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1 Introduction

Due to the vast array of products available online, recommendation systems have become

increasingly influential in digital markets, shaping both consumer choice and competition

among firms (Armstrong et al., 2009). These systems, such as product ranking algorithms,

play an important role in determining which products consumers see and in what order. Al-

though recommendation systems can help consumers discover products more easily, they can

also be used to manipulate consumer choice in ways that can be harmful to the consumer.

For example, consumers are more likely to search and consequently purchase products that

appear towards the top of the search results (De los Santos and Koulayev, 2017; Ursu, 2018;

Compiani et al., 2023). In response to this behavior, platforms may place more profitable

products in these positions (Lam, 2023; Peitz, 2023). The potential for consumer harm due

to platform manipulation raises important questions about how recommendation systems

impact consumer behavior.

To evaluate how recommendation systems impact consumer behavior and welfare, we

need to understand why consumers are more likely to search recommended products. In

particular, does searching recommended products take less effort (i.e., lower search costs),

or do consumers believe recommended products are “better” (i.e., have higher expectations

about the returns to search)? Distinguishing between these two mechanisms is challenging

because they can produce the same patterns in search behavior, and consumers’ expecta-

tions are typically not collected. However, making this distinction is essential for accurately

predicting welfare under alternative recommendation systems (e.g., ranking algorithms) be-

cause expectations about the returns to search adjust as consumers learn the new algorithm,

but search costs (e.g., effort) remain the same regardless of the algorithm.

In this paper, we show that (1) both mechanisms can exist and (2) failing to account for

consumer beliefs about their returns to search for recommended products leads to biased

estimates of search costs, which in turn leads to incorrect welfare predictions under alterna-

tive recommendation systems. We demonstrate this in the context of position effects—the

idea that the placement of products impacts user behavior. We focus on this context for

several reasons. First, many papers document that people are more likely to search more

prominently ranked products, such as those at the top of a list (e.g., Ursu, 2018; De los San-
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tos and Koulayev, 2017; Compiani et al., 2023). This behavior is most commonly attributed

to position-specific search costs, which represent the effort to scroll farther down the page.1

However, consumers may believe that more prominently ranked products are better be-

cause platforms typically prioritize better products in their rankings (e.g., Kaye, 2024). For

example, Expedia’s default rankings are ordered by “Recommended.” Such beliefs would

also induce less frequent search of less prominently-ranked products. Consequently, not

accounting for this mechanism results in overestimating the search costs for these products.

Second, quantifying position-specific search costs has important policy implications about

platform power. In particular, policy-makers are concerned about the ability of digital plat-

forms to manipulate consumer choice through their ranking algorithms. If position effects

are cost-driven, prominently ranking lower-quality products reduces consumer surplus by

increasing search costs or resulting in choosing worse products. If driven by beliefs, con-

sumers learn to avoid positions with lower expected returns to search. Therefore, the extent

of the platforms’ influence on choice and consumer surplus depends on the true magnitude

of position-specific search costs.

Position-specific costs and position-specific beliefs about the payoffs from search typi-

cally cannot be separately identified, as differences in beliefs and differences in costs both

shift search behavior in the same way. This is true even when product rankings are ran-

domized. Position-specific search costs are often measured using short-term experiments

in which treatments are undisclosed. Because participants do not know that the products

are randomly ordered, they may still hold beliefs formed before the experiment—that the

top-ranked products have higher expected returns to search.2 As a result, any position

effects exhibited during the experiment may still be driven by beliefs in addition to search

costs, despite randomization. To overcome this challenge, we design an incentive-compatible

experiment that shuts off the beliefs mechanism, which allows us to measure search costs.

In the experiment, participants search for a product in a stylized setting similar to that of

Weitzman (1979). The product has two vertical attributes, one observed costlessly and the

other observed only after a costly search. Participants perform this search task repeatedly,

1Exceptions include Nocke and Rey (2023) and Athey and Ellison (2011) attribute position effects to
beliefs—position correlates with the product’s utility that is observed prior to search.

2For the remainder of this paper, we refer to “beliefs” as beliefs about the expected returns to search.
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so we can detect any learning over time about the ranking algorithms.

The order in which products are displayed and whether participants are informed about

the ranking algorithm depend on the participant’s experimental condition. In one condi-

tion, which we refer to as Random-Informed, products are ordered randomly, and consumers

are explicitly informed about this random ordering. This condition allows us to identify

position-specific search costs. Because we inform participants that products are ordered

randomly, they should not hold position-specific beliefs. Therefore, assuming that partici-

pants understand that products are ordered randomly, any position effects in this condition

are attributed to position-specific search costs. In another condition, Random, the prod-

ucts are sorted randomly but participants are not informed. In this condition, participants

may face position-specific costs, as in Random-Informed, but also may have position-specific

prior beliefs (i.e., participants may come into the experiment with pre-existing beliefs about

returns to search). In the third condition, Strong, products are generally sorted in decreas-

ing order of the hidden attribute, such that more prominently positioned products have

greater returns to search, on average. As in Random, participants are not informed about

the ranking algorithm. In this condition, any position effects may be due to position-specific

costs, position-specific prior beliefs, and learned position-specific beliefs. Identifying and

extrapolating the search costs estimated from Random-Informed allows us to identify these

beliefs in Random and Strong. In other words, any residual position effects in Random

and Strong, after accounting for the position-specific search costs estimated from Random

Informed, can be attributed to beliefs.

Using data generated by the experiment, we estimate a sequential search model to quan-

tify search costs. We assume that participants search in descending order of a reservation

utility index, stopping when an already-searched option is better than the best unsearched

option (Weitzman, 1979). We use a Bayesian framework, similar to Morozov (2023), to

account for heterogeneity in both baseline search costs and in position-specific search costs

across people. The model estimates highlight beliefs as a major component of rank ef-

fects. The estimates also show evidence of learning about the informativeness of product

rank in Strong; consumers exhibit increasing rank effects and converge towards the payoff-

maximizing search order across search tasks.
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To better understand how the beliefs can confound search costs in the field, we conduct

another study that is designed to replicate the design of typical search ranking experiments.

In this study, we introduce changes to the ranking algorithm mid-experiment and do not

disclose these changes to participants. We consider two types of changes. The first change

involves the ranking algorithm starting as Strong (i.e., generally decreasing in the hidden

attribute) in the initial tasks and then switching to Random. This setup replicates typical

search experiments where the ranking algorithm changes to Random without the consumers’

knowledge. In such experiments, search costs are estimated from the Random tasks, but

participants may still hold position-specific beliefs learned from the Strong tasks. The

second change simulates a specific form of platform or retailer steering: the algorithm

switches from Strong to one that moves products with the lowest value to the consumer in

the top two ranks. This arrangement, which we refer to as the Pref algorithm, reflects the

concern that ranking algorithms might prioritize products that are better for the platform

or firm but worse for the consumer, i.e., self-preferencing.

We find that participants adjust their search over several periods when facing a new,

undisclosed ranking algorithm. The larger rank effects observed under the Strong algorithm

(compared to Random-Informed) persist even after the algorithm switches from Strong to

Random. This persistence suggests that their beliefs formed during the Strong algorithm pe-

riods carry over to the Random algorithm periods. Consequently, the conventional approach

of introducing randomization without disclosure can misattribute rank effects generated by

beliefs to costs.

Separating cost-driven rank effects and belief-driven rank effects is a critical component

in evaluating the impact of product position on consumer surplus. To generate welfare

predictions, we estimate a modified version of our search model using data from Study

2. Using the descriptive patterns from search over time, we adapt our model of search to

allow for Bayesian learning about position-specific payoffs in addition to position-specific

costs. We use the model estimates to demonstrate how failing to account for the potential

evolution of beliefs leads to wrong welfare conclusions. In particular, using search costs

estimated from short-term experiments with incorrect consumer beliefs predicts a 3.3% loss

in consumer surplus when the platform switches to the Pref algorithm, while search costs
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estimated from a model that accounts for learning predicts a 0.84% loss in consumer surplus.

That is, the model that excludes beliefs overestimates the loss in surplus by a factor of four.

In order to separate beliefs and search costs in practice, experiments should be run for

long enough for consumers to fully update their beliefs to the new algorithm, and only the

search behavior from after beliefs have fully updated should be used to estimate search

costs. However, this may require the experiment to run for a long time, which may not be

feasible. We also consider other methods to address this problem, such as assuming correct

preexperiment beliefs about returns to search in model estimation (e.g., Kaye, 2024). This

method assumes that consumers hold correct beliefs about the informativeness of product

ranking prior to the experiment that orders products randomly. We find that if consumers

are slow to learn, as in our setting, assuming correct beliefs can lead to incorrect welfare

predictions in the short run and even to the opposite direction of search costs. Therefore,

assuming correct pre-experiment beliefs is best suited to settings where consumers are very

experienced with the search environment and the product market and for short-term exper-

iments where learning about the experimental ranking algorithm may be limited. Another

solution to account for beliefs in field data are to directly survey consumers on their beliefs

and account for these in the model.

In addition to documenting the role of consumer beliefs in improving the measurement

of economic primitives in search settings, our paper can shape future work evaluating alter-

native recommendation algorithms. Given the prevalence of ordered information, platforms

and other intermediaries that can rank items hold power over firms supplying products and

services. In evaluating the welfare effects of information design, we are often interested

in the degree of steering by platforms (i.e., manipulation of such rankings to benefit the

intermediary) and the related costs to consumers and firms. However, the core approach of

this research is to estimate the position or rank effects in the current setting/equilibrium

(versus a benchmark of randomly ordered products), and to assume such rank effects would

hold counterfactually if alternative rankings were supplied. In reality, consumers are not

immediately informed about changes in ranking algorithms. This paper extends our under-

standing of how beliefs impact welfare and its measurement, including the transition to a

new equilibrium in response to a change in platform policy.
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Our paper also contributes more broadly to the importance of accounting for beliefs

when experimentally estimating model primitives, of which estimating search costs is just

one example. Measuring advertising effectiveness is another setting where this problem

can arise. When using short-term field experiments to evaluate the impact of promotional

advertising, researchers may find that consumers’ responses are influenced by their preexist-

ing beliefs about the brand or product. Thus, consumers’ behaviors during the experiment

depend on their beliefs formed pre-experiment. If consumers believe that an advertisement

is part of a temporary promotion rather than a permanent change, their behavior during

the experiment may not accurately predict their behavior for when the firm permanently

increases advertising levels. Pricing is another example. If consumers think a discount is a

one-time event rather than a new pricing strategy, the estimated price elasticity using the

experimental data may not reflect their price elasticity in a new equilibrium. The solutions

presented in this paper—informing consumers of the policy change so that beliefs are up-

dated accordingly, soliciting pre-experimental beliefs, or assuming rational expectations for

experienced consumers—apply to these settings as well.

Relevant Literature and Contribution This paper contributes to four related areas

of literature. First, our paper relates to existing work on consumer search (Santos et al.,

2012; Moraga-González et al., 2023; Dinerstein et al., 2018). We focus on position effects

in product search and advertising. Rank effects are well documented across many domains:

users click more on alternatives near the top of the list in a paid keyword search (e.g.,

Jeziorski and Segal (2015), Ghose and Yang (2009), Agarwal et al. (2011), Jeziorski and

Moorthy (2018), and Yao and Mela (2011)) as well as in product search (e.g., De los Santos

and Koulayev (2017), Chen and Yao (2017), Ursu (2018), Compiani et al. (2023), and

Donnelly et al. (2024)). In fact, these effects are so commonplace that work in these areas

accounts for position effects wherever possible (Ursu et al., 2023), sometimes even assuming

the existence of the effect ex ante (Choi and Mela, 2019; Lam, 2023; Derakhshan et al.,

2022). Our work builds on these findings by taking a closer look at whether these position

effects result from equilibrium inferences about firm behavior by consumers or whether they

reflect fundamentals of information processing.
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Second, we relate to the empirical literature on consumer search behavior with learning

(Rothschild, 1978; Koulayev, 2013; De Los Santos et al., 2017). Much of this literature

focuses on learning about prices (e.g., Wu et al., 2022). Jindal and Aribarg (2021) demon-

strate that consumers have heterogeneous prior beliefs about prices, which are important

to take into account when estimating individual search costs. Other papers model learning

about other attributes, such as match values (Ursu et al., 2020), and the distribution of

product quality (Hu et al., 2019). Hodgson and Lewis (2023) consider whether consumers

extrapolate beliefs from previously searched options to unsearched options that have sim-

ilar attributes, and Gardete and Hunter (2024) focus on learning about within-product

attributes. We build on this literature by incorporating learning about the structure of the

search environment (i.e., the informativeness of product rankings).

Third, this paper relates to a growing body of work in economics and quantitative

marketing that studies consumer search in controlled laboratory settings. Papers in this area

investigate a wide variety of search behavior, including the role of revisiting products during

a search (Dang et al., 2022), social influence and product arrangement (Jameei Osgouei et

al., 2023), how advertising impacts the search funnel (Morozov and Tuchman, 2024), and

heuristic approximations of optimal information acquisition (Gabaix et al., 2006). These

works also study undirected search behaviors, including the role of contextual information

(Karle et al., 2023) and learning about the distribution of product values (Casner, 2021). We

contribute to this literature by creating an experiment design that can distinguish between

position-specific beliefs and position-specific costs.

Finally, we relate to work incorporating beliefs into structural models (see DellaVigna

(2018) for a review).3 These papers generally consider new markets or first-time consumers,

scenarios in which agent behavior can be observed “from the beginning.” For example,

Doraszelski et al. (2018) and Huang et al. (2022) study firm pricing following deregulation in

the UK energy and Washington state liquor markets, respectively. Firm behavior eventually

converges to an equilibrium, although the speed of adjustment can be heterogeneous across

firms (e.g., Goldfarb and Xiao, 2011). For consumers, models of learning about brand value

(see Ching et al. (2013) for a summary) demonstrate the important role of dynamic beliefs

3The standard approach to beliefs is to impose rational expectations about market conditions (e.g.,
Aguirregabiria, 2021, Bresnahan and Reiss, 1991, Aguirregabiria and Mira, 2007, among many others).
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in explaining several features of consumer behavior, including inertia, and imply incomplete

information long after consumers enter a market. In education markets, households may

hold inaccurate beliefs about school quality, which leads to too little search (Agte et al.,

2024). Together, these studies suggest that the rational expectations assumption may not

hold in settings where a stable equilibrium has yet to be reached. We add to these works by

explicitly studying the (confounding) role of beliefs when estimating structural primitives

using short-term experiments.

The paper proceeds as follows. In Section 2, we first describe a motivating model of

directed consumer search and highlight the difficulty of separately identifying position-

specific search costs and position-specific beliefs. Next, in Section 3, we describe the design

and results of Study 1, outlining our structural model and discussing estimation results. In

Section 4, we describe the design and results of Study 2, outline the adaptations we make

to the structural model, and describe our estimation results. We discuss counterfactuals in

Section 5. Section 6 concludes.

2 The Role of Beliefs in Search Models

To illustrate how beliefs about recommendation quality can be confounded with model

primitives in our setting, we first describe the consumer search model in detail. We consider

a directed sequential search framework similar to that of Weitzman (1979) and Kim et al.

(2010). Consumers face a finite, ordered set of product alternatives j ∈ 1, . . . J , such as one

page of search results on a retail website or platform.4 The utility that a consumer receives

from choosing product j is

uj = aj + bj , (1)

where aj and bj are vertical attributes which are identically valued by all consumers.5 We

assume that the distributions of aj and bj are independent and consumers are aware of

this. The attribute aj is observed prior to search (e.g., aj is visible without clicking on the

4We abstract from pagination for simplicity, which may be interpreted as consumers exclusively studying
the first page of results. See Greminger (2022) for an approach for handling scrolling and pagination in
search.

5We abstract from heterogeneity in valuation and horizontal differentiation to parallel our experimental
paradigm.
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product’s page) and thus is costless to observe. The attribute bj is observed only if the

consumer clicks on the product, incurring a cost cj .
6 The distribution of bj is known to

consumers: bj ∼ N(µj , σb).

The consumer’s reservation utility is defined as the value at which the consumer is

indifferent between the expected benefit of searching another product and choosing among

the already-searched products (i.e., the maximum of already-searched utilities). These

reservation utilities, zj , are the solutions to

cj = B(zj) =
∫ ∞

zj

(uj − zj)f(uj)duj . (2)

Because the post-search utility term bj has a normal distribution, we can use the solution

derived in Kim et al. (2010). The reservation utility is

zj = aj + µj + ζ(
cj
σb

)σb, (3)

where ζ is a scalar function.7

Under these assumptions, optimal search and choice behavior follows three rules:

1. Selection rule: Products are searched (among remaining unsearched products) in

descending order of reservation utility. The next product searched (if any) is always

that with the highest reservation utility among the remaining unsearched options.

