patterns.

In most brick-and-mortar settings, such a sequential order does not exist. Instead, our model

relies on product embeddings to capture the underlying market structure and product relation-

ships. This allows the basket transformer to learn product substitution and complementarity

from purchase co-occurrence data (similar to Gabel et al. 2019), thereby providing a robust

foundation for the basket transformer. One can think of market structure as the grammar of

market basket data.

Second, the MBT incorporates covariates, which capture di!erences across shopping trips.

The transformer leverages covariates to account for the impact of external factors on product

purchase patterns, which enables it to adjust predictions based on the specific characteristics

of each shopping trip. It is possible to integrate additional covariates, such as promotional

activities, pricing strategies, and seasonal trends, which could further refine its predictive

accuracy and broaden its applicability in retail analytics.

Third, in contrast to most existing approaches for market basket analysis, such as P2V, LDA,

and SHOPPER, the MBT can serve as a foundation model that can easily be adapted to new
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tasks. Fine-tuning pretrained transformers is a common method for adapting the model to

a new task not covered in its initial training. This process can involve adding a new output

layer tailored to a specific task—such as binary or multilabel classification—and updating

the model’s weights using labeled data. For classification tasks, the model learns how to

assign one or more labels to each input from new and much smaller training data, adjusting

its general understanding of purchase patterns to more specialized applications. To prevent

overfitting and excessive changes to the pretrained model during fine-tuning, a lower learning

rate and smaller batch sizes are typically used during fine-tuning. Examples of fine-tuning

tasks include predicting coupon redemptions for specific products (see Section 6), segmenting

customers based on the content of a shopping basket, or predicting the likelihood of customer

churn. These tasks benefit from the transformer’s ability to capture nuanced relationships

among products and additional attributes of market basket data.

4 Application to Market Basket Data

In this section, we present results for applying the simplest version of the MBT to data from

a German grocery retailer. We discuss the model implementation, evaluate its performance,

and identify a limitation of the basic transformer implementation that curtails its applicability

to long-tail products. The performance evaluation includes a benchmark with alternative

approaches for modeling basket composition.

4.1 Data Set and Descriptive Statistics

We obtain market basket data from 147 stores of a national German grocery retailer. All

data were collected between January 2016 and December 2016. In total, the data set contains

38 million shopping baskets. Each shopping basket is a transaction record that details the

products purchased together during a single shopping trip.

We use 75,000 randomly sampled baskets as a test set for evaluating the model’s predictive

performance. We randomly sample 20 million baskets from the remaining baskets for our
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training set. We limit the size of the training set, so all baselines can process it.4 We use

the remaining baskets to construct additional test and training sets (see Section 5) for more

detailed analyses of predictive performance on long-tail products.

Table 1 provides summary statistics for the training data. The assortment consists of 30,383

products from 143 product categories. The average basket size is 9.24, with an interquartile

range of 5 (Q1 “ 6, Q3 “ 11). Most products are purchased infrequently. The average

product purchase rate, defined as the fraction of shopping baskets containing a focal product,

is 0.046% with an interquartile range of 0.035% (Q1 “ 0.005%, Q3 “ 0.040%). The maximum

product purchase rate is 8.3%. The statistics reported in Table 1 are typical of the German

grocery retail industry at large.

Table 1: Market Basket Data (Training Data)

Variable Value

Number of baskets 20,000,000
Average basket size 9.24
Basket size quartiles Q1 and Q3 [6, 11]
Basket size interquartile range 5

Number of products 30,383
Number of brands 2,950
Number of categories 143

Average purchase rate 0.046%
Purchase rate quartiles Q1 and Q3 [0.005%, 0.040%]
Purchase rate interquartile range 0.035%

4.2 Model Training

Table 2 summarizes the default MBT hyperparameters we use in this section. Given the

limited volume of training data, we choose a low embedding dimensionality (D “ 128) and

a single transformer layer (N “ 1) to reduce the risk of overfitting. To compensate for the

4The implementation of SHOPPER on GitHub does not support processing all products and shopping baskets.
To use the entire data set of 38 million baskets, we would have to drop a third of the product assortment,
which would prevent SHOPPER from predicting purchase probabilities for these products. We verified that
the substantive results for the other models do not change when using all 38 million baskets.

14



simplicity of the model, we use multiple attention heads (H “ 8) to capture diverse patterns

in product co-occurrence and the influence of covariates.

In Section 5, we evaluate several modifications to the transformer and the training procedure

that substantially improve its performance. These modifications include adding covariates

to the model, enforcing a minimum number of masked products, and generating additional

training examples. The a!ected hyperparameters are marked with an asterisk in Table 2.

Table 2: Default Model and Trainer Hyperparameters

Variable Value

Model

Dimensionality of the product embedding 128
Number of covariates * 0
Product set size (excluding covariates) 48
Number of attention modules 1
Number of attention heads 8
Number of bottleneck modules 1

Trainer

Default masking probability * 15%
Default minimum number of masked products * 0
Addtional training examples * No
Number of epochs 10
Learning rate Adjusted in optimizer

Note: The parameters marked with an asterisk are the focus of Section 5, where we include
covariates, enforce a minimum number of masked products, and generate additional train-
ing examples.

4.3 Basket Completion Modeling Task

A good foundation model captures structure and patterns in market basket data. This includes

accurately modeling (1) which products co-occur in shopping baskets and (2) how shopping

trip characteristics a!ect basket composition. To evaluate how well the transformer learns

these purchase patterns, we use a task that we call basket composition modeling (BCM).

Consider an example basket that contains the products:

tmilk, bread, toothpaste, eggs, laundry detergentu

Products are represented by integer IDs (e.g., UPC); we use product names in this section to

simplify the exposition. In each basket, we remove one product and task the model to predict

15



the missing product, based on the remaining products in the basket. For example, if bread

is removed from the example basket, the input might appear as:

tmilk, , toothpaste, eggs, laundry detergentu

Although the products in the basket are unordered, the model learns product embeddings

that capture market structure, revealing common product associations. In this example, the

model might predict that the masked product is bread by recognizing associations within the

remaining items in the basket. The model outputs a probability distribution over the entire

product assortment for the missing product.

