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Abstract

We develop a flexible yet tractable model of consumer search and choice, and apply it to the

problem of product rankings optimization by online retail platforms. In the model, products

are characterized by a search index, which governs what consumers search; and a utility index,

which governs which of the searched options is purchased. We show that this framework

generalizes several commonly used search models. We then consider how platforms should

assign products to search ranks. To optimize consumer surplus, platforms should facilitate

product discovery by promoting “diamonds in the rough,” products whose utility index exceeds

their search index. By contrast, to maximize static revenues, the platform should favor high-

margin products, creating a tension between the two objectives. We develop computationally

tractable algorithms for estimating consumer preferences and optimizing rankings, and we

provide approximate optimality guarantees in the latter case. When we apply our approach to

data from Expedia, our suggested ranking achieves both higher consumer surplus and higher

revenues than is achieved by the Expedia ranking, and also dominates ranking the products in

order of utility.
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Greminger, Stephan Seiler, Adam Smith, Raluca Ursu, Giorgos Zervas, as well as participants at the 2020
Marketing Science Conference, Netflix, UCL and Tilburg. This project was started when Giovanni was an
intern at Microsoft Research New England.



1 Introduction

E-commerce is an important part of the economy, and becoming more so. As a result,

platforms such as Amazon, Google and Expedia, play an increasingly crucial role in shaping

consumer choices. One key tool at their disposal is product rankings, which have the ability

to direct consumer attention and thus influence purchasing choices. A growing literature

explores the impact that rankings have on choices (e.g., Yao and Mela (2011), Athey and

Ellison (2011), Ghose et al. (2014), Chen and Yao (2017), Ursu (2018), Hodgson and Lewis

(2020)). Since rankings are often found to be an important driver of consumer decisions, it

is natural to investigate what is the best way to rank products on a platform. Moreover, to

propose and evaluate rankings requires a unified model of consumer search and choice that

can be taken as the ground truth for counterfactual analyses.

Given this, the current paper has three goals. First, we introduce a tractable and easy-to-

understand model of search that generalizes several models in the economics and marketing

literatures. Second, we use this model to propose algorithms for optimizing consumer surplus

and platform revenue that offer formal approximation guarantees.1 Third, we estimate our

model on data from Expedia and show how our algorithms compare to competing rankings.

Our main idea is to view consumer search through the lens of two indices: a search index

and a utility index. The search index governs what consumers search and therefore consider,

whereas the utility index determines which of the considered products is actually bought.

Rankings affect the search index, but not the utility index. This model is meant to capture

the main features of the online purchasing funnel: viewing, clicking and purchasing. Viewing

depends on the rankings — more prominent search results will be viewed more often. Clicks

often depend on product characteristics and/or ad text. The viewing and clicking stages

of the process are controlled by our search index.2 Purchasing depends on the consumer’s

assessment of the product after clicking through and seeing the detailed information on the

product page. In our model, this is captured by their learning the utility index.

We describe consumer behavior by an algorithm: consumers consider items in descending

order of search index and terminate search if at any point the best product they have found

thus far (i.e., the one with the highest utility index) has a higher utility index than the

search index of the next product to be searched. They then choose the good that has the

highest utility index among the goods they have searched — their consideration set. This is

1De los Santos and Koulayev (2017) propose a utility-based ranking that maximizes click-through rates.
2We do not separately model viewing and clicking because our data only contains click data, and not the

eye tracking data necessary to disentangle the two.
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exactly the same algorithm as in the canonical sequential search model of Weitzman (1979),

but as we show, it also encompasses a variety of other search protocols. Building on a result

by Choi et al. (2018), we provide a unified characterization of purchase behavior under this

model, showing that the product ultimately chosen takes a maximin form: it is the product

with the highest effective index, where the effective index of a product is the minimum of its

search and utility indices.3

In order to study optimal rankings, we assume that platforms are able to increase and

decrease the search indices of products beyond their baseline levels, by either promoting

them (giving them prominence on the search page) or burying them in the search results.

By deciding what to rank and where to rank it, platforms can thus affect consumer choices.

We start by considering the problem of choosing rankings to optimize consumer surplus.

Knowing what is best for consumers is important both for platforms with long-run (growth)

objectives as well as regulators who want to govern these platforms. To gain intuition, we

consider a relaxation of the problem where the platform can continuously adjust the search

indices subject to a budget constraint. We find that the platform should act to equate

the ex-post “potential” of all products, where ex-post potential is defined as the difference

between the mean utility and search indices after the search indices have been adjusted to

account for ranking. Ex-ante, a high potential product is one with high utility relative to

search index, a “diamond in the rough.” The product is unlikely to be viewed and chosen

by consumers unless the platform promotes it; such promotion helps consumers make better

choices. Contrast this with a product that has both high mean utility and search indices, i.e.

a product that is well-known to be high quality, such as a branded item. This product will

often be chosen by consumers, and so the platform need not use its limited space promoting

it.

An immediate but nontrivial implication of this analysis is that ranking products from highest

to lowest utility is not optimal for consumer surplus, because high utility products need not

have high potential. An example would be a product from a top brand that has both

high salience and utility, and needs no promotion to be purchased. In this case, it would

be preferable to rank a relatively unknown equally high-quality product (“diamond in the

rough”) at the top. Derakhshan et al. (2020) find a similar result based on a different model

3A growing theoretical literature in marketing studies consumer search for product attributes. Branco
et al. (2012) characterize the optimal search strategy of a consumer gradually learning about a single product,
and explore its implications for the firm’s optimal pricing problem (see also Branco et al. (2016) for insights
into the optimal information provision strategy). Ke et al. (2016) extend the analysis to the case where
consumers face multiple differentiated products.
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of search as well as simulation evidence. In contrast, existing work that does not explicitly

model the consumer search process finds that ranking by utility is always optimal (Ghose

et al. (2012)). Another implication of the framework is that a product that is highly salient

but offers low utility (“click bait”) should optimally be buried in the rankings, since that

frees up space to promote more worthy products.

The optimal ranking is different when the platform is concerned with revenue maximization.4

In a world in which the consumer will buy some product regardless of the selection, the plat-

form should optimally offer the consumer no choice at all, and only display a single product,

the one on which they earn the highest revenue.5 However, realistically, consumers can shop

elsewhere. This competitive force drives the platform towards aligning their rankings with

consumer preferences, so as to make a sale. We show that the optimal product assortment

includes all products that have a (weakly) higher product revenue than the average product

revenue, where the averaging includes the zero-revenue outside option. Further, the revenue-

optimizing ranking will typically be different from the utility-maximizing ranking (Ursu and

Dzyabura (2020)).