2. Stopping rule: Consumers stop searching when the highest utility found so far is

greater than the maximum of the reservation utilities for all remaining unsearched

products.

3. Choice rule: After ending their search, consumers choose the option with the maxi-

mum utility among the searched set.

Thus far, we have only reiterated the basic model outlined in Weitzman (1979) and specified

using a normally-distributed error term in Kim et al. (2010), but we have not yet discussed

6Consistent with literature, we define a product as having been “searched” if the consumer clicks on it to
view the hidden attribute (bj). Products which are not searched are referred to as “unsearched products.”

7In particular, “the function ζ(x) solves the following implicit equation x = (1−Φ(ζ))(λ(ζ)− ζ) where Φ
is the cumulative standard normal distribution and λ is the standard normal hazard rate, ϕ(ζ)/(1− Φ(ζ)),
in which ϕ is the standard normal probability distribution function.” (Kim et al., 2010, p. 1011).
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how position effects can arise. We now describe the potential mechanisms through which

consumers tend to search products towards the top of the page. For the rest of this paper, we

refer to “more prominently ranked” or “top-ranked” products to mean products positioned

toward the top of the page.

One simple explanation for rank effects is that more prominently ranked products may

have higher values of aj . However, this does not fully explain why consumers are more likely

to search more prominently ranked products. Similar to previous studies (e.g., Ursu, 2018),

we later show that rank effects exist even when aj is not correlated with rank. Therefore,

we focus on two alternative mechanisms.

First, the search costs cj , which are model primitives, can increase with rank r(j), such

that
∂cj
∂r(j) > 0. Higher search costs for less prominently ranked products can be attributed

to higher effort costs (e.g., scrolling) or attention. More specifically, these increased costs

may reflect the difficulty of navigating through ordered products, or they may reflect the

higher attention costs to search products lower down the list.

Second, consumers might expect more prominently ranked products to yield greater

post-search utility bj . This belief can arise due to the design of many e-commerce plat-

forms, in which products are sorted based on popularity or other product attributes that

are observed only after search. For example, Kaye (2024) documents that online travel

agency Expedia’s default algorithm positions listings with better hidden attributes (loca-

tion desirability) towards the top of the page. As a result, consumers’ beliefs about the

returns to searching top-ranked items might be higher. This mechanism implies
∂µj

∂r(j) < 0.

In summary, rank enters the reservation utilities in two places in the model: in costs

(cr(j)) and in beliefs about the expected value of bj , the hidden attribute (µr(j), σb,r(j)).

Taking these mechanisms into account, the reservation utility for product j is then

zj = aj + µr(j) + ζ(
cr(j)

σb,r(j)
)σb,r(j). (4)

Both mechanisms have similar effects on search behavior. Reservation utilities will be

lower for less prominently ranked products; products closer to the bottom of the page (i.e.,

larger r(j)) have higher search costs, which in turn decreases ζ(·), and they have a lower
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expected bj , µr(j). This implies that consumers are less likely to search less prominently

ranked products first (thus impacting search order) and more likely to stop searching earlier,

as less prominently ranked products will compare less favorably to already-searched products

(thus impacting search depth). Consequently, one cannot identify costs separately from

beliefs solely by considering the presence of rank effects in observational data.

Although the two mechanisms can produce similar search behavior, they yield different

predictions of behavior under counterfactual ranking algorithms. If position effects are due

to position-specific costs, the search cost for a product in rank r is fixed regardless of the

ranking algorithm because search costs are considered to be policy invariant. However,

under the “beliefs” mechanism, a change in the ranking algorithm eventually affects con-

sumers’ beliefs about the correlation between r(j) and bj . As a result, the two mechanisms

have different predictions of rank effects under alternative ranking algorithms.

To illustrate, suppose that we observe rank effects when products are sorted from best

to worst. If we attribute the rank effects solely to search costs, a reversal in ranking order to

worst-to-best would still lead consumers to search higher-ranked (but worse) products first.

Conversely, if we attribute the effects to beliefs, and if consumers learn from experience,

we would expect consumers to become more likely to search the bottom-ranked products

first over time. These two predictions have different implications for consumer welfare. If

position effects are primarily cost-driven, rankings that prominently feature lower-quality

products will substantially decrease welfare, as consumers either incur higher total search

costs or end up with worse products. If position effects are due to beliefs and beliefs ad-

just, consumers will learn to avoid positions with lower quality products. In other words,

consumers are more susceptible to platform steering if rank effects are primarily driven by

search costs. Understanding to what extent each mechanism influences rank effects is im-

portant both for welfare evaluation and for managerial purposes, where accurate prediction

is the goal.

In the next sections, we describe a series of controlled experiments designed to achieve

several objectives. First, these experiments enable us to separately measure the roles of

beliefs and costs in search rankings, allowing us to quantify each mechanism’s contribution

to rank effects. Second, they document the speed with which beliefs about hidden attributes
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form, both when the ranking algorithm is constant and when it changes. Third, the data

from the experiments are used to estimate a structural model of search behavior. With

these estimates, we can then simulate several alternative ranking algorithms and evaluate

their impact on consumer welfare. In particular, we can compare welfare effects when the

roles of costs and beliefs are accurately attributed versus when rank effects are mistakenly

attributed solely to costs.

3 Study 1: Separating Costs and Beliefs

The objective of the first study is to separately identify the effects of beliefs and costs in

producing position effects in product search behavior. We design a simple search environ-

ment that (1) abstracts from unobserved preference heterogeneity and (2) experimentally

removes the role of beliefs about rankings in one condition.8

3.1 Design

Participants are asked to select one product from a vertical list of ten products. Each prod-

uct j has two vertical attributes, “bonus A” (aj) and “bonus B” (bj). Bonus A is visible to

participants before searching, and bonus B is observed only after the participant “searches”

the product by clicking on it. These bonuses are independent, with aj ∼ TN(20, 4) and

bj ∼ TN(40, 12), which are truncated normal distributions bounded below by zero. Partic-

ipants are informed about the mean, standard deviation and 95% confidence interval of bj

and that the bonuses are drawn independently (i.e., bonus A is not informative of bonus

B).9 For each product they search, they incur a search cost of one point, and they earn

a + b points from the product they choose minus their search costs. Revisits are costless.

There is no outside option, so all participants must search at least one product in order to

complete the task. Figure 1 illustrates what the task looks like for the participants. Not all

8Study 1 is pre-registered. The pre-registration is available at https://aspredicted.org/SWN MK9.
9We use the following language in the instructions to participants: “Bonus B has an average value of 40

points, and a standard deviation of 12. Put otherwise, 95% of products have their Bonus B between 16 and
64” and “The value of Bonus A is not informative of the value of Bonus B. In other words, Bonus A and B
are not correlated. Products with high Bonus A can have low Bonus B, and vice versa.” Full instructions
are included in Appendix G.1.
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products may be visible without scrolling.10 Therefore, position-specific search costs may

be in part due to effort costs, such as scrolling or the effort to click on a product farther

down on the page. They may also be attributed to the general tendency to read top down.

For example, using eye tracking, Guan and Cutrell (2007) found that individuals are more

likely to look at the top-positioned items first and rarely look at items towards the bottom

of the page. So, position-specific search costs also capture position-specific differences in

attention.

Figure 1: Illustration of Search Task

(a) Search task

(b) Bonus B reveal

Notes: Panel (a) shows an example of the list of products that a participant sees. Panel (b) shows an
example of what appears once the participant clicks on a product.

Participants first complete a practice round, which does not affect their bonus payment,

to become familiar with the interface. To ensure that they understand the instructions

and task structure, the participants then answer three comprehension checks. The first two

comprehension checks test for understanding of how bonus payments are determined.11 If

10Whether all products are visible depends on the participant’s screen size.
11The first comprehension check asks, “Suppose you clicked on product X once, and product Y twice, and

you selected product Y, which has a bonus A value of 20 and a bonus B value of 40. What is your final
payoff (bonus points after click costs) for this round?” The second asks a similar question but with different
bonus values.
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the participant answers incorrectly, the instructions are shown again, and the participant is

given another chance. If they answer both comprehension checks incorrectly twice, they are

disqualified from the study. The third comprehension check tests for whether participants

understand that bonus A and bonus B are uncorrelated. We revisit the comprehension

checks in model estimation (Section 3.3).

Participants then complete the incentivized search task ten times. The bonuses A and

B for each task are redrawn and are independent across tasks. After completing the ten

tasks, participants receive a bonus payment, in addition to the base pay, of the total points

they earn on all tasks. For every 400 points, they receive $1 of bonus pay.12 Participants

also may earn an additional 40 bonus points ($0.10) at the end of the survey for accurately

answering a question that elicits their beliefs about bonus B.13 At the end of the survey, we

collect participants’ self-reported age, gender, and online shopping frequency (e.g., never,

less than once a week, etc). We ask for online shopping frequency because we hypothesize

that those who shop online more may have more exposure to ordered lists, and thus may

have stronger prior beliefs about rank.

Participants were recruited on Prolific.com among US participants and were required to

use a desktop device. Participants were randomized into one of three conditions, which differ

only in their ranking algorithm and disclosure of the ranking algorithm: Strong, Random,

and Random-Informed.14 In the Strong condition, products are ordered in each task so

that bonus B is strongly correlated with the product’s rank. Products with higher bonus

Bs are closer to the top of the page.15 In this condition, participants are not informed of

how rankings are generated. In the Random condition, products are randomly ordered in

each task, and as in Strong, participants are not informed of the ranking algorithm. In the

Random-Informed condition, products are randomly ordered in each task, and participants

are told that products have been randomly shuffled.16

12These values were chosen to calibrate bonus payments to be between $1.50 and $2.50.
13We ask participants about two products that have the same bonus A but in positions 1 and 3 in the

rankings. We elicit their belief about the probability that the product in position 1 has a higher bonus B
than the product in position 3. The correct answer depends on the participant’s ranking algorithm.

14We report randomization and manipulation checks in Appendix F.2.1.
15To generate these imperfectly informative or “noisy” rankings, we draw an additional, independent noise

term ∼ N(0, 5) and add it to product bonus B values, then sort in descending order of the perturbed value.
16This study was preregistered and run with a coding error in a fourth condition, where the ranking

algorithm is supposed to switch from Strong to Random after five tasks. We dropped this condition from
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Why include these conditions? The Random-Informed condition is designed to isolate

the rank-specific search costs. Because participants in this condition are informed that prod-

ucts are randomly ordered, any tendency to search more prominently positioned products

is driven by search costs rather than by beliefs. Therefore, the Random-Informed condition

allows us to estimate search costs. Given these estimated search costs from the Random-

Informed condition, we use variation in behavior in the Random and Strong conditions

to isolate beliefs about rank-specific payoffs. Any residual rank effects after accounting for

rank-specific search costs in the Random and Strong conditions can be attributed to beliefs.

We include the Random condition for two reasons. First, comparing Random to Random-

Informed allows us to detect whether participants enter the experiment with equilibrium

beliefs from other search settings. In other words, do participants have position-specific

prior beliefs? Second, we can ensure that any additional rank effects observed in Strong,

relative to those observed in Random-Informed, are due to the ordering of products and

not due to participants not knowing the algorithm.

3.2 Experimental Results

After excluding participants who repeatedly failed comprehension checks and those who

completed the survey too quickly, our final dataset contains 961 participants.17 Across

all search tasks where participants searched at least two products, participants chose the

product with the largest bonus in 93% of tasks.

Table 1 reports the summary statistics for each condition. In all three conditions, the

median number of products searched (clicked on) is 1, while the mean ranges from 2.1 to

2.2 products.18 Participants search the most in the Random condition and the least in the

Strong condition, but these differences are not statistically significant. However, the total

bonus earned significantly varies across conditions. Participants in Strong earn significantly

more than participants in the other conditions.

Before presenting the empirics for the search model, we report model-free evidence of

our analysis in Study 1 and re-ran this condition in Study 2.
17As noted in our pre-registration, we omit participants completed the survey in less than the first per-

centile, which is 3.3 minutes.
18The search intensity in our setting is similar to that of other experimental search papers. For example,

Morozov and Tuchman (2024) find that the average participant searches 1.9 products.
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Table 1: Summary Statistics across Conditions (Study 1)

Mean (SD)

Random Random-Informed Strong
Num Searches 2.22 (2.04) 2.14 (1.77) 2.11 (1.82)
Bonus Earned 66.41 (11.67) 67.18 (10.94) 68.42 (11.4)

Click Max(a) First 0.41 (0.49) 0.44 (0.5) 0.41 (0.49)
Time Spent per Task 13.32 (16.71) 13.4 (17.99) 13.88 (19.43)

N(Tasks) 3300 3170 3140
N(Participants) 330 317 314

Notes: Table reports mean and standard deviation by condition for each variable. Num Searches is the
number of products searched in a task. Bonus Earned is the net bonus earned in a task (bonus of selected
product net of nominal search costs). Click Max(a) First is a dummy variable which is equal to one if the
participant clicked on the product with the highest bonus A value first in a task. Time Spent per Task is the
seconds spent on a task from page load until final click. The prior statistics summarize across participants
and tasks within a condition.

position-specific search costs, beliefs, and learning. First, we find strong evidence of rank

effects in all conditions, consistent with what is documented in many other field and lab

settings. Figure 2 plots the probability that participants search each item by rank across

conditions. All conditions exhibit rank effects: top-ranked items are more likely to be

searched.19 Note that these rank effects are not driven by differences in pre-search payoffs

because bonus A is independent of rank. In the Strong condition, moving a product one

position down the page, on average, reduces the probability of a consumer searching it by

the same amount as offering 0.55 fewer points in bonus A.20 The average effect size is smaller

in the Random and Random-Informed conditions: one rank is “worth” 0.3 bonus A points.

In all conditions, rank effects are most pronounced for the top five products, evidenced by

the steeper slope, and flatten out for the bottom five. In the Strong condition, rank effects

are especially strong for the first product. In this condition, 33% of participants click on

the first product. This suggests that our model should be flexible enough to capture the

increased search propensity for the first product in particular.

19Sixty-two percent of sequences with more than one product search involve out-of-order searching (re-
turning to click on a higher-ranked product after first clicking on another option). This invalidates the
simplifying assumption often made for tractability that search order is exclusively top-to-bottom. (e.g.,
(Choi and Mela, 2019; Lam, 2023)).

20These magnitudes are obtained from the results in Table F.1 in the appendix, in which we regress an
indicator variable for whether the participant searches product j on an interaction between the treatment
condition and product j’s rank r.
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Figure 2 also provides evidence that both position-specific search costs and beliefs ex-

ist. The rank effects we observe in the Random-Informed condition provide evidence for

position-specific search costs. Recall that in this condition, we inform participants that

the products are randomly ordered, essentially “shutting off” beliefs. The difference in

rank effects between the Strong and Random-Informed conditions provides evidence for

position-specific beliefs about the returns to search. Furthermore, the lack of differences

in rank effects across conditions in the first search task, as shown in Figure 2 in the ap-

pendix, suggests that participants in the Strong condition are learning through experience

that the first product offers the greatest returns to search. In addition, we find no evidence

of prior position-specific beliefs, as there are no differences in position effects between the

Random and Random-Informed conditions, whether averaged over all tasks or for the first

task alone.21

Figure 2: Search Probability by Rank and Condition (Study 1)
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Notes: Figure shows the probability each item is searched by rank and condition across participants and
tasks. 95% confidence intervals are based on standard errors clustered at the participant level.

Second, participants in all conditions forgo higher certain payoffs (bonus As) from other

products to search products that are ranked towards the top of the page. How much bonus

21We also do not find heterogeneity in search behavior based on whether the participant is a high or low
frequency online shopper. This suggests that frequent online shoppers do not have different prior position-
specific beliefs. We present this evidence in Appendix B.
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Figure 3: Forgone Bonus A by Rank of First-Clicked Item (Study 1)
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Notes: This figure plots the average forgone bonus A of the first-clicked item by the rank of the first-clicked
item. Error bars represent 95% confidence intervals, which are based on standard errors clustered at the
participant level.