We implement this task on the test set. To evaluate model performance, we use accuracy@k:

we take the k products with the highest predicted probabilities and evaluate if the true product

is among them. This produces a binary outcome that is one if the true focal product is among

the top k predictions and 0 if not. We average this binary outcome across all test baskets to

obtain the final accuracy score for a given value of k. Accuracy@k assesses the model’s ability

to correctly predict the missing product within the k top-ranked predictions. Importantly,

we predict missing products (N “ 30,383), not aggregations such as brands or categories that

would simplify the prediction task.

4.4 Model comparison

We compute accuracy@k for the most basic basket transformer (no covariates, standard mask-

ing strategy, no additional training examples), and compare its performance with five alterna-

tive models: SHOPPER (Ruiz et al. 2020), P2V (Gabel et al. 2019), LDA (Blei et al. 2003),

the Zhang metric for market basket analysis (Zhang 2000), and a random prediction baseline.

Web Appendix A provides detailed descriptions of the model implementations.

Figure 3 presents the results for values of k ranging from 1 to 10. The transformer’s accu-

racy for k “ 1 is 3.8%, which is 1,000 times larger than the accuracy of the random baseline

(1{30, 383 “ 0.003%). Among the benchmark models, SHOPPER performs the best, followed

by the Zhang metric, with P2V and LDA showing similar but slightly lower performance than
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Figure 3: Accuracy in Basket Composition Modeling Task

the Zhang metric. As expected, the accuracy of the random baseline increases linearly with

k, reflecting the expanding size of the prediction set. All models significantly outperform the

random baseline. The transformer achieves an accuracy@k more than double that of SHOP-

PER, the best alternative model. Remarkably, despite the very large number of products that

could occur in each test basket (N “ 30, 383), one of the transformer’s top-10 predictions is

correct in 12.5% of the test baskets. Note that the two best models, the transformer model

and SHOPPER, were specifically designed to capture basket composition.

To better understand the transformer’s predictive performance, we analyze its product em-

bedding and attention weights in more detail. Figure 4 shows a product map based on the

transformer’s product embedding, with each bubble representing a specific product. We cre-

ate a two-dimensional visualization of these high-dimensional embeddings by reducing the

dimensionality with t-SNE (Van der Maaten and Hinton 2008).5 The resulting product map

provides a visually interpretable representation of the product embeddings, o!ering insights

into the structure learned by the model.

5We use a random initialization for the products’ map location and a perplexity of 30.
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Figure 4: Product Map

(a) Category Color Overlay (b) Frequency Color Overlay

Notes: t-SNE representation of the products embeddings. The two panels show the same product
map; we use di!erent color overlays. In panel (a), the bubble color indicates product categories. In
panel (b), the bubble color indicates products’ purchase frequency. Blue denotes products in the top
purchase frequency quintile, and red products in the bottom purchase frequency quintile.

The colors in panel (a) represent di!erent product categories. Interestingly, the product map

tells two stories. On the right half of the map, products form clusters, each predominantly con-

taining products from the same category. The clustering suggests that the embeddings capture

underlying product relationships and similarities. Moreover, clusters often form superclusters,

reflecting higher-level relationships between di!erent product categories. In contrast, the left

half contains thousands of products, with no apparent clustering. Neighboring products often

belong to di!erent categories, resembling the result of “emptying a bag of Skittles on a table.”

To reveal which products are a!ected by the lack of structure, we recolored both maps using

products’ purchase frequency in panel (b). Products in the lowest frequency quintile are

colored red, and products in the highest frequency quintile are colored blue. We find that the

unclustered products on the left side of the map have a low purchase frequency. In contrast

to high-frequency products, the transformer did not learn meaningful product vectors.
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Figure 5: Transformer Attention Weights

Note: Darker tiles indicate stronger attention between products.

We would expect that noisy product vectors also limit the transformer’s ability to capture

basket composition in the attention layer. Recall that the attention weights determine how

strongly product vectors are correlated. Attention weights are directly derived from the bas-

ket’s product vectors x, and the attention weights w1 and w2:

wAtt “ softmax
ˆpw1xqpw2xqT

?
D

˙
. (7)

Attention weights for products that are related to each other (e.g., purchase complements)

should be large, whereas attention weights for unrelated products should be close to zero.

Figure 5 visualizes the learned attention weight matrix as a heatmap for an example basket,

averaged across the eight attention heads. Each weight depicts how the product vector of

the row product modulates the vector of the column product. Intuitively, we expect a strong

association between tortilla chips and salsa (complements), and between eggs and milk (similar

purchase cycle).
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Overall, attention heads display sparse activation patterns, with most attention weights being

small and only a few being activated. We find that the strongest association is between

tortilla chips and eggs. We do not observe an association between tortilla chips and salsa.

Both findings are counterintuitive. Overall, the attention weights seem to be larger for more

frequently purchased products (eggs and milk). We find similar results for other shopping

baskets, indicating that the transformer struggles with long-tail products.

5 Long-Tail Products

A good foundation model must perform equally well for all products in the assortment. There-

fore, we examine the transformer’s performance as a function of purchase frequency in more

detail. We then assess whether our three transformer modifications—covariates, minimum

masking, and synthetic training examples—can address the long-tail problem identified in the

previous section.

5.1 Performance of the Basic Transformer Model

To analyze long-tail products, we proceed as follows: First, we construct a new test set from the

18 million shopping baskets, which were not used in our previous analysis. For each product

in the original training data, we sample 100 baskets containing the focal product, remove the

focal product, and task the transformer to predict the removed product. This produces a test

set comprising approximately three million baskets. We then bin products into deciles based

on their purchase frequency, ranging from D01 for the most frequently purchased products to

D10 for the least frequently purchased products. Each decile contains approximately 3,000

products. After predicting the missing products, we calculate the prediction accuracy@k=1

for each frequency bin. Unlike the initial data set, which emphasizes frequently occurring

products, the new test set assigns equal weight to all products.

We present the results in Figure 6. The x-axis denotes products’ purchase frequency deciles,

and the y-axis shows the prediction accuracy@k=1, indicating how often the top prediction

is correct. To facilitate the comparison across deciles, we normalize the accuracy to the value
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Figure 6: Predictive Performance as a Function of Products’ Purchase Frequency

Note: To facilitate a comparison of predictive performance across bins (and analyses), we normalize
the accuracy to the value in D01.

in decile D01. The results reveal the highest predictive performance for products in D01, with

accuracy declining exponentially as purchase frequencies decrease. The di!erences between

bins D01 to D04 are statistically significant (p " 0.05). Notably, for half of the assortment, the

model’s accuracy is indistinguishable from random chance, with no significant improvement

over a baseline accuracy of zero.6

The results show that the transformer’s predictive accuracy is strongly tied to product pur-

chase frequency. While the model performs well for frequently purchased products, its accu-

racy declines sharply for long-tail products. We posit that the performance drop stems from

insu”cient training data for long-tail products, limiting the model’s ability to learn purchase

patterns.7 In the following sections, we propose and evaluate several modifications to the

transformer training and architecture to address this issue. Our objective is to improve the

accuracy for long-tail products while maintaining high accuracy for high-frequency products.

