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Abstract

This paper studies how the attribution algorithms used in online ad auctions affect the
strategic interactions between advertisers and publishers, and it investigates optimal attribution
strategies for advertisers. Because online advertisers typically advertise with several publishers
to increase their reach, users may be exposed to ads from multiple publishers before converting.
The attribution challenge for an advertiser is to measure the contributions of each publisher’s
advertising on conversions. These attributed conversion measures are crucial because they
serve as inputs into the algorithms that advertisers use to determine bids in future ad auctions.
The attribution challenge is aggravated by the fact that publishers typically have access to
more information than advertisers, such as user behavior on their sites. This information
asymmetry can lead to a moral hazard problem: publishers can exploit their information
advantage to target ads to users who are likely to result in attributed conversions, rather than
to users with large incremental ad effects. To investigate this misalignment of interests between
advertisers and publishers, I cast the attribution problem as an incentive design problem. Using
a structural model, I first characterize the dynamic incentives created by standard attribution
algorithms and derive the advertiser’s optimal strategy. I find that the advertiser’s optimal
strategy takes the form of team incentives, where each publisher is compensated only when a
conversion is preceded by an ad impression by only that publisher. Counterfactual analysis
shows that the optimal strategy increases the advertiser’s ROI on the order of 20–40% compared
with standard attribution algorithms. The findings highlight the importance of considering the
dynamic incentives that measurement tools generate.
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1 Introduction

Firms are increasingly adopting algorithms to automate decision-making across various
domains, such as bidding in online advertising auctions and pricing in online marketplaces.
While the use of such automated decision-making algorithms has become widespread, less
attention has been paid to their implications on strategic interactions between decision-
makers and other market participants. This paper focuses on the strategic interactions
that arise when a decision-maker utilizes algorithms to assign credit to a team of agents
in dynamic settings, particularly in the context of online display advertising.

Online display advertising exemplifies this challenge of algorithmic decision-making in
strategic environments. Advertisers face millions of advertising opportunities per second
and rely heavily on automated bidding algorithms to participate in advertising auctions.1

These algorithms are based on the intuition that more effective advertising should war-
rant higher bids. However, measuring the effectiveness of advertising is a complex task, so
advertisers typically rely on heuristic methods. These methods are known as attribution
algorithms because advertisers typically advertise across multiple publishers, and deter-
mining the effectiveness of advertising in this case typically involves credit-giving.2 As
an example, one of the most prevalent attribution strategies is the last-touch attribution.
Under this algorithm, when a user is exposed to an advertisement on multiple publishers
and subsequently converts (e.g., visits the advertiser’s website or makes a purchase), the
last publisher in the display sequence receives all the credit for the conversion. The attri-
bution algorithm then has consequences for future advertising: publishers who received
higher credit in the past are regarded as more effective and are more likely to receive
higher bids from the advertiser in the future.

A crucial nuance in the application of attribution algorithms is potential information
asymmetries between advertisers and publishers. Privacy regulations,3 practical limita-
tions,4 and strategic information withholding5 may result in publishers possessing user
information that advertisers cannot obtain. For instance, granular data on user activities
within a publisher’s platform is rarely shared with advertisers. As a result, publishers
may exploit their informational advantage to strategically target advertisements to users
who are likely to result in attributed conversions, rather than to users where the adver-

1 Major online advertising platforms, such as Facebook Ads and Google Ads, offer such automated
bidding strategies to advertisers, which are typically set as the default bidding strategies.

2 These algorithms encompass both credit assignment and bidding, and this paper refers to the entire
procedure as attribution algorithms.

3 Payment in exchange for data from the publisher to the advertiser can be classified as “selling data,”
which is subject to stringent privacy regulations (e.g., European Parliament and Council of the European
Union, 2018; California Privacy Rights Act, 2020). See, for example, Ke and Sudhir (2022) and Johnson
et al. (2023) for more discussion.

4 In online display advertising auctions, user information is often transmitted by an HTTP bid request
(IAB Technology Lab, 2016). To promote efficient transactions, industry standards encourage keeping
bid request sizes relatively small, ideally within a few to tens of kilobytes.

5 See, for example, Marotta et al. (2022) and D’Annunzio and Russo (2023) for more discussion.
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tisement would have the most incremental effect. By doing so, a publisher could inflate
its perceived advertising effectiveness, leading advertisers to submit higher bids to them
in the future, even if the incremental value of the publisher’s display is low.

To illustrate how this moral hazard problem can arise from attribution algorithms,
consider the following toy example, where an advertiser adopts last-touch attribution to
determine future bids. A publisher has two user segments, represented by users A and
B, and the sizes of the two segments are the same. Without the publisher’s display, user
A’s conversion rate is 100%, and user B’s is 0%. If the publisher advertises to these
users, user A’s conversion rate remains 100%, and user B’s increases to 50%. That is, the
advertisement only has incremental effects for user B but not for user A. Moreover, this
publisher will be the last in the display sequence if it displays the advertisement.

This toy example spans two periods. The user segment is observed by the publisher
but not by the advertiser, so in each period, the advertiser can only submit a single
bid, but the publishers can decide which segment(s) to display. The bid submitted by
the advertiser depends on its perceived advertising effectiveness, attributed conversion
rate r. One of the most common bidding rules is target cost-per-action (CPA) bidding,
that is, the bid is the anticipated cost per conversion action multiplied by the attributed
conversion rate.6 Suppose that the advertiser adopts this bidding rule with a target CPA
of $4, then the advertiser’s bid b in period t is bt = $4 × rt. In the first period, the
advertiser has no data, leading to an uninformative prior that r1 is in [0, 1]. In the second
period, the advertiser may observe the conversion data in the first period, and r2 can be
calculated according to the data, assuming a weak prior.

The advertiser’s bid in the second period depends on the publisher’s advertisement
targeting decision in the first period. If the publisher displays to user A only, the at-
tributed conversion rate would be 100%, leading to a bid of $4; if the publisher displays
to both users A and B, the attributed conversion rate would be 75%, leading to a bid of
$3; if the publisher displays to user B only, the attributed conversion rate would be 50%,
leading to a bid of $2; if the publisher displays to no one, the attributed conversion rate
would be the same as the uninformative prior, leading to a bid of $2. Note that from the
advertiser’s perspective, it could be optimal to display to user B, as the advertisement
only has an incremental effect on user B. However, from the publisher’s perspective, its
optimal choice could be to display to user A.7

This example underscores the close connection between attribution algorithms and
publisher incentives. The dynamic incentives generated by attribution algorithms, com-
bined with information asymmetry between advertisers and publishers, can lead to strate-
gic manipulation by publishers. The publisher’s actions, driven by the goal of receiving
credit for conversions are misaligned with the advertiser’s goal of generating incremental

6 See Appendix A.1 for a micro-foundation of this bidding rule.
7 See Appendix A.2 for details on the publisher’s control over the display of advertisements.
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conversions. As a result, the advertiser may be misled into believing that the campaign is
highly effective, leading to increased bids based on this mistaken advertising effectiveness
measurement.

In practice, there is a large class of attribution algorithms, and they all utilize the
touchpoint sequence, that is, the sequence of publishers displaying the advertisement.8

These algorithms differ in how they assign credit based on the touchpoint sequence. The
use of various attribution algorithms leads to the first research question addressed in this
study: what incentives do attribution algorithms create for publishers? As illustrated by
the motivating example, these algorithms may incentivize publishers to display advertise-
ments to users whose conversions are more likely to be attributed to them. Furthermore,
different attribution algorithms could create distinct incentives, potentially leading to
varied publisher behaviors and outcomes for advertisers.

To examine the incentives created by attribution algorithms, I develop a model that
captures the dynamic interactions between advertisers and publishers. The model incor-
porates a primitive that is novel in online advertising settings, publishers’ opportunity
costs to display the advertisement. This opportunity cost captures a publisher’s cost-
benefit analysis regarding whether to display the advertisement, accounting for the value
of displaying other advertisements and other factors such as reputation costs. Moreover,
users are heterogeneous and publishers have more information about user characteristics
than advertisers.

The dynamic model reveals that the incentives provided to publishers by attribution
algorithms can be replicated by a static incentive scheme, which I refer to as the static
equivalent. This implies that the dynamic interactions between advertisers and publish-
ers can be replicated by a static model with appropriately constructed incentives. These
static incentives resemble contracts and can be implemented using pay-per-action mecha-
nisms with contingent actions, where the contingent actions are based on the touchpoint
sequence and the conversion outcome, and publishers are compensated according to these
contingent actions.9 By characterizing the static equivalents of various attribution algo-
rithms, I provide a framework for comparing the incentives they create.

Having characterized the static equivalents of attribution algorithms, I subsequently
investigate the second research question, the optimal attribution strategy for the adver-
tiser. The static equivalence results enable me to approach this question by focusing on
the static contract-like incentives and optimizing advertiser profits over all such incen-
tives. It is worth mentioning that these static incentives can be directly implemented
through pay-per-action mechanisms, so studying these static incentives per se could also
be valuable.

8 While touchpoints can also encompass other forms of user behavior such as clicks, this study specif-
ically focuses on impressions, hence the term touchpoint is used to denote impressions in this study.

9 See Appendix A.3 for a detailed discussion of the implementation.
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To address the question of optimal incentives, I assume and subsequently validate
empirically that the opportunity costs across publishers are affiliated, a form of positive
correlation as defined by Milgrom and Weber (1982). Affiliation implies that a low
opportunity cost for one publisher is likely indicative of low opportunity costs for other
publishers. Under affiliated opportunity costs, the optimal strategy for the advertiser
is to define, for each publisher, a Conversion Action as a conversion preceded by an
advertisement impression by only that publisher. The advertiser pays that publisher
only when this Conversion Action happens. To illustrate, consider a scenario with two
publishers, 1 and 2. The advertiser can define Conversion Action I as an event where a user
views the advertisement exclusively on publisher 1 and subsequently visits the advertiser’s
website. The advertiser then compensates publisher 1 when this conversion action occurs.
Similarly, the advertiser can define Conversion Action II as an event where a user views the
advertisement exclusively on publisher 2 and subsequently visits the advertiser’s website.
The advertiser then compensates publisher 2 accordingly. The intuition is that when
multiple publishers display the advertisement to a user, the opportunity costs are likely
to be low, and thus, the advertiser need not pay a high amount to either publisher for
the display.

The theoretical insights call for an empirical investigation. First, the results demon-
strate that the characteristics of model primitives play a crucial role in determining the
form of optimal incentives. Therefore, it is important to examine these characteristics
using real-world data. Second, an empirical analysis can provide a quantitative assess-
ment of the effectiveness of the optimal incentives and attribution algorithms, offering
valuable insights for practical implementation.

To conduct the empirical analysis, I collaborate with an unnamed advertiser to con-
duct an online advertising experiment. In the experiment, I submit bids to two major
publishers on a major advertising exchange, with the bids randomized at the auction
level. This randomization allows for the identification of the model parameters. After
collecting the experimental data, I estimate the model using maximum likelihood esti-
mation. I then simulate counterfactual profits under various strategies, including the
optimal strategy and other standard attribution algorithms.

The results suggest that advertisers can achieve substantial gains by adopting the
optimal incentive strategy. Specifically, the optimal strategy increases the advertiser’s
return on investment (ROI) on the order of 20–40% compared with standard attribu-
tion algorithms. Moreover, I find that single-touch attribution algorithms, which include
first-touch and last-touch attribution, yield higher profits than multi-touch attribution
algorithms, such as linear, causal, and Shapley attribution. The intuition of this find-
ing is that the incentives created by single-touch attribution algorithms and the optimal
strategy are more closely aligned. When a touchpoint sequence involves multiple publish-
ers, the optimal strategy assigns credit to none of them, while single-touch attribution

5



algorithms assign credit to exactly one publisher. In contrast, multi-touch attribution al-
gorithms assign credit to all publishers involved. Consequently, models that assign credit
based on marginal causal effects, such as the causal and Shapley attribution algorithms,
deviate further from the optimal incentives for publishers. These findings underscore the
importance of considering the incentives generated by measurement tools when designing
incentive schemes.

This research is related to three strands of literature. The first strand of literature
pertains to the measurement of advertising effectiveness (e.g., Lewis et al., 2011; Blake
et al., 2015; Gordon et al., 2019). This body of work highlights the difficulties in using
observational data to measure advertising effectiveness. It points out the potential endo-
geneity issues resulting from correlated user behavior across websites, the “activity bias.”
This bias in estimating advertising effectiveness has led to significant efforts devoted to
developing superior measurement technologies (e.g., Li and Kannan, 2014; Xu et al., 2014;
Barajas et al., 2016; Du et al., 2019). This paper takes a step further by exploring the
link between incentives and measurement. I show a novel source of bias stemming from
publishers’ strategic advertisement display decisions. I characterize how an advertiser’s
use of attribution algorithms may create dynamic incentives and how observational data
can be leveraged to manage such incentives. The analysis of publishers’ responses to
different attribution algorithms distinguishes this study from previous work.

The second strand of literature examines the impact of attribution methods on ad-
vertiser profits (Li et al., 2016; Abhishek et al., 2017; Berman, 2018; Danaher and van
Heerde, 2018). This literature emphasizes that naïve attribution methods can lead to
inefficient decisions, such as suboptimal bidding strategies. This paper contributes by
studying two novel forms of touchpoint utilization, attribution algorithms and pay-per-
action strategies with conversion actions that are contingent on touchpoint sequences. It
innovates by considering the incentives offered to publishers, particularly the dynamic
incentives associated with attribution algorithms. While dynamic incentives have been
studied extensively in the contexts of pricing (e.g., Fudenberg and Villas-Boas, 2006;
Zhang, 2011) and salesforce compensation (e.g., Kuksov and Villas-Boas, 2019), this
study contributes to the relatively underexplored field of dynamic incentives in online
advertising and auction contexts.

The third strand of literature involves agency theory, wherein the optimal incentive
scheme resembles the tournaments described in team compensation literature (Lazear
and Rosen, 1981; Green and Stokey, 1983; Nalebuff and Stiglitz, 1983). This study
adapts and extends insights from this literature to the online advertising environment.
It casts online advertising as a team compensation problem, where advertisers are the
principals and publishers are the agents. It then investigates how touchpoint data can
be used as auxiliary information in the incentive design framework to partially address
the information asymmetry issue between advertisers and publishers.
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The structure of the rest of the paper is as follows. Section 2 develops a dynamic model
and characterizes the incentives created by attribution algorithms. Section 3 studies the
optimal strategy for the advertiser. Section 4 provides details about the dataset, explains
the estimation procedure, and presents the outcomes of the estimation. Section 5 proceeds
with the counterfactual analysis and showcases its results. Section 6 offers concluding
remarks.

2 Attribution Algorithms and Dynamic Incentives

This section develops a dynamic model to characterize the incentives created by attri-
bution algorithms. I first describe the stage game with a focal advertiser and multiple
publishers and build the dynamic model based on it. Then I show how the dynamic
incentives can be replicated by static contract-like incentives. In Appendix B.1, I con-
sider an extension where the main strategic effects of the publishers are present in an
equilibrium framework with multiple advertisers; for expositional purposes, I present the
simpler model here.

2.1 Stage Game

The game consists of a focal advertiser and J publishers. Users are not explicitly in-
cluded as players in this game, because this paper’s focus is incentives of the publishers.
Specifically, the publishers that a user browses and how touchpoints influence user con-
version are treated as exogenous. Moreover, to simplify notation, henceforth everything
is conditional on publicly observed user characteristics. In other words, the advertiser
and the publishers are able to act differently for different user segments, and the model
here is conditional on a specific user segment.

The timing of the stage game is as follows:

1. The advertiser submits a per-impression bid bj to each publisher j.

2. A continuum of users arrives. The mass of users is normalized to one. Each user
i has a browsing path Hi. As an example, if user i browses publishers 1, 2 and 3,
then Hi = (1, 2, 3). Each publisher appears at most once in Hi.

3. The publishers on a user’s browsing path decide simultaneously whether to display
the advertisement to each user. If publisher j decides to display to user i, it incurs
an opportunity cost of cij, detailed shortly, and receives bj at the end of the period.

4. The touchpoint sequence Ti and conversion Yi ∈ {0, 1} of each user i are realized.
As an example, if Hi = (1, 2, 3), and publishers 1 and 3 display the advertisement
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but publisher 2 does not, then Ti = (1, 3). Note that both the browsing path Hi

and the touchpoint sequence Ti are ordered sequences.

The opportunity costs for the publishers is an umbrella term. It could include (i) the
value of outside options, such as displaying another advertisement, and (ii) the potential
negative impact on the publisher’s reputation because of a low-quality advertisement.
When other advertisers’ behavior and the incentives they create are held constant, part (i)
can be seen as primitive.10 The reputation cost in part (ii) is also fixed for a given
advertisement.