A they forgo helps identify the magnitude of rank effects. Recall that the bonus As of top-

ranked items are not higher than those for the bottom-ranked items, and the participant’s

total bonus for the search task depends on bonus A + bonus B. Therefore, because position

does not provide information about bonus B in Random-Informed, participants should

prioritize searching products with higher bonus As first to maximize their certain payoff, if

there are no position-specific costs. That is, according to the model in Weitzman (1979),

searching the product with the highest bonus A first is the optimal strategy for participants

in Random-Informed if search costs do not vary by position. Figure 3 displays the average

forgone bonus A of the first searched product by the product’s rank and by condition. The

forgone bonus A is defined as the maximum bonus A of all products in the task minus

the bonus A of the searched product. Figure 3 shows that participants in all conditions

forgo more points when starting their search at the top-ranked product. This implies

that participants click on the top-ranked products at the expense of products that may

have a higher bonus A but are towards the bottom of the page. Additionally, on average,

participants forgo more than three bonus A points, even when they begin their search with

a less prominently ranked item. This suggests that participants may be inattentive, which

we should account for in our model.
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Table 2: Learning to Find Higher Bonus Bs (Study 1)

Dependent Variable: bB of First Searched
Model: (1)

Variables
Search Task 0.0146

(0.0710)
Search Task × Condition = Random 0.1143

(0.0989)
Search Task × Condition = Strong 0.2824∗∗∗

(0.1052)

Fixed-effects
Participant (961) Yes

Fit statistics
Observations 9,610
R2 0.13796
Within R2 0.00226

Clustered (Participant) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: This table reports the OLS estimates of Equation 5. The dependent variable is the bonus B of the
product that the participant searches first in each task. Thus, each observation is at the participant-task
level. The baseline condition is Random-Informed.

Finally, we show that the larger bonuses earned by participants in the Strong condition

are due to learning during the experiment (as opposed to position-specific prior beliefs). To

demonstrate this, we consider the bonus B of the product that participants search first in

a given search task. If the participant learns which positions yield higher bonus Bs, they

should be more likely to search those positions first. Therefore, we estimate the following

linear regression:

bit = αi + β1SearchTaskit + β2(SearchTaskit × Conditioni) + ϵit. (5)

The dependent variable bit is the bonus B of the product that i searches first in task t. The

variable SearchTaskit denotes the task number, which is from one to ten; Conditioni is

participant i’s experimental condition. We also include participant fixed effects αi.
22

Table 2 reports the OLS estimates of Equation 5. The coefficients of the main effect

22Note that this specification does not include the main effect of Conditioni because it is collinear with
participant fixed effects.
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of Task and its interaction with Condition = Random are not statistically significant.

These results suggest that, as expected, participants in Random-Informed and Random do

not learn to find better bonus Bs with experience. However, the statistically significant

interaction with Strong indicates that participants in the Strong condition do learn to

identify better bonus Bs through experience.

3.3 Model and Estimation

We estimate a version of the directed sequential search model described in Section 2 using

a Bayesian estimator similar to that Morozov (2023). As described in Morozov (2023), this

estimator is more numerically stable and can better accommodate heterogeneity compared

to frequentist methods. In our model, heterogeneity in rank effects based on individual-level

attributes plays an important role, as we describe below.

To simplify estimation, we re-parameterize participant i’s reservation utility of product

j in task t (described in Equation 3) as

zitj = aitj + E[b] + δitj , (6)

where aitj is the pre-search, product-specific component of utility, and E[b] is the aver-

age payoff from search, which is 40 points. Following Morozov (2023), instead of directly

modeling search costs, we include the search propensity, which we denote by δitj . Search

propensities capture rank-specific differences in the likelihood the consumer searches j, re-

gardless of whether this is due to beliefs about bonus B or search costs23.

The consumer i’s propensity to search product j is specified as

δitj = β0
i + βr

i · (ritj − 1) + ϵitj . (7)

The term ϵitj represents idiosyncratic differences in search propensities that are uncorrelated

with position and cannot be rationalized by bonus A, such as differences in attention costs

23We assume that participants are myopic across tasks - that is, they search in each task to maximize
payoffs for that particular task and do not actively search more in earlier tasks to learn about position-
specific distributions. Figure F.2 in the appendix shows that the number of products searched does not vary
significantly by search task, which supports this assumption.
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(e.g., seeing the third product first). Realizations of ϵ can explain why participants in the

Random-Informed condition search products that have a lower bonus A, even in positions

that are more costly to search. Assuming that ϵitj is drawn from a normal distribution

with mean zero and variance σ2
ϵ , we can augment the data by drawing δitj directly from

δitj ∼ N(β0
i + βr

i · (ritj − 1), σ2
ϵ ).

We refer to the intercept, β0
i , as the baseline search cost. This term can be interpreted

as i’s propensity to search the first-ranked product, which also includes i’s search costs

regardless of the product’s rank, such as the one point search cost imposed by the study.

Holding all else constant, a larger β0
i increases the total number of searches the participant

performs.

The term βr
i is the effect of rank on search propensity relative to the first-ranked product.

A more negative value of βr
i would imply that user i is more likely to search products

displayed at the top of the rankings.

Recall that in the Random-Informed condition, we attribute variation in search propen-

sities with respect to rank to rank-specific search costs. Residual differences in the rank-

specific search propensity (after accounting for the search cost estimated from Random-

Informed) in the other conditions can then be interpreted as differences in beliefs. Therefore,

it is important to measure the heterogeneity in rank effects by the participant’s treatment

condition.

Because each participant completes only ten tasks, estimating a separate β for each

participant would yield very noisy estimates. We therefore assume that βi, the vector of

individual coefficients, is drawn from a shared distribution using a hierarchical model and

depend on participant characteristics Xi, as follows:

βi ∼ N(∆Xi, Vβ). (8)

The matrix Xi includes (a) an intercept term, (b) an indicator for the Strong condition,

(c) an indicator for the Random condition, (d) an indicator for whether user i passed all

comprehension checks on the first attempt (Compi), and (e) an indicator for whether i’s self-

reported online shopping frequency is greater than once a week (ShopFreqi). We allow βi to
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vary by Compi and ShopFreqi because participants that passed the comprehension checks

on the first attempt exhibit stronger position effects and search more than those who do not,

and we hypothesize that participants who shop online more frequently may have position-

specific prior beliefs from their extensive experience with online product rankings. We

report the reduced form effects on search by these attributes in Section B in the appendix.

The vector ∆ contains the coefficients that shift the mean value of each β element

by demographics and treatment condition, and Vβ is the covariance matrix of βi across

individuals. The coefficient βr
i is given by

βr
i = ∆r

0 +∆r
S1{Condi = S}+∆r

R1{Condi = R}+∆r
compCompi +∆r

shopShopFreqi + ηri .

(9)

The intercept term ∆r
0 represents differences in search propensities for participants in

Random-Informed; these should be attributed to search costs. The coefficients ∆r
S and ∆r

R

represent any differences in search propensities by rank above and beyond those induced

by search costs in the Strong and Random conditions, respectively. These differences are

induced by beliefs.

Similarly, the baseline search cost β0
i varies by the same characteristics:

β0
i = ∆0

0 +∆r
S1{Condi = S}+∆0

R1{Condi = R}+∆0
compCompi +∆0

shopShopFreqi + η0i .

(10)

Notice that in Equation 7, rank impacts search propensity linearly. However, rank

effects can manifest by especially increasing the participant’s propensity to click on the first

listing, as shown in Section 3.2. Therefore, we estimate an alternative specification that

captures the search propensity of the top-ranked product separately from the rank effects

across other positions:

δitj = β0
i + β1

i · 1{ritj = 1}+ βr
i ·
(
1{ritj ̸= 1} · (ritj − 2)

)
+ ϵitj . (11)

In this specification, a positive β1
i indicates stronger rank effects (i.e., that the participant

is more likely to click on the first product relative to products lower on the page).
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We estimate this model using a Gibbs sampler.24 Algorithm 1 provides an overview of

the sampler, and Appendix A outlines the estimation steps in detail, describes the priors,

which are non-informative, for all parameters, and shows the performance on simulated

data.

Algorithm 1 Gibbs Sampler Overview

1: for m = 1, . . . ,M do

2: Update reservation utilities z(m)|β(m−1), σ
(m−1)
ϵ

3: Update search propensity coefficients β(m)|z(m), σ
(m−1)
ϵ

4: Update search propensity coefficient shifters ∆(m), Vβ|β(m−1)

5: Update error variance σ
(m)
ϵ |z(m), β(m−1)

6: end for

3.4 Results

The estimated parameters are presented in Table 3. The first column of parameter estimates

(titled “Baseline”) reports the estimates from the specification in Equation 7, and the

second column (titled “Separate Position 1”) reports the estimates from the specification

in Equation 11. In both specifications, consumers show rank effects in Random-Informed,

which are due to search costs: ∆r
0 = −0.24 in the “baseline” specification and ∆r

0 = −0.22

in the “Separate Position 1” specification. This confirms that users find it more costly to

search less prominently ranked products. In the Strong condition, there is an additional

linear rank effect on search propensities due to beliefs, ∆r
S = −0.19. This is almost of the

same magnitude as the rank effect due to costs. Search models that do not differentiate

between the two would therefore significantly overestimate search cost differences across

positions.

Recall that comparing the estimates between Random and Random-Informed informs

us of whether participants have position-specific prior beliefs. The coefficients ∆r
R and ∆1

R

are small in magnitude, and their 95% confidence intervals contain zero. This reaffirms the

conclusions from Figure 2—that participants do not have position-specific prior beliefs.

The estimates in the “Separate Position 1” specification show that much of the rank

24Note that like Weitzman (1979), our model ignores product revisits (i.e., consumers viewing a product
multiple times in the same search task). Only a small fraction (4.56%) of search tasks in our data involved
revisits.
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effect arises from the increased propensity to search the first product on the page. The

positive estimate of ∆1
S implies that participants in the Strong condition are more likely

to click the first product, relative to participants in Random and Random-Informed. This

increased propensity relative to Random-Informed and Random is due to beliefs that are

formed during the study.

Table 3: Search Model Estimation Results (Study 1)

Estimate (SD)

Variable Coefficient Baseline Separate Position 1

Rank Coefficient βr

Intercept ∆r
0 -0.24 (0.099)** -0.22 (0.099)**

Strong ∆r
S -0.19 (0.11)* -0.051 (0.11)

Random ∆r
R -0.098 (0.12) -0.12 (0.12)

Comp ∆r
comp -0.46 (0.1)*** -0.36 (0.091)***

ShopFreq ∆r
shop -0.12 (0.098) -0.072 (0.095)

Pos 1 Coefficient β1

Intercept ∆1
0 - -0.39 (0.7)

Strong ∆1
S - 2.2 (0.86)***

Random ∆1
R - -0.35 (0.85)

Comp ∆1
comp - 2.6 (0.67)***

ShopFreq ∆1
shop - 1 (0.73)

Baseline Search Propensity β0

Intercept ∆0
0 -22 (1.7)*** -22 (1.6)***

Strong ∆0
S 2.2 (1.9) 1.4 (1.9)

Random ∆0
R 0.35 (1.9) 0.67 (2)

Comp ∆0
comp 19 (1.7)*** 18 (1.6)***

ShopFreq ∆0
shop -1.6 (1.6) -2.1 (1.5)

Heterogeneity

Rank Coefficient
√
V βr 1.2 (0.11) 1.1 (0.09)

Pos1 Coefficient
√
V β1 - 7.3 (5.1)

Mean Search Propensity
√
V β0 24 (32) 22 (30)

Reservation Utility σϵ 15 (5.3) 15 (5.8)

Notes: We report the statistical significance only for the search propensities and their shifters. Signif. Codes:
∗ ∗ ∗ : 0.01, ∗∗ : 0.05, ∗ : 0.1. Posterior means and standard deviations are based on the thinned chain which
drops the first 5,000 draws of the chain and keeps every tenth draw thereafter.

The model estimates regarding heterogeneity by participant attributes reflect those re-

ported in Section 3.2. Participants who passed all comprehension checks in the first attempt
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Figure 4: Distribution of Search Costs for Product 1 across Consumers (Study 1)

0

20

40

60

$0.00 $0.05 $0.10 $0.15 $0.20
Search Cost (Position 1)

P
ar

tic
ip

an
t F

re
qu

en
cy

Notes: Figure plots the frequency distribution of the marginal search cost for the first position product
across consumers.

have a higher search propensity (∆0
comp = 19 and ∆0

comp = 18 in both specifications) than

those who did not. One possible explanation is that participants with a low opportunity

cost of time (and hence low search costs) spend more time reading the instructions and are

therefore more likely to pass the comprehension checks on the first attempt. These lower

search costs are reflected in a higher search propensity. These participants also had stronger

rank effects (∆1
comp = −0.46 in the first column, and ∆1

comp = −0.36 in the second). Partic-

ipants with a higher online shopping frequency also had higher rank effects (∆r
shop = −0.12)

and are more likely to search the first product (∆1
shop = 1), although not significantly.

These estimates imply that consumers face search costs for products in rank one of an

average of $0.05 and a median of $0.03.25 Figure 4 plots the distribution of implied dollar

search costs for Random-Informed participants for the first item. These costs combine the

effort of processing information and the physical effort of clicking and reading. Note that

the dollar amounts are low, but the median time spent per task is nine seconds.

How much of the position effect we find is due to costs? To measure this, we consider two

metrics. First, what fraction of the difference in search rates from position one to position

ten in Strong can be explained by costs? At the posterior mean, 35% of this gap is due to

differences in costs, and the remaining 65% is attributed to differences in beliefs. Second, we

document that the difference in search propensities due to beliefs in Strong between ranks

one and two is larger than the entire difference due to costs across ten positions. These

metrics both show that beliefs play a much larger role than search costs in producing rank

25These values are obtained from the estimates in the “Separate Position 1” specification.
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effects when rankings are informative of products’ post-search attributes.

So far, the estimates we discussed are averaged over all tasks. However, recall that

we find model-free evidence of participants learning through their search experience—rank

effects in the first task do not differ significantly between Random-Informed and Strong in

the first search task (Figure F.3 in the appendix) but are statistically different on average

across all tasks. In Appendix C, we estimate the search model and allow rank effects to

vary for tasks 1–5 and 6–10 and find that rank effects in Strong are indeed larger in tasks

6–10 than tasks 1–5.

In summary, the search model estimates in Study 1 highlight three main results. First,

participants’ search propensities vary significantly with rank. This is consistent with prior

work, which suggests that our experimental setting can replicate features of field search

settings. Second, these rank effects are a combination of both costs and beliefs, and beliefs

are a major component of rank effects in the Strong condition, with 65% of the magnitude

of rank effects coming from beliefs. Third, participants adjust their search behavior over

time in a manner consistent with learning about the underlying algorithm from repeated

searching and updating their beliefs to be closer to the ranking algorithm.

4 Study 2: Consumer Responses to Algorithm Changes

The results from Study 1 imply that rank effects are not only static, unchangeable costs—

rather, they arise in part from consumers’ beliefs, which may evolve in equilibrium. In

Study 2, we seek to understand the implications of these equilibrium effects on search

behavior when there are changes in the ranking algorithm. We focus on changes in the

ranking algorithm for several reasons. First, changes in ranking algorithms are frequently

analyzed in counterfactuals. A recent example is Donnelly et al. (2024), who compare

consumer welfare under several different personalized ranking algorithms. Understanding

the speed and degree of learning is important not only for determining the accuracy of

predictions for managerial purposes but also for welfare analysis. Analyzing practices like

steering, where certain products are placed at the top of rankings, requires considering

counterfactual rankings (Lee and Musolff, 2023; Lam, 2023). If consumers can learn the
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ranking algorithm, they are less likely to be misled or manipulated into specific search and

demand patterns. Furthermore, platform steering has a smaller impact on behavior the

faster consumers learn the new algorithm. Conversely, the greater the influence of search

costs on position effects, the more significant the impact of platform steering on consumers.

Careful measurement of both belief evolution and rank-specific costs is critical for evaluating

behavior under alternative platform designs.

Second, this study allows us to test our approach against typical paradigms for esti-

mating rank-specific search costs. A common approach to measuring search costs is to

randomize product rankings. The algorithm shifts from the platform’s default ranking to

a random ranking without disclosing this to consumers. These types of experiments can

lead to incorrect estimates of the search costs. We include a condition that mimics this

paradigm, Strong-to-Random, which we describe below, that allows us to compare how

counterfactual ranking algorithms impact consumer surplus when rank effects are correctly

attributed to both beliefs and search costs relative to when they are misattributed to search

costs only.

4.1 Design

The design of this study is very similar to that of Study 1. Individuals search through a

vertical list of products with two additive, independently drawn bonus components. The

products are generated from the same data generating process. However, in Study 2, par-

ticipants complete fifteen tasks, rather than ten. This allows more opportunities for par-

ticipants to learn the algorithm.26 We also change the number of products per search task

from ten to twenty. We do this because in Study 1, 10% of participants searched all ten

products in at least one task, which consequently reduces the precision of our search cost

estimates.27 Increasing the number of products to twenty reduces the portion of the sample

for which we cannot accurately estimate search costs.