6We provide a version of the plot in Figure 6 with confidence intervals in Web Appendix B.
7An alternative explanation is that the performance decrease is caused by long-tail products co-occurring more
frequently with other long-tail products. In Web Appendix C, we show that this is not the case.
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5.2 Performance of the Transformer with Covariates

Two reasons motivate the inclusion of covariates: First, a good foundation model for retail

analytics must capture as much information about the shopping trip as possible. Incorporating

covariates enables the transformer to model purchase frequency heterogeneity as a function

of shopping trip characteristics. Second, covariates might mitigate the low performance for

long-tail products by contributing additional information about the shopping trip.

We first analyze the time and store embeddings to assess whether the transformer e!ectively

captures covariate information. The t-SNE visualizations8 of these embeddings, shown in

Figure 7, reveal meaningful patterns. The left panel depicts the time of day embedding.

Adjacent hours are positioned close to one another, reflecting their similarity. The cluster in

the top left represents night hours (orange), while evening hours appear at the top (dark blue),

afternoon hours on the right (yellow), morning hours are at the bottom right (green), and

early morning hours at the bottom left (light blue). This visualization supports the model’s

face validity and suggests that shopping trips closer in time tend to have similar product

purchase frequencies and basket composition.

In the right panel of Figure 7, we visualize the store embedding. We find that similar stores

form clusters. For instance, stores in shopping malls in Berlin’s tourist areas are clustered

together (orange). Similarly, we observe several clusters that contain neighboring stores. For

example, the stores in the green and yellow clusters are each located within 1.5 kilometers

of each other. The store embeddings learned by the transformer indicate that it e!ectively

captures location information and store similarity.

Notably, we do not provide any information about time or store similarity to the transformer

model; we only input abstract IDs for every store and time of day (e.g., S2 and T9), which

the model then embeds in latent attribute spaces. The transformer independently learns the

similarity of stores and di!erent times during the day during the self-supervised training, just

by observing basket content and covariates.
8We use a random initialization for the products’ map location and a perplexity of 5.
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Figure 7: Time of Day and Store Embeddings Learned by the Transformer

(a) Time of day embedding (b) Store embedding

Notes: Each bubble in panel (a) represents a one-hour window in 24-hour format. The colors
indicate di!erent parts of the day: night hours in orange, evening hours in dark blue, afternoon
hours in yellow, morning hours in green, and early morning hours in light blue. Each bubble in panel
(b) is a store. We highlight three interesting store sets: stores in Berlin’s tourist areas in orange,
and two clusters that contain stores within 1.5 kilometers of each other in green and yellow.

Next, we evaluate how covariates a!ect the transformer predictions for the basket composition

task. Figure 8 shows the prediction accuracy as a function of products’ purchase frequency.

The black line represents the accuracy of the base transformer in Figure 6, and the orange

line the performance of the model with covariates. In addition to generating insights into

shopping behavior, covariates substantially improve the model’s predictive accuracy, with the

largest relative improvement in deciles D03 and D04. However, the long-tail problem persists;

for products in deciles D08 to D10, the model’s predictive accuracy remains nearly random.

To illustrate that covariates capture meaningful variation in purchase rates, we study the

predicted probabilities at the product level. Below, we discuss the results for a beer SKU

(a bottle of Berliner Kindl). For beer, we would expect substantial di!erences in purchase

probabilities across stores and time. In this analysis, we sample 250,000 shopping baskets and

predict the probability that the focal product would occur in the baskets using the transformer
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Figure 8: E!ect of Covariates

Note: To facilitate a comparison of predictive performance across analyses, we normalize the accu-
racy to the maximum value of the base model in Figure 6.

model with and without covariates. Figure 9 depicts the resulting probabilities, averaged for

every level of the time and store covariates. We normalize the distributions by the average

probability. For the store-level probabilities, we sort the probabilities by the model’s output

without covariates to facilitate the comparison. We find that including covariates increases the

variance in the predicted probabilities (orange bars) compared to the model without covariates

(black lines).

To assess whether the transformer with covariates captures the variance in purchase rates

more accurately, we analyze its predictions at each covariate level. Specifically, we calculate

the fraction of shopping baskets that contain the focal product for each time of day and store.

We then correlate this measure with the predicted probabilities for both models. A higher

correlation indicates that the predicted probabilities more accurately capture the observed

variations in purchase rates. For the time covariate, both models produce probabilities that

are highly correlated with the purchase rates (εCov
time “ 0.895 with p " 0.001 and ε

No Cov
time “

0.886 with p " 0.001). The transformer learns time-varying purchase probabilities, even
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Figure 9: Average Predicted Probabilities for Time of Day and Stores

(a) Probabilities for time of day

(b) Probabilities for stores

Notes: We sample 250,000 shopping baskets and predict the average probability for a national beer
brand with a transformer model with covariates (orange bars) and without covariates (black line).
For stores, we sort the probabilities by the output of the model without covariates.

without time covariates. Baskets at di!erent times contain di!erent products. By conditioning

purchase probabilities on the other products in the shopping basket, the transformer can use

the basket content in the attention layer to adjust the purchase probability for the focal

product over time.

For store-level predictions, using covariates increases the correlation substantially: the cor-

relation increases by 87%, from ε
No Cov
store “ 0.380 (p " 0.001) to ε

Cov
store “ 0.710 (p " 0.001).
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The content of shopping baskets does not su”ciently modulate the predicted probabilities to

capture the empirically observed variations in purchase frequencies.

Our analysis demonstrates the value of covariates in the transformer model. The covariate

embeddings capture information about time and location; this facilitates descriptive analy-

ses (see Figures 7) or model adaptation in other analytics tasks (see Section 6). However,

covariates do not entirely mitigate the low model performance for long-tail products.