Once the advertiser submits the bids b = (bj), the publishers participate in a Bayesian
game, denoted as Γ(b). Note that publishers simultaneously decide whether to display the
advertisement or not. This simultaneous decision reflects the real-world scenario where
publishers do not share information regarding whether they display advertisements to a
given user. Consequently, a publisher does not observe other publishers’ actions when
making the display decision. Instead, a publisher would make Bayesian inferences about
the behavior of other publishers, conditional on its available information, the browsing
path Hi, and the opportunity cost cij. Note that cij is only fully observed by publisher
j, but publisher j can infer the conditional distribution of cij′ for j′ ̸= j in a Bayesian
fashion. The opportunity cost vector for user i is denoted as ci ≡ (cij), whose joint
density distribution given the browsing path Hi is denoted as f(ci|Hi). Publisher j’s
advertisement display rule is denoted as a function aj, mapping a user i’s browsing path
Hi and opportunity cost cij to whether the advertisement is displayed to user i.

It is worth discussing some simplifying assumptions made in the model.
First, each publisher appears at most once in the browsing path Hi. The reason

for this assumption is that the main focus of this study is the interaction between the
focal advertiser and multiple publishers, instead of frequent display decisions within a
publisher. This applies to the case when the advertiser would like to reach a wider
audience, that is, more unique users being exposed to the advertisement, so they have
a low “frequency cap” on the number of displays to each user on each publisher. With
this assumption, the set of user browsing sequences is vastly reduced and the intuition is
sharpened. In my empirical application, it is ensured by bidding only once for each user
on each publisher. Moreover, the main results in this section are still expected to hold
when each publisher appears more than once in the browsing path, as similar dynamic
incentives are expected to arise in that model.

Second, the publishers are well-informed about the browsing path Hi before making
the display decisions. This assumption can be justified by the fact that the publishers

10 See Appendix B.1 for an extension with multiple advertisers, which micro-founds part (i). In that
model, the values and strategies of the advertisers are the primitives. In the model presented here, the
values and behaviors of other advertisers affect the outcome only through the opportunity cost of the
publisher. Hence, the opportunity cost of the publisher can be seen as primitive in the model.
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possess a vast amount of data and can reasonably infer whether a user is multi-homing
and the order of browsing paths. Specifically, publishers may utilize cross-site tracking
tools, engage in data-sharing agreements, or participate in data marketplaces that allow
them to access user data beyond their sites. When user identity is not perfectly tracked,
publishers can employ sophisticated machine learning models to probabilistically link user
activity across sites based on behavior patterns, device characteristics, and so on. There
could be some random errors in publishers’ inferences; to keep the model tractable, I
push the assumption that publishers observe some signals to infer the browsing path to
an extreme. It could be interesting for future research to identify from data how much
information publishers have and investigate its implications on publisher incentives.

Moreover, I also assume that the advertiser observes the browsing path Hi and can
submit different bids bj for different browsing paths Hi; this assumption means that
user browsing paths are a part of publicly observed user characteristics, and I henceforth
conditional everything on the browsing path to simplify notation. This assumption can be
justified by the fact that advertisers obtain user browsing path data in online advertising
bid requests and can utilize user data to predict browsing paths.

2.2 Dynamic Model

Existing attribution algorithms operate on the heuristic that a higher attributed conver-
sion rate on a publisher indicates higher advertising effectiveness, leading advertisers to
increase future bids for that publisher. This heuristic may lead to dynamics in advertiser
bidding and publisher display decisions.

Formally, the dynamic game G is an infinite repetition of the stage game among
the publishers. In each period, each publisher determines to which users to display the
advertisement, and their objective functions are their respective discounted payoffs, with
δ as the common discount factor. The users in each period are short-lived, and their
primitives are independent and identically distributed across periods.

Denote the advertiser’s bid vector in period t as b(t), with b
(t)
j being the bid for pub-

lisher j. In this setting, b(t) are payoff-relevant, so they are the state variables in period
t. They are determined according to the following rules:

1. At the beginning of period 1, the advertiser sets the bid vector b(1) and sets an
attribution algorithm. Specific classes of algorithms are discussed in Section 2.3.

2. For each period t ∈ N, the stage game Γ(b(t)) among the publishers is played: each
publisher makes the advertisement display decisions, then the touchpoint sequence
and conversions are realized, and the publishers receive payments according to b(t).

3. Define π(t)
ω,y ≡ P(t)(T = ω, Y = y) as the mass of users with touchpoint sequence

ω and conversion y, and the vector π(t) ≡ (π
(t)
ω,y). At the end of period t, the
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advertiser sets the bid vector for the next period, b(t+1), based on the bidding rule
Ψ : RJ

+ × R|T |×{0,1}
+ → RJ

+, which takes b(t) and π(t) as inputs, that is,

b(t+1) = Ψ(b(t), π(t)). (1)

Let us now discuss additional simplifying assumptions of the dynamic model.
First, the advertiser is assumed to be able to commit to the algorithm Ψ. In reality,

major advertising platforms offer such algorithms as a service to the advertiser, even
making it a default option. Once an advertiser selects a particular algorithm and sets the
parameters, it typically refrains from intervening or manually adjusting the bids, relying
instead on the algorithm’s automated operations.

Second, in (1), I assume that the next period’s bids are adjusted solely based on the
bids and the data from the current period. A more general setting is that the advertiser
could adjust bids based on data from more than one previous period, or make adjustments
based on bids from more than one previous period, so that the inputs of the bidding rule
Ψ may include π(t−k) and b(t−k) for k = 1, · · · , K. However, this assumption simplifies the
model, resulting in cleaner definitions and equilibrium characterizations. Moreover, in the
stationary environment discussed later, the results are the same whether the advertiser
uses data and bids from only the last period or the last K > 1 periods.

Third, I assume that each publisher j observes how the bids on it are adjusted dy-
namically, that is, it observes the bidding rule Ψj. This assumption can be justified given
the frequency of advertisement auctions. It is feasible for a publisher to experiment with
various advertisement display strategies and learn the advertiser’s bidding rule based on
the bids.

2.3 Attribution Algorithms

To make the model and analysis more concrete, in this subsection, I provide formal
definitions of standard attribution algorithms by detailing the bidding rule Ψ.

An attribution algorithm includes two stages. First, having the distribution of touch-
points and conversions as input, the algorithm calculates an attributed conversion rate for
each publisher. Second, it adjusts the bid for each publisher according to its attributed
conversion rate. The key difference across attribution algorithms lies in the first step, the
computation of the attributed conversion rates, which I discuss further in this subsection.
I drop the time superscript to simplify the notation.

The commonly used methods to calculate attributed conversion rates can be grouped
into two categories: rule-based attribution methods and data-driven attribution methods.11

Rule-based attribution methods apply predefined rules to assign credit for conversions to
11 The names of the two categories are widely used in the industry in such a way.
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different publishers. In contrast, data-driven attribution methods use statistical models
to quantify each publisher’s impact on conversion rates and determine the corresponding
credit.

Rule-based Attribution Methods Under these methods, when a user’s sequence of
touchpoints ω leads to a conversion, each publisher j ∈ ω is given a credit calculated by
a weight function χ(j, ω). Specific rules and their corresponding weight functions are:

• Last-touch attribution: the weight function χLT(j, ω) ≡ 1(j = last(ω)).12 In this
case, if publisher j is the final touchpoint, it receives all the credit but receives none
if it is not.

• First-touch attribution: the weight function χFT(j, ω) ≡ 1(j = first(ω)). In this
case, if publisher j is the initial touchpoint, it receives all the credit but receives
none if it is not.

• Linear attribution: the weight function χL(j, ω) ≡ 1

|ω|
. All publishers in the touch-

points receive equal credit in this case.

The attributed conversion rate for publisher j is then given by13

rj ≡ ET,Y [χ(j, T ) · 1(Y = 1)|j ∈ T ] =

∑
(ω,y):j∈ω χ(j, ω) · πω,1∑

(ω,y):j∈ω πω,y
. (2)

The conditional expectation represents the probability of a conversion occurring (Y = 1),
weighted by the function χ(j, T ), conditional on that publisher j is in the sequence of
touchpoints. The second equality is derived from Bayes’ rule.

Data-driven Attribution Methods Under these methods, statistical models are em-
ployed to estimate the conversion rates conditional on touchpoints and user observables.
Recall that everything in this section is conditional on user observables, so I omit them
to ease notation. The first step is to estimate the conversion rate ρ̂ω conditional on each
sequence of touchpoints ω, that is,

ρ̂ω ≡ πω,1
πω

,

where
πω ≡ πω,1 + πω,0

12 For instance, for ω = (1, 2), χLT(1, ω) = 0 and χLT(2, ω) = 1.
13 For instance, consider users with browsing path (1, 2). For publisher 1, there are four (ω, y) pairs such

that 1 ∈ ω, that is, the combination of ω = (1, 2) or (1) and y = 0 or 1. Under last-touch attribution, pub-
lisher 1 receives the credit only when ω = (1) and y = 1, so r1 =

π(1),1

π(1,2),1+π(1,2),0+π(1),1+π(1),0
. In contrast,

publisher 2 receives the credit when ω = (1, 2) or ω = (2) and y = 1, so r2 =
π(1,2),1+π(2),1

π(1,2),1+π(1,2),0+π(2),1+π(2),0
.
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is the mass of users with touchpoint ω, regardless of whether they convert or not. The
next step is to calculate the incremental conversion rate resulting from publisher j’s
display of the advertisement, defined as

∆(j, ω) ≡ ρ̂ω − ρ̂ω\{j}.

In the causal inference framework, the quantity ∆(j, ω) is known as an estimate of the
average treatment effect on the treated and has an interpretation of the incremental effect
of advertisement.14 The (raw) causal attribution method computes the attributed con-
version rate as a weighted average of the incremental conversion rates, with the weight
being the probability of the sequence of touchpoints given that the publisher is in it:

rj ≡ ET [∆(j, T )|j ∈ T ] =

∑
ω:j∈ω∆(j, ω) · πω∑

ω:j∈ω πω
. (3)

In the causal attribution method, the incremental conversion rates for each publisher
do not necessarily add up to the conversion rate, that is,

∑
j∈ω∆(j, ω) ̸= ρ̂ω.15 This

means the credit assigned to each publisher for each conversion does not add up to one,
leading to an accounting problem. A proposed solution in the literature suggests using
the Shapley values to address this issue, based on Shapley (1953). To calculate the
contributions of publisher j in a sequence of touchpoints ω, it takes into account the
incremental conversion rates for every subsequence16

φ(j, ω) ≡
∑

ω̃:j∈ω̃⊆ω

(|ω̃|−1)! (|ω|−|ω̃|)!
|ω|!

·∆(j, ω̃).

Similar to a causal attribution method, the Shapley-value attribution method computes
the attributed conversion rate replacing the incremental conversion rate with the Shapley
values, that is,

rj ≡ ET [φ(j, T )|j ∈ T ] =

∑
ω:j∈ω φ(j, ω) · πω∑

ω:j∈ω πω
. (4)

I assume that when the advertiser is calculating the attributed conversion rate rj for
publisher j, the conversion rate rω for j /∈ ω takes its stationary value.17 This assumption

14 These estimates may not be accurate, and I regard this approach only as a heuristic. The reason is
that for ∆(j, ω) to be unbiased, a standard assumption is selection-on-observable, that is, publisher j’s
display is independent of the potential conversion outcomes conditional on user observables. As shown
in Section 4, this assumption is violated in my empirical application.

15 For instance, for ω = (1, 2), suppose that ρ̂(1,2) = 1, ρ̂(1) = 0, and ρ̂(2) = 0, then ∆(1, ω) = 1 and
∆(2, ω) = 1, which do not sum up to ρ̂(1,2).

16 For instance, for ω = (1, 2), φ(1, ω) = 1
2 (ρ(1,2) − ρ(2)) +

1
2 (ρ(1) − ρ∅), and φ(2, ω) = 1

2 (ρ(1,2) − ρ(1)) +
1
2 (ρ(2) − ρ∅).

17 This assumption ensures consistency with the oblivious strategies, detailed in the next subsection.
For instance, when calculating the attributed conversion rate for publisher 1, data-driven attribution
methods may utilize the conversion rate ρ̂(2), which does not involve publisher 1, and ρ̂(2) is assumed to
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makes rj a function only of πj in (4), where πj = (πω,y)j∈ω is the vector of the probability
masses where publisher j is in the sequence of touchpoints.

Let us first summarize some common properties of the attributed conversion rate
across standard attribution methods. In (2), (3), and (4), the attributed conversion rates
for publisher j are all homogeneous of degree 0 in πj. This property means that if we
scale the probability masses within πj by a constant factor,18 the attributed conversion
rate remains unchanged. Another interpretation is that the attributed conversion rates
are determined by the relative proportions of the probability masses within πj, rather
than their absolute magnitudes. This property aligns intuitively with the definition of
conversion rates, being a ratio, and I will adopt it as a requirement for all attribution
methods studied in this paper.

Moreover, across all standard attribution methods, the attributed conversion rates rj
for publisher j satisfies ∂rj

∂πω,1
≥ ∂rj

∂πω,0
for j ∈ ω. This property means that compared with

when there is not a conversion after publisher j’s display, when a conversion happens,
the credit given to publisher j is higher. I will also adopt this property as a requirement
for all attribution methods studied in this paper.

In the two-step procedure of the attribution algorithm, the advertiser first computes
the attributed conversion rates (rj) for each publisher using one of the methods described.
Subsequently, based on these rates, the advertiser computes the bid for the following
period, denoted as b′j for publisher j, according to

b′j = ψj(bj, rj),

where ψj : R+×[0, 1] → R+ is a smooth function that increases in rj, and its relation to (1)
is discussed below.19 Furthermore, I impose a regularity condition that for any sequence
of touchpoints ω and conversion indicator y,

∣∣∣∂ψj(bj ,rj)

∂πω,y
·
∑

ω:j∈ω πω

ψj(bj ,rj)

∣∣∣ ≤ 1− ∂ψj(bj ,rj)

∂bj
, implying

that the bids for the subsequent period are not excessively elastic to probabilities.
In summary, the attribution algorithm Ψ described in (1) can be formally defined as

below. Note that this algorithm can also be regarded as an “attribution-based automated
bidding algorithm,” but I will refer to it as an attribution algorithm for brevity. Recall
that Ψ is a vector-valued function, denote its jth component as Ψj, then we can express

Ψj(bj, πj) ≡ ψj(bj, rj(πj)).

In other words, the next period’s bid for publisher j is determined in two steps: the
algorithm first computes the attributed conversion rate rj, which is a function of πj.

take its stationary value.
18 Recall that πj is the subset of the probability masses where publisher j is in the sequence of touch-

points, so the sum over its elements can range from 0 to 1.
19 See Appendix A.1 for a micro-foundation.
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Then, the attributed conversion rate rj is employed to adjust the bids b′j for the following
period. The first step of calculating the attributed conversion rate involves the specific
attribution methods, and the second step of determining the bids involves the bidding
rule.

2.4 Oblivious Equilibrium

Having described standard attribution algorithms, I now turn to characterizing the equi-
librium they induce. In a dynamic Bayesian game, the strategy space is typically vast
and the equilibrium strategy profile can be complex. To derive more insights, I focus on
oblivious strategy profiles with stationary bid vectors, based on Weintraub et al. (2008).

Definition 2.1. We say a strategy is oblivious for publisher j if its advertisement display
rule a(t)j in period t solely depends on its respective private state variable, the bid b(t)j .

Note that the advertisement display rule a(t)j is a function that takes user opportunity
costs as inputs. This definition means that, under an oblivious strategy, whether a user
i in period t is shown an advertisement by publisher j solely depends on the user’s
opportunity cost cij and the bid b(t)j .

An oblivious strategy is similar to a Markov strategy wherein player actions rely on
the state variable. However, an oblivious strategy differs in that each player’s action
depends only on its private state variable. Specifically, an oblivious strategy implies
a publisher’s advertisement display rule relies on the bid the advertiser submits to it,
but not the bid the advertiser submits to other publishers. This scenario is plausible in
practice, as a publisher often does not observe the advertiser’s bids for other publishers,
making an oblivious strategy closer to reality.

Moreover, a publisher’s equilibrium strategy is required to be “rational” with the
following intuition. If the bid vector b∗ “converges” in the long run, a publisher’s belief
about the bids submitted to the other players should be consistent with this bid vector b∗,
and its belief about the other publishers’ actions should be consistent with their actions
under b∗. Denote the strategy profile of the publishers as a ≡ (aj), then this long-run
stationary bid vector b∗ is defined below.