Participants are randomized into one of six conditions, which are summarized in Table

26In addition, rather than compensating participants for all tasks, we inform participants that 8 of the 15
tasks will be drawn at random and bonuses paid out based on those task performances. We also re-calibrate
the point conversion to 500 points equals $1. We include participant instructions in Appendix G.2.

27More specifically, we can only estimate the lower bound of search costs for tasks where the participant
searches all items.
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Table 4: Study 2 Design

Condition Ranking Algorithm

Tasks 1–5 Tasks 6–10 Tasks 11–15

Random-Informed Random Random Random
Strong Strong Strong Strong
Strong-to-Random5 Strong Random Random
Strong-to-Random10 Strong Strong Random
Strong-to-Pref5 Strong Pref Pref
Strong-to-Pref10 Strong Strong Pref

Notes: Ranking algorithms are defined as follows. Random sorts products randomly. Strong is defined as
in Study 1, where products are sorted noisily in descending order of bonus B. Pref first sorts products as in
Strong, but then puts the two lowest bonus B items in the first two positions (so that the third position has
the highest expected value).

4. Two of the conditions are Random-Informed and Strong; these are identical to those in

Study 1, and the ranking algorithms remain constant across search tasks. The remaining

conditions include a change in the ranking algorithm after a set number of search tasks

in the Strong algorithm. In one condition, Strong-to-Random5, the ranking algorithm is

identical to the one in Strong for the first five tasks, and then switches to Random for the

remaining ten tasks. We also have a condition Strong-to-Random10 in which the algorithm

is Strong for the first ten tasks and Random for the last five. These two conditions mimic

the typical experimental paradigm used to measure search costs, in which the algorithm

switches from the platform’s default to Random without disclosure to consumers. The

remaining two conditions are Strong-to-Pref5 and Strong-to-Pref10, which are meant to

represent a switch to platform steering. In these conditions, the first five and ten tasks,

respectively, are sorted by the Strong algorithm. The algorithm then switches to the Pref

algorithm, which is the following: we first sort the products using the Strong algorithm, then

we move the two products with the lowest values of bonus B to the first and second position

in the list. Recall that bonus A is independent of rank and bonus B, so the products sorted

by Strong and Pref algorithms are indistinguishable to participants before search. Figure

5 illustrates how the bonus B of the first-ranked product differ by condition across search

tasks. The only condition that informs participants of the ranking algorithm is Random-

Informed. Also, mimicking most digital platforms’ practice, we do not inform participants
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Figure 5: Average Bonus B of First-Ranked Product by Condition (Study 2)
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Notes: Error bars represent 95% confidence intervals, based on i.i.d. standard errors across participants.

of the change in the ranking algorithm.

Like Study 1, Study 2 includes comprehension checks. The first comprehension check

tests their understanding of the bonus payment and the second tests for understanding

that bonuses A and B are uncorrelated. Participants who incorrectly answer the second

comprehension check twice are removed from the study.

In this study, we also directly elicit participants’ prior and posterior beliefs about rank-

specific payoffs. We display to participants the search results page, which contains only the

bonus As of twenty ordered products, and ask them to predict the bonus Bs of the first-,

tenth-, and twentieth-ranked products. We ask this question following comprehension checks

(before the incentivized tasks) and again immediately after completing the fifteenth task.28

In the pre-task belief elicitation, we do not incentivize participants’ responses. However, in

the post-task belief question, we reward participants with ten points for each of the three

beliefs answered correctly for their condition.

28In a pilot study, we tested whether asking participants about their beliefs about bonus Bs before the
search tasks influenced their subsequent search behavior. We did not find evidence of differences in search.
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4.2 Experimental Results

We collected data from 3,569 participants on Prolific. After removing participants who

completed the survey too quickly (less than the first percentile, which is 4.2 minutes), our

remaining sample includes 3,533 participants.29

We report the summary statistics in Table 5. Compared with Study 1, participants

search less (1.92 products in Random-Informed in Study 2 compared to 2.14 in Random-

Informed in Study 1). However, the mean bonus earned across the studies in Random-

Informed are similar (67.18 and 67.16 in Studies 1 and 2, respectively).

Table 5: Summary Statistics across Conditions (Study 2)

Condition Mean (SD)

RI Str Str to P (10) Str to P (5) Str to R (10) Str to R (5)

Num Searches 1.92 (1.6) 1.78 (1.44) 1.86 (1.5) 1.97 (1.58) 1.92 (1.64) 1.99 (1.61)
Bonus Earned 67.16 (11.29) 69.97 (11.63) 68.95 (12.11) 68.98 (11.93) 68.66 (11.69) 68.1 (11.38)

Click Max(a) First 0.31 (0.46) 0.29 (0.45) 0.31 (0.46) 0.32 (0.47) 0.29 (0.46) 0.3 (0.46)
Time Spent per Task 13.41 (15.38) 12.02 (14.32) 12.92 (17.93) 13.57 (19.81) 12.51 (14.81) 13.53 (27.55)

N(Tasks) 8595 9195 8835 8910 8070 9390
N(Participants) 573 613 589 594 538 626

Notes: “Str” stands for Strong, “P” for Pref, “R” for Random, and “RI” for Random-Informed. Table
reports mean and standard deviation by condition for each variable. Num Searches is the number of products
searched in a task. Bonus Earned is the net bonus earned in a task (bonus of selected product net of nominal
search costs). Click Max(a) First is a dummy variable which is equal to one if the participant searched the
product with the highest ex-ante bonus value first on a task. Time Spent per Task is the seconds spent on
a task from page load until final click. The prior statistics summarize across participants and tasks within
a condition.

Because the ranking algorithm changes after five or ten search tasks in some conditions,

we report results by each “task group” separately. Figure 6 plots the average number of

products searched per task for tasks 1–5, 6–10, and 11–15. In tasks 6–10, the search depth in

Random-Informed is significantly greater than Strong, Strong-to-Random10, and Strong-

to-Pref10. However, search depth increases in Strong-to-Pref5 and Strong-to-Random5;

recall that in these conditions, the product rankings in first five tasks are identical to

those in Strong. This increase in search depth also occurs in tasks 11–15 for Strong-to-

Random10 and Strong-to-Pref10, relative to Random-Informed. This pattern demonstrates

that participants respond to the algorithm change; when the products they click on first

29This study, including this data cleaning process, is pre-registered on AsPredicted.org (#159069). The
pre-registration is available at https://aspredicted.org/3RP ZVB.

30



Figure 6: Search Depth by Rank by Condition (Study 2)
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yield a lower bonus, they continue searching.

Here, we confirm the same stylized facts we document in Study 1. Participants in all

conditions display strong rank effects. Figure 7 reports the probability that each item is

clicked by rank across conditions. In Random-Informed, participants are more than twice as

likely to search the first item as compared to the tenth item. The effect is more pronounced

in all other conditions, where the probability of searching the first item is significantly higher

than in Random-Informed. We confirm these results in regressions (Table 6), which shows

that the average effect of rank is greater in all conditions relative to Random-Informed.

In addition, we confirm that the use of undisclosed randomization (in Strong-to-Random)

leads to incorrect beliefs in the short term. For example, using only the eleventh task,

we estimate that participants in Strong-to-Random10 are just as likely to click the first

ranked item as those in Strong, even though the products are randomly ordered. This

probability of searching the first-ranked item in Strong-to-Random10 is 50% higher than in

Random-Informed.

As in Study 1, we can use the forgone payoffs from bonus A to see the scale of position

effects in cost terms. Figure 8 shows the bonus A left on the table with the first click

by condition and position. For Random-Informed, participants forgo 1.7 additional bonus
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Figure 7: Search Probability by Rank by Condition (Study 2)
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points (40% additional forgone bonus A) when starting their search with the first item

versus the tenth.

Recall that in this study, we directly elicit prior and posterior beliefs about expected

returns to search. Participants report no significant differences in beliefs about rank-specific

payoffs across conditions prior to the search tasks. In particular, none of the conditions

differs from Random-Informed in the fraction of participants reporting that their beliefs

about bonus B are identical across positions. Although we elicit beliefs in an incentivized

manner after the search tasks, participants still do not report post-search beliefs that are

consistent with the bonus B values they observe or the rank effects they exhibit in their

search behavior.30 Figure F.4 in the appendix shows that all conditions are statistically

indistinguishable in terms of the fraction of participants who report the same beliefs across

positions. This conflicts with their observed search behavior, since we document very strong

30There are several reasons why participants’ observed behavior do not reflect their stated beliefs, including
the incentive was not large enough to induce participants to put in effort to answer correct, or the question
and response format were confusing.
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Table 6: Effect of Rank on Search by Condition (Study 2)

Dependent Variable: 1(Product Searched)
Model: (1) (2) (3) (4) (5) (6)

Variables
r × Condition = Random Informed -0.0032∗∗∗ -0.0032∗∗∗ -0.0032∗∗∗ -0.0032∗∗∗ -0.0032∗∗∗ -0.0032∗∗∗

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
r × Condition = Strong -0.0049∗∗∗ -0.0049∗∗∗ -0.0049∗∗∗ -0.0049∗∗∗ -0.0049∗∗∗ -0.0049∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
r × Condition = Strong2Pref10 -0.0043∗∗∗ -0.0042∗∗∗ -0.0043∗∗∗ -0.0042∗∗∗ -0.0043∗∗∗ -0.0042∗∗∗

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
r × Condition = Strong2Pref5 -0.0045∗∗∗ -0.0044∗∗∗ -0.0045∗∗∗ -0.0044∗∗∗ -0.0045∗∗∗ -0.0044∗∗∗

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
r × Condition = Strong2R10 -0.0046∗∗∗ -0.0046∗∗∗ -0.0046∗∗∗ -0.0046∗∗∗ -0.0046∗∗∗ -0.0046∗∗∗

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
r × Condition = Strong2R5 -0.0044∗∗∗ -0.0044∗∗∗ -0.0044∗∗∗ -0.0044∗∗∗ -0.0044∗∗∗ -0.0044∗∗∗

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
aj (demeaned) 0.0137∗∗∗ 0.0137∗∗∗ 0.0138∗∗∗

(0.0003) (0.0003) (0.0003)

Fixed-effects
Condition (6) Yes Yes Yes Yes
Search Task (15) Yes Yes Yes Yes
Participant (3,533) Yes Yes

Fit statistics
Observations 1,059,900 1,059,900 1,059,900 1,059,900 1,059,900 1,059,900
R2 0.00742 0.04259 0.00762 0.04278 0.03544 0.07080
Within R2 0.00728 0.04245 0.00728 0.04245 0.00749 0.04388

Clustered (Participant) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes. Column 1 reports the OLS estimates of the following regression: 1{ProductSearcheditj} = αcond +
β · ritj + δ(ritj ·Condi)+ ϵitj , where the dependent variable is an indicator for whether participant i searches
product j in task t. The independent variables are fixed effects for i’s experimental condition, the rank
of product j, and the interaction of rank and the participant’s experimental condition. In columns 2, 4,
and 6, we also include product j’s demeaned bonus A. We add search task fixed effects in columns 2–4 and
participant fixed effects in columns 5–6.
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Figure 8: Forgone Bonus A by Rank of First-Clicked Item (Study 2)
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position effects in conditions that include the Strong algorithm. Because their reported

posterior beliefs are not consistent with their behavior, we do not further use participants’

stated post-search beliefs in model estimation.

4.2.1 Evidence of Learning

In this section, we present evidence that individuals learn the relationship between the

product’s position and its bonus B. We find evidence that participants use realized bonus

Bs in position k to update their beliefs about the payoffs of position k in future tasks.

However, we find no evidence of spillovers in learning across positions. That is, individuals

do not seem to use the bonus B of the product in position k to update their beliefs about

the bonus B of the products in positions k + 1 or k − 1. These patterns inform how we

formally model learning in Section 4.3.
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Payoffs increase across search tasks. The first piece of evidence of learning is that

participants earn more as they gain more experience with the search tasks.31 To demonstrate

this, we estimate the following linear regression:

Earningsit = αi + αcond + β1SearchTaskit + β2(SearchTaskit × Conditioni) + ϵit, (12)

where αi is the individual fixed effect, αcond is the treatment condition fixed effect, and

SearchTaskit is the task number, which ranges from 1 to 20. We estimate this only for

observations in conditions where the algorithm does not change or before the algorithm

changes in conditions where it is supposed to.32

Column 1 of Table 7 reports the estimates of Equation 12. Participants in the Random-

Informed condition earn 2.8 more points in the last task compared to the first, while those

in the Strong condition earn 4.4 more points. This increase in earnings is primarily due

to increases in the bonus B of the selected product, as shown by the similar coefficient

magnitudes in column 2.33 This suggests that, with more experience, participants become

better at finding products with higher bonus B.

Learning across positions. How do participants learn to find better bonus Bs? Do

participants learn that certain ranks yield higher bonus Bs, and does this learning spill over

(Hodgson and Lewis, 2023) to adjacent positions? For example, if a participant clicks on

the second-ranked product and uncovers a large bonus B, are they more likely to search

the second-ranked product in the next search task? If learning spills over to nearby ranks,

we might expect the participant to also be more likely to search the products in ranks one

or three in the next task. Understanding whether spillovers exist allows us to distinguish

learning about specific actions (searching specific ranks) from learning about the environ-

ment (searching products in adjacent ranks with predicted good payoffs) to model learning.

31Recall that the earning for a task is the bonus A + bonus B of the selected product minus the number
of products searched.

32For example, the algorithm switches from Strong to Random after ten tasks in the condition Strong-to-
Random10; we estimate Equation 12 using only tasks 1–10 from participants in the Strong-to-Random10
condition.

33Improvement in earnings in Random-Informed could be due to better stopping or continuation decisions.
It is not due to selecting better bonus Bs because bonus Bs are randomly ordered. We confirm this in Figure
9, which plots the selected bonus B by condition and search task. The bonus B of the first-searched product
per task does not increase with experience in Random-Informed.
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Table 7: Change in Earned Bonuses across Tasks (Study 2)

Dependent Variables: Earnings Selected Bonus B
Model: (1) (2)

Variables
Search Task 0.1448∗∗∗ 0.1218∗∗∗

(0.0271) (0.0259)
Search Task × Condition = Strong 0.0890∗∗ 0.1121∗∗∗

(0.0378) (0.0371)
Search Task × Condition = Strong2Pref10 0.1848∗∗∗ 0.2190∗∗∗

(0.0546) (0.0528)
Search Task × Condition = Strong2Pref5 0.3101∗∗ 0.3570∗∗∗

(0.1382) (0.1352)
Search Task × Condition = Strong2R10 0.1637∗∗∗ 0.1581∗∗∗

(0.0561) (0.0542)
Search Task × Condition = Strong2R5 0.0523 0.0562

(0.1374) (0.1358)

Fixed-effects
Condition (6) Yes Yes

Fit statistics
Observations 35,160 35,160
R2 0.01285 0.01573
Within R2 0.00497 0.00497

Clustered (Participant) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes. This table reports the OLS estimates of Equation 12.

36



Figure 9: Bonus B of First Search by Task and Condition (Study 2)
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To test for rank-specific learning, we estimate the following linear regression:

1{Searched Product r}i,t+1 = αt + αr + β11{Searched Product r}i,t+

β21{Searched Product r}i,t × bi,t,r + β3bi,t,r+

β4ai,t+1,r + β5NSearchedi,t+1 + ϵi,t+1 (13)

The dependent variable 1{Searched Product r}i,t+1 is an indicator for whether partici-

pant i searches the product in rank r in the next task, t+1; 1{Searched Product r}i,t is an

indicator for whether i searches the product in rank r in the current task, t. The term bitr

is the bonus B of the product in rank r in task t. We control for ai,t+1,r, the bonus A of the

r-ranked product in task t+1. This accounts for the possibility that individual i clicks on r

in the next task simply because it happens to have a high bonus A. We also control for the

number of products searched in t + 1 (NSearchedi,t+1). This accounts for the possibility

that i searches r simply because this individual searches many products. However, one may
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be concerned that NSearchedi,t+1 is influenced by actions at t. Therefore, we estimate an-

other specification of the regression that includes only the first search in t+1, which allows

us to drop NSearchedi,t+1. To measure whether learning spills over to nearby ranks, we

also include alternative dependent variables: whether the individual searches the product

r + 1 and r − 1.

We estimate this regression for participants in the Strong condition and for tasks where

the individual searches only one product at task t.34 We impose the former restriction

for two reasons. First, we do not expect to find position-specific learning in Random-

Informed because participants are informed that all products are ordered randomly. Second,

other conditions (e.g., Strong-to-Random5) have varying number of tasks with the strong

algorithm, and the degree of learning can vary across tasks; focusing on the Strong condition

allows us to keep the number of tasks constant. We impose the latter restriction of single-

search tasks because it allows us to attribute the effect to the bonus B of product r, as

opposed to the bonus Bs of other positions the participant searched.