The continuous relaxation of the problem which we have described so far gives useful intu-

ition, but in practice the assignment of products to ranks is a discrete optimization problem,

and the heuristics from the continuous case cannot be blindly followed. For example, it may

not be optimal to place the product with the highest ex-ante potential at the top of the

search rankings, since if it has a low enough search index it may attract very few purchasers

even when top-ranked, which is a waste of that position.6

We thus offer a pair of similar algorithms for maximizing consumer surplus and revenue.

They combine an exhaustive brute-force search of the best ranking for theK highest positions

(where K is a small number) with a greedy algorithm for ranking the remaining products.

When most clicks and purchases go to products ranked in the top K positions, we can prove

that this algorithm is close to optimal. What makes this problem technically challenging

and non-standard is interference effects among units — ranking one product more highly

means that it is more likely to be purchased, and every other product less so — so that the

analysis is not neatly separable across products. Simulation experiments verify that these

4Since the marginal cost of making a sale are essentially zero for many platforms (sellers are responsible
for the physical delivery of the good), revenues coincide with profits.

5The revenue the platform earns from selling each product will depend on their individual agreements
with each seller, but will typically be a fixed percentage of the sale price.

6Placing products with low search indices and high utilities (i.e., high ex-ante potential) products in top
positions may also have the unfortunate effect of diminishing consumer trust in the search algorithm if the
consumers never sample them. Good recommendations are those that will be followed.
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solutions work extremely well in the simulated environment, achieving well over 99% of the

available gains from rankings (where available gains are defined as the difference between

the consumer surplus under the optimal and the worst ranking, and similarly for revenue).

The second part of the paper takes our approach to the wild. We use two datasets from

Expedia which contain information about both clicks and purchases. In one dataset (the

“training” data), rankings were assigned at random, whereas in the other (the “testing”

data) they were assigned according to Expedia’s algorithm (these datasets were also used in

Ursu (2018)). Looking at the training data, we show that while there is positive correlation

between click and purchase rates, many products have high click rates but poor purchase

rates (“click-bait”) and others have low click rates but are often purchased conditional on

being clicked (“diamonds in the rough”). This motivates having two distinct indices to

describe each product. We then estimate the relationship of these indices to product charac-

teristics and rankings under a specification in which each index has an independent extreme

value shock (“double logit”). Identification is aided by the fact that we see both what the

consumers clicked on and what they bought, which implies a set of orderings for the search

and utility indices. The likelihood of each of these orderings, in turn, can be written in

closed form using the “exploded logit” formula, facilitating estimation. We fit the model

only on the training data, to avoid concerns related to the endogeneity of product ranks. We

then assess the fit of the model by predicting search patterns on the testing data; the model

matches the sharp decay in click rates that we see under the Expedia rankings quite well.

Finally, we take these estimates and simulate consumer behavior, search duration, consumer

surplus, and platform revenue under different ranking algorithms. We compare our ranking

algorithm optimized for consumer surplus for K = 3 (i.e., we brute force the top 3 positions,

then proceed greedily) to a straight utility ranking, an algorithm optimized for revenue,

and the Expedia ranking itself. We find that our algorithm optimized for consumer surplus

dominates the Expedia algorithm under our model, raising consumer surplus by 78¢ per

consumer, while still raising revenue by 14¢ per customer. Ranking directly by utility is less

effective, raising consumer surplus by around 60¢ relative to Expedia and revenue by 2¢.
These numbers are at the search impression level; since only 3-4% of customers purchase,

one should scale the figures up by 25-30 times to obtain numbers per purchasing consumer.

Additional Related Literature. In addition to the papers cited above, our work is re-

lated to the theoretical literature on consumer search, including the canonical models of

satisficing (Simon, 1955), non-sequential search (Stigler, 1961) and sequential search with
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recall (Weitzman, 1979). We show that our framework subsumes several of these models

as special cases. This means that, subject to the parametric assumptions embedded in the

empirical specification, our estimates are robust to different search protocols that consumers

may follow. Abaluck and Compiani (2020) also estimate consumer preferences without com-

mitting to a specific search model. A related, but distinct literature in marketing has focused

on the determinants of consumers’ consideration sets (see, among others, Roberts and Lattin

(1991); Mehta et al. (2003); Honka et al. (2017)). Our search model can be viewed as one

way to microfound the consumer’s decision of which goods to consider that is amenable to

studying optimal rankings.

Our work is also related to the literature on platform design and recommendation systems.

While we focus on product rankings, other papers study the customization of e-mail commu-

nications to customers (e.g., Ansari and Mela (2003)), or the amount and type of information

to display on the results page (e.g., Gardete and Hunter (2020) and Gu and Wang (2021)).

Next, a large literature in operations research studies the assortment optimization problem

— i.e., deciding which products to stock, or which ones to show to consumers as they search

(see Kök and Fisher (2007) for a survey, and Jagabathula and Rusmevichientong (2017) and

Agrawal et al. (2019) for more recent contributions). Unlike most of this literature, we focus

on optimizing not only revenue, but also consumer surplus, and on the decision of how to

rank products, as opposed to just which ones to offer.

Finally, a literature in computer science studies optimal rankings in the contexts of sponsored

search. These papers typically assume stylized models of search, such as the cascade model

(Aggarwal et al., 2008; Kempe and Mahdian, 2008), which are often highly parameterized

(e.g., Karmaker Santu et al. (2017)). In contrast, our approach is based on a microfounded

model of consumer behavior but is more computationally intensive.

Paper Structure. The paper proceeds in three parts. First, we introduce the double

index search model in Section 2. Then, in Section 3, we discuss optimal rankings. Finally,

we apply the approach to the Expedia data in Section 4 and conclude in Section 5.
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Figure 1: Search results page from Expedia

2 Model

2.1 Setting

We consider a setting in which consumers have unit demand for a good in a product category.

They log on to an appropriate platform (e.g., Expedia), and enter a search query that

describes that category (e.g., “hotel room in New York City on November 5th”). They are

presented with a finite set of search results. These products are distinguishable by the search

characteristics presented to the user.

Figure 1 shows an example of the search results on Expedia for the above hotel query. The

search characteristics include the average price per night, photos, the number of reviews,
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and the number of rooms left. In the case of keyword search on Bing or Google, for example,

the search characteristics would include whether a link is organic or sponsored, as well as

the link text itself.

Based on what they see, the user may choose to either perform some other search operation

(such as refining the query, or filtering the results); or abandon search; or click on one of the

options. If they click, they are taken to a product page, where they may learn additional

product characteristics (e.g., room amenities). They may then stop and purchase; or continue

search; or abandon search without purchase. At the end of the process, they will either have

picked the best option from those they considered (clicked on), or have chosen not to buy at

all. We model this process using the following double index model.