Definition 2.2. We say a bid vector b is stationary under the publishers’ oblivious
strategy profile a and the advertiser’s attribution algorithm Ψ, if b, a and Ψ satisfy the
following conditions: if the advertiser sets b(t) = b in period t, the publishers act according
to a given b, and then the advertiser sets b(t+1) based on Ψ, then b(t+1) = b.

The concept of stationarity captures a state where the bid vector remains constant
over time: if the bid vector is b in one period, it remains b in the subsequent period.20

20 Typically, stationarity is defined in the literature using the probability distribution of the state
variable. However, given the deterministic nature of the state variable transitions in this model, the
stationary distribution becomes degenerate.
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It is worth noting that the stationarity of a bid vector b is contingent on the publishers’
strategy profile a and the advertiser’s bidding rule Ψ.

Now I define the equilibrium of the game. I utilize the notation for the dynamic game
as G(Ψ) when the advertiser adjusts the bids according to the rule Ψ.21

Definition 2.3. An oblivious equilibrium of game G(Ψ) is a pair of oblivious strategy
profile a∗ and stationary bid vector b∗, denoted as (a∗, b∗), which satisfies two conditions:
(i) each publisher’s strategy is the best response to the other publishers’ strategies within
all oblivious strategies such that each publisher’s belief of other publishers’ state variables
and actions is consistent with b∗; (ii) the bid vector b∗ is stationary under a∗ and Ψ.

In each period, after the bids are determined by the advertiser, the publishers make
advertisement display decisions. To characterize the equilibrium outcome, let us first
examine the publishers’ problems.

In any period, for publisher j, the stage payoff under a per-impression bid bj and
advertisement display rule aj is

E[aj · (bj − cj)] =

∫
aij(bj − cij) di.

In the oblivious strategy framework, the value function for publisher j is exclusively
a function of its state variable, assuming the states and actions of other publishers are
consistent with the stationary counterparts. Denote the value function for a publisher as
Vj(bj), then the corresponding Bellman equation is

Vj(bj) = max
aj

∫
aij(bj − cij) di+ δ · Vj(b′j),

s.t. b′j = ψj(bj, rj).
(5)

Here, rj refers to the attributed conversion rate computed through the advertiser’s
attribution algorithm, given that other publishers’ advertisement display decisions are
consistent with the stationary decisions. Since rj relies on the masses πj of users with
different touchpoints and conversion outcomes, and πj depends on the advertisement
display strategy aj, rj is a function of aj. Besides, everything here is conditioned on
publisher j’s information, which is omitted to ease notation.

Denote the state-action value function

Qj(bj, aj) ≡
∫
aij(bj − cij) di+ δ · Vj(b′j),

then the first-order condition of the problem (5) implies that the best-response display

21 In the notation, the initial state b(1), that is, the bids in the first period, is not explicitly stated, as
I focus on the stationary state b∗, which may not directly be linked to the initial state.
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strategy a∗j satisfies

a∗ij = 1

(
∂Qj

∂aij
≥ 0

)
.

This equation suggests that when deciding on displaying an advertisement to user i,
publisher j takes into account not only the immediate cost cij and benefit bj but also the
influence on future profits because of the changes in bids.22 Hence, attribution algorithms
introduce dynamic incentives for publishers, differing from the incentives in static pay-
per-impression schemes. These incentives are captured by the state-action value function
Q. It is also important to note that different attribution algorithms can generate different
Q functions, leading to different equilibrium outcomes.

The main result of this section is that the incentives in the dynamic model can be
replicated by a static contract-like incentive. To define this static incentive, one first needs
to slightly extend the stage game to incorporate more sophisticated incentives. Recall that
in the stage game, publisher j receives a payment bj after displaying an advertisement.
Now, the static model is extended to allow for incentive schemes that are contingent on
the touchpoint sequence and the conversion outcome. That is, the incentive scheme gj
for publisher j takes the touchpoints and conversion as input, such that the advertiser
pays gj(ω, y) to publisher j when a user has touchpoint ω and conversion outcome y. The
stage game presented in Section 2.1 can be seen as a special case such that gj(ω, y) = bj

when j ∈ ω. Let g ≡ (gj), and with a slight abuse of notation, denote this Bayesian
game as Γ(g). Then, one can define a Bayesian Nash equilibrium of this static game in a
standard way.

The following proposition shows that the incentives in the dynamic environment can
be replicated by the static contract-like incentive, with the same equilibrium outcomes
and transfers.

Proposition 2.1. Suppose Ψ is a bidding rule such that for each publisher j, Ψj is
homogeneous of degree 0 in πj. Let (a∗, b∗) denote an oblivious equilibrium of the dynamic
game G(Ψ), and a∗|b∗ denote the publishers’ strategy profile when the vector of bids is b∗.
Then there exists an incentive scheme g̃ such that g̃j(ω, 1) ≥ g̃j(ω, 0) ≥ 0 for any ω, and:

1. The strategy profile a∗|b∗ is a Bayesian Nash equilibrium of the static game Γ(g̃).

2. The equilibrium payoffs of the advertiser and the publishers under a∗|b∗ in the static
game Γ(g̃) equal their equilibrium payoffs under (a∗, b∗) in the dynamic game G(Ψ).

The proof of Proposition 2.1 and other propositions are presented in Appendix C.
Note that the incentive scheme g̃ satisfies g̃j(ω, 1) ≥ g̃j(ω, 0) ≥ 0 for any ω such that

j ∈ ω, which means that it operates similarly to a contract: publisher j is compensated
22 In practice, this dynamic consideration can be implemented by “bid modifications” on the publisher’s

side, as detailed in Appendix A.2. This discussion provides a micro-foundation for such bid modifications.
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with g̃j(ω, 0) if it displays the advertisement and the touchpoint sequence is ω, and it
receives an additional compensation g̃j(ω, 1)−g̃j(ω, 0) if this display leads to a conversion.
It is worth mentioning that such contract-like incentives can be directly implemented
through existing pay-per-action mechanisms. See Appendix A.3 for a detailed discussion.

Given that the incentives in the equilibrium of the dynamic game can be replicated
by a static incentive scheme, I henceforth refer to the corresponding scheme in the static
game as the static equivalent of the attribution algorithm in the dynamic game. This
characterization also eases the computation of counterfactual outcomes under these dy-
namic incentives.

2.5 Static Equivalents

Upon establishing Proposition 2.1, we can now express the incentives created by rule-
based and data-driven attribution algorithms based on (2), (3), and (4).

The static equivalents of the algorithms take a similar form, a mixture of a pay-per-
impression scheme and another scheme. The mixture weight ηj for publisher j takes the
form

ηj ≡ δ ·
(
1− δ ·

∂ψj(b
∗
j , rj)

∂bj

)−1

·
∂ψj(b

∗
j , rj)

∂rj
· rj
ψj(b∗j , rj)

, (6)

which is the product of the discount factor, a multiplier that captures the duration the
bids are carried over, and the elasticity of ψj with respect to the attributed conversion
rate rj.

For rule-based algorithm ΨRB with weight function χ(j, ω) as defined by (2), its
static equivalent is a mixture of a pay-per-impression scheme and a pay-per-attributed-
conversion scheme.

Proposition 2.2. Suppose (a∗, b∗) is an oblivious equilibrium of the dynamic game
G(ΨRB). Its static equivalent, denoted as g̃RB, is given by

g̃RB
j (ω, y) = (1− ηj) · b∗j + ηj · v∗j · χ(j, ω) · 1(y = 1), (7)

which is a mixture of a pay-per-impression scheme and a pay-per-attributed-conversion
scheme. The mixture weight ηj is given by (6), and v∗j ≡

b∗j

rRB
j

is the effective payment per

attributed conversion.

The underlying intuition of this proposition is that, if a user converts and is attributed
to a particular publisher, their attributed conversion rate rises, leading to an increase in
the advertiser’s future bids. Conversely, if a user does not convert or does convert but is
not attributed to this publisher, the attributed conversion rate falls and the advertiser’s
future bids will be correspondingly reduced. This algorithm creates stronger incentives
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for a publisher to display the advertisement to the users whose conversions are more likely
to be attributed to this publisher.

For algorithm ΨC based on the causal attribution as defined by (3), its static equivalent
is characterized as follows.

Proposition 2.3. Suppose (a∗, b∗) is an oblivious equilibrium of the dynamic game
G(ΨC). Its static equivalent, denoted as g̃C, is given by

g̃C
j (ω, y) = (1− ηj) · b∗j + ηj · v∗j · (1(y = 1)− ρω\{j}), (8)

which is a mixture of a pay-per-impression scheme and a scheme paying v∗j · (1(y =

1)−ρω\{j}) for touchpoint sequence ω and conversion indicator y. In this equation, ρω\{j}
is the conversion rate of users with touchpoint sequence ω\{j} in equilibrium. The mixture
weight ηj is given by (6), and v∗j ≡

b∗j

rCj
is the effective payment per attributed conversion.

Let us compare the static equivalents of the rule-based attribution algorithm and the
causal attribution algorithm. The pay-per-impression scheme components of the static
equivalents, (1 − ηj) · b∗j , are similar. However, their respective second components are
different. For the causal attribution algorithm, instead of a pay-per-attributed-conversion
scheme, the publisher is subject to a v∗j incentive upon user conversion, and a penalty
of v∗j · ρω\{j} for touchpoint sequence ω. Note that ρω\{j} represents the counterfactual
conversion rate when publisher j does not display the advertisement. It means that this
algorithm incentivizes incremental conversions touchpoint sequences by giving a larger
payment to conversions with a low counterfactual conversion rate ρω\{j}.

For algorithm ΨS based on the Shapley attribution, as defined by (4), its static equiv-
alent is characterized as follows.

Proposition 2.4. Suppose (a∗, b∗) is an oblivious equilibrium of the dynamic game
G(ΨS). Its static equivalent, denoted as g̃S, is given by

g̃S
j (ω, y) = (1− ηj) · b∗j + ηj · v∗j · (ζj(ω) · (1(y = 1)− ρω) + φ(j, ω)) , (9)

which is a mixture of a pay-per-impression scheme and scheme paying v∗j · (ζj(ω) · (1(y =

1)−ρω)+φ(j, ω)) for touchpoint sequence ω and conversion indicator y. In this equation,
ρω is the conversion rate of users with touchpoint sequence ω in equilibrium, and φ(j, ω)
is the corresponding Shapley value for publisher j in equilibrium. The mixture weight ηj
is given by (6), v∗j ≡ b∗j

rSj
is the effective payment per attributed conversion, and ζj(ω) ≡∑

ω̃:ω⊆ω̃
(|ω|−1)!(|ω̃|−|ω|)!

|ω̃|! · πω̃
πω

is a multiplier assigned to touchpoint sequence ω.

The pay-per-impression scheme component, (1−ηj)·b∗j , is similar to the corresponding
components of the rule-based attribution algorithms and the causal attribution algorithm.
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Its second component is more complicated. For the touchpoint sequence ω, the transfer
is v∗j · (−ζj(ω) ·ρω+φ(j, ω)), with an additional v∗j · ζj(ω) incentive if a conversion occurs.
The definition of ζj(ω) implies that ζj(ω) decreases in ω, that is, for j ∈ ω1 ⊆ ω2,
ζj(ω1) ≥ ζj(ω2). Thus, similar to a linear attribution algorithm, this scheme assigns
lower incentives to touchpoint sequences with a larger number of publishers.

To gain more intuition, some special cases are provided in Appendix D.

3 Optimal Incentives

With a variety of attribution algorithms, an advertiser could be interested in which
attribution algorithm could help address the issue of information asymmetry and lead
to the highest profit. As Section 2 shows that the incentives in the dynamic game’s
equilibrium can be replicated by static incentive schemes, it amounts to optimizing the
advertiser payoff over the incentive schemes in the static model. To achieve this goal, in
this section, I further characterize the equilibrium of static game Γ(g) and optimize over
the possible incentive scheme g. Moreover, it is worth mentioning that the static incentive
schemes considered in this section can also be directly implemented through existing pay-
per-action mechanisms,23 so the static incentives per se is also worth investigation.

Note that the model considered in this section has a single focal advertiser. One may
be interested in whether the results apply to the extension in Appendix B.1, where there
are multiple advertisers and multiple publishers. The analyses here could be interpreted as
a best-response strategy analysis in the extension regarding the focal advertiser, holding
constant the actions of other advertisers. See Appendix B.1 for a detailed discussion.

3.1 Bayesian Nash Equilibrium

The setup of the static game is the same as the stage game in Section 2.1, except that the
incentive schemes are more flexible. Specifically, the incentive scheme gj : T ×{0, 1} → R+

for publisher j takes the touchpoints and conversion as input, such that the advertiser
pays gj(ω, y) to publisher j when a user has touchpoint ω and conversion outcome y.
Here, T is the set of potential touchpoint sequences.

Once the advertiser sets up the incentive scheme g = (gj(·)), the publishers participate
in a Bayesian game. Recall that the game is denoted as Γ(g), and the strategy profile
of the publishers is denoted as a = (aj). Each publisher j only observes their respec-
tive opportunity cost cj, with other publishers’ opportunity costs inferred in a Bayesian
manner. The solution concept is thus the Bayesian Nash equilibrium.

To investigate the Bayesian Nash equilibrium, the initial step is to examine each
publisher’s best response to other publishers’ behavior. The user subscript i is dropped

23 See Appendix A.3 for a detailed discussion.
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hereafter to ease notation unless stated otherwise. Given the opportunity cost cj and the
strategies a−j of other publishers, which are functions of the opportunity cost vector c−j,
publisher j’s best response is to display the advertisement if and only if the expected
revenue Rj(cj; a−j) is no less than the opportunity cost cj:

a∗j(cj; a−j) = 1 (Rj(cj; a−j) ≥ cj) .

To determine Rj(cj; a−j), we need to consider that the actions of other publishers are
contingent on their opportunity costs. Thus, we should integrate over c−j given cj:

Rj(cj; a−j) ≡ Ec−j ,Y |cj [gj(T, Y )|cj] = Ec−j |cj [gj(T, 1) · h(T, c) + gj(T, 0) · (1− h(T, c))|cj] ,

where touchpoint sequence T is determined jointly by the browsing path and the ad-
vertisement display decisions, and the distribution of Y can be characterized by the
conversion rate function

h(ω, c) ≡ P(Y = 1|T = ω, c).

In this equation, the conversion rate can potentially be a function of c in a Heckman
(1979) selection model fashion. That is, the opportunity costs c are utilized by the
publishers to select whether an advertisement is shown, and the opportunity costs can
be correlated with the conversion outcomes.24 I assume the distributions are sufficiently
smooth enough so that h(ω, c) is smooth in c for a fixed ω and Rj(cj; a−j) is smooth in
cj given a−j for any publisher j. I also impose a regularity condition 0 < h(ω, c) < 1 for
any ω and c.

Based on the best response analysis, we can now formally define the solution to the
static game. A strategy profile a∗ of the game Γ(g) is a Bayesian Nash equilibrium if
for each publisher j, its strategy a∗j is the best response to the strategies a∗

−j of other
publishers.

In general, publisher j’s strategy aj may not be monotone and could be complicated.
I make an additional simplifying assumption that the publisher strategy profile consists
of thresholding strategies, that is, for each publisher j, there exists a c̄j such that

a∗j(cj) = 1(cj ≤ c̄j).

Employing a thresholding strategy means displaying the advertisement to users with
comparatively low opportunity costs. For a given a−j, the corresponding threshold c̄j,

24 This dependency can be micro-founded by the following. The user types include two parts, the
opportunity cost vector c and an unobserved variable ξ, which can be correlated with c. The conversion
rate is a function of ξ. However, since ξ is unobserved, one can only take expectations conditional on c
and identify the function h(ω, c).
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which I also refer to as the marginal user type, satisfies

Rj(c̄j; a−j) = c̄j.

Appendix E presents a set of sufficient conditions on the primitives to ensure that
any Bayesian Nash equilibrium is a thresholding strategy profile. Moreover, recall that
everything here is conditional on user browsing paths, so for users with different browsing
paths, the corresponding thresholds c̄j could be different.

3.2 Advertiser’s Incentive Design Problem

Now I turn to the advertiser’s problem. The advertiser faces an incentive design problem,
effectively determining the incentive scheme g that leads to the highest profit.