Table 8 displays the OLS estimates of Equation 13. Column 1 reports the estimates

for whether the individual searches the identically positioned product in t+ 1 as in t. The

coefficients of 1{Searched Product r}i,t and its interaction with bitr imply that conditional

on searching a product, the individual is more likely to search the product in the same rank

in the subsequent task if the searched product has a higher bonus B in the current task.

Columns 2 and 3 report whether participants who discover that product r has a higher

bonus B are more likely to search product r+1 or r− 1 in the next task, respectively. The

coefficients of the interactions in columns 2 and 3 are closer to zero and not statistically

significant. Columns 4–6 repeat these regressions with an indicator for searching that item

first as the dependent variable and drops the independent variable NumSearchedt + 1.

Similarly, we find that the learning about one position does not spill over onto the adjacent

products across tasks (columns 5 and 6, very small and n.s. coefficient on the interaction).

Therefore, we find evidence of position-specific learning but no spillovers across positions.

These results are consistent with individuals forming beliefs about the bonus B of product

r based on past realizations of bonus B for product r, and such realizations do not impact

34Of all tasks in the Strong condition, 62% involve only one search.
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beliefs about nearby products. These results motivate how we model learning.

4.3 Structural Model of Learning

The model in Study 2 differs from that in Study 1 in that it incorporates how individuals

learn about how the expected bonus B varies by the product’s position. This approach

enables us to simulate behavior and calculate consumer surplus under counterfactual ranking

algorithms.

An individual i’s reservation utility for a product j in task t is

zitj = aitj + E[bitj |ritj ] +

δitj︷ ︸︸ ︷
β0
i + β1

i 1{ritj = 1}+ βr
i

(
1{ritj ̸= 1} · (ritj − 2)

)
+ ϵitj , (14)

where δitj is the search propensity, and ritj is the product’s rank. This reservation utility

is similar to Equation 11 with one exception: the expected bonus B varies by the product’s

rank.

We assume that i updates beliefs about the expected value of bjt|rtj in a Bayesian

fashion. Before engaging in the first task, i holds a prior belief about the expected bonus

B for each product j. This prior varies with the product’s rank. With a slight abuse of

notation, we denote bitj |ritj with bitr. We assume that the prior is drawn from a normal

distribution with mean b0ir and variance σ2
0. Note that σ2

0 is neither product- nor task-

specific and is assumed to be homogeneous across participants. We also assume that b0ir = 40

because (1) participants were informed that mean of bonus B (across ranks) is 40, and (2)

this is the modal self-reported prior belief in all conditions.

Once i searches product r in task t = 1, he observes bitr and then updates the expected

value of bonus B in rank r to be
σ2
j b

0
ir + σ2

0bitr

σ2
0 + σ2

j

, (15)

where σ2
j = 144 is the variance of bonus B. Recall that we inform participants of this

variance in the study’s instructions. Note that σ2
j does not vary by rank. This assumption

warrants discussion because although this is true for the Random-Informed condition and

participants are directly informed about σ2
j , this assumption does not hold empirically for
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the other conditions. For example, in the Strong-to-Pref5 condition, the variance of bonus

B in rank 1 is higher than that of rank 20 because the bonus B of rank 1 changes from the

highest to the lowest after five search tasks. However, because participants are not informed

of this change, we assume that σ2
j is constant across ranks to simplify estimation.

Given Equation 15, we can express participant i’s expected value of bonus B for a

product in rank r at task t as

1

σ−2
0 + nitrσ

−2
j

(
b0ij
σ2
0

+
nitr b̄itr
σ2
j

)
, (16)

where nitr is the number of times that i has sampled the product in rank r between tasks

1 to t − 1, and b̄itr is the mean of the sampled bonus Bs in rank r in tasks 1 to t − 1. We

can further simplify Equation 16 to be expressed as a weight on the prior and the weight

on the samples:

E[bitr] = b0ir
mitr

1 +mitr
+ b̄itr

1

1 +mitr
, (17)

where mitr ≡
σ2
j

nitrσ2
0
.

This specification of beliefs implies that we attribute differences in learning rates to

differences in the variance of prior beliefs. In other words, if participants behave as if they

completely update (E[bitr] = b̄itr), then our model assumes that σ2
0 is very large. Further-

more, since we assume that σ2
0 is homogeneous, differences in beliefs across participants

arise only due to different sampling of bonus Bs (b̄itr).

Returning to Equation 14, we assume that participants in the Random-Informed condi-

tion do not update their beliefs about bonus B. Thus, the reservation utility, when including

all conditions, is

zitj = aitj + (b0ij
mitj

1 +mitj
+ b̄itj

1

1 +mitj
) · 1{Condi ̸= RI}

+ 40 · 1{Condi = RI}+

δitj︷ ︸︸ ︷
β0
i + β1

i 1{ritj = 1}+ βr
i

(
1{ritj ̸= 1} · (ritj − 2)

)
+ ϵitj . (18)
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We further decompose βr
i to the following:

βr
i = ∆r

0 +∆r
compCompi +∆r

shopShopFreqi + ϵri . (19)

The expressions for β0
i and β1

i are similar to Equation 19. Note that there is a key

difference between Equations 19 and 9 (Study 1). In Study 1, we included terms in the

expression for β1
i and βr

i (∆1
S and ∆r

S respectively) to capture differences in search propen-

sities by rank between Strong and Random-Informed. These differences were due to the

beliefs that formed in the Strong condition. Since we explicitly model the evolution process

of beliefs in Study 2, these beliefs are now captured by the (b0ij
mitj

1+mitj
+ b̄itj

1
1+mitj

) term.

4.3.1 Estimation

The additional parameter to estimate in this model is the prior variance σ2
0. To estimate

our search model in the previous study, we used a Gibbs sampler. In particular, we were

able to estimate search propensities using a Bayesian regression because the parameters

β0
i , β

1
i , and βr

i enter the search propensity linearly (Equation 11). However, σ2
0 does not

enter the reservation value linearly in Equation 18. Rather, our specification results in a

posterior density for the parameters that we can no longer directly sample from. Therefore,

we modify our estimation method to include a Metropolis-Hastings step within the Gibbs

sampler.35 We verify we can recover the parameters on simulated data, which we describe

in Appendix A.2.2.

4.3.2 Estimation Results

The results of this estimation are presented in Table 9. The estimated prior variance is 11,

which reflects the initial uncertainty participants have about rank effects (recall, the prior

mean is b = 40 all ranks). Other parameters are similar to our Study 1 estimates: search

costs are lower for the first position, rank effects due to position-specific costs are smaller

for positions 2 through 20, and participants who passed comprehension checks on the first

35Specifically, we use a random walk proposal distribution: at the kth iteration, we draw σ2 prop
0 =

TN(σ
2 (k−1)
0 , h0). We then accept the proposal (σ

2 (k)
0 = σ2 prop

0 ) with a probability proportional to the
ratio of the posterior probabilities of the proposed and current values of σ2

0 . Otherwise, we reject the proposal
(σ

2 (k)
0 = σ

2 (k−1)
0 ). The other steps of the Gibbs sampler remain the same as in Study 1.
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attempt search more. The implied average search cost is $0.06 for the first item and $0.08

for the twentieth item.

Table 9: Estimation Results (Study 2)

Variable Coefficient Mean (SD)

Learning Parameter

Prior Variance σ2
0 11 ( 0.44 )

Rank Coefficient βr

Intercept ∆r
0 -0.27 (0.02)***

Comp FE ∆r
comp 0.026 (0.023)

ShopFreq FE ∆r
shop -0.012 (0.02)

Pos 1 Coefficient β1

Intercept ∆1
0 3.2 (0.39)***

Comp FE ∆1
comp 0.63 (0.41)

ShopFreq FE ∆1
shop 0.31 (0.41)

Baseline Search Propensity β0

Intercept ∆0
0 -28 (0.64)***

Comp FE ∆0
comp 9.5 (0.72)***

ShopFreq FE ∆0
shop -1.4 (0.65)**

Heterogeneity

Rank Coefficient
√
V βr 0.51 ( 0.009 )

Pos1 Coefficient
√
V β1 8.9 ( 3.3 )

Mean Search Propensity
√
V β0 18 ( 9.2 )

Reservation Utility σϵ 16 ( 2.2 )

Notes: We report the statistical significance only for the search propensities and their shifters. Signif. Codes:
∗ ∗ ∗ : 0.01, ∗∗ : 0.05, ∗ : 0.1. Posterior means and standard deviations are based on the thinned chain which
drops the first 1,000 draws of the chain and keeps every tenth draw thereafter.

We report how well the model fits the data using simulated search patterns in Ap-

pendix D. The model matches three key data patterns: (i) baseline rank effects in Random-

Informed, (ii) increasing rank effects in Strong over time, and (iii) increased search in

position 3 in Strong-to-Pref conditions after the algorithm switches to Pref.
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5 Impacts of Ranking Algorithms on Consumer Surplus

In this section, we use the model estimates from Study 2 to demonstrate that failing to

account for beliefs leads to incorrect predictions of search behavior and biases welfare eval-

uation, even when rankings are randomized. We also propose some solutions to estimate

search costs when it is not feasible to implement a Random-Informed experimental condi-

tion.

First, we compare behavior and welfare predictions with and without accounting for

consumer beliefs. Because of growing concerns around the potential harms of platform

steering, we focus on welfare implications of a scenario where the platform switches from

a Strong ranking algorithm to the Pref algorithm, as in Study 2. Recall that the Pref

algorithm places the two items with the least valuable Bonus Bs in the top two positions on

the page, and the remaining products are arranged in noisily decreasing order of the hidden

attribute.

We generate welfare predictions that account for consumer beliefs by estimating auxiliary

models. We estimate the search model without beliefs and without learning on the Random-

Informed data in Study 2, in which we attribute all rank effects to search costs.36 This

provides us with the correct position-specific search costs. We then use these estimates to

simulate search behavior for consumers over thirty tasks. In the first five tasks, the products

are ordered by the Strong algorithm, and by the Pref algorithm in the remaining tasks. We

allow for Bayesian updating of position-specific beliefs about bonus B.37 Simulating search

behavior provides us with each consumer’s surplus per task, which is the total bonus earned

(bonus A + B) minus the incurred search cost.

We compare this average surplus per task to that generated by an auxiliary model

that does not account for consumer beliefs. The goal of this auxiliary model is to mimic

inference drawn from typical empirical settings that randomize product ordering, such as the

commonly used Expedia field experiment data, where hotel listings were randomly ordered

but users did not receive disclosure of the randomization (i.e., the data used in Ursu (2018),

Compiani et al. (2023), Kaye (2024), and others) and on other platforms (Derakhshan et

36We use tasks 6 and 7 to ensure there is an apples-to-apples comparison with the data used to estimate
the auxiliary model, which we describe next.

37We use the estimated prior variance in Table A.5.
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al., 2022). In such settings, the data generated from the random rankings are used to

estimate search costs. To parallel this, we estimate the search model without position-

specific beliefs using data generated from the Strong-to-Random5 condition immediately

following the switch to (undisclosed) Random rankings.38 In other words, we assume that

all position effects in the Random portion of the Strong-to-Random5 condition are due to

search costs.39 We then simulate search behavior and calculate consumer surplus given these

estimates. Specifically, we use the Strong-to-Random5 data from tasks 6 and 7 to estimate

this auxiliary model. We describe the method for generating these surplus predictions in

detail in Section E.1 in the appendix.

Figure 10: Consumer Surplus with and without Accounting for Beliefs

Algorithm switch
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Notes: Figure plots the simulated average consumer surplus per consumer for each search task. We calculate
the average surplus (bonus chosen − incurred search costs) per consumer per task, given a draw of consumer
parameters. We repeat this 200 times. The error bars represent the 95% confidence intervals, which are
taken over these iterations. The ranking algorithm switches from Strong to Pref after task 5. “Without
Beliefs” refers to the model estimated on the Strong-to-Random5 data after the switch to Random rankings.
“With Beliefs” refers to the model estimated using the learning parameter in the main model and search
costs recovered from Random-Informed.

Figure 10 shows the average surplus per consumer for each task. It demonstrates that

not accounting for beliefs (i.e., attributing all position effects to search costs in the presence

38We choose Strong-to-Random5 instead of Strong-to-Random10 to demonstrate that consumers form
rank-specific beliefs in just a short exposure of five search tasks. Using Strong-to-Random10 would lead
to stronger rank effects due to beliefs, and thus, a larger error in estimated search costs and a larger
misprediction of wefare.

39We report results for both auxiliary models in Table E.1 in the appendix.
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of position-specific beliefs) overpredicts consumer surplus under the Strong algorithm. This

occurs because under the Strong algorithm, consumers benefit from stronger rank effects

because products in top positions have higher hidden payoffs. The model without beliefs

generates stronger rank effects due to its (incorrect) steeper search costs with respect to

position. Meanwhile, the model with beliefs has less steep (but correct) search costs, so con-

sumers exhibit weaker rank effects. Indeed, the difference in search costs between products

1 and 20, estimated from the model without beliefs is 1.8 times as large as that estimated

from the model that accounts for beliefs.

Importantly, Figure 10 also shows that after the algorithm switches to the Pref rank-

ing algorithm, the model without beliefs underpredicts surplus. That is, failing to account

for consumer learning predicts greater consumer harm from this particular form of self-

preferencing. Intuitively, the underprediction of surplus occurs because in the model with-

out beliefs, (1) search costs with respect to position are overestimated, so that consumers

are predicted to exhibit stronger rank effects, and (2) they do not learn (i.e., form equilib-

rium beliefs) about the hidden attribute over time. Therefore, in the model with beliefs,

consumer surplus increases over time due to learning, which leads to the consumer picking

a product that has a higher total bonus while also reducing search costs.40 In total, our

model suggests that when accounting for beliefs, changing the algorithm from Strong to

Pref reduces consumer surplus by 0.84% (95% CI: 0.2% - 1.48%) when comparing the av-

erage surplus per task for tasks 1–5 to 6–30.41 However, the model without beliefs suggests

that switching to the Pref algorithm reduces consumer surplus by 3.3% (95% CI: 2.52%

- 4.17%), overstating the loss in surplus by four times relative to the model with beliefs.

Furthermore, the model without beliefs underpredicts the level of consumer surplus by 2.3%

at task 30.42

Discussion As the previous counterfactual shows, not accounting for beliefs can lead to

incorrect search and surplus predictions. How can this issue be addressed in the field?

40This can be seen in Figure E.1 in the appendix, which plots the average of the selected product’s bonus
and total incurred search costs over search tasks.

41Note that this is an underestimate of the decrease in surplus because consumers have not completely
learned the Strong algorithm by task 5, as evidenced by the increasing surplus per task for these tasks under
the model with beliefs.

42This value is obtained by comparing the surplus at task 30 between the two models.
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One solution is to run the experiment for a long enough period of time for beliefs to adjust.

However, this solution may be impractical. If the algorithm is subtle or differences in hidden

attributes are difficult for consumers to discern, the experiment might need to run for an

extended period of time to allow for consumers to fully update. For example, consumers

might learn more quickly if the hidden attribute is simple, such as price, but less quickly if

the hidden attribute is more difficult to evaluate, such as the quality of experience goods.

Another challenge with this approach is that consumers learn at different rates. Those with

high search costs take longer to learn the algorithm because they conduct fewer searches.

In settings where consumers have heterogeneous search costs or high search costs, running

the experiment long enough for beliefs to converge may not be feasible.

Another potential solution is to assume complete information (i.e., correct beliefs) in

combination with a randomized experiment (Kaye, 2024). That is, one can estimate the

search model using data from an experiment in which listings are randomly ordered and

consumers are not informed, but assume that consumers know the correct rank-specific

returns to search (i.e., the average hidden attribute value at each position) under the ranking

algorithm before the switch. We test whether this is a viable solution using our data from

Study 2. We estimate the model using data from the first two tasks after a switch from

Strong to Random and assume that consumers have correct beliefs (as per the Strong

algorithm) about the bonus B for a product in rank r. We can then compare the surplus

predictions using these estimates to predictions from model estimates where search costs

are separately measured (Study 2 estimates), in addition to the observed surplus from the

experiment.