5.3 Performance of the Transformer with Minimum Masking

A challenge of the default masking strategy is that smaller baskets—which are common in

retail datasets (see Table 1)—may not contain any masked products. Recall the example

mentioned in Section 3.1: with the default masking probability of 15%, only half of the baskets

containing four products will include a masked product. The other half does not contribute to

the training, leading to ine”cient use of available data (undermasking). Simply increasing the

masking probability results in masking too many products, which reduces predictive accuracy

as the model struggles with limited context (overmasking).9

We propose to mask at least nmask “ 1, 2, . . . products in every basket. When the default

strategy masks too few products, additional products are randomly masked to meet the nmask

threshold. Our strategy mitigates undermasking and overmasking. By ensuring nmask masked

products in every basket, we increase the number of baskets contributing to the training.

Consequently, all products—including long-tail products—are masked more frequently, which

should improve model performance.

Figure 10 shows that all values of nmask more than double the model’s predictive performance,

with the best result observed for nmask “ 1. Our minimum masking strategy significantly

improves the predictive performance beyond the base model, not only for frequent products,

but also for long-tail products. The relative improvement is largest in deciles D03 to D05.

Although minimum masking improves predictions, the performance for long-tail products

9Web Appendix D shows that tuning the masking probability does not solve the problem of low-accuracy
predictions for long-tail products.
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Figure 10: E!ect of Minimum Masking Strategy

Note: To facilitate a comparison of predictive performance across analyses, we normalize the accu-
racy to the maximum value of the base model in Figure 6.

(D07 to D10) remains more than an order of magnitude lower than the performance for high-

frequency products.

5.4 Training Data Curation

Next, we evaluate whether adding more training data can further improve transformer per-

formance. We consider four data curation strategies to extend the initial training data set:

1. Randomly re-sampling baskets from the training set (Random Sampling)

2. Increasing the number of epochs, which leverages that we dynamically mask di!erent

products in every epoch (18 Epochs)

3. Collecting additional baskets not previously used during training (New Data)

4. For each long-tail product, randomly sample baskets containing the focal product from

the original training set until each product occurs in at least 1,000 baskets (Selective

Data Sampling)10

10Strategy 4 is related to the idea of weighted sampling in language modeling, where the best training data is
not always consistent with the distribution of words in human language (Xu et al. 2024).
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Strategy 4 (Selective Data Sampling) requires adding 15 million shopping baskets (`75%),

resulting in a total of 35 million shopping baskets. Some products occur in less than 50

shopping baskets in the original training data. Our upsampling strategy increases the number

of baskets by more than 20 times. We implement strategies 1 to 3, such that they also

increased the available training data by 75%. For strategy 1, we randomly sample 15 million

shopping baskets from the original training data. For strategy 2, we increase the number

of training epochs from 10 to 18, such that the (same) baskets are used more often in the

(longer) training. For strategy 3, we add 15 million new shopping baskets. We evaluate

all data curation strategies with minimum masking nmask “ 1 and a masking probability of

pmask “ 15%.

We expect improvements for long-tail products across all data curation strategies because

they are now included more frequently in the training data. Selectively upsampling baskets

(strategy 4) changes products’ purchase frequencies; the resulting concept shift could lower

model performance (Simester et al. 2020). However, given that our goal is predicting basket

composition and not purchase frequencies, the concept shift may not be problematic.

Figure 11 shows the predictive performance of the base model, alongside the results for the

models using the new data curation strategies. We find that strategies 1 to 3 substantially

outperform the base model, and generate a small but significant improvement over a model

with the same hyperparameters, but the original training data (“Improved Model”). The

performance of strategies 1 to 3 does not di!er significantly11. We observe the largest im-

provements from these three strategies for medium-frequency products. Consistent with our

earlier findings, additional data provides minimal benefit for high-frequency products due to

their frequent occurrence (i.e., diminishing returns), while the rarity of low-frequency products

limits the benefit of increased data.

In contrast, strategy 4 (Selective Data Sampling) creates a substantial and statistically sig-

nificant improvement even for products in deciles D05 to D10. Notably, this strategy meets

11We provide Figure 11 with confidence intervals in Web Appendix B.

28



Figure 11: E!ect of Training Data Curation Strategies

Notes: To facilitate a comparison of predictive performance across analyses, we normalize the
accuracy to the maximum value of the base model in Figure 6. Appendix B contains this figure with
CIs.

our objectives for an improved transformer model: The bias against long-tail products is mit-

igated, with significantly higher accuracy in the low purchase frequency deciles, while the

performance for high-frequency products remains consistently high.

5.5 Source of Performance Improvement

Next, we investigate the source of the performance improvement by examining two models in

detail: the basic MBT implementation discussed in Section 5.1 (hereafter, BASE transformer)

and our best-performing MBT implementation with selective data sampling for long-tail prod-

ucts (hereafter, BEST transformer).

First, we plot the product maps for the BASE and BEST transformers (see Figure 12). The

maps for the BASE transformer are identical to those in Figure 4. For the BEST transformer in

panel (b), products from the same category form distinct clusters. As discussed in Section 4,

the product map for the BASE transformer lacks such a level of structure.

Again, we recolor both maps using the products’ purchase frequency and depict the maps in
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Figure 12: Product Map

(a) BASE model with category overlay (b) BEST model with category overlay

(c) BASE model with purchase frequency overlay (d) BEST model with purchase frequency overlay

Notes: t-SNE representation of the product embeddings. The two panels show the same product
map. We use di!erent color overlays: In panel (a), the bubble color indicates the product category.
In panel (b), the bubble color indicates product purchase frequency. Blue bubbles denote products
in the top purchase frequency quintile, and red bubbles denote products in the bottom purchase
frequency quintile.

panels (c) and (d). Products in the lowest purchase frequency quintile are colored red, and

products in the highest purchase frequency quintile are colored blue. In contrast to the BASE

transformer map, on which purchase frequency drives cluster formation, products on the BEST

transformer map are organized by categories. Instead of forming a big cluster that resembles
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Figure 13: Fraction of Same-Category Nearest Neighbors (k “ 10)

a “bag of Skittles,” low-frequency products are now distributed in clusters across the entire

product map.

To evaluate whether the low-frequency products are located in the correct product cluster, we

conduct an additional analysis that evaluates the similarity of neighbors on both product maps.