Formally, suppose that each conversion results in a conversion value of K. Denote the
possible set of parameters as G, which is detailed shortly. Moreover, denote the Bayesian
Nash equilibria of the game as BNE(Γ(g)). The advertiser’s objective is to maximize the
conversion value net of the compensations.

max
g∈G

K · Ec,Y [Y (a∗)]−
∑J

j=1 Ec,Y [gj(T (a∗), Y (a∗))]

s.t. a∗ ∈ BNE(Γ(g))
(10)

The expectation is taken over both the opportunity cost vector c and the conversion
event Y , since the publishers’ strategies depend on the opportunity cost vector, and the
conversion event is stochastic given the display decisions.

The objective function consists of two parts. In the first part, Ec,Y [Y (a∗)] is the ex-
pected number of conversions. In the second term, Ec,Y [gj(T (a∗), Y (a∗))] is the expected
compensation to publisher j. The distributions of touchpoints T and conversion Y de-
pend on the publishers’ strategy profile a∗, where a∗ is a Bayesian Nash equilibrium of
the game Γ(g).

Recall that one reason for considering the optimization problem (10) is the following.
We would like to optimize the advertiser’s profit over all attribution algorithms. Section
2 shows that an attribution algorithm can be replicated by a static incentive scheme. Let
G be the set of static incentive schemes such that they are the static equivalents of some
attribution algorithms, then we can optimize over incentive schemes in G. It means that
one way to solve (10) is to characterize this set G and solve the optimization problem
under the constraint g ∈ G. Although feasible, this procedure is tedious and does not add
much insight. Instead, I will first solve (10) with a relaxed constraint. I then show that
for the optimal incentive g∗, there exists an attribution algorithm whose static equivalent
is g∗ (see Appendix F). Then, g∗ has to be the optimal solution for (10) as well.

This relaxed constraint is that the compensations are nonnegative and have an upper
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bound M , that is, there is an upper bound M such that 0 ≤ gj(ω, 0) ≤ gj(ω, 1) ≤ M

for all publisher j and touchpoint ω. Moreover, M is set high enough such that any
compensation exceeding M would be considered unprofitable. One can show that G
is a subset of the set G: Proposition 2.1 has shown that the static equivalent satisfies
0 ≤ gj(ω, 0) ≤ gj(ω, 1), and the upper bound can be ensured by regularity conditions on
the attribution algorithms.

Moreover, in the counterfactual analysis in Section 5, some constrained variants of
the optimization problem (10) will be solved and serve as benchmarks. In other words,
the advertiser’s optimization of g is constrained to a subset. Some standard classes of
schemes are as follows:

The class of pay-per-impression schemes encompass g such that for j ∈ ω,

gI
j(ω, y) = bj, (11)

meaning that the advertiser pays bj to publisher j if j displays the advertisement.
The class of pay-per-conversion schemes encompass g such that for j ∈ ω,

gC
j (ω, y) = vj · 1(y = 1), (12)

meaning that the advertiser pays vj to publisher j if j displays the advertisement and
the user converts.

3.3 Characterization of Optimal Scheme

The advertiser’s problem is to design the incentive scheme g in the optimization problem
(10). To characterize the optimal incentive scheme, I first define some properties that
these schemes may have.

Definition 3.1 (Competitive Scheme). Suppose g is an incentive scheme. We say g is
competitive if for every publisher j, touchpoint sequence ω, and conversion indicator y,
it follows that gj(ω, y) = 0 if ω ̸= (j).

A competitive scheme fosters competition by ensuring that publisher j gets compen-
sated only if j is the sole publisher within the sequence of touchpoints. For instance,
if there are two publishers 1 and 2, and when both publisher 1 and publisher 2 display
the advertisement, neither publisher 1 nor publisher 2 receives any compensation, then
the scheme is competitive. However, publisher 1 receives a positive amount when only
publisher 1 displays the advertisement, and similarly does publisher 2. This incentive
scheme is similar to a tournament, in which only the best performer, in this case, the sole
publisher that displays the advertisement, receives a payment (e.g., Lazear and Rosen,
1981; Green and Stokey, 1983; Nalebuff and Stiglitz, 1983). Note that in a competitive
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scheme, a publisher can be compensated even when the user does not convert. In other
words, it does not require that a publisher be compensated if there is a conversion.

Another property is whether a publisher is compensated if the advertisement is dis-
played but results in no conversions. In a per-conversion scheme defined below, publisher
j is compensated only upon conversion.

Definition 3.2 (Per-Conversion Scheme). Suppose g is an incentive scheme. We say g

is per-conversion if for every publisher j and touchpoint sequence ω, gj(ω, 0) = 0.

The characteristics of the optimal scheme hinge upon the primitives. An important
primitive is the properties of joint distribution f(c) of the opportunity costs.

Definition 3.3 (Affiliated Distribution). Suppose f is the probability density function
of a continuous random vector. We say f is affiliated if log f is super-modular.

Broadly, affiliation implies that a higher opportunity cost of a publisher makes a
higher opportunity cost of other publishers more likely (Milgrom and Weber, 1982).

We first consider a simple case. When h(ω, c) ≡ h(ω) is constant for a fixed ω, that
is, there are no selection-on-unobservables issues, the following proposition characterizes
the properties of the optimal scheme.

Proposition 3.1. Suppose h(ω, c) ≡ h(ω) is a constant for a fixed ω. If the opportunity
cost distribution f exhibits affiliation, then the optimal static scheme g∗ is competitive.

The intuition is that, when opportunity costs are affiliated, if a publisher’s opportu-
nity cost is low, other publishers’ opportunity costs are also likely to be low, so it is more
likely that multiple publishers display the advertisement to a user. In other words, when
multiple publishers display the advertisement to a user, it indicates that the opportu-
nity costs are likely to be low, and thus, the advertiser need not pay a high amount to
either publisher for the display. A competitive scheme can then reduce the advertiser’s
expenditure on users with low opportunity costs. Furthermore, a competitive scheme
can create an additional incentive for a publisher to display to a user with a relatively
high opportunity cost, as the opportunity costs for other publishers are likely to be high
for this user, and this display is more likely to lead to a touchpoint sequence that only
involves this publisher.

It is worth mentioning that the characteristics of the optimal scheme hinge upon the
primitives. Utilizing the same proof techniques, one can show the following proposition:
suppose h(ω, c) ≡ h(ω) is a constant for a fixed ω. If log f is sub-modular, then the
optimal static scheme g∗ satisfies gj(ω, y) = 0 if ω does not involve all publishers. Note
that the condition that log f is sub-modular is the opposite of affiliation. It implies
that a higher opportunity cost of a publisher makes a lower opportunity cost of other
publishers more likely. In this case, the form of the optimal scheme is also the opposite

23



of a competitive scheme. It compensates publisher j only if the touchpoint sequence
involves all publishers. This scheme can create an additional incentive for a publisher
to display to a user with a relatively high opportunity cost, as the opportunity costs for
other publishers are likely to be low for this user, and this display is more likely to lead
to a touchpoint sequence that involves all publishers.

We now turn to a more general case when the conversion rate can be correlated with
the opportunity costs.

Proposition 3.2. Suppose the opportunity cost distribution f exhibits affiliation. If
h(ω, c) is nondecreasing in c for any fixed ω and log h(ω, c) is super-modular in (ω,−c),
then optimal scheme g∗ is both competitive and per-conversion.

Compared to Proposition 3.1, Proposition 3.2 imposes two additional conditions:
(i) h(ω, c) is nondecreasing in c for any fixed ω, and (ii) log h(ω, c) is super-modular
in (ω,−c). The two conditions serve different purposes:

Condition (i) leads to the result that the optimal scheme is per-conversion. Intuitively,
condition (i) means that a higher opportunity cost is correlated with a higher conversion
rate for this user. Thus, a per-conversion scheme can create an additional incentive for a
publisher to display to a user with a relatively high opportunity cost, and this display is
more likely to lead to a conversion.

Condition (ii) ensures that the intuition of Proposition 3.1 holds. Specifically, this
condition implies that the ratio of conversion rates h(ω0,c)

h(ω,c)
for ω0 ≡ (j) ⊂ ω is larger for

users with higher opportunity costs. A higher ratio h(ω0,c)
h(ω,c)

means that publisher j’s display
has a relatively large incremental effect compared with other publishers’ display,25 and in
this case, it could be more cost-effective to compensate publisher j only when publisher
j is the sole publisher before a conversion. A competitive per-conversion scheme then
creates an additional incentive for a publisher to display to a user with a relatively
high opportunity cost, which is correlated with both a higher probability of this display
resulting in a touchpoint sequence that involves this publisher and a relatively large
incremental effect of this publisher compared with other publishers’ displays.

Moreover, utilizing the same proof techniques, one can show the following proposition:
suppose the opportunity cost distribution f exhibits affiliation. If h(ω, c) is nonincreasing
in c for any fixed ω, then g∗ is competitive, and for every publisher j and touchpoint
sequence ω, gj(ω, 1) = gj(ω, 0) holds. It implies that under the optimal scheme, publisher
j is compensated solely when only publisher j displays the advertisement, and publisher
j receives no additional compensation if a conversion happens. Intuitively, in this case,
an additional compensation after conversion is ineffective in incentivizing a publisher to
display to a user with a relatively high opportunity cost, as a higher opportunity cost is

25 Another interpretation of a higher ratio h(ω0,c)
h(ω,c) is that the publishers’ displays are less complementary.
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correlated with a lower conversion rate for this user. Thus, the optimal scheme is per-
impression. This additional result is related to the literature on per-impression versus
per-conversion schemes in online advertising. It provides a set of conditions when each
dominates the other in the multi-publisher setting.

To summarize this section, Propositions 3.1 and 3.2 showcase how touchpoint sequence
can be used to manage incentives. The touchpoint sequence gives advertisers additional
information about user primitives so that advertisers can leverage this information to
reduce the exposure to moral hazard.

4 Data and Estimation

The theoretical insights in Sections 2 and 3 prompt an empirical investigation. Specif-
ically, the results reveal that the characteristics of the model primitives play a crucial
role in determining the form of optimal incentives, so it is important to examine these
characteristics from data. Moreover, an empirical analysis can quantify the effectiveness
of the optimal incentives and standard attribution algorithms.

Because of the limitation of observational methods in online advertising, I partner
with an advertiser to conduct an online advertising experiment. I first discuss the exper-
iment design and then provide descriptive analyses. Subsequently, I describe the model
parameterization and proceed to estimation.

4.1 Experiment Design

The experiment is carried out on J = 2 major publishers, indexed by 1 and 2, through an
anonymous advertising exchange. The anonymous advertiser is an online service provider,
which relies on online advertising for customer acquisition. The advertising campaign
spans a 7-day period in 2023. The conversion value K is reported by the advertiser based
on historical estimates. For the sake of desensitization, I conduct a linear transformation
on the conversion value, bids, and opportunity costs, such that K = 10, 000.

In the experiment, I participate in display advertising with randomized per-impression
bids.26 The bidding is governed by the following filtering conditions: (i) users are re-
stricted to a major segment targeted by the advertiser, and (ii) I limit my bids to the
first visits made by each user to either publisher. This condition is to avoid excessively
long or complex touchpoint sequences.

For each impression meeting the filtering criteria, a bid is drawn from a distribution
detailed shortly and is sent to the exchange. Winning an auction will result in the display
of the advertisement and receipt of “bid feedback” from the advertising exchange. This

26 In this experimental setup, I effectively act as a demand-side platform (DSP), which submits bids
on behalf of advertisers in online advertising auctions.
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feedback informs me of the lowest possible bid that could have still won the auction,
which is effectively the publisher’s opportunity cost in the model. Losing an auction
results in no display of the advertisement and no receipt of bid feedback.

The distribution that the bids are drawn from is as follows. With probability 1
2
, a bid

of b̄ = 28 is drawn. The bid is high in that the advertiser deems it unprofitable to acquire
any users with b > b̄.27 Moreover, this high bid almost guarantees an auction win,28

thereby allowing me to observe the advertisement opportunity cost of the publisher. With
probability 1

2
, the bid is drawn uniformly from the range 0 to b̄. This design results in a

positive probability of losing the auction, introducing variations in touchpoint sequences
to identify the conversion rate function h.

After an auction, the user’s subsequent actions are tracked, including visits to the
advertiser’s site and purchases. I define a conversion action as a site visit because of the
scant number of purchases in the data.

I observe only a handful of additional covariates other than the ones I use to filter
users. The set of covariates includes the time of the impression, masked IP address, and
device information. I conduct robustness checks incorporating fixed effects based on these
additional covariates, but the fit does not show considerable improvement. Therefore, in
the main specification, no covariates are included.

4.2 Descriptive Analysis

The data consist of N = 117, 905 multi-homing users.29 Of these users, 56% initiate
their browsing with publisher 1, resulting in a browsing path (1, 2). The remaining users
initiate their browsing with publisher 2, resulting in a browsing path (2, 1).

Figure 1 presents the marginal and joint density functions of opportunity costs for
both publishers. The figure includes only the users for whom the highest bid, b̄, was
made on both publishers and the auctions were won. The axes are log-transformed for
rescaling.

In Figure 1, the top left and bottom right panels represent the smoothed marginal
density function of the opportunity costs for each publisher. The distributions are mildly
left-skewed and exhibit two modes for each, one for low opportunity costs and one for
high opportunity costs.

The bottom left panel portrays a contour plot of the joint density function of the
opportunity costs. The correlation coefficient between the logarithm of the opportunity
costs is approximately 0.24, suggesting a weak-to-medium positive correlation. This result

27 The value of b̄ is the product of the conversion value and the historical conversion rate, implying
that bidding b̄ is estimated to be break-even for the firm.

28 Only around 0.3% of such auctions are lost, and I discard such data points.
29 Users who browse a single publisher have been excluded, as the attribution problem only arises

for multi-homing users. The estimation results and counterfactual ROI should be interpreted as the
corresponding quantities conditional on multi-homing users.
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Figure 1: Marginal and joint density functions of opportunity costs

Note: This figure illustrates the marginal and joint density functions of log-transformed opportunity
costs for both publishers, using data from users where the highest bid was placed on both publishers.
The top-left and bottom-right panels show marginal density functions for log c1 and log c2. The bottom-
left panel displays the joint density function, with a nonparametric regression line (in red) showing
the relationship between log c1 and log c2. The correlation coefficient between log c1 and log c2 is 0.24,
indicating a weak-to-medium positive correlation.
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implies that Proposition 3.2 could potentially be applicable in this context. The red line
indicates a nonparametric fit of log c2 against log c1. The fitted line is roughly linear but
also shows some variation in areas with fewer data points.

To interpret the positive correlation of the opportunity costs, recall that opportunity
costs can be influenced by other advertisers’ bids and users’ satisfaction levels with the
advertisement. First, other advertisers may acquire data from data vendors, allowing
them to identify high-value users and place high bids for them, leading to correlated bids
across publishers. Second, user behavior across different publishers may be consistent. If
users are averse to advertisements and refrain from engaging with them on one publisher,
they are likely to do the same with other publishers. Both reasons could contribute to
the opportunity cost, resulting in a positive correlation.

Touchpoints N Conversion rate

(1, 2) 40,753 0.589%
(1) 10,995 0.209%
(2) 10,968 0.192%
∅ 3,193 0.000%

Total 65,909 0.431%

(a) Users with browsing path (1, 2)

Touchpoints N Conversion rate

(2, 1) 31,619 0.601%
(1) 9,490 0.316%
(2) 8,340 0.269%
∅ 2,547 0.000%

Total 51,996 0.465%

(b) Users with browsing path (2, 1)

Table 1: Conversion rates by touchpoint sequence

Note: This table provides summary statistics of conversion rates by user browsing path and touchpoint
sequence. Touchpoint sequences are coded as follows: (1, 2) and (2, 1) indicate the user saw ads on both
publishers, (1) or (2) indicates the user saw an ad on only publisher 1 or 2, and ∅ indicates the user saw
no ads. Panel (a) includes the users with browsing path (1, 2), meaning they visited publisher 1 and
then publisher 2. Panel (b) includes the users with browsing path (2, 1), meaning they visited publisher
2 and then publisher 1. The last row in each panel gives the statistics for all users with that browsing
path.

Table 1 provides summary statistics of conversion rates. Panel (a) restricts to the
users with browsing path (1, 2), and Panel (b) restricts to the users with browsing path
(2, 1). A majority of the bids are high, resulting in frequent auction wins and touchpoint
sequences with both publishers. For users not shown advertisements by either publisher,
no site visits to the advertiser are observed.

Based on the information in Table 1, the advertisements on both publishers exhibit
a complementary effect. Exposure to advertisements from both publishers leads to a
conversion rate exceeding the sum of conversion rates from exposure to either publisher.
Additionally, the complementarity is stronger for the users with browsing path (1, 2)

compared to the users with browsing path (2, 1).
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4.3 Parameterization

I now describe a parsimonious parameterization for the structural model, to which I will
subsequently fit the collected data. The experiment does not involve any dynamic bid
adjustments, and no dynamic incentives are introduced, which ensures a clean identifica-
tion of the primitive parameters. Specifically, it reduces to a static model, and an auction
is won if and only if my per-impression bid is no less than the opportunity cost.