If we impose correct beliefs about the “old” firm policy, the estimated position effect

of search costs has the opposite sign. That is, this assumption results in estimated search

costs decreasing with position. This is not surprising: the assumption of correct beliefs

implies complete knowledge about the algorithm, whereas we saw that learning is slow in

Study 2. Position effects are therefore not as stark as they would be under this assumption

(i.e., participants should be clicking on the top-ranked products much more if they were

fully aware of the underlying algorithm). The only way the model can rationalize this is

by assuming that search costs decrease with position. As a result, when we simulate search
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under the Pref algorithm, these estimates predict that consumers are better off (+2.23%

versus −0.84% under our model’s estimates). This effect is driven by lower incurred search

costs (−10.33% versus +4.25% under our model’s estimates). We note that the “wrong”

direction of the rank effects resulting from search costs might be specific to our setting

because the extent to which this assumption produces incorrect costs depends on the speed

of learning. The faster that participants learn or the higher proportion of participants

who had correct pre-randomization beliefs, the better the assumption of correct beliefs can

recover search costs. Therefore, in field settings, this solution may be best suited for contexts

where the correlation between hidden attributes and position is easily learned or when the

sample includes consumers who have extensive experience with the search environment.

Alternatively, firms can use survey responses from consumers about their beliefs as model

inputs.43

6 Conclusion

In this paper, we show that beliefs play an important role in customer responses to rec-

ommendation systems, such as product rankings. We provide a framework for separating

belief-driven and cost-driven rank effects. Our experimental findings demonstrate that con-

sumer beliefs contribute significantly to rank effects. If beliefs are overlooked, this can lead

to incorrect search cost estimates and welfare implications of alternative recommendation

systems. Although the magnitude of this decomposition between beliefs and costs is spe-

cific to our experimental design and setting, we show that consumers indeed learn about

the ranking algorithm, and this learning leads to biased search cost estimates.

The bias in search cost estimates exists even when listings are presented in a randomized

order. Our findings highlight the shortcomings of the common approach of extrapolating

results from short-term field experiments without accounting for consumer beliefs. Specifi-

cally, we demonstrate that short-term experiments may mis-estimate consumer surplus and

demand under different ranking policies if they fail to consider the gradual adaptation of

43This solution may not work in every setting. In our studies, consumers’ self-reported beliefs were not
always consistent with their actions. Recall that they reported no differences in expected bonus Bs by
position post-search but exhibited stronger rank effects than search costs can account for.
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consumer beliefs to changes in the recommendation system.

An important implication of our findings in the product positioning context is that

search costs are typically overestimated because platforms typically order from best to worst.

Higher search costs can lead to the conclusion that platforms are able to steer consumers’

choices to a large extent simply through the product ranking algorithm. This implies that

policies such as self-preferencing (or any policy that more prominently displays products

that are worse for consumers) greatly reduces consumer welfare: consumers will not adjust

their search in response to learning about the algorithm, and they incur (incorrectly) high

search costs for conducting the same search and purchase.

We also present practical solutions for addressing the conflation of beliefs and search

costs in both experimental and field settings. Although we document this problem in the

context of product rankings, the issue of out-of-equilibrium beliefs induced by short-term

experiments can also arise when measuring other model primitives, such as advertising

effects (Goli et al., 2024) or price elasticity (Anderson and Simester, 2004) where consumer

beliefs also play a pivotal role.

Another implication for evaluating recommendation systems is that belief adjustment

can be slow. Imposing correct preexperiment beliefs fails to consider that consumers learn

slowly, and learning may be incomplete for consumers who rarely participate in the market

or have particularly high search costs. A solution is to elicit beliefs as part of data collection

where possible: direct measurement provides a short-term, data-driven way to better isolate

policy-invariant primitives like search costs (Manski, 2004). Our solution in this paper is

to model the evolution of beliefs directly, which not only accounts for this slow adjustment

but also allows for simulating long-run counterfactual scenarios.

We emphasize that accounting for beliefs is especially important when the platform’s

ranking algorithm is not transparent to consumers (e.g., Amazon’s “Featured” algorithm

or Expedia’s “Recommended” algorithm). However, there are search environments where

position may be less informative of the product’s hidden attribute, such as when consumers

are informed about the algorithm. Examples include price-ascending algorithms for undif-

ferentiated products or algorithms that sort based on recency. In such cases, accounting for

beliefs may be less important.
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Appendix

A Bayesian Estimation Details

A.1 Estimator Details

We outline the implementation of our estimator for Random-Informed and for all other
conditions. In all cases, the following inequalities must hold for reservation utilities:

1. Search order: zi1 > zi2, > ... > ziJ (where j = 1 is the first searched, and J is the last
searched)

2. Continuation: max(aik + bik) < zij for all k < j, all j ∈ {2, ..J} (max bonus of
searched is less than the reservation value of next searched)

3. Stopping: maxk∈{1,..J−1(aik + bik) > ziJ ′ (max bonus of searched is greater than the
reservation values of all unsearched)

A.1.1 Random-Informed

To sample from the distribution of β and σϵ, we augment the data by drawing the search
propensities δ’s, which allows us to have values for z which satisfy the above conditions. We
do not impose any sign restrictions on β, so that it is possible that the position effects go
in either direction. Omitting subscript t, let wij denote the vector of attributes that shift
search propensities for product j, such that

δij = β0
i + βr

i · (rij − 1) + ϵij (A.1)

= β′
iwij + ϵij . (A.2)

In this specification, wij is a vector of 1 and (rij − 1), where rij is the rank of product j for
user i. In the alternative specification noted in Equation 11, wj includes 1, an indicator for
whether rank of j for user i equals 1, and (rij − 2) · 1{rij ̸= 1}. Also, we denote pre-search
component of the reservation utility by θj = aj + E[bj ]. Recall that in Random-Informed,
E[bj ] = 40 for all j.

Since we have imposed a normal distribution on this error term, we use conjugate priors
(Normal for the mean parameters, Inverse Gamma for the variance). We estimate this
model using a Gibbs sampler, with each step outlined below.

1. Augment δ and update z. Given β and σϵ, the distribution of δ is fully defined.
However, we have to impose censoring on the draws such that the search sequences
are optimal at that set of draws. For ease of exposition, we drop subscripts i and t,
as this holds for all tasks. We also omit the superscript m for objects outside the step
of the Gibbs sampler (e.g., when drawing δ, parameters β and σϵ are already at their
“most recent” value).

(a) Case: Search 1 product For the searched product 1, we require that z1 >
max(zk|k > 1) ⇐⇒ δm1 > max(θk + δm−1

k |k > 1) − θ1. Thus, draw δm1 from a
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Truncated Normal TN(β′w1, σ
2
ϵ |lb = max(zm−1

k |k > 1)− θ1, ub = ∞).
For unsearched products 2 through 10, the stopping rule provides the upper
bound on the reservation utilities: zj < a1+ b1 ⇐⇒ δj < a1+ b1− aj − 40, thus
δmj ∼ TN(β′wj , σ

2
ϵ |lb = −∞, ub = a1 + b1 − aj − 40).

Before proceeding, set zmj = θj + δmj
(b) Case: Searches 2 through 9 products Let K be the number of searches.

For the first searched product 1, we require that z1 > max(zk|k > 1) ⇐⇒
δm1 > max(θk + δm−1

k |k > 1) − θ1. Thus, draw from a Truncated Normal
δm1 ∼ TN(β′W1, σ

2
ϵ |lb = max(zm−1

k |k > 1)− θ1, ub = ∞). Set zm1 = θ1 + δm1

Next, for searched products j in 2 through K − 1, zmj < zm−1
j−1 ⇐⇒ δmj <

zmj−1 − θj . In addition, there is a lower bound condition to satisfy: that the

subsequent product searched has a lower z. This is δmj > zm−1
j+1 − θj , so we have

the following δmj ∼ TN(β′wj , σ
2
ϵ |lb = zm−1

j+1 −θj , ub = zm−1
j−1 −θj). Set z

m
j = θj+δmj

For the last-searched product K we have the same style upper bound but a
different lower bound (continuation restriction + search order restriction). zmK <
zm−1
K−1 ⇐⇒ δmK < zm−1

K−1 − θK , zK > max(zk|k > K) ⇐⇒ δmK > max(θk +

δm−1
k |k > K)−θK and zmK > maxj<K(aj+bj) ⇐⇒ δmK > maxj<K(aj+bj)−θK .
This yields δmK ∼ TN(β′wK , σ2

ϵ |lb = max(maxj<K(BAj +BBj)− θK ,max(θk +
δm−1
k |k > K)− θK), ub = zm−1

K−1 − θK). Set zmK = θK + δmK .

Finally, for unsearched products l, the stopping rule and search order rule pro-
vide the upper bound zml < maxj≤K(aj + bj) ⇐⇒ δml < maxj≤K(aj + bj)− θl
and zml < zm−1

K ⇐⇒ δml < zm−1
K − θl. Draw δml ∼ TN(β′wl, σ

2
ϵ |lb = −∞, ub =

max(maxj≤K(aj + bj)− θl), z
m−1
K − θl) and update zml = θl + δml

(c) Case: Searches 10 products This is the same as above case, but just uses the
search orders for products 1 through 9. For the final searched product, the upper
bound is based on product 9. The lower bound is based on only the continuation
condition. After each product, update z with the new δ.

2. Draw β. Given the search propensities δm and the prior draws of σm−1
ϵ ,∆m−1 and

V m−1
β , we update the regression coefficients βi’s using a Bayes regression step. The

posterior distribution is

βm
i |σ2

ϵ , wi, Vβ,∆ ∼ N((w′
iwi/σ

2
ϵ + V −1

β )−1(w′
iδi/σ

2
ϵ + V −1

β ∆′Xi), (w
′
iwi/σ

2
ϵ + V −1

β )−1)

(A.3)

where wi is a matrix of values witj with rows for each j, t corresponding to user i.

3. Draw σϵ.

σ2
ϵ ∼ IG(a+

N

2
, (
1

b
+
∑
i,j,t

(
(δitj − witjβi)

2

2
))−1) (A.4)

Here N is the total number of observations, and prior value of σ2
ϵ ∼ IG(a, b)
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4. Draw ∆, Vβ.

vec(∆) ∼ N(vec(∆̃), Vβ ⊗ (X ′X +A)−1) (A.5)

Vβ ∼ IW (ν0 +Nusers, V0 + (β −X∆̃)′(β −X∆̃) + (∆̃− ∆̄)′A(∆̃− ∆̄)) (A.6)

Here, β is a matrix that stacks βi’s across users, and ∆̃ = (X ′X +A)−1(X ′β +A∆̄).
Prior value of Vβ ∼ IW (ν0, V0) and prior value of vec(∆) ∼ N(vec(∆̄), Vβ ⊗A−1).

A.1.2 Other Conditions

The previous subsection described estimation for Random-Informed only. We jointly esti-
mate across all conditions in Study 1 by re-parameterizing the reservation utilities to be
condition specific. Recall that zitj = θitj + δitj . We still let θitj = aitj +E[b] = aitj + 40 for
all conditions. We allow for differences in beliefs across ranks to be captured in the param-
eters β. The mean baseline and rank-specific search propensity coefficients are specified as
below.

β0
i = ∆0

0 +∆0
S1{Condi = S}+∆0

R1{Condi = R}+∆0
compCompi+

∆1
shopShopFreqi

(A.7)

βr
i = ∆r

0 +∆r
S1{Condi = S}+∆r

R1{Condi = R}+∆r
compCompi+

∆r
shopShopFreqi

(A.8)

A.1.3 Priors

Let p denote the length of vector βi. Thus p = 2 in the linear specification, and p = 3 in
the alternative specification noted in Equation 11. The values of the prior parameters we
used for estimation are given in Table A.1.

Table A.1: Priors

Parameter Prior Variable Value

Search Propensity(∆)
∆̄ 05×p

A I5

Heterogeneity(Vβ)
ν0 5
V0 0.1× Ip

Search Propensity Shocks(σ2
ϵ )

a 10
b 1

Notes: In denotes the identity matrix of dimension n×n. p refers to the length of vector βi. 05×p denotes
a matrix of zeroes of dimension 5× p.
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A.2 Simulations

A.2.1 Study 1

To demonstrate that the proposed estimator can recover the correct parameters, we simu-
late search behavior based on the stimuli used in Random-Informed in Study 1. We take
the actual data used (N = 317 participants, T = 10 tasks of J = 10 products each), re-
move outcomes, and simulate outcomes under a set of known parameters. We choose these
parameters to approximately match the distribution of the number of searched products
we observe in the data. We focus on the Random-Informed condition to show that the
model works well to recover both baseline costs across positions and to recover the noise in
behavior σϵ.

We conduct three simulations. First, we simulate data and recover estimates under a
DGP with exclusively unobserved heterogeneity. Second, we add observed shifters of mean
search propensity and rank effect which match our empirical application: dummy variables
for Compi and ShopFreqi. Third, we allow for a distinct position effect in position 1 (as
opposed to exclusively a linear effect of rank).

In the first simulation, zitj = aitj + E[b] + β0
i + βr

i ritj + ηitj , where ηitj ∼ N(0, 152),
β0
i ∼ N(−11, 202), and β1

i ∼ TN(−0.5, 1.5,≤ 0). All draws are i.i.d. across i, j, t or across i,
depending on the unit over variation. This yields 55% of observations with only one search
(versus 54% in our data).

In the second simulation, we allow for observable differences in search propensities (e.g.,
as in Equations 24 and 25 above). We simulate with parameters reported in Table A.3.
Baseline propensity coefficients (equivalent to position 1) are drawn from a normal distri-
bution, rank coefficients are drawn from a truncated normal distribution (with no values
greater than zero). In the third simulation, we keep the existing parameters from the sec-
ond simulation, and we draw the position 1 fixed effects as normal draws with parameters
reported in Table A.4.

We estimate the model using 5,000 draws from the Gibbs sampler. We apply diffuse
priors, and start at random draws for each value. In practice, the starting draws do not
impact the chain. We discard the first 2,000 draws, and we thin the subsequent chain
by using every fifth draw. Both simulations have large degrees of heterogeneity across
consumers.

We report the plotted posterior distributions in Figures A.1, A.2 and A.3. We also
conduct inference on the thinned chain using every 10th draw. We are able to recover all
parameters, even with large degrees of across-person heterogeneity.

Table A.2: Simulation 1 Parameter Estimates

Parameter Coef Truth Posterior Mean Posterior SD

Baseline search propensity ∆0 -9.235 -9.658 1.254

Rank Coefficient ∆r -1.374 -1.353 0.08

Unobs heterogeneity in (β0) λ∆0 21.541 22.206 1.128

Unobs heterogeneity in (βr) λ∆r 1.083 1.089 0.067

Standard deviation of ϵ σϵ 15 15.035 0.329
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Figure A.1: Simulation Posterior Draws — Unobservable Heterogeneity Only
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Notes: Each plot provides a histogram of posterior draws for mean search propensity (∆0), mean rank effect
(∆1), the variance in search propensities (Λ0), the variance in rank effects (Λ1), and the noise term on search
decisions (σϵ). The vertical black line corresponds to true value of the parameter.
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Figure A.2: Simulation Posterior Draws — Observable and Unobservable Heterogeneity
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Notes: Each plot provides a histogram of posterior draws for mean search propensity (∆0), mean search
propensity FEs (∆0

comp, ∆0
shop), mean rank effect (∆r), mean rank effect fixed slope differences (∆r

comp,
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shop), the variance in search propensities (Λ∆0), the variance in rank effects (Λ∆r ), and the noise term on
search decisions (σϵ). The vertical black line corresponds to true value of the parameter.
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Table A.3: Simulation 2 Parameter Estimates

Parameter Coef Truth Posterior Mean Posterior SD

Baseline search propensity ∆0 -14.575 -14.984 1.995

Baseline search propensity Comp FE ∆0
comp 10.993 11.04 2.364

Baseline search propensity Shop FE ∆0
shop 0.276 0.85 2.35

Rank Coefficient ∆r -1.183 -1.049 0.117

Rank Coefficient Comp FE ∆r
comp -0.282 -0.403 0.138

Rank Coefficient Shop FE ∆r
shop -0.044 -0.099 0.129

Unobs heterogeneity in (β0) λ∆0 20.522 20.298 0.938

Unobs heterogeneity in (βr) λ∆r 1.032 0.961 0.059

Standard deviation of ϵ σϵ 15 14.873 0.295

Table A.4: Simulation 3 Parameter Estimates

Parameter Coef Truth Posterior Mean Posterior SD

Baseline search propensity ∆0 -14.575 -15.509 1.945

Baseline search propensity Comp FE ∆0
comp 10.993 11.288 2.381

Baseline search propensity Shop FE ∆0
shop 0.276 1.111 2.366

Rank Coefficient ∆r -1.335 -1.224 0.118

Rank Coefficient Comp FE ∆r
comp -0.056 -0.086 0.136

Rank Coefficient Shop FE ∆r
shop -0.152 -0.231 0.136

Position 1 Effect ∆1 0.39 0.671 0.438

Position 1 Comp FE ∆1
comp 2.231 2.14 0.569

Position 1 Shop FE ∆1
shop 0.504 0.636 0.436

Unobs heterogeneity in (β0) λ∆0 20.522 20.405 0.918

Unobs heterogeneity in (βr) λ∆r 1.053 0.916 0.061

Unobs heterogeneity in (β1) λ∆1 0.957 0.949 0.234

Standard deviation of ϵ σϵ 15 15.017 0.272
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Figure A.3: Simulation Posterior Draws — Separate Postion 1 Effect
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A.2.2 Study 2

We simulate search behavior as per the learning model described in Study 2. We take the
actual data used in the Strong condition (N = 613 participants, T = 15 tasks of J = 20
products each), remove outcomes, and simulate search under a set of known parameters. We
choose the search propensity parameters to approximately match the estimates from Study
1 and select the prior variance parameter to reasonably replicate the rate of learning we
observe in the data. We focus on the Strong condition to show that the model can recover
the prior variance parameter (which governs the rate of learning), which is the additional
parameter to be estimated in this model.