Products situated directly next to each other should be more similar and often associated

with the same product category. To evaluate this for both product maps, we sample 100 low-

frequency products (from decile D01) and 100 high-frequency products (from decile D09), and

calculate the fraction of the products’ neighbors belonging to the same category as the focal

product (hit rate). Similar to Ringel and Skiera (2016), we evaluate the ten nearest neighbors.

For both models, we then compute this hit rate measure separately for low-frequency and

high-frequency products.

The results in Figure 13 show that both models achieve high hit rates for high-frequency

products, although the hit rate for the BEST transformer is almost 50% higher than for the

BASE transformer. While the hit rate for the BASE model collapses, the BEST model maintains

a high hit rate even for long-tail products. Web Appendix E shows that this result is robust

to the number of nearest neighbors.

Finally, we re-evaluate the attention weights for the shopping basket studied in Section 4.4.
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Figure 14: Comparison of Transformer Attention Weights

(a) BASE Model (b) BEST Model

Notes: Each tile in the heatmap is a single attention weight. The product vectors of row products
a!ect the product vectors of column products. Color scales are identical in the two heatmaps.

Figure 14 visualizes the attention weights for the BASE and the BEST transformers in heatmaps.

The overall sparsity in attention weight is similar for the two heatmaps (the color scales are

identical), and we find very few large activated attention weights. Most importantly, the

associations identified by the BEST transformer seem much more reasonable. Tortilla chips

a!ect salsa and vice versa. Similarly, Corona beer and Haribo gummy bears are both related

to hot salsa and tortilla chips. Notably, beer is more related to salted snacks than candy.

Attention weights are no longer focused on high-frequency products; instead, they capture

face-valid product associations.

In sum, these findings provide empirical support that the proposed modifications lead to

substantial improvements.

6 Retail Analytics Application: Predicting Coupon Redemptions

Next, we demonstrate how the pretrained MBT can serve as a foundation model for other

retail analytics tasks by adapting it to predict in-store coupon redemptions.
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6.1 Foundation Models and Fine-Tuning

Foundation models are large, pretrained machine learning models that can be fine-tuned for

tasks di!erent from those they were originally trained on (Bommasani et al. 2022). During

pretraining, foundation models learn general patterns and structures from extensive datasets.

Fine-tuning adapts the pretrained model to a new downstream task using smaller, task-specific

data. This approach uses the general knowledge captured during pretraining, making foun-

dation models particularly e!ective when task-specific data is limited.

In natural language processing (NLP), foundation models like BERT (Devlin et al. 2019) and

GPT (Radford et al. 2019) are pretrained on large text corpora and fine-tuned for sentiment

analysis, machine translation, or question-answering. The fine-tuned models inherit the rich

representations learned during pretraining, which enhances their performance on specific tasks.

We adopt a similar approach in retail analytics. We pretrain the MBT on over 35 million shop-

ping baskets to learn general patterns of product co-occurrence and the influence of covariates

such as time and location. During pretraining (left panel of Figure 15), the transformer learns

embeddings that capture relationships among products and covariates.

After pretraining, we fine-tune the transformer to predict in-store coupon redemptions—a

binary classification problem. The fine-tuning step uses a much smaller data set from a

coupon field experiment. As illustrated in the right panel of Figure 15, we modify the model

by replacing the output layer used for masked product prediction with a new output layer

suitable for binary classification. Specifically, we add a linear layer that maps the transformer’s

output to a single logit, which is then passed through a sigmoid function to estimate the

probability of coupon redemption. The model is trained using binary cross-entropy loss, and

the parameters are updated using stochastic gradient descent. This application demonstrates

how the MBT can serve as a foundation model in retail.

Two considerations should be kept in mind when fine-tuning the MBT: First, fine-tuning is

most e!ective when the products involved in the new task are available in the pretraining
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Figure 15: Transformer Pretraining and Fine-Tuning

Market basket data
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data. This is the case in our setting. If the products are not present during pretraining, the

model lacks embeddings, and learning good representations from scratch during fine-tuning

with limited data becomes challenging. Therefore, the e!ectiveness of fine-tuning depends on

the overlap between the products in the pretraining and fine-tuning datasets.

Second, our analysis focuses on a single retailer. In NLP, foundation models can often be

applied across di!erent contexts due to the universality of language. In retailing, the appli-

cability of a pretrained model to di!erent retailers depends on factors such as the overlap

of product assortments and the use of standardized product identifiers (e.g., UPC). While

our model demonstrates potential within one retailer, we leave extending it to a cross-retailer

foundation model for future research.

6.2 Predicting In-Store Coupon Redemptions

To evaluate the fine-tuned MBT, we apply it to predict coupon redemptions using data from

a coupon experiment at the same grocery retailer. The dataset contains purchase histories

of over 250,000 customers who are members of the retailer’s loyalty program.12 The retailer

engages with loyalty program members through self-service kiosks located inside stores, where

12Coupons are only available for customers participating in the retailer’s loyalty program, the customer pop-
ulation di!ers from the population that generated the market basket data used in the previous sections.
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customers can print coupons. Approximately 40% of shopping trips by loyalty program mem-

bers involve interactions with the kiosks.13 Coupons are valid on the same day, and are

automatically redeemed when customers scan their loyalty card at checkout. In the coupon

experiment, which was conducted in 2016, the retailer randomly assigned 965,405 coupons to

customers to test the e!ectiveness of di!erent coupon strategies.

Our objective is to predict whether a customer redeems a randomly assigned coupon. The

prediction task is framed as a binary classification problem: given the customer’s shopping

basket, covariates (e.g., store location, time), and the coupon product, we predict whether

the coupon will be redeemed. Accurately predicting whether customers redeem coupons is

useful for developing targeted marketing policies. Note that we do not take a stand on the

direction of causality in this predictive model: A customer decides to redeem the coupon

because the promoted product fits their preferences and the basket content (basket content Ñ

coupon redemption). Alternatively, a customer decides to redeem the coupon for the promoted

product and then buys products that complement the promoted product (coupon redemption

Ñ basket content). Instead, our goals are to (1) demonstrate that model adaptation is possible

and (2) benchmark the fine-tuned transformer model with baseline methods trained only on

the coupon experiment data.

For fine-tuning, we adapt the pretrained transformer by adding a linear layer for binary

classification, as described in Section 6.1. The model inputs include the products in the

customer’s shopping basket, the covariates, and the promoted product. We introduce a special

token <COUPON> to separate the coupon product from the other products in the basket. The

transformer processes this input and outputs a probability of coupon redemption.