2.2 Invididual behavior: A Double Index Model

A consumer has a need that may be met by purchasing a single product from a finite set

of products J ≡ {1, . . . , J} plus the outside option (denoted by 0). Each product is fully

characterized by a search index, sj, and a utility index uj, and so the consumer faces the

vector (s,u), where s = (s0, s1 . . . sJ) and u = (u0, u1 . . . uJ). At the outset of the search

process, the consumer knows the search indices and the payoff of the outside option but the

remaining payoffs {uj}Jj=1 are unknown.

Consumers learn uj by searching for product j. Depending on the context, the uj index

could represent either the final consumption utility that the consumer derives from the good

or (under risk neutrality) the expected utility based on the information on the detailed

product description page. The search indices are to be interpreted as some combination of

the visibility, salience and observable attractiveness of the product, i.e. they determine both

product views and product clicks. In our application to hotels, organic product rankings are

a key component of the search indices; in other settings, sponsored advertising may play an

important role in generating views and clicks.

Let C be the set of products searched thus far, the consideration set. The consideration set

initially contains only the outside option, but as products are searched, they are added to

C. We assume that consumers employ the following search algorithm:

1. Search products in descending order of their search indices, terminating search when-

ever the highest available payoff maxj∈C uj (weakly) exceeds the highest remaining

search index maxj∈J\C sj.
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2. Once search has terminated, choose the option with the highest utility index among

those considered (possibly the outside option).

Since the outside option is always considered, we let s0 = ∞. Further, we normalize its

utility to zero, u0 = 0. We offer a short example to illustrate the search process.

Example 1. There are 3 products and the outside option, with payoffs u0 = 0, u1 = 70,

u2 = 20, and u3 = 40, and search indices s0 = ∞, s1 = 100, s2 = 90 and s3 = 60

respectively. The consumer considers the outside option, with its payoff of zero. Then the

consumer searches among the inside goods for the highest search index product. This is

product 1. Since the payoff of 70 is less than the next highest search index of 90 (from

product 2), they search product 2 and see a payoff of 20. Now, the next highest search index

of 60 is less than the maximum available payoff of 70, so they stop search and purchase

product 1.

The decision to describe consumer behavior by an algorithm rather than as the solution to

some optimization problem, though non-standard, has a long history in the search literature

dating back to Simon (1955). The advantage for us is that the framework is general enough

that many classic models proposed in the literature emerge as special cases. We explicitly

provide a microfoundation based on the Weitzman (1979) model in section 2.4 below; for

more examples, see Appendix A.1.

Our main result in this subsection is a lemma that characterizes the relationship between

the search and utility indices and the product eventually purchased. This result is a minor

modification of an existing result by Choi et al. (2018) for the Weitzman (1979) model, and

we adopt their name for the result (see also Armstrong and Vickers (2015), Kleinberg et al.

(2016) and Armstrong (2017)).

Lemma 1 (Eventual Purchase). A consumer facing a choice set consisting of (s,u),

including an outside option with indices (∞, 0), will purchase a product j ∈ J ∗ where J ∗ =

argmaxj∈J vj, for vj = min{sj, uj}.

Proof. See Appendix A.2.

In words, it is the product with the highest minimum of search and utility indices that gets

purchased. We will call this quantity vj = min{sj, uj} the effective index of the product.

Note that consumers only know uj for the products they searched, but they still will end up

choosing the good that maximizes the effective index across all products. One implication of
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Lemma 1 is that products with high utility but low search indices will rarely be purchased.

Further, the result provides a convenient way of calculating purchase probabilities.7

2.3 Aggregate Demand: A Double Logit Model

Having developed a model of individual search behavior, the next step in the analysis is to

aggregate individual demand functions. We do this for two reasons. First, in order to analyze

how platforms should optimally rank products, we have to be clear on what the platform

knows and what the consumer knows. We will take the stance that the platform is better

informed as to the mean utility offered by each product, as they observe many consumer

choices and can thus infer which products offered the highest utility among those considered.

On the other hand, we will assume that each consumer has idiosyncratic preferences that

are private information. The distinction between mean utility and idiosyncratic shocks is

only meaningful in the context of aggregate demand.

Second, we need to aggregate individual demands in order to define aggregate consumer

surplus, which is the object to be optimized. For this task, we will use the familiar trick of

assuming that the idiosyncratic shocks are drawn from the type-I extreme value distribution.

In this case, since the model is built on two indices, the result is a double logit model. Further,

we posit that the ranking of a product affects its search index (e.g., by making the product

easier to find) but not its utility index. This is consistent with the findings of a growing

empirical literature (e.g., Ursu (2018)).

The search and utility indices are assumed to take the following form:

sij = δSj + f(rj) + εij

uij = δUj + εij
(1)

where δSj and δUj are respectively the mean baseline search indices and mean utilities offered

by each product, rj is the rank of each product (a higher value indicates a more salient

position), f(rj) is an increasing function, and εij is distributed type–I extreme value. We

normalize the mean utility of the outside option δU0 = 0.

Consumers know all the components of the search indices at the time of search. They search

to learn the payoffs offered by each product, which are unknown. Notice that the same logit

7A recent paper by Moraga-González et al. (2021) also uses this result to facilitate estimation of a search
model.
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error εij enters both the search and the utility index, implying that consumers know the

idiosyncratic part of their utility prior to search. This helps us in deriving a consumer surplus

formula below, but we will relax it in the empirical section. What consumers learn through

search is the mean utility δUj . This is distinct from some other models in the marketing

literature, in which mean utilities are known and consumers seek to learn their idiosyncratic

match value (e.g., Kim et al. (2010) and Ursu (2018)). We would argue that whether

consumers search to learn mean or idiosyncratic utility (or both) is context dependent. For

example, in buying well-defined products, such as a new USB-C charger or a can opener

on Amazon, consumers are mostly trying to learn quality (i.e., mean utility). In choosing a

hotel — our application here — it seems plausible to us that consumers are trying to figure

out both “is this a good hotel?” and “is this a good hotel for me?” during the search process

(i.e., both mean and idiosyncratic utility). In this paper, we focus on the platform’s ability

to use product rankings to facilitate product discovery in contexts where the platform may

have more information about mean utilities. Therefore, it is natural to model consumers as

searching over the mean utilities.

In contrast, the platform is assumed to know both the mean baseline search index δSj and

mean utility δUj , as well as the rankings function f(·). We think it is realistic to assume this

given that platforms have access to rich data, including data from experiments, that will

allow them to obtain good estimates of the quality and salience of each option. Indeed, in

the empirical application, we propose one way to estimate these objects based on click and

choice data, which are readily available to platforms.

Following Lemma 1, define the mean effective index, δVj (rj) ≡ min{δSj + f(rj), δ
U
j }. Define

ϕj(rj) ≡ δUj − δSj − f(rj) to be the potential of product j — i.e., the difference between the

mean utility and search indices. This potential is in part a measure of how much better

the product is (on average) than it appears to be, though it is also affected by the rankings.