The dataset can be denoted as {(bi, ci, Ti, Yi)},30 where bi = (bij) represents the vector
of submitted bids, ci = (cij) refers to the vector of publisher opportunity costs, which is
“truncated” in the following sense. When the auction for user i on publisher j is won,
that is, cij ≤ bij, the exact value of cij is observed; however, if the auction is lost, the
exact value of cij is not reported and one can only infer that cij > bij.

I assume the logarithm of the opportunity costs admits a normal distribution. For
publisher j,

log cij = γj + ϵij,

where the error terms

ϵi =

(
ϵi1

ϵi2

)
∼ N


(
0

0

)
,

(
σ2
1 ϱσ1σ2

ϱσ1σ2 σ2
2

)
︸ ︷︷ ︸

=Σ

 .

In this specification, the correlation coefficient ϱ captures the correlation of opportunity
costs across publishers parsimoniously.

As suggested in Section 3, conversion rates could be different conditional on users with
different opportunity costs. To model this dependency, I take a selection model approach
as outlined in Heckman (1979). The conversion rate for a user with touchpoint sequence
ω and opportunity cost vector c is modeled as

Φ−1(h(ω, c)) = αω +
J∑
j=1

λj · ϵj = αω +
J∑
j=1

λj · (log cj − γj),

where Φ is the cumulative distribution function of a standard normal variable.31 In this
equation, the intercept α varies across different touchpoint sequences ω, while λ captures
the dependency of the conversion rate on the opportunity costs.

Regarding the estimation procedure, I utilize the Maximum Likelihood Estimation
(MLE) approach. Denoting the parameters as Θ = (γ,Σ, α, λ), the likelihood function

30 Recall that everything is conditional on the user browsing path Hi, and I omit it to simplify notation.
31 This formulation is a probit model in essence. In a probit model, the standard normality assumption

is essential for addressing the identification problem. Specifically, without this assumption, the location
and scale parameters of the normal variable become unidentifiable.
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can be expressed as follows:
In cases where both publishers display the advertisement to user i, hence ci is observed,

the likelihood is given as

ℓi(Θ) = ϕ(log ci − γ,Σ) ·
(
ρYii · (1− ρi)

1−Yi
)
,

where ϕ(x,Σ) is the density function of a multivariate normal random vector with mean
0 and covariance Σ, evaluated at x, and ρi = h(Ti, ci; Θ) represents the likelihood of
conversion given Ti and ci.

If only publisher j but not publisher −j displays the advertisement to user i, we
observe cij but not ci,−j, so one has to integrate ci,−j out to obtain the likelihood. Recall
that the bids are on a per-impression basis, so an advertisement is displayed by publisher
j if and only if bij ≥ cij. Thus, we need to integrate ci,−j over where ci,−j > bi,−j, yielding

ℓi(Θ) =

∫
ci,−j>bi,−j

ϕ(log ci − γ,Σ) ·
(
ρYii · (1− ρi)

1−Yi
)
dci,−j.

In instances where neither publisher displays the advertisement to user i, the vector
ci remains unobserved. As in the previous scenario, we need to integrate the vector ci
over where ci ≥ bi, leading to

ℓi(Θ) =

∫
ci≥bi

ϕ(log ci − γ,Σ) ·
(
ρYii · (1− ρi)

1−Yi
)
dci =

∫
ci≥bi

ϕ(log ci − γ,Σ) dci.

The last equality holds since ρi = 0 in this case, considering that there is no conver-
sion observed where neither publisher displays the advertisement. Then, I proceed with
standard MLE methodologies to derive the estimates and their standard errors.

4.4 Estimation Results

Table 2 presents the parameter estimates. For users with different browsing paths, namely
(1, 2) and (2, 1), the parameters are estimated separately. For the users with both brows-
ing paths, we see that the correlation coefficient ϱ between the logarithms of the oppor-
tunity costs are both statistically significant from 0, implying the opportunity cost vector
is affiliated. This result indicates that Proposition 3.2 may apply to the estimated model.
To invoke the proposition, it remains to be validated that the shape of the conversion
rate function h satisfies the condition in Proposition 3.2.

Recall that the coefficient λ captures the potential dependency of conversion rates on
the opportunity costs. A statistically significant λ indicates selections on unobservables,
that is, the publishers use the opportunity costs c to select which users to display the
advertisement to, and the opportunity costs are correlated with the users’ subsequent
conversion actions.
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Browsing path

Parameter (1, 2) (2, 1)

γ1 2.352∗∗∗ 2.306∗∗∗

(0.003) (0.003)

γ2 2.332∗∗∗ 2.428∗∗∗

(0.003) (0.003)

σ1 0.667∗∗∗ 0.687∗∗∗

(0.002) (0.002)

σ2 0.711∗∗∗ 0.691∗∗∗

(0.002) (0.002)

ϱ 0.240∗∗∗ 0.230∗∗∗

(0.004) (0.005)

α(1,2) −2.511∗∗∗ /
(0.023)

α(2,1) / −2.508∗∗∗

(0.029)

α1 −2.882∗∗∗ −2.754∗∗∗

(0.067) (0.063)

α2 −2.911∗∗∗ −2.779∗∗∗

(0.070) (0.070)

λ1 0.054 −0.019
(0.035) (0.035)

λ2 0.043 0.068∗

(0.032) (0.037)

N 65,909 51,996

Table 2: Parameter estimates

Note: This table presents parameter estimates from the structural model. Standard errors are in paren-
theses. The model is estimated separately for users with different browsing paths. The first column
displays the estimates for the users with browsing path (1, 2), and the second column displays the es-
timates for the users with browsing path (2, 1). Parameters are defined as follows: γj is the mean of
log opportunity costs for publisher j; σj is the standard deviation of log opportunity costs for publisher
j; ϱ is the correlation coefficient between log opportunity costs; αω is the intercept for conversion rate
function for touchpoint sequence ω; λj captures the dependency of conversion rate on opportunity costs
for publisher j. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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For users with browsing path (1, 2), neither λ1 nor λ2 differ significantly from zero.
However, for clients with browsing path (2, 1), λ2 is significantly and positively different
from zero, suggesting a selection-on-unobservables problem, implying that the users with
a higher opportunity cost at publisher 2 have higher conversion rates. In both cases, the
conditions of Proposition 3.2 are fulfilled, indicating the optimal scheme is competitive.

5 Counterfactual Analysis

In the counterfactual analysis, I utilize the parameter estimates obtained in Section 4,
assuming them as true values, and simulate the ensuing profits. Various incentive schemes
are considered, as outlined:

1. Pay-per-impression defined by (11). I optimize over the set of parameters (bj).

2. Pay-per-conversion defined by (12). I optimize over the set of parameters (vj).

3. Last-touch attribution defined by (7), with χLT(j, ω) = 1(j = last(ω)). There are
two sets of free parameters ((1− ηj) · b∗j) and (ηj · v∗j ), and I optimize over all such
possible parameters.

4. First-touch attribution defined by (7), with χFT(j, ω) = 1(j = first(ω)). I optimize
over the set of parameters ((1− ηj) · b∗j) and (ηj · v∗j ).

5. Linear attribution defined by (7), with χL(j, ω) =
1

|ω|
. I optimize over the set of

parameters ((1− ηj) · b∗j) and (ηj · v∗j ).

6. Causal attribution defined by (8). I optimize over the set of parameters ((1−ηj)·b∗j),
(ηj · v∗j ), and (ρω), with the constraints that conversion rates (ρω) are consistent
with the corresponding conversion rates in the equilibrium.

7. Shapley attribution defined by (9). I optimize over the set of parameters ((1−ηj)·b∗j),
(ηj · v∗j ), (ρω) and (φ(j, ω)), with the constraints that conversion rates (ρω) and
Shapley values (φ(j, ω)) are consistent with the corresponding quantities in the
equilibrium.

8. Optimal strategy. As proposed in Proposition 3.2, the optimal incentive scheme is
per-conversion and competitive, so the free parameters are (gj(j, 1)) and I optimize
over them.

In practice, advertisers typically operate under a fixed advertising budget. Thus, I
impose an upper bound on the budget in the stationary state.32 As such, the optimization

32 This constraint does not mean that the advertising expenditure is fixed. Instead, the advertising
expenditure can vary over time when the publishers do not take the equilibrium actions.
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problem (10) is resolved with a budget constraint

J∑
j=1

E [gj(T (a∗), Y (a∗))] ≤ B,

where B ≈ 16.31 is derived from the advertiser’s budget. This budget constraint allows a
direct comparison of returns on investment (ROI), given that ROI equals profit divided
by budget.

Furthermore, I set δ = 1 for each publisher j. The reason is that advertisement
auctions are held frequently in practice, which results in discount factors that approximate
1.

109.36%
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Figure 2: Return on investment (ROI) under different incentive schemes

Note: This figure compares the ROI under different incentive schemes, expressed as percentages. The
incentive schemes include pay-per-impression (advertisers pay for each ad impression), pay-per-conversion
(advertisers pay only when a user converts), last-touch (attributes conversion to the last publisher in the
touchpoint sequence), first-touch (attributes conversion to the first publisher in the touchpoint sequence),
linear (attributes conversion equally to all publishers in the touchpoint sequence), causal (attributes
conversion based on estimated causal effects), Shapley (attributes conversion using Shapley values), and
the optimal incentive scheme. The height of each bar represents the ROI.

Figure 2 plots the counterfactual ROI under different incentive schemes. One can
group the ROIs into three distinct levels. The lowest ROI level consists of the pay-per-
impression scheme, the pay-per-conversion scheme, the linear attribution algorithm, the
causal attribution algorithm, and the Shapley attribution algorithm. These methods
share a common feature in that they are multi-touch attribution algorithms, where all
publishers involved in a touchpoint sequence are credited or compensated. This form of
incentives can be contrasted with the optimal incentive scheme on the highest ROI level,
where a publisher is compensated only when the touchpoint sequence involves solely itself.
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The last-touch and first-touch attribution algorithms, which exist in the medium ROI
tier, bridge the two types of strategies. These two algorithms are single-touch attribution
algorithms such that when a touchpoint sequence involves multiple publishers, exactly one
publisher gets the credit, contrasting with the multi-touch approach where all involved
publishers get credit or the optimal scheme where none does.

In summary, the counterfactual analysis reveals the profit advantages of the optimal
incentive scheme. Also, the single-touch approaches outperform the multi-touch ones,
the intuition being that the former creates incentives that align better with the optimal
incentives.

6 Summary

This paper studies the strategic implications of online advertisers adopting attribution
algorithms. I develop a dynamic model capturing the interactions between advertisers
and publishers and show how attribution algorithms create dynamic incentives for pub-
lishers. These incentives resemble pay-per-action mechanisms with contingent actions
based on the advertisement impression sequence and conversion outcome. Moreover, I
characterize the advertiser’s optimal strategy. Counterfactual simulations demonstrate
that the optimal strategy increases the advertiser’s ROI on the order of 20–40% compared
to standard attribution algorithms. Furthermore, the findings indicate that single-touch
attribution algorithms could yield higher profits than multi-touch attribution algorithms.

The results of this study have important implications for advertisers. It highlights
the crucial role of dynamic incentives in attribution design. Failing to account for these
incentives could potentially lead to suboptimal bidding strategies and lower ROI. By care-
fully designing incentives, advertisers can align publisher behavior with their objectives,
leading to more effective advertising strategies.

While this study provides valuable insights, it is important to acknowledge its limita-
tions. As discussed in Sections 2 and 3, the model makes several simplifying assumptions
regarding user browsing behavior, which could be relaxed in future research.

In conclusion, this paper contributes to the growing literature on the economics of AI
by examining the strategic implications of attribution algorithms. The findings under-
score the importance of considering dynamic incentives in attribution design and provide
actionable insights for advertisers seeking to optimize their advertising performance. As
the online advertising industry continues to evolve, a deeper understanding of the inter-
play between measurement and incentives will be crucial for developing effective strategies
and fostering a healthy ecosystem for all stakeholders.
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A Institutional Background

In this appendix, I provide additional information regarding the institutional background
of online display advertising.

Real-time bidding (RTB) is one of the most prevalent ways for advertisers to buy
advertisement impressions. Unlike traditional advertising, where advertisement slots are
bought in bulk, RTB enables advertisers to bid for individual impressions in real-time.
Auctions often wrap up in just milliseconds.

A salient feature in RTB is “header bidding.” When a user visits a publisher’s website,
header bidding solicits bids from various demand sources and allows multiple demand
sources to bid simultaneously. This simultaneous bidding typically occurs in the code
located within a web page’s header, which is how the term was coined.33

In the next subsections, I provide more information regarding the advertisers’ bid-
ding rules, the publishers’ control over advertisement display, and the pay-per-action
mechanisms with contingent conversion actions.

A.1 A Simple Bidding Model

Advertisers typically participate in first-price, per-impression auctions, where the auction
winner pays their bid amount if the publisher displays the advertisement. To determine
the optimal bid, advertisers often rely on heuristic models that estimate the expected
profits attributed to each display.

Let b be the advertiser’s per-impression bid and W (b) be the win rate as a function
of the bid. The advertiser’s estimated incremental conversion rate is denoted as r, and
the value of a conversion is denoted as K. The expected profits attributed to a single ad
display can be expressed as

(K · r − b) ·W (b).

This heuristic model can be seen as an approximation of the optimization problem
(10) in Section 3.2, which involves incentive schemes for all J publishers. The heuristic
model decomposes the problem into J separate heuristic models, one for each publisher,
with the advertiser maximizing the expected attributed profits with respect to the bid b
for each publisher.

Under regularity conditions, the optimal bid b∗ is an increasing function of the esti-
mated conversion rate r, that is, b∗ = ψ(r). When W (b) has constant elasticity, ψ(r) is
a linear function. In practice, this linear bidding rule is known as target CPA bidding,

33 As technological advancements continue to shape the industry, the methods of header bidding have
evolved. Traditional methods, known as client-side header bidding, directly involve the user’s browser.
However, there is a growing trend towards server-side header bidding. In this model, bidding is delegated
to a server, which can more efficiently manage multiple bid requests and responses. This server-side
approach is gaining popularity because of its ability to minimize latency for the user and the server’s
enhanced capacity to run sophisticated yield optimization algorithms.
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where the bid is a linear function of the advertising effectiveness measure. This simple
bidding model provides a micro-foundation for the bidding rules observed in the industry.

A.2 Publisher Advertisement Display Decisions

The rise of header bidding has significantly impacted the role of publishers in the adver-
tising ecosystem. Publishers have significant discretion in determining which advertise-
ments to display to users. During header bidding, publishers receive bids from multiple
demand sources but do not necessarily select the highest bidder. Instead, they employ
sophisticated yield optimization algorithms to maximize their long-term revenue.

These algorithms consider a wide range of factors when making advertisement dis-
play decisions, including (i) advertiser characteristics: historical performance, reputation,
and relationship with the publisher; (ii) advertisement attributes: content, format, and
user engagement potential; (iii) contextual factors: page content, time of day, and other
environmental factors; and (iv) user-specific data: browsing history, demographics, and
personal attributes.

To account for these factors, publishers apply “modifiers” to the received bids. These
modifiers, which can be additive or multiplicative, adjust the raw bid values based on the
factors. The bids are then ranked according to the adjusted values rather than the raw
bid amounts.

This procedure allows publishers to exploit their informational advantage and target
advertisements to specific users in ways that maximize their own benefits. Such strategic
behavior may not always be the result of deliberate manipulation but can naturally arise
from the use of yield optimization algorithms designed to maximize long-term revenue.

The flexibility that publishers have in determining which advertisements to display,
combined with their access to granular user data, could create potential moral hazard
issues.

A.3 Pay-per-action with Contingent Conversion Actions

Pay-per-action (PPA) mechanisms provide advertisers with the flexibility to define de-
sired user actions, such as site visits or purchases, as conversion actions and place bids
accordingly. Under a PPA mechanism, the advertiser only pays the publisher when a
conversion action is completed.