Our goal is to evaluate whether a fine-tuned model can learn the systematic impact of basket

content and store location and time on coupon redemptions, regardless of di!erences between

product and their characteristics. We, therefore, balance the data set such that positive

examples (coupon redemption) and negative examples (no coupon redemption) are equally

13Our data do not track when customers receive the coupon during their shopping trip.
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likely. This results in 41,280 observations, of which 50% are redeemed. We split the data into

a training set (80%) and a test set (20%). The model is fine-tuned on the training set, and

its performance is evaluated on the test set using four metrics: precision, recall, F1 score, and

area under the receiver operating characteristic curve (AUC).

We then compare the fine-tuned transformer’s performance to two baselines: First, we imple-

ment a näıve model that randomly assigns classes (Random Predictor). Since the dataset is

balanced, the random predictor yields scores of 0.5 for all metrics. Second, we use a Random

Forest Classifier. The input features include the basket covariates (same as for the MBT), a

basket vector (the average of the product embeddings in the shopping basket), and the product

embedding of the coupon product. The product embeddings are obtained from a Product2Vec

model (Gabel et al. 2019). Details of the Random Forest Classifier and its hyperparameter

tuning are available in Appendix F.

Table 3 presents the evaluation results on the test set. The fine-tuned MBT achieves the

highest scores across all metrics. The substantial improvement over the Random Forest Clas-

sifier indicates that the transformer e!ectively leverages its rich representations learned during

pretraining to capture complex patterns related to coupon redemption.

These results showcase the MBT’s ability to generalize from pretraining to a new task with

little additional data. By incorporating information about the customer’s shopping basket,

covariates, and coupon products, the model can predict coupon redemption more accurately

than benchmark models. The successful fine-tuning to coupon redemption prediction show-

cases the potential of the MBT as a foundation model for retail analytics.

Table 3: Evaluation of Fine-Tuned Transformer and Baselines on Test Set

Model Precision Recall F1 Score AUC

Fine-Tuned MBT 0.786 0.914 0.846 0.905

Random Forest Classifier 0.711 0.773 0.741 0.807
Random Predictor 0.500 0.500 0.500 0.500
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7 Conclusion

This paper introduces the market basket transformer (MBT), an adaptation of the transformer

architecture to market basket data. While existing transformer implementations work well in

NLP and computer vision, the structure and sparsity of market basket data prevent them from

being directly applied to market basket data, even after extensive hyperparameter tuning.

We proposed and evaluated several modifications to overcome this problem. First, we in-

troduced covariates such as store location and time to the model. These covariates provide

additional information that the MBT uses to model purchase probability heterogeneity across

shopping trips. Second, we developed a better training strategy that uses available baskets

more e”ciently. Third, we created a data curation strategy that re-samples baskets with

infrequently purchased products to improve model performance for long-tail products.

Our results show that our MBT more than doubles the predictive accuracy of benchmark

models in basket completion modeling. It e!ectively captures complex purchase patterns

and product relationships. By addressing data sparsity, particularly for long-tail products,

our transformer achieves consistent predictive performance across all products in large retail

assortments.

We also demonstrated our model’s potential as a foundation model by fine-tuning it to predict

coupon redemptions. The fine-tuned model outperformed benchmark models with minimal

additional training data, showcasing the value of adapting the MBT to specialized retail

analytics tasks. This flexibility highlights a key advantage of foundation models: they learn

generalizable patterns during pretraining, which can be leveraged to e”ciently adapt the

model to new tasks. In retail analytics, this enables retailers to deploy a single, robust model

across a variety of applications, such as targeting and promotion optimization, with minimal

task-specific data.

Our modifications ensure that the MBT performs equally well for frequently purchased and

long-tail products. This is important for foundation models in retailing. Consider, for ex-
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ample, applying the MBT in a recommender system. If the transformer performs poorly for

new products, small brands, or niche products, these products would likely be systematically

disadvantaged by being recommended less.

We note several promising opportunities for future research. First, it would be interesting to

implement the MBT at retailers with varying assortment sizes, including those with substan-

tial non-food items, such as Walmart. Furthermore, e-commerce environments often feature

larger assortments and smaller shopping baskets, which may a!ect transformer performance

and the e!ectiveness of our modifications for long-tail products. Future research could also

integrate additional covariates into the transformer architecture. Adding marketing variables

and other contextual factors may improve model performance further, generate new insights,

and expand transformer applications in retail analytics. In addition, future research could

evaluate whether the MBT can serve as a cross-retailer foundation model, and adapt it to

additional downstream tasks such as product recommendation, customer segmentation, or

inventory management.

Finally, future research could extend the application of transformer models to other settings

characterized by data scarcity and long-tail distributions. For example, transformers could

model consumer clickstreams during product searches to improve product recommendations

and search result rankings. In social media marketing, analyzing sequences of user interactions

could enhance understanding of content dissemination and consumer engagement patterns,

thereby improving campaign e!ectiveness. Similar approaches could be applied to investment

portfolios by modeling sequences of financial decisions, aiding in risk management and per-

sonalized investment advice. By tackling challenges related to data sparsity and capturing

complex patterns in marketing-specific data, pretrained transformer models have the potential

to advance multiple areas within marketing analytics.
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Boztuğ Y, Reutterer T (2008) A combined approach for segment-specific market basket analysis.
European Journal of Operational Research 187(1):294–312.

Brand J, Israeli A, Ngwe D (2023) Using gpt for market research. Harvard Business School Marketing
Unit Working Paper 23(062).

Brynjolfsson E, Hu Y, Smith MD (2010) Research commentary—long tails vs. superstars: The e!ect
of information technology on product variety and sales concentration patterns. Information
Systems Research 21(4):736–747.

Castelo N, Katona Z, Li P, Sarvary M (2024) How AI outperforms humans at creative idea generation.
SSRN:4751779.

Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv:1810.04805.

Gabel S, Guhl D, Klapper D (2019) P2V-MAP: Mapping market structures for large retail assort-
ments. Journal of Marketing Research 56(4):557–580.

Gabel S, Timoshenko A (2022) Product choice with large assortments: A scalable deep-learning
model. Management Science 68(3):1808–1827.

Grewal D, Roggeveen AL, Nordfalt J (2017) The future of retailing. Journal of Retailing 93(1):1–6.