Define the ex-ante consumer surplus to be the expected utility of a consumer on the platform,

gross of any search costs, prior to the realization of their idiosyncratic logit shock.

Proposition 1 (Aggregate Demand and Consumer Surplus). Let r ≡ (r1, . . . , rJ). The

probability of a consumer choosing product j is given by

P (Choose j) ≡ qj(r) =
exp δVj (rj)

1 +
∑

k exp δ
V
k (rk)

,
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and the ex-ante consumer surplus is given by

CS ≡ C + log

(
1 +

∑
j

exp δVj (rj)

)
+

∑
j:ϕj(rj)>0

qj(r)ϕj(rj)

for C a constant.

Proof. See Appendix A.3.

This proposition says, firstly, that the choice probabilities are determined by the mean

effective indices according to the standard logit form. This is simply a consequence of Lemma

1 and the extreme-value distribution assumption. The consumer surplus, on the other hand,

differs from the standard log-sum form, in that it has an additional term that binds only for

products whose utility is higher than their search index (“diamonds in the rough”).8 The

reason is that although choices are based on effective indices, consumer surplus is based on

utility, and so whenever the utility exceeds the effective index this must be counted too (it

can’t be less than the effective index because of the min operator). This characterization of

consumer surplus is a key building block in the analysis that follows.

Notice that in our double index model, there are no explicit search costs, and so consequently

they do not appear in the ex-ante consumer surplus either. This assumption of zero search

costs may be appropriate for the online environment, where the time costs of search are

often small. But one may reasonably be concerned that these search costs are important

in practice, and so in our application we will track the average number of clicks under

different algorithms as an additional performance metric (in addition to consumer surplus

and revenues). We also offer one potential microfoundation of the double index model that

explicitly includes search costs in the next subsection.

2.4 Microfoundations: The Weitzman Model

The double logit model above abstracts from the consumer search problem, by describing

their behavior by a heuristic. One might wonder if such behavior can be sustained as the

solution of an optimal search problem. In this section, we show that it emerges from the

8This expression for consumer surplus arises in logit models whenever there is a distinction between
anticipated and realized utility (Allcott, 2013; Train, 2015).
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canonical sequential search model of Weitzman (1979).9

The primitives in the Weitzman (1979) model are payoff distributions and search costs. We

begin with payoff distributions. Consumers obtain payoffs of:

uij = δUj + εij

where the mean utility is unknown at the time of search but the idiosyncratic payoff is

known. Consumers search to learn mean utilities. To map it more clearly to the empirical

model below, it will be helpful to expand the mean utility as follows:

δUj = βUxj + ξUj

where xj are a set of product characteristics observed at the time of search, and ξUj is a mean

payoff component that is only learned by searching the product.

We assume that the mean utilities are conditionally mutually independent, where the con-

ditioning is over the vector of all observed product characteristics. An implication is that

the payoff realization for one product does not cause the consumer to update about the pay-

off distributions of the remaining products (for a model which relaxes this assumption, see

Hodgson and Lewis (2020)). We complete the model by specifying that searching product j

incurs some search cost cj.

Then, it follows from Weitzman (1979) that consumers will optimally assign products search

indices sij according to:

cj =

∫ ∞

sij

(u− sij)fuij |xj ,εij(u)du (2)

and search according to the exact heuristic we discuss above.

Next, we would like to show that these search indices take the double logit form. Towards

this, assume further that the conditional distribution of ξUj belongs to a location family:

ξUj = γxj + ξ̃Uj for some parameter vector γ and a mean-zero random variable ξ̃Uj with

ξ̃Uj ⊥ xj. Then, the conditional mean is linear in the product characteristics: E[ξUj |xj] = γxj.

From this, we can interpret γ as capturing the relationship between product characteristics

observed on the search page, and those that are only observed after clicking through (e.g.,

price could act as a signal of quality).

9Papers that have estimated this model empirically include Kim et al. (2010), Honka and Chintagunta
(2017), and Kim et al. (2017).
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We can then simplify the right hand side of the above equation as follows:∫ ∞

sij

(u− sij)fuij |xj ,εij(u)du =

∫ ∞

sij

(u− sij)fξUj |xj
(u− βUxj − εij)du (3)

=

∫ ∞

sij

(u− sij)fξ̃Uj (u− βUxj − γxj − εij)du (4)

=

∫ ∞

sij−βUxj−γxj−εij

(y + βUxj + γxj + εij − sij)fξ̃Uj (y)dy (5)

where the first equality follows from the relationship between the conditional densities of

uj and ξj, the second from the location family assumption, and the third by a change of

variable (y = u− βUxj − γxj − εij). Let ρj be the solution of cj =
∫∞
ρj
(y − ρj)fξ̃Uj (y)dy, and

let βS = βU + γ. Then if we let the search index take the form sij = βUxj + γxj + ρj + εij =

βSxj + ρj + εij, we may subtitute into (5), and verify that sij indeed satisfies (2).

We make one final assumption to reach the double logit form. Suppose that search costs

are determined by rankings, and decreasing in rank (i.e., high ranked products have low

search costs). Then it follows that we can write the thresholds ρj as ρj = f(rj) for some

unknown increasing function f(·). Putting this all together, we have sij = δSj + f(rj) + εij

with δSj = βSxj, as in the double logit model above.

3 Optimal Rankings

Online platforms can influence what is bought through their product rankings, which have

powerful effects on product views and search indices. With this in mind, we now turn to

the problem of optimizing those rankings, either for consumer surplus or platform revenue.

In this section, we will consider two main objective functions for the platform: maximizing

consumer surplus (an appropriate target for a platform trying to maximize the size of its user

base), and maximizing revenue.10 For any given search query, platforms can decide how to

order the results that they return. Assuming that each search query corresponds to a fixed

set of relevant products J , the problem is then which of those products to rank and how

to rank them. The platform may choose not to present all products to the consumer. This

is equivalent to allowing the platform to set a product’s rank to be 0, with f(0) = −∞, so

that this product is never considered. However, we rule out “gaps” in the ranking: if there

10We believe that the algorithms we develop extend to the case where the platform maximizes a convex
combination of consumer surplus and revenue, but we have not formally analyzed this.
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is a product ranked in position L, then positions 1 . . . L− 1 must be filled. The analysis in

this section is conditional on a search query and thus can seamlessly incorporate additional

information that the platform might have on the consumer, delivering personalized rankings.