We estimate the model using 5,000 draws from the Gibbs sampler. We discard the first
1,000 draws and also conduct inference on the thinned chain using every 10th draw. We
are able to recover all parameters, even with large degrees of across-person heterogeneity.
The posterior distribution is plotted in Figure A.4 and the estimated mean (SD) of the
parameters are reported in Table A.5.

Table A.5: Simulation – Study 2 Learning Model: Parameter Estimates

Parameter Coef Truth Posterior Mean Posterior SD

Baseline search propensity ∆0 -26.662 -27.888 1.807

Baseline search propensity Comp FE ∆0
comp 22.288 23.739 2.027

Baseline search propensity Shop FE ∆0
shop -1.658 -1.951 1.881

Rank Coefficient ∆r -0.326 -0.338 0.077

Rank Coefficient Comp FE ∆r
comp -0.322 -0.365 0.093

Rank Coefficient Shop FE ∆r
shop 0.181 0.221 0.082

Position 1 Effect ∆1 -0.255 -0.958 0.807

Position 1 Comp FE ∆1
comp 3.03 2.761 0.888

Position 1 Shop FE ∆1
shop 1.365 2.593 0.85

Unobs heterogeneity in (β0) λ∆0 21.683 22.127 0.708

Unobs heterogeneity in (βr) λ∆r 1.009 1.03 0.034

Unobs heterogeneity in (β1) λ∆1 6.936 7.104 0.337

Prior Variance σ2
0 15 15.906 1.041

Standard deviation of ϵ σϵ 15 15.19 0.129
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Figure A.4: Simulation Posterior Draws — Study 2 Learning Model
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B Study 1: Heterogeneity by Participant Attributes

Table B.1: Search Intensity and Rank Effects by Participant Attributes (Study 1)

Dependent Variables: N Products Searched 1(Product Searched)
Model: (1) (2)

Variables
Comp Checks Correct 7.749∗∗∗ 0.1083∗∗∗

(0.8681) (0.0128)
Comp Checks Correct × r -0.0058∗∗∗

(0.0013)
ShopFreq 0.7155 0.0150

(0.9183) (0.0135)
ShopFreq × r -0.0013

(0.0014)
Condition = Random 1.230 0.0121

(1.057) (0.0112)
Condition = Strong -0.1996 -0.0019

(1.068) (0.0097)
Bonus A (demeaned) 0.0235∗∗∗

(0.0008)
r -0.0055∗∗∗

(0.0013)
Constant 17.13∗∗∗ 0.2017∗∗∗

(1.040) (0.0127)

Fit statistics
Observations 961 96,100
R2 0.07849 0.06599
Adjusted R2 0.07464 0.06591

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: Table reports OLS estimates. The data in column 1 is at participant level, and at the participant-
product-task level in column 2. In columns 1 and 2, the dependent variables are the number of products that
the participant searches across all ten tasks and an indicator for whether a product is searched, respectively.
Comp Checks Correct is a dummy variable which equals one if the participant passed comprehension checks
on the first attempt. ShopFreq is a dummy variable which equals one if the user shops online at least once a
week (self-reported). The variable bA (demeaned) is the demeaned value of the product’s bonus A. Standard
errors are clustered at the participant level in Column 2.

Table B.1 reports how the total number of products searched (column 1) and whether
the participant searches a particular product (column 2) vary by whether the user passed all
comprehension checks on the first attempt and whether the user self-reports that they shop
online at least once a week. There is significant heterogeneity in search behavior by the for-
mer attribute. Participants who passed all comprehension checks on the first attempt search
eight more products (or 44% more) over all ten tasks than those who did not.44 They also
exhibit stronger rank effects, as demonstrated by the statistically significant negative effect

44Fourty-four percent of participants answered all comprehension checks correctly on the first try.
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of the interaction between rank and whether all the comprehension checks were answered
correctly in Column 2. One might expect that frequent online shoppers might demonstrate
different rank effects compared to an infrequent shopper due to greater familiarity with
an online retail setting. Here, the interaction between whether the participant is a high-
frequency shopper and the product’s rank is negative, indicating that these participants
have stronger rank effects, but it is not statistically significant in this specification.

Table B.2: Rank Effects by Participant Attributes in Random and Strong (Study 1)

Dependent Variable: 1(Product Searched)
Model: (1) (2)

Variables
Comp Checks Correct 0.1092∗∗∗ 0.1180∗∗∗

(0.0247) (0.0206)
Comp Checks Correct × r -0.0024 -0.0099∗∗∗

(0.0022) (0.0021)
ShopFreq -0.0141 0.0047

(0.0279) (0.0223)
ShopFreq × r −6.53× 10−5 0.0003

(0.0025) (0.0023)
Bonus A (demeaned) 0.0214∗∗∗ 0.0236∗∗∗

(0.0014) (0.0013)
r -0.0060∗∗ -0.0085∗∗∗

(0.0024) (0.0021)
Constant 0.2234∗∗∗ 0.2234∗∗∗

(0.0262) (0.0204)

Fit statistics
Observations 33,000 31,400
R2 0.05902 0.06934
Adjusted R2 0.05885 0.06917
Condition Random Strong

Clustered (Participant) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: Table reports OLS estimates. The data in both columns are at the participant-product-task level,
and the dependent variable is an indicator for whether a product is searched. Comp Checks Correct is
a dummy variable which equals one if the participant passed comprehension checks on the first attempt.
ShopFreq is a dummy variable which equals one if the user shops online at least once a week (self-reported).
Columns 1 and 2 report estimates only for participants in the Random condition and the Strong condition,
respectively. The variable bA (demeaned) is the demeaned value of the product’s bonus A.

Table B.2 reports whether rank effects differ by whether the participant answers all
comprehension checks correctly in the first attempt and is a high frequency online shopper
for the Random (column 1) and Strong (column 2) conditions. Participants who answer all
comprehension checks correctly on the first try search more in both conditions, but only
exhibit strong rank effects in Strong. This suggests that participants in Strong learned more
quickly about the search environment. The coefficients for whether the participant is a high
frequency online shopper are not statistically significant and are close to zero in magnitude.

65



These results demonstrate that participants’ search behavior is correlated with their
observable attributes, especially whether they pass the comprehension checks on the first
try. Allowing the model to account for heterogeneity among these dimensions can improve
the model’s fit by better explaining across-participant differences in search costs and rank
effects.
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C Study 1 Learning: Task-Specific Estimates

Recall that participants were not informed about the ranking scheme in the Strong and
Random conditions and therefore had to learn the underlying algorithm through search
experience. Consistent with learning through experience, we find that rank effects in the
first task do not differ significantly between these conditions (Figure F.3 in this appendix).
Therefore, the presence of rank effects in Strong when averaged over all search tasks suggests
that participants are learning that positions are informative. Learning has not yet been
captured in our model estimates, as thus far, they have been averaged across all tasks.
In this section, we investigate the possibility and speed of learning by estimating a model
which has task-specific marginal search propensities and rank effects. We assume that δitj
is given by

δitj = β1
i + β2

i 1{Taski ≥ 6}+ β3
i 1{ritj = 1}+ β4

i 1{ritj = 1} · 1{Taski ≥ 6}+
+β5

i (ritj − 2) + β6
i (ritj − 2) · 1{Taski ≥ 6}+ ϵitj ,

(C.1)

where the terms β1
i represents i’s search propensity for tasks 1–5, and β2

i represents the
additional search propensity of tasks 6–10, relative to the first five tasks. Similarly, the
terms β3

i and β5
i represent the effect of rank on i’s search propensity for tasks 1–5, and

β4
i and β6

i are the additional effect of rank of tasks 6 – 10 relative to the first five. The
set of participant attributes (e.g., whether i is in the Strong condition, whether i got the
comprehension checks correct on the first try, etc.) remains the same as in Equation 9.

The results of this estimation are presented in Table C.1. We omit reporting the het-
erogeneity of the βs and σϵ for brevity. As predicted, the rank effect due to beliefs in the
Strong condition increases in magnitude over tasks. This is most evident for the rank effect
of the first item (∆1

S): the interaction with the Strong condition increases by 66% between
the first and second set of tasks (1.5 versus 1.5 + 1). We also find that participants do not
need all ten tasks to learn that positions are informative. The rank effect of the first item
appears within the first five tasks in the Strong condition (∆1

S for tasks 1–5).
We also see that ∆r

0 decreases over tasks, indicating that in all conditions, rank effects
get stronger. This could possibly be due to fatigue—participants in latter tasks might have
preferred the “easier-to-search” top-ranked products more, even in Random-Informed.
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Table C.1: Estimation Results – Task Specific Search Model (Study 1)

Estimate (SD)

Variable Coefficient Tasks 1-5 Tasks 6-10

Rank Coefficient βr

Intercept ∆r
0 -0.11 (0.096) -0.17 (0.056)***

Strong ∆r
S -0.021 (0.11) -0.092 (0.075)

Random ∆r
R -0.061 (0.11) -0.13 (0.085)

Comp ∆r
comp -0.37 (0.089)*** 0.051 (0.062)

ShopFreq ∆r
shop -0.016 (0.094) -0.1 (0.07)

Pos 1 Coefficient β1

Intercept ∆1
0 -0.43 (0.69) -0.37 (0.53)

Strong ∆1
S 1.5 (0.75)* 1 (0.56)*

Random ∆1
R -0.56 (0.77) 0.44 (0.51)

Comp ∆1
comp 1.9 (0.67)*** 0.99 (0.64)

ShopFreq ∆1
shop 1.1 (0.74) -0.088 (0.67)

Baseline Search Propensity β0

Intercept ∆0
0 -24 (1.8)*** 4.4 (0.77)***

Strong ∆0
S 0.55 (2) 1.4 (0.89)

Random ∆0
R -0.15 (2) 0.87 (0.91)

Comp ∆0
comp 20 (1.7)*** -3.6 (0.73)***

ShopFreq ∆0
shop -1.9 (1.7) -0.32 (0.85)

Notes: Table reports posterior means and standard deviation from the search propensity specified in
Equation C.1. Posterior means and standard deviations are based on the thinned chain which drops the first
2,000 draws of the chain and keeps every tenth draw thereafter. We omit variance of heterogeneity results
for brevity. Signif. Codes: ∗ ∗ ∗ : 0.01, ∗∗ : 0.05, ∗ : 0.1
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D Model Fit

D.1 Study 1

Simulating behavior from Random-Informed shows that we cannot match the moments in
the Strong condition using the variation generated by random rankings. This is by design,
since there are no ex ante observable differences in how products appear to participants
across rankings (bonus A and bonus B are independent).

To demonstrate this, we re-estimate the ’Separate Positions 1’ model using only Random-
Informed tasks 1–9. We then simulate the implied search patterns in task 10 for Random-
Informed and for Strong. Figure D.1 shows these simulated click probabilities against the
data. Simulated search from Random-Informed fails to capture the higher probability of
searching the first item (Panel (a)). The model fits the data moments well for Random-
Informed (Panel (b)).

Figure D.1: Predicting First Search in Task 10 (Study 1)
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Notes: Panels (a) and (b) show the predicted versus actual first click probabilities based on the baseline
model estimated on the first nine tasks in Random-Informed for the tenth task in Strong and Random-
Informed, respectively.

D.2 Study 2

How well do the model predictions fit the observed search patterns? We simulate search be-
havior based on the model described in Section 4.3 using the estimated parameters and then
compare the first search probability by rank with the corresponding probabilities observed
in the actual data. Figure D.2 plots this comparison, for conditions Random-Informed,
Strong and Strong-to-Pref5. The figure shows that the model recovers underlying pa-
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rameters reasonably well. The simulated and actual search patterns are very similar for
Random-Informed. In Strong, the simulated search predicts an increase in probability of
first searching the top-ranked product—matching what we see in the actual data.45 Finally,
in Strong-to-Pref5, the model is also able to predict the ’peak’ beginning to form at rank 3
in tasks 11−15, consistent with the observed search patterns and the underlying algorithm.
The plots for the other conditions are in Figure D.3.

Figure D.2: Actual versus Model-Predicted Search Patterns (Study 2)
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Notes: The above figures plot the actual observed first click probability by rank versus the same probability
as predicted by the model described in the preceding section, based on estimated parameters. The left,
middle and right panels show the search probabilities for tasks 1–5, 6–10 and 11–15 respectively, to illustrate
the evolution in search probabilities as participants learn about the underlying algorithm and update their
beliefs.

45The probability of searching rank 1 in tasks 11–15 in Strong is slightly understated by the model (middle
right panel in Figure D.2). This suggests that there may be some form of learning that occurs which is not
captured by our model. However, given the trade-off between accuracy and model tractability, we feel that
our model reasonably captures the essential elements of the consumer search process.
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Figure D.3: Actual versus Model-Predicted Search Patterns (Study 2)
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Notes: The above figures plot the actual observed first click probability by rank vs the same probability as
predicted by the model described in the preceding section, based on estimated parameters. The left, middle
and right panels show the search probabilities for tasks 1− 5, 6− 10 and 11− 15 respectively, to illustrate
the evolution in search probabilities as participants learn about the underlying algorithm and update their
beliefs.
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E Counterfactuals

In this section, we describe in detail how we obtain our surplus predictions.

E.1 Comparing Surplus with and without Belief Adjustments

We simulate behavior for a simulated set of 594 consumers with the same attributes (e.g.,
comprehension check accuracy and shopping frequency) as those in our Study 2 sample. We
then predict consumer surplus for thirty search tasks for each consumer using the estimates
from models that account or do not account for position-specific beliefs. In the first five
of the thirty tasks, the ranking algorithm is Strong, and in the remainder of the tasks, the
algorithm is Pref. We generate the bonuses for each of these tasks by sampling from the
pool of tasks under the same algorithm that generated the bonuses in the experiment.

We first describe how we generate the surplus predictions with beliefs (and thus, learn-
ing) and without beliefs.

1. Estimate the model described in Section 3.3 using the data generated from tasks 6
and 7 in the Strong-to-Random5 condition. We assume away the possibility that
beliefs have adjusted over the course of the first five tasks under Strong rankings: the
expected belief about bonus B is 40 for all ranks. We refer to these estimates as the
“incorrect” estimates (i.e., conflating beliefs with costs).

2. Estimate the model described in Section 3.3 using the data generated from tasks
6 and 7 in the Random-Informed condition. Note that because all the data comes
from Random-Informed, ∆S = ∆R = 0. In other words, this is the sequential search
model in which all position effects are attributed to search costs, and the expected
belief about bonus B is 40 for all ranks. We refer to these estimates as the “correct”
estimates.” We re-estimate this model using the same set of tasks, as opposed to using
the estimates from Random-Informed in Section 4.3, to provide a fair comparison to
the model in Step 1.

3. For each product in each task, draw ϵitj using the estimate of σϵ from the correct
estimates. We do this to keep the ϵitj draws constant when comparing the two model
predictions.

4. Using the correct estimates, draw β0
i , β

1
i , β

r
i for each user.

5. Simulate search behavior for thirty tasks for each user under the draws from the
correct estimates in Step 4. We assume that at the start of the first task, the prior
mean of each position is 40, as in the experiment, and σ0, the variance of their prior
belief is 11, which is the estimate from Study 2 (Table 9). Position-specific beliefs are
updated after each task based on sampled (searched) products.

6. Using the incorrect estimates, draw β0
i , β

1
i , β

r
i for each user.

7. Simulate search behavior for all thirty tasks for each user under the draws from the
incorrect estimates in Step 6. We simulate under the typical assumption that there
are no position-specific beliefs (E[br] = 40∀r).