Hertz JA (2018) Introduction to the theory of neural computation (CRC Press).

Ho!man M, Bach F, Blei D (2010) Online learning for latent dirichlet allocation. advances in neural
information processing systems 23.

Imbens GW, Rubin DB (2015) Causal Inference in Statistics, Social, and Biomedical Sciences (Cam-
bridge University Press).

Imbens GW, Wooldridge JM (2009) Recent developments in the econometrics of program evaluation.
Journal of Economic Literature 47(1):5–86.

39



Jacobs B, Donkers B, Fok D (2016) Model-based purchase predictions for large assortments. Mar-
keting Science 35(3):389–404.

Jacobs B, Fok D, Donkers B (2021) Understanding large-scale dynamic purchase behavior. Marketing
Science 40(5):844–870.

Kingma DP (2014) Adam: A method for stochastic optimization. arXiv:1412.6980.
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A Implementation of Baseline Models

To evaluate the performance of our transformer-based model in the Basket Composition Mod-
eling (BCM) task, we implement five baseline models: the Zhang market basket analysis score
(Zhang 2000), Product2Vec (Gabel et al. 2019), Latent Dirichlet Allocation (Blei et al. 2003),
SHOPPER (Ruiz et al. 2020), and random predictions.

A.1 Zhang Metric

The Zhang metric (Zhang 2000) is a statistical measure to assess the association between
products in a shopping basket:

m
Zhang
ij “ P pi X jq ´ P piqP pjq

maxpP pi X jq, P piqP pjqq , (8)

where P piq and P pjq are the probabilities of products i and j occurring in a shopping basket,
and P pi X jq is the joint probability that both products are in a shopping basket. It helps
determine whether the presence of one product in a basket is positively or negatively correlated
with the presence of another product. We use a custom implementation of the Zhang metric.

During training, we calculate the Zhang metric zij for all product pairs pi, jq using the training
data. During inference, we calculate the average Zhang metric between the products in the
basket and all products in the assortment (i.e., all potential products that could be the masked
item) for each basket b:

m
Zhang
j “ 1

nb

ÿ

iPb

m
b
ij (9)

We then select the product with the highest average Zhang metric:

ϑ̂
Zhang “ arg max

j
m

Zhang
j (10)

A.2 Product2Vec (P2V)

Product2Vec (Gabel et al. 2019) embeds products in latent attribute spaces by learning the
co-occurrence of products in shopping baskets. The neural network calculates the probability
that pairs of products occur in baskets in the training data as a function of the product
vectors. We implement Product2Vec using the Python library gensim. Table A1 summarizes
the P2V hyperparameters.
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Table A1: Hyperparameters for the Product2Vec implementation in gensim

Parameter Variable Value

Embedding size vector size 128
Learning rate alpha 0.025
Window size window 1,000
Minimum observations per product min count 0
Threshold for downsampling frequent products sample 0.001
Use skip-gram model sg 1
Use hierarchical softmax hs 0
Number of negative samples negative 5
Exponent in sampling weight calculation ns exponent 0.75
Number of epochs epochs 50

Product2Vec generates two product embeddings V and W that capture product attributes
and relationships based on their co-occurrence in shopping baskets. During inference, we use
the first embedding to derive a basket vector for each shopping basket in the test set as the
average over the product vectors vi for all products i in basket b

v
P 2V
b “ 1

nb

ÿ

iPb

vi. (11)

We then calculate the co-occurrence metric (Gabel et al. 2019) between the basket vector and
the vector of each product in the assortment

m
P 2V
j “ cospwj, v

P 2V
b q, (12)

and select the product with the highest co-occurrence metric as the predicted missing product

ϑ̂
P 2V “ arg max

j
m

P 2V
j (13)

A.3 Latent Dirichlet Allocation (LDA)

LDA (Blei et al. 2003, Ho!man et al. 2010) is a generative probabilistic model used for
uncovering latent topics in texts. LDA has been applied to market basket data by Jacobs
et al. (2016). We implement LDA using the Python library gensim. Table A2 summarizes
the LDA hyperparameters.
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Table A2: Hyperparameters for the LDA implementation in gensim

Parameter Variable Value

Embedding size num topics 128
Number of baskets in each batch chunksize 2000
Number of epochs iterations 50
Number of iterations over corpus passes 50
Batch learning update every 1
A-priori belief on document-topic distribution alpha symmetric
A-priori belief on topic-word distribution eta symmetric
% of lambda that is forgotten in new document decay 0.5
Step slow down for first iterations offset 0.5

During training, we learn topic vectors for all products. Each product is assigned a probability
distribution over latent topics based on the other products it tends to co-occur within the
same baskets b in the training data set. During inference, we first compute the basket’s topic
distribution tb by averaging the topic distributions of the products in the basket for all baskets
in the test set

t
LDA
b “ 1

nb

ÿ

iPb

vi. (14)

We then calculate the similarity metric between this basket topic distribution and the topic
distributions of all products in the assortment

m
LDA
j “ cospvj, t

LDA
b q (15)

and select the product with the highest metric as the predicted missing product

ϑ̂
LDA “ arg max

j
m

LDA
j (16)

A.4 SHOPPER

SHOPPER (Ruiz et al. 2020) is a probabilistic choice model that integrates consumer prefer-
ences and product interactions. During training, SHOPPER uses customers’ baskets in the
training set to learn product embeddings. Each product is embedded into a vector space;
distances between products reflect their likelihood of co-occurring in baskets. Because we use
market basket data without customer IDs, we do not learn customer embeddings. We train
SHOPPER using the authors’ code with the hyperparameters depicted in Table A3.
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Table A3: Hyperparameters for SHOPPER implementation

Parameter Variable Value

Embedding size K 128
Intercept for products itemIntercept 1
Data includes customer ID userVec 0
Data includes price price 0
Normalize price normPrice 0
Data includes dates days 1
Number of negative samples negsamples 25
Learning rate eta 0.01
Maximum number of iterations max-iterations 1000
Batch size batchsize 1000

Note: We thank the authors for supporting us during our implementation of the SHOPPER
model.

During inference, we average the embeddings of the products in the basket b to obtain a basket
vector (Equation 1 in Ruiz et al. 2020)

v
SHOP P ER
b “ 1

i ´ 1

i´1ÿ

j“1
ϖyj . (17)

We then compute the co-occurrence metric between this basket vector and the vector of each
product in the assortment:

m
SHOP P ER
j “ εj ¨ v

SHOP P ER
b , (18)

and select the product with the highest score as the predicted missing product

ϑ̂
SHOP P ER “ arg max

j
m

SHOP P ER
j (19)

The weight matrices ϖ and ε are learned by SHOPPER.