Importantly, the PPA mechanism allows for the design of sophisticated bidding strate-
gies without requiring market power or monopoly power. Advertisers can define conver-
sion actions based on a user’s touchpoint sequence. For example, upon a user’s purchase,
the advertiser can verify whether the user’s preceding sequence of touchpoints involves
only a single publisher or multiple publishers. This mechanism enables the advertiser to
compensate publishers differently in each scenario, creating an incentive scheme.
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To implement PPA mechanisms with contingent actions, the advertiser defines con-
version actions over all possible combinations of touchpoints ω and conversion outcomes
y. Denote gj(ω, y) as the payment to publisher j when the touchpoint is ω and the con-
version outcome is y, then the advertiser can implement this compensation scheme by
bidding gj(ω, y) on publisher j for all possible (ω, y) tuples.

This flexibility in defining conversion actions and adjusting bids based on touchpoint
sequences allows advertisers to create incentive schemes that align with their objectives
and mitigate potential moral hazard issues arising from publishers’ strategic behavior.

B Extensions

B.1 Multiple Advertisers

In this appendix, I consider an extension that relaxes the assumption that there is a single
advertiser and other advertisers’ actions are held constant. I then show similar strategic
effects of the publishers as in Section 2.

The game consists of K advertisers and J publishers. As in the main text, everything
is conditional on all publicly observed user characteristics, in other words, the model
considered here is conditional on a specific user segment. Every advertiser can bid on
every publisher.34 In the model setup, I will emphasize more on the difference between
the model presented here and in the main text.

In the stage game, advertiser k submits a per-impression bid b(k)j to publisher j. Then
users arrive, where user i has a browsing history Hi, and there is a cost ξ(k)ij if publisher j
displays advertiser k’s advertisement to user i. This cost captures the potential negative
impact on the publisher’s reputation caused by a low-quality advertisement. The value
of displaying no advertisements is normalized to zero.

In the stage game, after the publishers make the display decisions, the touchpoint
sequence T (k)

i and conversion outcome Y (k)
i are realized. If publisher j displays advertiser

k’s advertisement to user i, publisher j will appear in the sequence T (k)
i and receive a

payment b(k)j at the end of the period. I assume that for a given user, whether this user
converts on advertiser k does not depend on the touchpoint sequence of other advertis-
ers. This assumption is closer to the settings where the advertisers are from different
industries, instead of competing in the same industry. It could be interesting to consider
scenarios where displaying one advertiser’s advertisement will negatively affect other ad-
vertisers’ conversion outcomes, but this is beyond the scope of this paper.

The dynamic game G is an infinite repetition of the stage game among the publishers,
with δ as the common discount factor. Denote the advertisers’ bid vector in period t as

34 In the real world, some advertisers do not advertise on some publishers, which is captured in this
model by the advertiser submitting sufficiently low bids to these publishers.
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b(t), with b
(kt)
j being advertiser k’s bid for publisher j. At the beginning of the game,

the K advertisers simultaneously set their respective bids and attribution algorithms.
In period t, the stage game is played. Each publisher makes the advertisement display
decisions, then the touchpoint sequence and conversions are realized and the payments are
received accordingly. Then, advertiser k observes π(kt), the distribution of user touchpoint
sequences and conversion outcomes. Denote Ψ(k) as advertiser k’s algorithm, which takes
b(t) and π(t) as inputs, that is,

b(k,t+1) = Ψ(k)(b(kt), π(kt)).

The game is denoted as G(Ψ), where Ψ = (Ψ(k)) is the set of the advertisers’ bidding
rules.

Now drop the time superscript to simplify the notation. In each period, publisher
j’s decision rule can be denoted as aj = (a

(k)
ij ), where a(k)ij is the indicator of whether

publisher i display advertiser k’s advertisement to user i, then it satisfies the constraint
that for all i, j,

K∑
k=1

a
(k)
ij ≤ 1.

The oblivious equilibrium of the game can be defined similarly as in Section 2.4.
Analogously, the state variable for publisher j is the vector of bids submitted by all
advertisers, bj = (b

(k)
j ), and the corresponding Bellman equation is

Vj(bj) = max
aj

K∑
k=1

∫ 1

0

a
(k)
ij (b

(k)
j − ξ

(k)
ij ) di+ δ · Vj(b′

j),

s.t.
∑K

k=1 a
(k)
ij ≤ 1,∀i, j.

Moreover, the next period’s bid vector b′
j is determined by the algorithms Ψ(k)’s. Denote

the state-action value function

Qj(bj, aj) ≡
K∑
k=1

∫
a
(k)
ij (b

(k)
j − ξ

(k)
ij ) di+ δ · Vj(b′

j),

then the best-response display strategy a∗j satisfies

a
(k)∗
ij = 1

(
∂Qj

∂a
(k)
ij

≥ 0,
∂Qj

∂a
(k)
ij

≥ ∂Qj

∂a
(k′)
ij

, ∀k′ ̸= k

)
,

that is, when deciding which advertisement to show, publisher j will display advertiser
k’s advertisement if displaying it is profitable in term of long-term value ( ∂Qj

∂a
(k)
ij

≥ 0) and

the impact on the long-term value is highest among all advertisers.
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The extended static game can also defined similarly as in Section 2.4. Specifically, let
g̃ = (g̃(k)) be the set of incentive schemes utilized by each of the advertisers. A similar
static equivalence result can then be shown below.

Proposition B.1. Suppose Ψ is a set of bidding rules such that for each advertiser k
and publisher j, Ψ(k)

j is homogeneous of degree 0 in π
(k)
j . Let (a∗, b∗) denote an oblivious

equilibrium of the dynamic game G(Ψ), and a∗|b∗ denote the publishers’ strategy profile
when the vector of bids is b∗. Then there exists an set of incentive scheme g̃ such that:

1. The strategy profile a∗|b∗ is a Bayesian Nash equilibrium of the static game Γ(g̃).

2. The equilibrium payoffs of the advertiser and the publishers under a∗|b∗ in the static
game Γ(g̃) equal their equilibrium payoffs under (a∗, b∗) in the dynamic game G(Ψ).

This proposition means that, the dynamic incentives can also be replicated by static
contract-like incentives in this model extension.

One may be interested in whether and how the results in Section 3 generalize to this
extension. First, note that the model considered here can be seen as micro-founding the
opportunity cost in the main model. The model in the main text assumes that for a focal
advertiser k, there is an opportunity cost c(k)ij of displaying the advertisement. It can be
shown that

c
(k)
ij = ξ

(k)
ij +max

{
0,max

k′ ̸=k
{b(k

′)∗
j − ξ

(k′)
ij }

}
,

where b(k
′)∗

j is the stationary bid that advertiser k submits to publisher j in the equilib-
rium.

Then, the analysis in Section 3 can be seen as a best-response analysis of a focal
advertiser, holding constant other advertisers’ actions. If some conditions regarding the
primitives ensure that for each advertiser k, the opportunity costs (c

(k)
ij ) are always af-

filiated across the publishers, one could use Proposition 3.2 to show that all advertisers
adopt per-conversion and competitive incentive schemes in the equilibrium.35 Investigat-
ing such conditions regarding the primitives is beyond the scope of the paper but could
be an interesting future direction.

C Proofs

C.1 Proof of Proposition 2.1

The key to the proof is to evaluate
∂Qj

∂aij
. To simplify notation, every quantity below

is conditional on publisher j’s observed information, the user browsing history H and
35 Note that appropriate assumptions on the conversion rate function are needed as well.
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opportunity cost cj. By the chain rule of differentiation,

∂Qj

∂aij
= (b∗j − cij) + δ ·

∂Vj(ψj(b
∗
j , rj))

∂aij
= (b∗j − cij) + δ · V ′

j (b
∗
j) ·

∂ψj(b
∗
j , rj)

∂aij
.

Given that rj depends on πj, a vector consisting of πω,y with j ∈ ω, we have

∂ψj(b
∗
j , rj)

∂aij
=

(
∂ψj(b

∗
j , rj)

∂πj

)T(
∂πj
∂aij

)
=

∑
(ω,y):j∈ω

∂ψj(b
∗
j , rj)

∂πω,y
· ∂πω,y
∂aij

.

For j ∈ ω, we have

πω,y = P(T = ω, Y = y) =

∫
aij · 1(Ti(1, a∗

i,−j) = ω, Yi(1, a∗
i,−j) = y) di,

which leads to
∂πω,y
∂aij

= 1(Ti(1, a∗
i,−j) = ω, Yi(1, a∗

i,−j) = y).

Additionally, since ∑
(ω,y):j∈ω

1(Ti(1, a∗
i,−j) = ω, Yi(1, a∗

i,−j) = y) = 1,

we can obtain

∂Qj

∂aij

=(b∗j − cij) + δ · V ′
j (b

∗
j) ·

∑
(ω,y):j∈ω

∂ψj(b
∗
j , rj)

∂πω,y
· 1(Ti(1, a∗

i,−j) = ω, Yi(1, a∗
i,−j) = y)

=− cij +
∑

(ω,y):j∈ω

(
b∗j + δ · V ′

j (b
∗
j) ·

∂ψj(b
∗
j , rj)

∂πω,y

)
· 1(Ti(1, a∗

i,−j) = ω, Yi(1, a∗
i,−j) = y).

This means that the incentive in this dynamic scheme equals a static scheme g̃ defined
as

g̃j(ω, y) = b∗j + δ · V ′
j (b

∗
j) ·

∂ψj(b
∗
j , rj)

∂πω,y
. (13)

Denote publisher j’s equilibrium display strategy under the stationary bid b∗j in the
dynamic model as a∗j |b∗j , then since the incentives are the same in a statics game under
scheme g̃, a∗j |b∗j is also the best response to a∗−j|b−j

in the static game. Thus, the first part
of the proposition holds.

To show the second part of the proposition, it suffices to show that for each publisher,
the advertising expenditures are the same under both the static scheme g and the dynamic
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scheme g̃. That is, it is sufficient to show that for each publisher j,

E[gj(T (a∗|b∗), Y (a∗|b∗))] = E[g̃j(T (a∗|b∗), Y (a∗|b∗))].

Since
E[gj(T (a∗|b∗), Y (a∗|b∗))] =

∫
aij · b∗j di,

and

E[g̃j(T (a∗|b∗), Y (a∗|b∗))]

=

∫
aij ·

∑
(ω,y):j∈ω

(
b∗j + δ · V ′

j (b
∗
j) ·

∂ψj(b
∗
j , rj)

∂πω,y

)
· 1(Ti(1, a∗

i,−j) = ω, Yi(1, a∗
i,−j) = y) di,

the difference amounts to

E[g̃j(T (a∗|b), Y (a∗|b))]− E[gj(T (a∗|b), Y (a∗|b))]

= δ · V ′
j (b

∗
j) ·

∑
(ω,y):j∈ω

∂ψj(b
∗
j , rj)

∂πω,y
·
∫
aij · 1(Ti(1, a∗

i,−j) = ω, Yi(1, a∗
i,−j) = y) di

= δ · V ′
j (b

∗
j) ·

∑
(ω,y):j∈ω

∂ψj(b
∗
j , rj)

∂πω,y
· πω,y.

Recall that we assume rj is homogeneous of degree 0 in πω,y’s, which implies that ψj(b∗j , rj)
is also homogeneous of degree 0 in πω,y’s. By Euler’s homogeneous function theorem, it
follows that ∑

(ω,y):j∈ω

∂ψj(b
∗
j , rj)

∂πω,y
· πω,y = 0,

which then gives us

E[gj(T (a∗|b∗), Y (a∗|b∗))] = E[g̃j(T (a∗|b∗), Y (a∗|b∗))].

Finally, we need to show that g̃j(ω, y) ≥ 0 and g̃j(ω, 1) ≥ g̃j(ω, 0) for any ω such that
j ∈ ω. By stationarity, ψj(b∗j , rj) = b∗j , then applying the envelop theorem to (5) yields

V ′
j (b

∗
j) =

∫
a∗ij di+ δ · V ′

j (b
∗
j) ·

∂ψj(b
∗
j , rj)

∂bj
,

so

V ′
j (b

∗
j) =

∫
a∗ij di

1− δ · ∂ψj(b∗j ,rj)

∂bj

=

∑
ω:j∈ω πω

1− δ · ∂ψj(b∗j ,rj)

∂bj

. (14)

Also, recalling the assumption that
∂ψj(b

∗
j , rj)

∂bj
≤ 1 and −

∂ψj(b
∗
j , rj)

∂πω,y
·
∑

ω:j∈ω πω

ψj(b∗j , rj)
≤
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1−
∂ψj(b

∗
j , rj)

∂bj
, we can deduce

g̃j(ω, y)

≥ b∗j − δ ·
∑

ω:j∈ω πω

1− δ · ∂ψj(b∗j ,rj)

∂bj

·
b∗j∑

ω:j∈ω πω

(
1−

∂ψj(b
∗
j , rj)

∂bj

)

=

1− δ ·
1− ∂ψj(b

∗
j ,rj)

∂bj

1− δ · ∂ψj(b∗j ,rj)

∂bj

 b∗j

≥ 0.

Also,

g̃j(ω, 1)− g̃j(ω, 0) = δ · V ′
j (b

∗
j) ·

∂ψj(b
∗
j , rj)

∂rj
·
(
∂rj
∂πω,1

− ∂rj
∂πω,0

)
.

Since V ′
j (b

∗
j) ≥ 0, and by the assumptions,

∂ψj(b
∗
j , rj)

∂rj
≥ 0 and

∂rj
∂πω,1

≥ ∂rj
∂πω,0

, so we have

g̃j(ω, 1)− g̃j(ω, 0) ≥ 0.

C.2 Proof of Proposition 2.2

According to (13) and (14), it suffices to evaluate
∂ψj(b

∗
j , r

RB
j )

∂πω,y
. By the chain rule,

∂ψj(b
∗
j , r

RB
j )

∂πω,y
=
∂ψj(b

∗
j , r

RB
j )

∂rj
·
∂rRB

j

∂πω,y
,

and according to (2),

∂rRB
j

∂πω,y
=


χ(j,ω)−rRB

j∑
ω:j∈ω πω

, y = 1

−rRB
j∑

ω:j∈ω πω
, y = 0

.

Plugging this equation and (14) into (13) yields

g̃RB
j (ω, y)

= b∗j + δ · V ′
j (b

∗
j) ·

∂ψj(b
∗
j , r

RB
j )

∂πω,y

= b∗j + δ ·
∑

ω:j∈ω πω

1− δ · ∂ψj(b∗j ,r
RB
j )

∂bj

·
∂ψj(b

∗
j , r

RB
j )

∂rj
·
χ(j, ω) · 1(y = 1)− rRB

j∑
ω:j∈ω πω

= b∗j + δ ·

(
1− δ ·

∂ψj(b
∗
j , r

RB
j )

∂bj

)−1

·
∂ψj(b

∗
j , r

RB
j )

∂rj
·
(
χ(j, ω) · 1(y = 1)− rRB

j

)
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= b∗j + δ ·

(
1− δ ·

∂ψj(b
∗
j , r

RB
j )

∂bj

)−1

·
∂ψj(b

∗
j , r

RB
j )

∂rj
·
rRB
j

b∗j︸ ︷︷ ︸
=ηj

·

 b∗j
rRB
j︸︷︷︸
=v∗j

·χ(j, ω) · 1(y = 1)− b∗j


= b∗j + ηj · (v∗j · χ(j, ω) · 1(y = 1)− b∗j)

= (1− ηj) · b∗j + ηj · v∗j · χ(j, ω) · 1(y = 1).

C.3 Proof of Proposition 2.3

Analogous to the proof of Proposition 2.2, it suffices to evaluate
∂rC

j

∂πω,y
. According to (3),

∂rC
j

∂πω,y
=


1−ρω\{j}−rCj∑

ω:j∈ω πω
, y = 1

−ρω\{j}−rCj∑
ω:j∈ω πω

, y = 0
.

Then we have

g̃C
j (ω, y)

= b∗j + δ · V ′
j (b

∗
j) ·

∂ψj(b
∗
j , r

C
j )

∂πω,y

= b∗j + δ ·
∑

ω:j∈ω πω

1− δ · ∂ψj(b∗j ,r
C
j )

∂bj

·
∂ψj(b

∗
j , r

C
j )

∂rj
·
1(y = 1)− ρω\{j} − rC

j∑
ω:j∈ω πω

= b∗j + δ ·

(
1− δ ·

∂ψj(b
∗
j , r

C
j )

∂bj

)−1

·
∂ψj(b

∗
j , r

C
j )

∂rj
·
(
1(y = 1)− ρω\{j} − rC

j

)

= b∗j + δ ·

(
1− δ ·

∂ψj(b
∗
j , r

C
j )

∂bj

)−1

·
∂ψj(b

∗
j , r

C
j )

∂rj
·
rC
j

b∗j︸ ︷︷ ︸
=ηj

·

 b∗j
rC
j︸︷︷︸

=v∗j

·(1(y = 1)− ρω\{j})− b∗j


= b∗j + ηj · (v∗j · (1(y = 1)− ρω\{j})− b∗j)

= (1− ηj) · b∗j + ηj · v∗j · (1(y = 1)− ρω\{j}).