72



8. Calculate the consumer’s surplus for each task for the search behavior generated under
the correct and incorrect estimates. This is defined as the bonus A + bonus B of the
selected product minus the incurred search costs. With the incorrect estimates, we
compute costs by inverting the full search propensity, including any residual effects of
beliefs: citj = σbζ

−1(
δitj−ϵitj

σb
)

9. Take the average of consumer over consumers for each task.

10. Repeat Steps 3–9 200 times.

11. Take the average surplus per task across all 200 iterations. The confidence intervals
are the 2.5 and 97.5 percentiles.

E.2 Auxiliary Model Estimates
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Table E.1: Estimation Results—Auxiliary Models Estimated on Tasks 6-7 (Study 2)

Estimate (SD)

Variable Coefficient Random Informed S2R5 S2R5 + Strong Beliefs

Rank Coefficient βr

Intercept ∆r
0 -0.12 (0.05)** -0.21 (0.057)*** 1.6 (0.073)***

Comp ∆r
comp -0.048 (0.057) -0.056 (0.064) -0.063 (0.084)

ShopFreq ∆r
shop -0.025 (0.055) -0.056 (0.064) -0.064 (0.077)

Pos 1 Coefficient β1

Intercept ∆2
0 1.8 (0.87)* 3.8 (0.78)*** 4 (0.74)***

Comp ∆2
comp 0.68 (1) 0.53 (0.9) -1.1 (0.38)***

ShopFreq ∆2
shop -0.2 (1.1) -0.57 (0.93) 0.082 (0.39)

Baseline Search Propensity β0

Intercept ∆0
0 -23 (1.3)*** -23 (1.6)*** -40 (1.9)***

Comp ∆0
comp 9.1 (1.5)*** 10 (1.7)*** 10 (1.8)***

ShopFreq ∆0
shop -2.8 (1.6)* -0.83 (1.6) -0.74 (1.7)

Heterogeneity

Rank Coefficient
√
V βr 0.4 (0.025) 0.51 (0.04) 0.65 (0.06)

Pos1 Coefficient
√
V β1 5.2 (7.8) 4.8 (6.1) 1.7 (0.98)

Mean Search Propensity
√
V β0 15 (19) 16 (20) 18 (32)

Reservation Utility σϵ 11 (8.5) 12 (9.3) 14 (14)

Notes: Table reports posterior means and standard deviations for three models, all estimated only on tasks
6 and 7. Random-Informed refers to estimates using only Random-Informed participants. “S2R5” refers to
estimates which use only Strong-to-Random5 participants. These two columns assume that there is no belief
component to search. “S2R5 + Strong Beliefs” uses the same Strong-to-Random5 participants and assumes
that participants have correct (in expectation) pre-switch beliefs based on the Strong algorithm from tasks
1–5. Posterior means and standard deviations are based on the thinned chain which drops the first 1,000
draws of the chain and keeps every tenth draw thereafter. We omit variance of heterogeneity results for
brevity. Signif. Codes: ∗ ∗ ∗ : 0.01, ∗∗ : 0.05, ∗ : 0.1
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E.3 Counterfactual Search Behavior

Figure E.1: Bonus and Costs with and without Accounting for Beliefs
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Notes: Figure plots the simulated bonus earned (top panel) and total search costs incurred (bottom panel)
per consumer for each search task. We calculate the average surplus (bonus chosen - incurred search costs)
per consumer per task, given a draw of consumer parameters. We repeat this 200 times. The error bars
represent the 95% confidence intervals, which are taken over these iterations. The algorithm switches from
Strong to Pref after task 5.
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F Additional Figures and Tables

F.1 Reduced-Form Rank Effects

F.1.1 Study 1

The main paper reports the rank effects as the probability that a participant searches an
item. Rank effects are starker when we examine the first product searched. The top-ranked
product is significantly more likely to be searched in all conditions (Figure F.1). In Table
F.2, we document that these rank effects on the first click are strongest in the Strong
condition. For participants in all conditions, the rank effects on the first click get larger
over the ten tasks. This is not driven by large changes in the average search depth over
tasks (Appendix Figure F.2).

Table F.1: Study 1: Effect of Rank on Search by Condition

Dependent Variable: 1(Product Searched)
Model: (1) (2) (3) (4) (5) (6)

Variables
r × Condition = Random -0.0072∗∗∗ -0.0071∗∗∗ -0.0072∗∗∗ -0.0071∗∗∗ -0.0072∗∗∗ -0.0071∗∗∗

(0.0011) (0.0011) (0.0011) (0.0011) (0.0011) (0.0011)
r × Condition = Random Informed -0.0075∗∗∗ -0.0073∗∗∗ -0.0075∗∗∗ -0.0073∗∗∗ -0.0075∗∗∗ -0.0073∗∗∗

(0.0011) (0.0011) (0.0011) (0.0011) (0.0011) (0.0011)
r × Condition = Strong -0.0127∗∗∗ -0.0130∗∗∗ -0.0127∗∗∗ -0.0130∗∗∗ -0.0127∗∗∗ -0.0130∗∗∗

(0.0011) (0.0011) (0.0011) (0.0011) (0.0011) (0.0011)
aj (demeaned) 0.0236∗∗∗ 0.0236∗∗∗ 0.0237∗∗∗

(0.0008) (0.0008) (0.0008)

Fixed-effects
Condition (3) Yes Yes Yes Yes
Search Task (10) Yes Yes Yes Yes
Participant (961) Yes Yes

Fit statistics
Observations 96,100 96,100 96,100 96,100 96,100 96,100
R2 0.00446 0.05726 0.00452 0.05734 0.11900 0.17196
Within R2 0.00434 0.05715 0.00434 0.05717 0.00491 0.06472

Clustered (Participant) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The first search is not the only decision impacted by rank. In Table F.3, we condition
on products having been searched (which includes more top-ranked items, as in Figure 2).
Top-ranked products are more likely to be searched earlier. If we condition on the length
of search sequence, for the Random and Strong conditions, the rank effect on search order
becomes weaker, highlighting that some of the rank effect in these conditions is coming
from the duration of search. However, in all three conditions, lower ranked products are
searched later, even if they have a high bonus A.
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Table F.2: Effect of Rank on First Search by Condition (Study 1)

Dependent Variable: 1(Product Searched First)
Model: (1) (2) (3) (4)

Variables
r × Condition = Random -0.0055∗∗∗ -0.0054∗∗∗ -0.0025∗∗ -0.0024∗∗

(0.0009) (0.0008) (0.0010) (0.0010)
r × Condition = Random Informed -0.0050∗∗∗ -0.0049∗∗∗ -0.0027∗∗∗ -0.0025∗∗

(0.0009) (0.0009) (0.0010) (0.0010)
r × Condition = Strong -0.0068∗∗∗ -0.0070∗∗∗ -0.0038∗∗∗ -0.0041∗∗∗

(0.0010) (0.0010) (0.0011) (0.0011)
aj (demeaned) 0.0158∗∗∗ 0.0158∗∗∗

(0.0005) (0.0005)
r × t− 1 × Condition = Random -0.0007∗∗∗ -0.0007∗∗∗

(0.0001) (0.0001)
r × t− 1 × Condition = Random Informed -0.0005∗∗∗ -0.0005∗∗∗

(0.0001) (0.0001)
r × t− 1 × Condition = Strong -0.0007∗∗∗ -0.0006∗∗∗

(0.0001) (0.0001)

Fixed-effects
Condition (3) Yes Yes Yes Yes
Search Task (10) Yes Yes

Fit statistics
Observations 96,100 96,100 96,100 96,100
R2 0.00307 0.04795 0.00337 0.04825
Within R2 0.00307 0.04795 0.00337 0.04825

Clustered (Participant) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

77



T
ab

le
F
.3
:
E
ff
ec
t
of

R
an

k
on

S
ea
rc
h
O
rd
er

b
y
C
on

d
it
io
n

D
ep

en
d
en
t
V
ar
ia
b
le
:

C
li
ck

O
rd
er

G
iv
en

S
ea
rc
h

M
o
d
el
:

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

V
a
ri
a
bl
es

r
×

C
on

d
it
io
n
=

R
a
n
d
om

0.
14

05
∗∗

∗
0.
14

27
∗∗

∗
0.
14

03
∗∗

∗
0.
14

25
∗∗

∗
0.
15

78
∗∗

∗
0.
15

82
∗∗

∗
0.
09

40
∗∗

∗
0.
09

49
∗∗

∗

(0
.0
27

6)
(0
.0
27

2)
(0
.0
27

6)
(0
.0
27

3)
(0
.0
27

9)
(0
.0
27

7)
(0
.0
14

3)
(0
.0
14

2)
r
×

C
on

d
it
io
n
=

R
an

d
om

In
fo
rm

ed
0.
07

85
∗∗

∗
0.
08

08
∗∗

∗
0.
07

84
∗∗

∗
0.
08

08
∗∗

∗
0.
08

71
∗∗

∗
0.
08

72
∗∗

∗
0.
07

98
∗∗

∗
0.
08

15
∗∗

∗

(0
.0
20

9)
(0
.0
20

7)
(0
.0
20

9)
(0
.0
20

7)
(0
.0
21

3)
(0
.0
21

1)
(0
.0
12

1)
(0
.0
12

1)
r
×

C
o
n
d
it
io
n
=

S
tr
on

g
0.
09

74
∗∗

∗
0.
10

61
∗∗

∗
0.
09

73
∗∗

∗
0.
10

59
∗∗

∗
0.
11

17
∗∗

∗
0.
11

50
∗∗

∗
0.
07

64
∗∗

∗
0.
07

82
∗∗

∗

(0
.0
20

8)
(0
.0
20

9)
(0
.0
20

8)
(0
.0
20

9)
(0
.0
20

9)
(0
.0
20

9)
(0
.0
12

1)
(0
.0
12

2)
a
j
(d
em

ea
n
ed

)
-0
.0
99

0
∗∗

∗
-0
.0
99

1
∗∗

∗
-0
.0
62

6
∗∗

∗
-0
.0
23

9∗
∗∗

(0
.0
06

2)
(0
.0
06

2)
(0
.0
05

3)
(0
.0
03

2)

F
ix
ed
-e
ff
ec
ts

C
o
n
d
it
io
n
(3
)

Y
es

Y
es

Y
es

Y
es

S
ea
rc
h
T
a
sk

(1
0
)

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

P
ar
ti
ci
p
a
n
t
(9
61

)
Y
es

Y
es

S
ea
rc
h
D
ep

th
(1
0)

Y
es

Y
es

F
it
st
a
ti
st
ic
s

O
b
se
rv
at
io
n
s

20
,7
34

20
,7
34

20
,7
34

20
,7
34

20
,7
34

20
,7
34

20
,7
34

20
,7
34

R
2

0.
02

95
7

0.
07

58
0

0.
02

99
0

0.
07

61
7

0.
38

68
7

0.
40

11
9

0.
54

80
8

0.
55

06
3

W
it
h
in

R
2

0.
02

66
7

0.
07

30
4

0.
02

65
6

0.
07

29
9

0.
04

91
3

0.
07

13
3

0.
03

45
6

0.
04

00
0

C
lu
st
er
ed

(P
a
rt
ic
ip
a
n
t)

st
a
n
d
a
rd
-e
rr
o
rs

in
pa
re
n
th
es
es

S
ig
n
if
.
C
od
es
:
*
*
*
:
0
.0
1
,
*
*
:
0
.0
5
,
*
:
0
.1

78



Figure F.1: Pr(Search First) by Rank by Condition (Study 1)
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Notes: Error bars represent 95% confidence intervals, which are based on standard errors clustered at the
participant level.

Figure F.2: Depth of Search across Tasks (Study 1)
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Figure F.3: Search Probability by Rank and Condition for First Task (Study 1)
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Notes: Figure shows the probability each item is searched by rank and condition across participants for only
the first task. The 95% confidence intervals are based on standard errors clustered at the participant level.

F.1.2 Study 2

Figure F.4: Fraction of Flat Beliefs Reported at End of Tasks (Study 2)
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Notes: Error bars represent 95% confidence intervals, which are based on i.i.d. standard errors. “RI” refers
to Random-Informed, “S” refers to Strong, “S2P10” and “S2P5” refer to Strong-to-Pref10 and Strong-to-
Pref5, respectively, and “S2R10” and “S2R5” refer to Strong-toRandom10 and Strong-to-Random5, respec-
tively.
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F.2 Randomization and Manipulation Checks

F.2.1 Study 1

Figure F.5 presents a manipulation check: the first ranked product on average has a higher
total bonus in the Strong condition compared to Random and Random-Informed. Figure
F.6 shows that the average bonus A does not vary significantly by rank or condition, and
the product with the highest bonus A can be found at any rank with similar probability.

Figure F.5: Total Bonus of First-Ranked Products (Study 1)
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Notes: This figure plots the histograms of the total bonus (bonus A + bonus B) of the first-ranked product
for all search tasks and for all participants, for each condition.

Table F.4: Randomization Check—Stimuli Selection (Study 1)

Dependent Variable: Stimuli Row Number
Model: (1)

Variables
Constant 497.3∗∗∗

(15.73)
Condition = Random Informed -21.91

(22.47)
Condition = Strong -13.41

(22.52)

Fit statistics
Observations 961
R2 0.00101
Adjusted R2 -0.00107

IID standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: The base condition is Random.
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Figure F.6: Randomization Check of Bonus A (Study 1)
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Table F.5: Randomization Check—Stimuli Selection (Study 2)

Dependent Variable: Stimuli Row Number
Model: (1)

Variables
Constant 243.6∗∗∗

(6.027)
Condition = Strong 10.92

(8.383)
Condition = Strong2P10 10.02

(8.466)
Condition = Strong2P5 -0.8277

(8.448)
Condition = Strong2R10 7.361

(8.661)
Condition = Strong2R5 1.182

(8.341)

Fit statistics
Observations 3,533
R2 0.00113
Adjusted R2 -0.00029

IID standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Base condition is Random Informed
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G Study Instructions

This section provides the instructions given to participants in the Random Informed con-
ditions of Studies 1 and 2. The instructions for the other conditions are the same, except
they do not include the last sentence “The products are displayed in a random order.”

G.1 Study 1 Instructions

On the following pages, you will complete 1 practice round and 10 bonus-eligible rounds of
a product search task.

In each round, you will be presented with a product listing page with 10 product options.
You’ll need to click on and eventually pick one product. Each product has two bonus values:
Bonus A and Bonus B. Your performance bonus will depend on Bonus A and Bonus B of
the product that you ultimately pick and how many products you click on.

You can see each product’s Bonus A before you click. However, Bonus B is hidden until
you click on the product.

Clicking on each new product to reveal Bonus B costs 1 point (clicking to open a box
you’ve already opened previously is free and doesn’t cost any points).

Bonus B has an average value of 40 points, and a standard deviation of 12. Put otherwise,
95% of products have their Bonus B between 16 and 64.

The value of Bonus A is not informative of the value of Bonus B. In other words, Bonus
A and B are not correlated. Products with high Bonus A can have low Bonus B, and vice
versa.

Your earnings towards your bonus for each round will be Bonus A plus Bonus B from
the product you selected minus the points you lost from clicking. After all 10 rounds, your
total points will be added up over all rounds. Your points will convert directly to your
performance bonus. 400 points equals $1.00.

The products are displayed in a random order.

G.2 Study 2 Instructions

On the following pages, you will complete 1 practice round and 15 bonus-eligible rounds of
a product search task.

In each round, you will be presented with a product listing page with 20 product options.
You’ll need to click on one or more products and eventually pick one product. Each product
has two bonus values: Bonus A and Bonus B. Your performance bonus will depend on Bonus
A and Bonus B of the product that you ultimately pick.

You can see each product’s Bonus A before you click. However, Bonus B is hidden until
you click on the product.

Clicking on each new product to reveal Bonus B costs 1 point (clicking to open a box
you’ve already opened previously doesn’t cost any points).

The value of Bonus A is not informative of the value of Bonus B. In other words, Bonus
A and B are not correlated. Products with high Bonus A can have low Bonus B, and vice
versa.

Bonus B has an average value of 40 points, and a standard deviation of 12. In most
rounds, the highest Bonus B is at least 61.
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Because Bonus B has a higher average and standard deviation than Bonus A, Bonus B
contributes to a larger share of your payment than Bonus A.

Your earnings towards your bonus for each round will be Bonus A plus Bonus B from
the product you selected minus the points you lost from clicking. We will randomly select
8 rounds to generate your additional bonus. Your total points will be added up over these
8 selected rounds and will convert directly to your performance bonus. 500 points equals
$1.00.

The products are displayed in a random order.
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