3.1 Optimizing Consumer Surplus

We want to match products to ranks in such a way as to maximize consumer surplus. This

matching problem is discrete, and therefore not amenable to standard techniques. So we

begin instead with a relaxation of the problem in which ranks can be assigned continuously,

subject to a budget constraint that may hold with inequality (since the platform can choose

not to list some products at all, leaving some “surplus” ranks). Let f(·) now be defined on

the reals, with f ′ ≥ 0 and let CS
(
r, δS, δU

)
denote the consumer surplus as a function of

the vectors of rankings r and indices δS, δU. Then, the problem can be written as:

max
r1...rJ

CS
(
r, δS, δU

)
subject to

∑
j : j is listed

rj ≤
J(J + 1)

2

The optimal solution has the property that the partial derivative of the consumer surplus

is equal for all products that are ranked: ∂CS
(
r, δS, δU

)
/∂rj = λ ∀ j ∈ L where L is the

set of products listed and when all products are listed, λ is the Lagrange multiplier on the

budget constraint. If it is feasible to choose ranks so that δSj + f(rj) ≥ δUj ∀ j (i.e., every

product has a higher search index than their utility index), it is also optimal for consumer

surplus. The reason is that then the mean effective indices, min
{
δSj , δ

U
j

}
, are ordered in the

same way as mean utility, so that the highest utility products are most often purchased.

However, in most cases, it will not be possible to promote all products enough to achieve

this, and some products will need to be prioritized. To see which products benefit most from

higher rankings, take the derivative of consumer surplus with respect to rj:

∂CS
(
r, δS, δU

)
∂rj

=

qjf
′(rj)

(
ϕj(rj)−

∑
k:ϕk(rk)>0 qkϕk(rk)

)
, δSj + f(rj) < δUj

0 , δSj + f(rj) ≥ δUj

where again qj denotes the choice probability of product j. We derive this expression in

Appendix A.4. The intuition for it is in two parts. When δSj + f(rj) ≥ δUj , so that the
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effective index of j is determined by the utility, marginally improving the ranking of the

product (i.e., increasing rj) will not change the choice probabilities, and hence has no effect

on consumer surplus. On the other hand, when δSj + f(rj) < δUj , improving a product’s

ranking will increase its choice probability on the margin. Whether this is good or bad for

consumers depends on the sign of the expression in parentheses, which relates the potential

of product j to a weighted sum of all products with positive potential. If j offers positive

potential, then it may be worth promoting this product, but it depends on the potential of

the other products, since there is a finite amount of promotion available to the platform.

If f ′(·) is large enough (i.e., rankings impact search to a sufficient degree) and if there is no

outside option, i.e.
∑

k≤J qk = 1, it is possible to equate all the derivatives at zero, which

is optimal. This is achieved by assigning better rankings to products with high baseline

potential δUj − δSj at the expense of products with low baseline potential. So the optimal

ranking is based on equating product potential, rather than ordering by utility. The reason

for this is that when consumers have to buy something, then only the relative effective

indices between products matter. Equating potentials sets the effective indices equal to

mean utilities, in which case consumers behave as though they were perfectly informed, thus

maximizing consumer surplus. Instead, with an outside option, it is necessary to balance

potential and choice probabilities (since not all consumers will buy). Consumer surplus is

maximized in this case by equating all the positive derivatives.

The argument so far has treated rankings as continuous. However, in practice f(·) is

bounded, and each rank is discrete and associated with a fixed jump in its impact on a

product’s search index. It may no longer be possible to equate potentials, e.g., some high

utility products may have such low search indices that even with favorable rankings they

will be ignored by consumers, and from the point of view of the platform, this is “wasted”

promotion. In view of this, an algorithm that respects the discrete nature of the problem is

needed.

The OPT-K algorithm The discrete ranking problem is combinatorial in the number

of positions, and therefore demands a computationally tractable algorithm. We propose

the following algorithm, which we label OPT-K: instead of ranking all J products, let us

instead consider the simpler problem of assigning products to the first K or fewer positions
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to maximize the consumer surplus from that assignment, which we notate as CSK , i.e.

CSK = C + log

1 +
∑

j:rj≥J−K+1

exp δVj (rj)

+
∑

j:ϕj(rj)>0,rj≥J−K+1

qj(r)ϕj(rj),

where rj now represents the discrete rank of each product and is defined as J −positionj +1

(so again, higher is better). Maximizing CSK by brute force requires only
∑K

k=1 J !/(J − k)!

evaluations.11 Let the ranking that maximizes CSK be rK .

Proposition 2 (Approximate Optimality). If ∃K < J such that for any feasible ranking (i)

δSj + f(rj) < −1,∀ rj < J −K + 1 and (ii)
∑

j:rj<J−K+1 −(δSj + f(rj)) exp(δ
S
j + f(rj)) < ν,

then the optimal ranking for all J products can be approximated by the optimal ranking of

the first K products with the following error bound:

CS(rrrK) ≥ CS(rrr∗)− ν

(
max

j
δUj +

2− ν

1− ν

)
,

where rrrK ∈ argmaxCSK and rrr∗ ∈ argmaxCS.

Proof. See Appendix A.5.

Proposition 2 says that if all products placed after position K (i.e., those with low ranks)

are unlikely to be bought because their search indices become very low, then optimizing

product assignments for the first K positions will deliver close to optimal consumer surplus.

To interpret assumptions (i) and (ii) in the statement of Proposition 2, notice that if (i) and

(ii) hold simultaneously, it must be that
∑

j:rj<J−K+1 exp(δ
S
j + f(rj)) < ν for any feasible

ranking, since −(δSj + f(rj)) > 1. This in turn implies
∑

j:rj<J−K+1 qj < ν. Therefore, the

assumptions can be viewed as requiring the combined choice probabilities of the products

placed after position K to be small enough.

What makes the result of Proposition 2 tricky to prove is that the decision of how to rank any

one product affects the choice probabilities for all other products. By doing an exhaustive

search over the top K positions, we can guarantee approximate optimality whenever the

remaining positions “bury” the products placed there sufficiently so that they are rarely

bought. Many online environments have the property that the top ranked products get the

11All possible assignments of the J products to the first l positions take J !/(J − k)! evaluations, and since
the algorithm may assign up to position K, we must sum over all assignments that have k = 1 to l = K.
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vast majority of clicks, in which case there may be a reasonably small K for which the ν

bound is reasonably tight.

Ranking the remaining J−K products The OPT-K algorithm does not prescribe how

to rank the remaining J − K products. In practice, there may be substantial gains from

ranking all the products. We now propose a practical greedy algorithm for the remaining

products and call it the OPT-K+Greedy (OPTKG) algorithm.

The greedy algorithm is only needed after the OPT-K algorithm ranks all first K positions.

That is, if the OPT-K algorithm determines only L < K products are needed to maxi-

mize consumer surplus, then the OPTKG algorithm also terminates. But if needed, for the

remaining positions, the greedy algorithm begins with the highest remaining rank and my-

opically assigns the best product to each position holding fixed all the products that have

already been ranked. The algorithm terminates when either all positions are assigned or for

some rank it is best not to assign any product to that rank. Algorithm 1 formally presents

the OPTKG algorithm for consumer surplus optimization, labeled OPTKG-CS.