C.4 Proof of Proposition 2.4

Analogous to the proof of Proposition 2.2, it suffices to evaluate
∂rS

j

∂πω,y
. According to (4),

∂rS
j

∂πω,y
=

∑
ω̃:j∈ω̃

∂φ(j,ω̃)
∂πω,y

· πω̃ + φ(j, ω)− rS
j∑

ω:j∈ω πω
.
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Since
φ(j, ω̃) =

∑
ω′:j∈ω′⊆ω̃

(|ω′|−1)! (|ω̃|−|ω′|)!
|ω̃|!

· (ρω′ − ρω′\{j}),

for ω̃ such that ω ⊆ ω̃ holds,

∂φ(j, ω̃)

∂πω,y
=

(|ω|−1)! (|ω̃|−|ω|)!
|ω̃|!

· ∂ρω
∂πω,y

=


(|ω|−1)!(|ω̃|−|ω|)!

|ω̃|! · 1−ρω
πω

, y = 1

(|ω|−1)!(|ω̃|−|ω|)!
|ω̃|! · −ρω

πω
, y = 0

,

while for ω̃ such that ω ⊆ ω̃ does not hold,
∂φ(j, ω̃)

∂πω,y
= 0. Thus, we have

∂rS
j

∂πω,y
=


ζj(ω)·(1−ρω)+φ(j,ω)−rSj∑

ω:j∈ω πω
, y = 1

−ζj(ω)·ρω+φ(j,ω)−rSj∑
ω:j∈ω πω

, y = 0
,

where
ζj(ω) =

∑
ω̃:ω⊆ω̃

(|ω|−1)! (|ω̃|−|ω|)!
|ω̃|!

· πω̃
πω
.

Then we have

g̃S
j (ω, y)

= b∗j + δ · V ′
j (b

∗
j) ·

∂ψj(b
∗
j , r

S
j )

∂πω,y

= b∗j + δ ·
∑

ω:j∈ω πω

1− δ · ∂ψj(b∗j ,r
S
j )

∂bj

·
∂ψj(b

∗
j , r

S
j )

∂rj
·
(ζj(ω) · (1(y = 1)− ρω) + φ(j, ω))− rS

j∑
ω:j∈ω πω

= b∗j + δ ·

(
1− δ ·

∂ψj(b
∗
j , r

S
j )

∂bj

)−1

·
∂ψj(b

∗
j , r

S
j )

∂rj
·
(
(ζj(ω) · (1(y = 1)− ρω) + φ(j, ω))− rS

j

)

= b∗j + δ ·

(
1− δ ·

∂ψj(b
∗
j , r

S
j )

∂bj

)−1

·
∂ψj(b

∗
j , r

S
j )

∂rj
·
rS
j

b∗j︸ ︷︷ ︸
=ηj

·

 b∗j
rS
j︸︷︷︸

=v∗j

· (ζj(ω) · (1(y = 1)− ρω) + φ(j, ω))− b∗j


= b∗j + ηj · (v∗j · (ζj(ω) · (1(y = 1)− ρω) + φ(j, ω))− b∗j)

= (1− ηj) · b∗j + ηj · v∗j · (ζj(ω) · (1(y = 1)− ρω) + φ(j, ω)) .

C.5 Proof of Propositions 3.1 and 3.2

I first prove Proposition 3.1. Proposition 3.2 is essentially an extension of Proposition
3.1 in scenarios where the conversion rate is a function of the opportunity costs, so I
elucidate how the techniques are adapted to prove Proposition 3.2.
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C.5.1 Proof of Proposition 3.1

Suppose the opportunity cost distribution f exhibit affiliation. The goal is to show that
the optimal scheme g is competitive. The proof proceeds by contradiction. Specifically,
suppose that for publisher j, touchpoint sequence ω such that ω0 ≡ (j) ⊂ ω, and con-
version indicator y, gj(ω, y) > 0 holds, then it is possible to construct a scheme ḡ that
yields a higher payoff for the advertiser.

Before constructing ḡ, here I define some notations. For publisher k, denote c̄k as the
marginal user type in equilibrium under scheme g, which satisfies

Rk(c̄k; c̄−k) = c̄k. (15)

In this equation, Rk(c̄k; c̄−k) is the expected revenue of publisher k for user type c̄k when
the incentive scheme is g and other publishers’ marginal user types are c̄−k. Also, denote
p(ω, y|cj) as the conditional probability for a user with opportunity cost cj for publisher
j to have touchpoint sequence ω and conversion indicator y.

The scheme ḡ is constructed as follows:

1. For publisher j, touchpoint sequence ω0, and conversion indicator y, set

ḡj(ω0, y) =
gj(ω0, y) · p(ω0, y|c̄j) + gj(ω, y) · p(ω, y|c̄j)

p(ω0, y|c̄j)
,

and set ḡj(ω, y) = 0. That is, compared with the scheme g, ḡ shifts the compensa-
tion to publisher j from the case (ω, y) to the case (ω0, y).36

2. Otherwise, the compensation is the same as in g. That is, if either k ̸= j or
ω′ ̸= ω0, ω or y′ ̸= y holds, then ḡk(ω′, y′) = gk(ω

′, y′).

The proof that ḡ results in a higher payoff consists of two steps. First, it will be shown
that the marginal user for any publisher k in equilibrium under ḡ remains c̄k. Second, it
will be demonstrated that the advertising expenditure under ḡ is lower. Combining the
two steps, it can be concluded that the same set of consumers are shown the advertise-
ment, so the conversion events would be identical, but the advertising expenditure under
ḡ is lower, making ḡ a more profitable scheme.

For the first step, to show that the marginal user for any publisher k under ḡ is still
c̄k, it suffices to show the counterpart of (15) also holds under ḡ, that is,

R̄k(c̄k; c̄−k) = c̄k,

36 If the construction ḡj violates the condition that ḡj(ω0, 1) ≥ ḡj(ω0, 0), that is, ḡ is not in the feasible
set, one can similarly construct a new scheme g that shifts the compensation to publisher j from the case
(ω0, 0) to the case (ω0, 1), and then g is in the feasible set. Since the conversion outcome is independent
of opportunity costs, it can be shown that ḡ and g are equivalent, so the proof below implies that g that
yields a higher payoff than g for the advertiser.
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where R̄k(c̄k; c̄−k) is the expected revenue of publisher k for user type c̄k when the incentive
scheme is ḡ and other publishers’ marginal users are c̄−k. For publisher k ̸= j, since
ḡk = gk by construction, we have R̄k = Rk and thus the equation holds. For publisher
k = j,

Rj(c̄j; c̄−j) =
∑

(ω′,y′):j∈ω′

gj(ω
′, y′) · p(ω, y|c̄j),

and the expressions of R̄j(c̄j; c̄−j) only differ at (ω0, y) and (ω, y), so we can write

R̄j(c̄j; c̄−j)−Rj(c̄j; c̄−j)

= ḡj(ω0, y) · p(ω0, y|c̄j) + ḡj(ω, y) · p(ω, y|c̄j)− gj(ω0, y) · p(ω0, y|c̄j)− gj(ω, y) · p(ω, y|c̄j)

=
gj(ω0, y) · p(ω0, y|c̄j) + gj(ω, y) · p(ω, y|c̄j)

p(ω0, y|c̄j)
· p(ω0, y|c̄j)− gj(ω0, y) · p(ω0, y|c̄j)− gj(ω, y) · p(ω, y|c̄j)

= 0.

The second step of the proof focuses on the comparison of advertising expenditures
under the g and ḡ schemes. First, the advertising expenditures for any publisher k ̸= j

remain the same under both g and ḡ. Moving on to publisher j, let fj(cj) represent the
marginal density of cj, then the expenditure under g can be expressed as

E[gj(T, Y )] =

∫
cj≤c̄j

∑
(ω,y):j∈ω

gj(ω
′, y′) · p(ω′, y′|c̄j) · fj(cj) dcj.

Since g and ḡ only differ at (ω0, y) and (ω, y), the difference between the expected
values of ḡj(T, Y ) and gj(T, Y ) can be obtained through the following equation:

E[ḡj(T, Y )]− E[gj(T, Y )]

=

∫
cj≤c̄j

((ḡj(ω0, y)− gj(ω0, y)) · p(ω0, y|c̄j) + (ḡj(ω, y)− gj(ω, y)) · p(ω, y|c̄j)) · fj(cj) dcj.

Thus, it suffices to show that for cj < c̄j, the following holds true:

ḡj(ω0, y) · p(ω0, y|c̄j) + ḡj(ω, y) · p(ω, y|c̄j) ≤ gj(ω0, y) · p(ω0, y|c̄j) + gj(ω, y) · p(ω, y|c̄j).

Considering that gj(ω, y) > 0 and every component in this inequality is nonnegative,
this inequality holds true if and only if the following condition is met:

p(ω0, y|cj)
p(ω, y|cj)

≤ p(ω0, y|c̄j)
p(ω, y|c̄j)

. (16)

Now, let us revisit the assumption made in Proposition 3.1 where the conversion rate
is not dependent on the opportunity cost vector c. With this assumption, the expansion
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of p(ω, y|cj) can be written as follows:

p(ω, y|cj)

=P(Y = y|T = ω) · P(T = ω|cj)

=P(Y = y|T = ω) ·
∫
1(T (c) = ω) · f−j(c−j|cj) dc−j

=P(Y = y|T = ω) ·
∫ ∏

k ̸=j

(1(k ∈ ω, ck ≤ c̄k) + 1(k /∈ ω, ck > c̄k)) · f−j(c−j|cj) dc−j.

The last equality holds since there are two potential cases for any publisher k ̸= j:
either k ∈ ω, or k /∈ ω. The condition T (c) = ω is satisfied if and only if the former
publishers display the advertisement (ck ≤ c̄k for k ∈ ω) and the latter publishers do not
(ck > c̄k for k /∈ ω).

Given that ω0 = (j) ⊂ ω, we can denote S1 = {k : k ∈ ω, k ̸= j}, and S2 = {k : k /∈
ω}. Note that S1 ̸= ∅. We can write

p(ω0, y|cj) = PY |T (Y = y|T = ω0) ·
∫
cS1

>c̄S1
,cS2

>c̄S2

f−j(cS1 , cS2 |cj) dcS1 dcS2 ,

p(ω, y|cj) = PY |T (Y = y|T = ω) ·
∫
cS1

≤c̄S1
,cS2

>c̄S2

f−j(cS1 , cS2|cj) dcS1 dcS2 .

Given the log-supermodularity of f , and the condition cj < c̄j, we can formulate

p(ω0, y|cj)
p(ω0, y|c̄j)

≤

∫∞
c̄S2

f−j(c̄S1 , cS2|cj) dcS2∫∞
c̄S2

f−j(c̄S1 , cS2|c̄j) dcS2

,

p(ω, y|cj)
p(ω, y|c̄j)

≥

∫∞
c̄S2

f−j(c̄S1 , cS2|cj) dcS2∫∞
c̄S2

f−j(c̄S1 , cS2|c̄j) dcS2

.

These inequalities imply that (16) holds true, and they are strict if f is strictly log-
supermodular.

C.5.2 Adaptations in the Proof of Proposition 3.2

The key techniques employed in the proof of Proposition 3.2 are the same as previously
discussed.

The first step of the proof is to demonstrate that when h(ω, c) increases in c for a
fixed ω, then the optimal scheme has gj(ω, 0) = 0.

The proof leverages the Fortuin–Kasteleyn–Ginibre (FKG) inequality, which is pre-
sented below.

Lemma C.1 (FKG inequality). Suppose that a probability density function µ of a random
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vector X exhibit affiliation. Then for any two nondecreasing functions ϕ1(x) and ϕ2(x),
the following inequality holds: E[ϕ1(X) · ϕ2(X)] ≥ E[ϕ1(X)] · E[ϕ2(X)].

Suppose we have gj(ω, 0) > 0 for touchpoint sequence ω, then we can construct an
alternative scheme ḡ that ḡj(ω, 0) = 0 and

ḡj(ω, 1) =
gj(ω0, 0) · p(ω, 0|c̄j) + gj(ω, 1) · p(ω, 1|c̄j)

p(ω, 1|c̄j)
.

Proceeding as the same procedure, it suffices to show that for cj < c̄j,

p(ω, 1|cj)
p(ω, 0|cj)

≤ p(ω, 1|c̄j)
p(ω, 0|c̄j)

,

which is equivalent to

Pc−j |cj ,T (Y = 1|cj, T = ω) ≤ Pc−j |cj ,T (Y = 1|c̄j, T = ω).

Expanding yields

Pc−j |cj ,T (Y = 1|cj, T = ω) = Ec−j |cj ,T [h(ω, cj, c−j)] =

∫
h(ω, cj, c−j) · f−j(c−j|cj, T = ω) dc−j,

where

f−j(c−j|cj, T = ω) =

∏
k ̸=j (1(k ∈ ω, ck ≤ c̄k) + 1(k /∈ ω, ck > c̄k)) · f−j(c−j|cj)

P(T = ω|cj)
.

Then, we can express

Pc−j |cj ,T (Y = 1|c̄j, T = ω)

=

∫
h(ω, c̄j, c−j) · f−j(c−j|c̄j, T = ω) dc−j

≥
∫
h(ω, cj, c−j) · f−j(c−j|c̄j, T = ω) dc−j

=

∫
h(ω, cj, c−j) ·

f−j(c−j|c̄j, T = ω)

f−j(c−j|cj, T = ω)
· f−j(c−j|cj, T = ω) dc−j.

By log-supermodularity of f , the probability density function f−j(c−j|cj, T = ω) is

log-supermodular in c−j and
f−j(c−j|c̄j, T = ω)

f−j(c−j|cj, T = ω)
increases in c−j. Applying Lemma C.1,

we obtain∫
h(ω, cj, c−j) ·

f−j(c−j|c̄j, T = ω)

f−j(c−j|cj, T = ω)
· f−j(c−j|cj, T = ω) dc−j

≥
(∫

h(ω, cj, c−j) · f−j(c−j|cj, T = ω) dc−j

)
·
(∫

f−j(c−j|c̄j, T = ω)

f−j(c−j|cj, T = ω)
· f−j(c−j|cj, T = ω) dc−j

)
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=Pc−j |cj ,T (Y = 1|cj, T = ω) · 1,

thus confirming the claim Pc−j |cj ,T (Y = 1|c̄j, T = ω) ≥ Pc−j |cj ,T (Y = 1|cj, T = ω).
The second step of the proof proceeds also by contradiction. With the optimal scheme

setting gj(ω, 0) = 0, we can shift our focus to gj(ω, 1). Akin to the procedure laid out in
Proposition 3.1, we construct an analogous scheme ḡ which yields a greater payoff. The
proof thus amounts to showing (16) with y = 1.

The proof leverages the Ahlswede–Daykin inequality, which is presented below.

Lemma C.2 (Ahlswede–Daykin inequality). Suppose that ϕ1, ϕ2, ϕ3, ϕ4 are nonnegative
integrable functions on Rd, such that for any x1, x2 ∈ Rd, ϕ1(x1) · ϕ2(x2) ≤ ϕ3(x1 ∨ x2) ·
ϕ4(x1 ∧ x2), then it follows that

∫
ϕ1(x) dx ·

∫
ϕ2(x) dx ≤

∫
ϕ3(x) dx ·

∫
ϕ4(x) dx.

Expanding p(ω, y|cj), we get

p(ω, y|cj)

=

∫
h(ω, c) · 1(T (c) = ω) · f−j(c−j|cj) dc−j

=

∫
h(ω, c) ·

∏
k ̸=j

(1(k ∈ ω, ck ≤ c̄k) + 1(k /∈ ω, ck > c̄k)) · f−j(c−j|cj) dc−j.

Then, we have

p(ω0, y|cj) =
∫
cS1

>c̄S1
,cS2

>c̄S2

h(ω0, cj, cS1 , cS2) · f−j(cS1 , cS2|cj) dcS1 dcS2 ,

p(ω, y|cj) =
∫
cS1

≤c̄S1
,cS2

>c̄S2

h(ω, cj, cS1 , cS2) · f−j(cS1 , cS2|cj) dcS1 dcS2 .