A.5 Random Predictions

The random baseline serves as a näıve control model. For each test basket, we randomly select
a product from the entire assortment as the predicted missing product, without taking into
account the other products in the basket or any product relationships.
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B Basket Composition Modeling Plots with Confidence Intervals

Figures A1 and A2 depict versions of Figures 6 and 11 with 95% confidence intervals. We
calculate CIs using a non-parametric bootstrap, resampling products within each bin with
replacement. Figure A1 confirms that di!erences between the first four bins are statistically
significant (p " 0.05). Figure A2 confirms that the data curation strategies 1 to 3 do not
produce models with significantly di!erent predictive performance.

Figure A1: Predictive Performance as a Function of Product Purchase Frequency

Notes: We normalize the accuracy to the maximum value of the base model in Figure 6.

Figure A2: E!ect of Training Data Curation Strategies

Notes: We normalize the accuracy to the maximum value of the base model in Figure 6.
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C Do long-tail products co-occur more frequently with other long-
tail products?

In this section, we explore a possible explanation for the di!erence in the predictive per-
formance between long-tail and frequently purchased products. Baskets containing long-
tail products may have systematically di!erent compositions compared to those with high-
frequency products. For example, long-tail products might occur more frequently with other
long-tail products, and the low number of observations for long-tail products might make it
more challenging for the transformer model to learn robust patterns.

We investigate this possibility by sampling 50 products from the decile with the highest
purchase rates and 50 products from the decile with the lowest purchase rates. For each focal
product, we calculate the average product purchase rate in baskets containing that product
(excluding the product itself) and obtain the mean and variance of these purchase frequencies
across baskets. This analysis is conducted separately for high-frequency products (Xh and Sh)
and long-tail products (X l and Sl). Following Imbens and Wooldridge (2009), we calculate the
standardized mean di!erence (SMD) as a scale-free measure of the di!erence in distributions:

$X “ Xh ´ X la
S

2
h ` S

2
l

.

According toImbens and Rubin (2015), SMD values below 0.25 indicate no meaningful di!er-
ences between groups. Using a non-parametric bootstrap, we estimate the standard error for
the di!erence in average product purchase frequency.

We find a normalized di!erence of $X “ 0.199 (SE “ 0.110), with frequency values of
Xh “ 0.0030 and X l “ 0.0025. Our finding suggests that while long-tail products tend to
co-occur with other long-tail products, the overall distributional di!erences between high-
frequency and long-tail products are minor.
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D Transformer Performance at Di!erent Masking Probabilities

In Section 5.3, we evaluate how a fixed number of masked products per basket a!ects the
performance of the MBT. Here, we confirm our earlier proposition that low and high masking
probabilities for the default masking approach lead to undermasking and overmasking, thereby
reducing the transformer’s predictive performance. To assess the impact of varying the mask-
ing probability on transformer performance, we systematically vary the masking probability
from 15% to 75% in 10% increments, while holding all other model hyperparameters constant.

Figure A3: E!ect of Masking Probability

Notes: To facilitate a comparison of predictive performance across deciles, we normalize the accuracy
to the maximum value in Figure 6 in the main text.

Figure A3 shows the results of our experiments. For all masking probabilities, the accuracy
decreases consistently as we move from high-frequency products (D01) to low-frequency prod-
ucts (D10), with all curves running parallel. Increasing the masking probability from 15% to
25% and then to 35% improves model performance overall, but further increases beyond 35%
lead to a decline in accuracy, consistent with our expectation that both undermasking and
overmasking can deteriorate model performance. Specifically, increasing the masking prob-
ability from 15% to 35% creates substantial improvements for products in D04 to D06 and
moderate improvements in D01 to D03. However, none of the tested masking probabilities
significantly increase accuracy for products in D07 to D10, which collectively account for 40%
of the retailer’s assortment. We explain this finding by the low rate with which long-tail prod-
ucts occur in shopping baskets: High-frequency products are observed so frequently that the
marginal benefit of additional data is minimal. Conversely, low-frequency products are so rare

viii



that the impact on performance remains negligible even with increased data. However, for
medium-frequency products, each additional basket substantially improves model accuracy.

Our findings indicate that although increasing the masking probability improves overall model
performance, it does not e!ectively address the challenges posed by low-frequency products.
Consequently, additional modifications are necessary to overcome the inherent di”culties as-
sociated with long-tail products in market basket analysis.
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E Robustness of Nearest Neighbors Analysis

In Section 5.5, we show that our transformer modifications increase the quality of product
embeddings for long-tail products. Here, we show that the results presented in Figure 13 are
robust to the number of nearest neighbors.

Figure A4: Fraction of Same-Category Nearest Neighbors

We consider the same 200 products we focused on in the main text (100 low-frequency products
and 100 high-frequency products) and calculate what fraction of products’ neighbors on the
product maps for the BASE and the BEST transformer belong to the same category as the focal
product. We calculate this hit rate separately for low-frequency and high-frequency products.
Instead of using k “ 10 nearest neighbors, we vary the number of neighbors of the focal
product considered in the analysis from 1 to 30. Although the hit rates in Figure A4 decrease
with an increasing number of neighbors, the conclusion in Section 5.5 remains valid: Both
models achieve high hit rates for high-frequency products. The BEST model maintains the hit
rate even for long-tail products, whereas the hit rate for the BASE model breaks down entirely.

x



F Random Forest Hyperparameter Tuning

We tune the following the hyperparameters of the Random Forest model to achieve better
performance: The number of trees, the maximum tree depth, the minimum samples required
for split, and the minimum number of samples per leaf node. We use 5-fold cross-validation
on the training data to select the hyperparameters (using the F1 score). Table A4 shows
the hyperparameter ranges considered in the hyperparameter optimization. We chose the
hyperparameters that produced the best average performance across five folds.

Table A4: Random Forest Hyperparameters

Parameter Name Grid Chosen

Number of trees n estimators [25, 250] 149
Maximum tree depth max depth [3, 10] 9
Minimum samples required for split min samples split [2, 10] 8
Min samples per leaf node min samples leaf [1, 5] 4
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