Algorithm 1: OPT-K+Greedy Algorithm for CS (OPTKG-CS)

Result: Assign a unique rank position {K + 1, K + 2, ..., K + k},∀k ≤ J −K to k
unique products

Initialization: Let fi denote the effect of position i’s ranking on the search index.
Set N contains all J −K unranked products.
for position i from K + 1 to J do

Calculate CSij = CS({rj = f−1(fi), r{1,2,...,J}\N}, δS, δU) for each product j ∈ N ;
Calculate CSi0 = CS({r{1,2,...,J}\N}, δS, δU);
Assign position i to product j such that CSij ∈ argmaxl∈N∪{0}CSil;

if j = 0 then
Break;

else
Update N = N \ j;

end

end

3.2 Revenue Maximization

The platform might also consider matching products to ranks as to maximize the platform’s

revenues. We begin again with a relaxation of the problem in which ranks can be assigned
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continuously, and then consider the discrete problem.

Let πj be the revenue that the platform earns from selling product j. We focus on revenue

maximization since marginal costs are essentially zero for many platforms and thus revenues

correspond to profits. However, an analogous argument applies to the case where marginal

costs are nonzero and the platform maximizes profits. The platform’s revenue maximization

problem can be written as:

max
r1...rJ

∑
j

qj(r)πj

subject to
∑

j : j is listed

rj ≤
J(J + 1)

2
,

We let π(r, δS, δU) denote the objective function above, i.e. the expected (per-customer)

revenue. The optimal solution has the property that the partial derivative of expected rev-

enues is equal for all products that are ranked: ∂π
(
r, δS, δU

)
/∂rj = ∂π

(
r, δS, δU

)
/∂rk ∀ j, k.

However, unlike the consumer surplus, even if it is feasible to choose ranks so that δSj +f(rj) ≥
δUj ∀ j (i.e., every product has higher search than utility index), it might not be optimal for

revenues because consumer utilities are not necessarily positively correlated with the rev-

enue from each product. Thus, a short-term revenue maximizing platform has an incentive

to distort ranks (from a consumer surplus perspective) even with unlimited ranking power.

To get more intuition, take the derivative of platform revenue with respect to rj (we derive

this in Appendix A.6):

∂π
(
r, δS, δU

)
∂rj

=

qjf
′(rj)

(
πj −

∑
k≤J qkπk

)
, δSj + f(rj) < δUj

0 , δSj + f(rj) ≥ δUj

The expression resembles that of the consumer surplus derivative, with the revenue margins

πj taking the place of the potentials ϕj. But because the revenues are fixed even as the

rankings are adjusted, the optimal solution is quite different. When there is no outside

option, the platform should only display the highest-margin good. The intuition is clear: if

the consumer will buy something regardless, steer them in the direction of highest revenues.

With an outside option, the platform has to balance the probability that the consumer

buys anything at all with the incentive to push the highest-margin products. The sign

of the derivative depends on the term πj −
∑

k≤J qkπk. This is the revenue from j less

the choice-probability weighted revenues from all other products (which includes the zero-
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margin outside option). So when most consumers don’t purchase anything (i.e., the weighted

revenue is close to zero), this term will be positive, and all products will be ranked, with

high-margin and high-effective index products getting the top spots. But if consumers who

are presented with the full product assortment are likely to purchase something, the weighted

revenue will exceed the revenue offered by some of the products in the assortment, and the

platform can improve revenues by excluding those low-margin products. Platforms whose

customers are unlikely to shop elsewhere (or not buy at all) can therefore afford to choose a

product assortment that consists mostly of high-margin products, while platforms with less

loyal customers cannot.

The OPT-K algorithm We propose the analogue OPT-K algorithm for revenue max-

imization: Instead of ranking all J products, we only consider assignments to the first K

positions to maximize revenues from those K or fewer products. Define

πK =
∑

j:rj≥J−K+1

qj(r)πj.

Maximizing πK by brute force again requires only
∑K

l=1

(
J
l

)
evaluations. Let the ranking

that maximizes πK be rK .

Proposition 3 (Approximate Optimality). If ∃K < J such that for any feasible ranking (i)

δSj + f(rj) < −1,∀ rj < J −K + 1 and (ii)
∑

j:rj<J−K+1 −(δSj + f(rj)) exp(δ
S
j + f(rj)) < ν,

then the optimal ranking for all J products can be approximated by the optimal ranking of

the first K products with the following error bound:

π(rrrK) ≥ π(rrr∗)− νmax
j

πj,

where rrrK ∈ argmax πK and rrr∗ ∈ argmax π.

Proof. See Appendix A.7.

Analogously to Proposition 2, Proposition 3 says that if products placed after position K

are unlikely to be bought, then optimizing product assignments for the first K positions can

be sufficiently close to the optimal ranking for all products. As before, it may be useful

in practice to rank the remaining J − K products. In the same way as earlier, we define

a greedy algorithm OPTKG that maximizes revenues over all possible assignments of the

first K products, and then greedily assigns each of the remaining products by checking
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which assignment generates the greatest improvement in revenues over the prior assignment,

terminating if non-assignment is ever the best option.

3.3 Simulations

While Propositions 2 and 3 give theoretical guarantees for the performance of the OPT-K

algorithm, in practice the algorithm’s performance depends on the number of products J and

the choice of K, the distributions of utilities and revenues, as well as whether the conditions

of the propositions are met. In this section, we illustrate, via simulations, the performance

of the OPT-K algorithm under a wide range of conditions. We also discuss in practice how

to optimize rankings for the remaining J − K products as well as the runtime of various

OPT-K algorithms.

Simulation environment We simulate J = 5 products to be assigned to ranks r ∈
{5, 4, ..., 1}, where the effect of ranking on the mean search index exponentially decays, i.e.

f(r) = A · exp(r − 6) for A ∈ {5, 10}. We limit the number of products to 5 to retain the

ability to brute force and find the actual best and worst assignments as benchmark. Mean

search and utility indices of each product are drawn from i.i.d. normal distributions, i.e.

δSj ∼ i.i.d.N(0, 10) and δUj ∼ i.i.d.N(µ, 10) for µ ∈ {−5,−2, 2, 5}. For each combination

of (A, µ), we simulate 1,000 times, for a total of 8,000 simulations. For each simulation

draw, we first find the maximum and minimum consumer surplus CSmax and CSmin by

enumerating all
∑J

l=1

(
J
l

)
possible rankings, and then report the consumer surplus under the

OPT-K algorithm as CS−CSmin

CSmax−CSmin
.

Results Table 1 presents the performance results of the OPT-K algorithm for both con-

sumer surplus and platform revenues. In each simulation, we first run the OPT-K algorithm.