Given the log-supermodularity of f and ρ, and considering cj < c̄j, we have

p(ω0, y|cj)
p(ω0, y|c̄j)

≤

∫∞
c̄S2

h(ω0, cj, c̄S1 , cS2) · f−j(c̄S1 , cS2|cj) dcS2∫∞
c̄S2

h(ω0, c̄j, c̄S1 , cS2) · f−j(c̄S1 , cS2|c̄j) dcS2

≡ A, ,

p(ω, y|cj)
p(ω, y|c̄j)

≥

∫∞
c̄S2

h(ω, cj, c̄S1 , cS2) · f−j(c̄S1 , cS2 |cj) dcS2∫∞
c̄S2

h(ω, c̄j, c̄S1 , cS2) · f−j(c̄S1 , cS2|c̄j) dcS2

≡ B,

with the goal to show that A ≤ B. To utilize Lemma C.2, define

ϕ1(cS2) = h(ω0, cj, c̄S1 , cS2) · f−j(c̄S1 , cS2|cj) · 1(cS2 ≥ c̄S2),

ϕ2(cS2) = h(ω, c̄j, c̄S1 , cS2) · f−j(c̄S1 , cS2|c̄j) · 1(cS2 ≥ c̄S2),

ϕ3(cS2) = h(ω0, c̄j, c̄S1 , cS2) · f−j(c̄S1 , cS2|c̄j) · 1(cS2 ≥ c̄S2),

ϕ4(cS2) = h(ω, cj, c̄S1 , cS2) · f−j(c̄S1 , cS2|cj) · 1(cS2 ≥ c̄S2).
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Then for any cS2 , c
′
S2

, we have the following:

1. Log-supermodularity of h(ω,−c) gives us

h(ω0, cj, c̄S1 , cS2) · h(ω, c̄j, c̄S1 , c
′
S2
) ≤ h(ω0, c̄j, c̄S1 , cS2 ∨ c′S2

) · h(ω, cj, c̄S1 , cS2 ∧ c′S2
).

2. Log-supermodularity of f gives us

f−j(c̄S1 , cS2 |cj) · f−j(c̄S1 , c
′
S2
|c̄j) ≤ f−j(c̄S1 , cS2 ∨ c′S2

|c̄j) · f−j(c̄S1 , cS2 ∧ c′S2
|cj).

3. The definition of the join and the meet gives us

1(cS2 ≥ c̄S2) · 1(c′S2
≥ c̄S2) = 1(cS2 ∨ c′S2

≥ c̄S2) · 1(cS2 ∧ c′S2
≥ c̄S2).

From these deductions, we arrive at

ϕ1(cS2) · ϕ2(c
′
S2
) ≤ ϕ3(cS2 ∨ c′S2

) · ϕ4(cS2 ∧ c′S2
).

Applying Lemma C.2 confirms that A ≤ B holds, and thus, (16) holds, with the
inequalities strict if the conditions are strict.

C.6 Proof of Proposition B.1

Similar to the proof of Proposition 2.1, the key is to evaluate
∂Qj

∂a
(k)
ij

. Note that comparing

with not displaying any advertisements to user i, if publisher j display advertiser k’s
advertisement, only the touchpoint sequence for advertiser k will be affected. Moreover,
the model assumes that this user’s conversion on other advertisers does not depend on
the touchpoint sequence for advertiser k, so their bids will not be affected. Thus, this
display only has an direct effect on advertiser k’s attributed conversion rates and future
bids. Thus, similar to the proof of Proposition 2.1, we have

g̃
(k)
j (ω, y) = b

(k)∗
j + δ ·

∂Vj(b∗
j)

∂b
(k)∗
j

·
∂ψ

(k)
j (b

(k)∗
j , r

(k)
j )

∂π
(k)
ω,y

, (17)

and the rest of the proof is similar.

D Static Equivalent Examples

In this appendix, I provide several simplified examples of static equivalents.
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D.1 Equivalence of Pay-per-conversion and Target Cost-per-action

Bidding

When we have J = 1, meaning the advertiser engages with just one publisher for their
advertising campaign, the game simplifies into a publisher’s dynamic decision problem.
Omit the publisher subscript and let ω = 1 denote the event of the publisher displaying
the advertisement. The advertiser’s subsequent bid for an impression, b′ = ψ(r), is
contingent on the present period’s conversion rate r.37 The following result shows that
the incentive for the publisher, created by the attribution algorithms, is a mixture of
pay-per-impression and pay-per-conversion schemes. Moreover, when the advertiser sets
bids linearly in the conversion rates, the static equivalent is a pay-per-conversion scheme.

Corollary D.1. Suppose that there is J = 1 publisher, and the advertiser’s next period’s
bid for an impression is b′ = ψ(r), with r being the conversion rate of the current period.
Suppose also that the conversion rate is 0 if the advertisement is not displayed. Let (a∗, b∗)
be an oblivious equilibrium of the game, then the static equivalent

g̃(y) = (1− η) · b∗ + η · v∗ · 1(y = 1),

a mixture of a pay-per-impression scheme and a pay-per-conversion scheme. The mixture
weight η = δ · r·ψ

′(r)
b∗

is the product of publisher j’s discount factor and the elasticity of ψ
at the stationary conversion rate r and v∗ = b∗

r
is the effective payment per conversion.

Moreover, when δ → 1 and ψ(r) = v∗ · r, that is, the advertiser’s future bid is linear in
the current conversion rate, then

g̃(y) = v∗ · 1(y = 1),

that is, the static equivalent is a pay-per-conversion with a bid v∗.

As a real-world example, Google offers two bidding mechanisms to advertisers: (i) pay-
per-conversion: the advertiser places a bid of v for conversions and compensates Google
this amount upon user conversion; (ii) target cost-per-action bidding: the advertiser bids
b for impressions and pays Google this amount upon the occurrence of an advertisement
impression, with the bid b is dynamically adjusted. The advertiser assigns a CPA target v
and establishes an automated bidding algorithm on Google. In each advertising auction,
the algorithm uses historical data to compute a conversion rate r for each impression,
subsequently placing a bid of v · r for an impression. Algorithm (i) corresponds to a
static PPA model in the static game, while algorithm (ii) aligns with a dynamic pay-per-
impression bidding algorithm in the dynamic game, as described in the corollary. The

37 In this special case, there is no need for attribution, that is, every conversion is attributed to the
publisher.
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corollary highlights that these two algorithms essentially exhibit equivalent behavior, as
both the advertisement display decisions and the payoffs for the advertiser and publisher
are the same under each mechanism. For algorithm (ii), even though the bid is a constant
b for all users, because of the dynamic incentives introduced by the algorithm, the pub-
lisher still has the incentive to display the advertisement to users with higher conversion
rates, as in algorithm (i). The dynamic incentives work as follows: from the publisher’s
perspective, displaying the advertisement to a user with a higher conversion rate could
increase the advertiser’s future bid, thereby enhancing the publisher’s incentives to show
the advertisement to users with higher conversion rates.

E Assumptions to Ensure Thresholding Strategies

In this appendix, I provide a set of sufficient conditions that, if satisfied, can ensure that
any Bayesian Nash equilibrium is a thresholding strategy profile. One may think that
a sufficient condition is publisher j’s revenue Rj(cj; a−j)’s derivative with regard to cj

is less than 1. However, this revenue is a function of other publishers’ strategies a−j,
which are endogenous variables, thereby making this assumption challenging to verify.
To circumvent this complication, I propose the following set of assumptions based on the
primitives.

Assumption A1 (Bounded Derivatives of Conditional Opportunity Cost Distribution).
There exists L1 > 0 such that for any publisher j and measurable partition (C(k)

−j )k of
RJ−1, the following condition holds:

∑
k

∣∣∣∣∣∂ Pc−j |cj(c−j ∈ C(k)
−j |cj)

∂cj

∣∣∣∣∣ ≤ L1.

In essence, Assumption A1 postulates that the conditional distribution of c−j given
cj, does not exhibit excessive sensitivity to cj.38

Assumption A2 (Bounded Derivatives of Conditional Conversion Rate). There exists
L2 > 0 such that for any publisher j, touchpoint sequence ω and measurable partition
(C(k)

−j )k of RJ−1, the following condition holds:

∑
k

∣∣∣∣∣∂ Pc−j |cj(c−j ∈ C(k)
−j , Y = 1|cj)

∂cj

∣∣∣∣∣ ≤ L2.

38 For example, for J = 2, suppose
(
c1
c2

)
admits a bivariate normal distribution with mean

(
µ1

µ2

)
and covariance

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
. In such a case, it can be shown that Assumption A1 holds with

L1 =
|ρ|√

2πmin {σ1, σ2}
.
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Assumption A2 implies that the conversion rate does not exhibit excessive sensitivity
to the opportunity costs.39

Take into account that the incentives provided to publishers are subject to an upper
limit of M . The following lemma indicates that, under these assumptions, and provided
the corresponding bounds satisfy a further restriction, we can ensure any Bayesian Nash
equilibrium consists of thresholding strategies.

Lemma E.1. If Assumptions A1, A2, and M · (L1 + L2) < 1 holds, then in a Bayesian
Nash equilibrium a∗, each publisher implements a thresholding strategy.

Proof. Fix other publishers’ strategies a−j. Note that a−j depends on c−j. Denote C(ω)
−j

as the set of c−j such that if publisher j display the advertisement, and other publishers’
display decision is a−j(c−j), the user’s touchpoint sequence is ω. More formally,

C(ω)
−j = {c−j : Ω (H; 1, a−j(c−j)) = ω},

where Ω(H; a) maps browsing path H and display decisions a to a sequence of touch-
points. We can rewrite

Rj(cj; a−j)

=Ec−j ,Y |cj [gj(T, Y )|cj]

=Ec−j |cj [gj(T, 1) · 1(Y = 1) + gj(T, 0) · (1− 1(Y = 1))|cj]

=Ec−j |cj [gj(T, 0) + (gj(T, 1)− gj(T, 0)) · 1(Y = 1)|cj]

=
∑
ω

(
gj(ω, 0) · Pc−j |cj(c−j ∈ C(ω)

−j |cj) + (gj(ω, 1)− gj(ω, 0)) · Pc−j |cj(c−j ∈ C(ω)
−j , Y = 1|cj)

)
.

Then,

∂Rj(cj; a−j)

∂cj

=
∑
ω

(
gj(ω, 0) ·

∂ Pc−j |cj(c−j ∈ C(ω)
−j |cj)

∂cj
+ (gj(ω, 1)− gj(ω, 0)) ·

∂ Pc−j |cj(c−j ∈ C(ω)
−j , Y = 1|cj)

∂cj

)

≤M ·
∑
ω

∣∣∣∣∣∂ Pc−j |cj(c−j ∈ C(ω)
−j |cj)

∂cj

∣∣∣∣∣+M ·
∑
ω

∣∣∣∣∣∂ Pc−j |cj(c−j ∈ C(ω)
−j , Y = 1|cj)

∂cj

∣∣∣∣∣
≤M · L1 +M · L2

39 For example, for J = 2, suppose h(ω, c) = Φ(αω +
∑2

j=1 λj · cj) and
(
c1
c2

)
admits a bivariate

normal distribution with mean
(
µ1

µ2

)
, covariance

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
. In such a case, it can be shown that

Assumption A2 holds with L2 =
1√
2π

max

{√
λ2
1 +

ρ2

σ2
1(1− ρ2)

,

√
λ2
2 +

ρ2

σ2
2(1− ρ2)

}
.
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<1.

The last inequality shows that the assumptions guarantee that the derivative of pub-
lisher j’s revenue Rj(cj; a−j) with respect to cj is less than 1, indicating that Rj(cj; a−j)−
cj decreases in cj. Publisher j will choose to display the advertisement if and only if
Rj(cj; a−j) is no less than cj, which holds if and only if cj is sufficiently small.

F Optimal Attribution Design

In this appendix, I show that the optimal incentive defined in Proposition 3.2 is the static
equivalent of an attribution algorithm ΨO.

Denote the optimal incentive scheme as g∗. For a given publisher j, touchpoint se-
quence ω and conversion indicator y, g∗j (ω, y) is non-negative when ω = (j) and y = 1,
otherwise, g∗j (ω, y) = 0. In the former scenario, denote v∗j ≡ g∗j (ω, y).

The algorithm ΨO is constructed as follows. In the attribution step, when a touchpoint
sequence includes multiple publishers, the algorithm assigns no credit to any publisher
involved. Thus, it is analogous to a rule-based attribution algorithm with weight function
χ(j, ω), where χ(j, ω) = 1 if ω = (j) and χ(j, ω) = 0 otherwise. Subsequently, the algo-
rithm calculates the attributed conversion rates as in equation (2). In the bid adjustment
step, the subsequent period’s bid b′j for publisher j is set as b′j = v∗j · rj, effectively mul-
tiplying publisher j’s attributed conversion rate with the compensation in the optimal
incentives.40 The following Proposition is a direct corollary to Proposition 2.2.

Proposition F.1. Suppose (a∗, b∗) is an oblivious equilibrium of the dynamic game
G(ΨO). Suppose also that δ → 1, then the static equivalent of ΨO, denoted as g̃O, is
identical to g∗.

Proof. Since the proposition is a special case of Proposition 2.2, it suffices to plug in the
values. First,

∂ψj(bj, rj)

∂bj
= 0,

and we need to verify the following inequality holds for any sequence of touchpoints ω
and conversion indicator y,

−∂ψj(bj, rj)
∂πω,y

·
∑

ω:j∈ω πω

ψj(bj, rj)
≤ 1.

40 These results remain valid if we extend this algorithm such that b′j is a weighted average of v∗j · rj
and bj . Specifically, for a fixed weight wj ∈ [0, 1], the subsequent period’s bid b′j = wj ·v∗j ·rj+(1−wj)bj .
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The left-hand-side equals

−
v∗j · (1(ω = (j), y = 1)− rj)∑

ω:j∈ω πω
·
∑

ω:j∈ω πω

v∗j · rj
=
rj − 1(ω = (j), y = 1)

rj
≤ 1,

so the inequality holds.
Then, evaluating η∗j in Proposition 2.2 yields

η∗j = δ · (1− δ · 0)−1 · v∗j ·
rj

v∗j · rj
= 1,

and since χ(j, ω) = 1 if ω = (j) and χ(j, ω) = 0 otherwise, the static equivalent is
simplified to

g̃j(ω) = v∗j · 1(ω = (j), y = 1),

which is identical to the optimal incentive.

The intuition of the proposition is that credit-giving in the dynamic setting mirrors
compensation in the static setting. Thus, by giving no credit to any publishers when
there are multiple in the touchpoint sequence, the incentives created by the algorithm
resemble the optimal incentive.

G Validation Experiment

In this appendix, I outline the design of a planned validation experiment to provide
empirical evidence for the effectiveness of the optimal incentive scheme. The goal of the
experiment is to validate that the optimal incentive scheme can lead to a substantial
increase in ROI compared to the optimal static per-impression bidding strategy.

To conduct the validation experiment, I collaborate with another advertiser who has
M = 6 user segments. Prior to the experiment, I will conduct a pilot study with a
design similar to the experiment described in Section 4. In the pilot study, I will submit
randomized bids for this advertiser, allowing me to estimate a structural model for each
of the user segments. Based on these estimates, I will calculate the optimal static per-
impression bid and the bid under the optimal incentive scheme for each segment. I will
also compute the counterfactual ROIs for both schemes, which will be validated in the
main experiment.

The main experiment is planned to span eight weeks. The six user segments will
be randomly divided into two groups: three segments in the treatment group and three
segments in the control group. During the first two weeks of the experiment, both the
treatment and control groups will adopt the optimal static per-impression bid. Starting
from the third week, the treatment group will switch to the optimal incentive scheme,
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while the control group will continue with the optimal static per-impression bid. The
primary outcome of interest is the weekly ROI for each treatment condition.

To assess the validity of the structural model, I will compare the observed weekly
ROI for each treatment condition with the values predicted by the model. Formally,
the hypothesis to be tested is that the optimal incentive scheme leads to an ROI that is
significantly higher than the ROI achieved by the optimal static per-impression bidding
strategy.

The random assignment of user segments to treatment and control groups ensures
that any differences in ROI between the two groups can be attributed to the different
bidding strategies rather than inherent differences in the user segments. The staggered
implementation of the optimal incentive scheme allows for a clear comparison of the two
strategies while controlling for potential time-related confounds.

To enhance the robustness of the findings, I will conduct additional analyses, such as
testing for heterogeneous treatment effects across different user segments and exploring
the sensitivity of the results to different model specifications. I will also discuss the prac-
tical implications of the findings for advertisers and publishers, highlighting the potential
improvement in ROI from adopting the optimal incentive scheme.

The proposed validation experiment will provide empirical evidence for the effective-
ness of the optimal incentive scheme. By comparing the observed ROI with the values
predicted by the structural model, this experiment will demonstrate the practical appli-
cability of the proposed solution and strengthen the credibility of the findings presented
in this paper.
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