To evaluate the overall performance, for the remaining positions, we compare the OPTKG

algorithm to either not assigning any product to the remaining J −K positions or a random

assignment.12 We repeat for K = {1, 2, ..., 5}. Note that the OPT-1+Greedy algorithm is

equivalent to running Algorithm 1 for all J products, and the OPT-5 algorithm is equivalent

to brute force for all J = 5 products.

12To calculate consumer surplus or platform revenues under the random assignment, we enumerate all
possible assignments for the remaining J − K positions and average the consumer surplus or platform
revenues associated with each assignment.
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Table 1: OPT-K performance

J = 5; 8× 1, 000 simulations Consumer Surplus Platform Revenues

Positions K + 1, ...J None Random Greedy None Random Greedy

K = 1 96.5% 95.3% 99.3% 97.0% 84.7% 99.4%
K = 2 99.5% 97.9% 99.9% 99.6% 94.3% 99.9%
K = 3 99.9% 99.3% 100% 100% 97.2% 100%
K = 4 100% 99.9% 100% 100% 98.3% 100%
K = 5 100% 100% 100% 100% 100% 100%

Note: Simulation results of OPT-K algorithm performance for consumer surplus and platform revenues
with J = 5 products. Positions K + 1, ..., J assign: (i) no products, (ii) randomly ordered products, or

(iii) products according to OPTKG. Performance is first normalized by Q−Qmin

Qmax−Qmin
, where Q = {CS, π}

and Qmin and Qmax are obtained via enumeration, and then averaged across 8 combinations of parameters
(A,µ) × 1,000 simulations per each set of parameters.

With J = 5 products, OPT-1, by picking the best product for the first position, achieves more

than 96% of maximum consumer surplus or platform revenues when assigning no products

to any positions after the first. By using the greedy algorithm to assign the remaining

slots, OPT1G achieves more than 99% in both consumer surplus and platform revenues.

Random assignments for remaining positions obtain lower consumer surplus and platform

revenues, at 95.3% and 84.7%, respectively, as displaying bad products (either in utility or

revenue) can distract consumers away from good products. When K is small, or equivalently

J−K is large, the OPTKG algorithm achieves meaningful improvements over no or random

assignment of the remaining products, suggesting that adding a greedy assignment step may

be important in practice. Strikingly, the OPT2G algorithm achieves more than 99.9% of the

optimal consumer surplus and platform revenues across all these simulations, despite brute

forcing the assignment of only 2 products (40% of the products available).

We now turn to the computational cost of OPTKG. The number of evaluations required

to execute OPT-K is
∑K

l=1

(
J
l

)
, which scales up quickly with both K and J . On the other

hand, the greedy algorithm is cheap: If OPT-K assigns products to all K positions, then

the OPTKG algorithm would add at most an additional cost of (J−K)(J−K+3)
2

evaluations,13

depending on how many products end up being assigned.

Table 2 compares different OPT-K algorithms in terms of their run times. We increase the

number of products to J = 25, which is more realistic in practice: it roughly represents the

13Assignments of all J products would require (J−K+1)+(J−K)+ ...+2 = (J−K)(J−K+3)
2 evaluations.
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Table 2: OPT-K runtime (in seconds)

J = 25; 8× 10 simulations Consumer Surplus Platform Revenues

Positions K + 1, ...J None Greedy None Greedy

K = 1 1.2e-4 9.2e-4 2.7e-4 9.5e-4
K = 2 4.8e-3 5.6e-3 5.4e-3 5.8e-3
K = 3 0.11 0.11 0.12 0.12
K = 4 3.2 3.2 3.6 3.6
K = 5 70 70 64 65

Note: Simulation results of OPT-K algorithm runtime for consumer surplus and platform revenues in seconds
with J = 25 products. Positions K + 1, ..., J assign: (i) no products or (ii) products according to OPTKG.
Runtime are averaged across 8 combinations of parameters (A,µ) × 10 simulations per each set of parameters.

two full pages of search results on a typical platform that are most relevant to the consumers.

With an otherwise similar simulation environment, we run various OPT-K algorithms for

10 times for each set of parameters. While runtime increase quickly with K, the OPT-K

algorithm remains computationally feasible for small K when J = 25. The additional cost

of the OPTKG algorithm is small and does not meaningfully scale with K. Runtime for

consumer surplus and platform revenues are similar. We conclude that in our simulations

the OPTKG algorithm is both computationally feasible and close to optimal for small K.

4 Empirical Application

We apply our method to study the customer search and choice data from a hotel booking

platform (Expedia). Using our double logit demand estimates, we compare our optimal

ranking algorithm to both a utility-based ranking and the Expedia ranking, evaluating how

they each perform with respect to revenue, consumer surplus and number of searches.

4.1 Data and Descriptive Evidence

Our data comes from Expedia and is made available through Kaggle.com, an online platform

where data miners can use datasets to take part in competitions posted by companies. We

refer the reader to Ursu (2018) for a comprehensive discussion of the data; here, we focus on

the features that are most directly relevant to our analysis. The Expedia data is composed

of two datasets, a training dataset and a testing dataset. Both data contain customer search
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and choice records from Nov 2012 to Jun 2013 among 34 different markets. There are 120,883

search impressions in the training data and 276,644 impressions in the testing data. Both

training and testing data contain only impressions where customers searched at least once

and each impression displays 5 to 38 different hotels. There are 124,561 hotels in the training

data and 130,136 hotels in the testing data. We observe their rating, price, country, review

score, whether it belongs to a chain or not, and a location score. Further, we observe whether

the hotel is being clicked on and whether the hotel is booked.

The main difference between the two datasets is that in the training data, hotels are ranked

randomly, whereas in the testing data, hotels are ranked according to the (proprietary)

Expedia algoritm. The advantage of the training data is that we can identify the effect of

rankings on the customer search index without having to worry about endogeneity of ranks.

Although we observe whether a customer searched a hotel or not, we do not observe the

order of search. In the estimation, this will require us to integrate out along all possible

permutation of search paths. Table 3 shows summary statistics for hotel characteristics in

the training and testing samples. One can see that the hotel characteristics have very similar

distributions in the two samples, except that prices are slightly lower in the testing sample.

Table 4 shows summary statistics on consumer behavior. First, consumers face fairly large

choice sets, consisting of around 25 hotels on average. In spite of this, consumers only

search slightly more than one hotel on average, suggesting that rankings are likely to play

an important role in driving final choices. There is, however, heterogeneity in search, with

some consumers clicking on several hotels. Note that, in order to keep the integration along

search paths tractable, we drop impressions where customers searched more than five times,

which corresponds to around 0.5% of the overall sample.

Next, we provide some descriptive evidence to motivate our model. Figure 2 shows the

relationship between the number of clicks and the number of bookings for the same hotel

in the training data.14 While hotels that are clicked more often also tend to be booked

more, there is also substantial independent variation in the two variables. This suggests

that search and choice patterns are driven by two distinct mechanisms, which motivates our

double index model. In other words, a model featuring a single index, such as a standard

discrete choice model, is not likely to fit the data well.

Second, we look at the ranking algorithm used by Expedia in the testing data. Figure 3

relates a hotel’s average position in the testing data with the number of clicks (left panel)

and bookings (right panel) in the training data. We would expect that hotels that are more

14For the descriptive evidence, we focus on the top 50 most often displayed hotels in the training data.

23



Table 3: Summary statistics: Hotel characteristics

Observations Mean Median SD Min Max

Training Sample:
Star rating 2,922,728 3.17 3.00 1.06 0 5
Review score 2,922,728 3.69 4.00 1.17 0 5
Chain 2,922,728 0.60 1.00 0.49 0 1
Location score 2,922,728 2.88 2.83 1.55 0 6.98
Price 2,922,728 164.90 128.00 145.20 0 5,000
Promotion 2,922,728 0.20 0 0.40 0 1
Testing Sample:
Star rating 6,947,458 3.18 3.00 1.04 0 5
Review score 6,947,458 3.81 4.00 1.01 0 5
Chain 6,947,458 0.65 1.00 0.48 0 1
Location score 6,947,458 2.87 2.77 1.52 0 6.98
Price 6,947,458 149.30 120.00 112.50 0 5,000
Promotion 6,947,458 0.22 0 0.42 0 1

Note: The table shows summary statistics of hotels. An observation is a hotel-impression, so that hotels are
weighted by their appearance in search results.

Figure 2: Clicks and bookings

Note: The figure shows the relationship between number of clicks and number of bookings for the top 50
most displayed hotels in the training data. Each dot corresponds to a hotel, and the best linear fit is plotted.
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Table 4: Summary statistics: Consumer behavior

Observations Mean Median SD Min Max

Training Sample:
Number of hotels in choice set 120,883 24.18 28.00 9.19 5 38
Number of searches 120,883 1.10 1.00 0.43 1.00 5
Indicator for purchase 120,883 0.13 0 0.34 0 1
Testing Sample:
Number of hotels in choice set 276,644 25.11 30.00 9.08 5 38
Number of searches 276,644 1.08 1.00 0.38 1 5
Indicator for purchase 276,644 0.94 1.00 0.24 0 1

Note: The table shows summary statistics for consumer behavior at the search impression level.

often clicked and purchased in the training data (where ranks are assigned randomly) are

the ones that Expedia would choose to rank more favorably in its own algorithm. This is

indeed the case.

Finally, Figure 4 shows how the probability of clicking and booking a hotel varies with the

average hotel position across the two datasets. As expected, better positions are associated

with higher click probabilities on average in both data sets (left panel). However, the slope of

the relationship is steeper in the testing data. This is consistent with the idea that Expedia

is optimizing its rankings, so that the hotels ranked in the first few positions are relatively

more attractive than random hotels. Notice also that the probability of searching a hotel in

position 30 or above (i.e., lower rank) declines to almost zero in the testing data, but is still

relatively high in the training data. This suggests that when rankings are not optimized,

consumers end up having to search further. Turning to bookings, the right panel of Figure 4

shows similar patterns: the booking rate declines more rapidly as a function of rank in the

testing than the training data, and low ranked hotels are sometimes booked in the training

data, but almost never in the testing data.15

15We plot the probability of booking on different axes here because the testing data over-samples searches
that terminate in booking, so that plotting them on the same axes may be misleading.
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Figure 3: Clicks and bookings in training data as a function of average Expedia position

Note: The figure shows the relationship between the average position of a hotel in the testing data and its
click rank in the training data (left panel) and its booking rank in the training data (right panel). Each dot
corresponds to a hotel.

Figure 4: Probability of clicking and booking as a function of position

Note: The figure shows the relationship between the position of a hotel and the probability of it being clicked
(left panel) and being booked (right panel). Each dot corresponds to a position, with blue dots referring to
the training data and red dots referring to the testing data. In the right panel, the booking probability for
the training and testing data are on separate axes, as the testing data oversamples searches that conclude
in booking.
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4.2 Empirical “Double Logit” Model

For the purpose of estimation, we parameterize the utility and search indices in search

impression t as follows:

sijt = βSxjt + γ(rjt) + ξSj + εijt + ε̃Sijt

uijt = βUxjt + ξUj + εijt + ε̃Uijt
(6)

where xjt denotes observed (to the researcher) characteristics of hotel j, rjt denotes the rank

of hotel j on the web page, and ξUj , ξ
S
j are hotel-specific attributes that affect utility and

search, respectively, but are not captured by the data. Consistent with the theoretical model,

we let a common unobserved term, εijt, enter both the search and the utility index. We take

εijt to be distributed i.i.d. N(0, σ2) where σ is a parameter to estimate.16 We assume that

consumers observe xjt, rjt, ξ
S
j and εijt for all j, and decide whether or not to learn ξUj by

searching hotel j. This is consistent with the Weitzman microfoundation in Section 2.4. In

addition, we include idiosyncratic shocks, ε̃Uijt and ε̃Sijt, which are taken to be distributed i.i.d.

type–I extreme value. These independent shocks help smooth out the likelihood function

and lead to convenient closed form expressions, as described below. We follow Ursu (2018)

in assuming that the observed hotel characteristics (including price) are exogenous. Note

that rankings are exogenous by construction in the training data since they are randomized.

We estimate the model via maximum likelihood. In order to write the likelihood of each

consumer’s observed click and purchase outcomes, we proceed in two steps. First, we exploit

a convenient property of the type–I extreme value distribution to obtain a closed form for

the outcome probability for any given search sequence. Then, since the search sequence is

not observed in the data, we sum over all possible sequences to obtain the probability of the

observed outcome.

To illustrate, consider a simple example with two hotels and an outside option and suppose

that the data tells us that consumer i searches both hotels and books hotel 1. This set of

outcomes is consistent with two search sequences:

• Search hotel 1, then 2, then book 1 (sequence A)

16We make this distributional assumption since it requires fewer samples to approximate the distribution
of εijt in estimation, and hence is less computationally demanding. This is in contrast to the theoretical
model, which assumed a type-I extreme value distribution for this term. Still, we find that the theory-based
optimal rankings perform well (see, e.g., Figure 7) and thus conclude that this discrepancy between the
theoretical and empirical model is not a first-order issue in our setting.
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• Search hotel 2, then 1, then book 1 (sequence B)

Dropping the t subscripts for simplicity, the only possible ordering of the search and utility

indices associated with sequence A is

si1 ≥ si2 ≥ ui1 ≥ ui2, ui0 (7)

This is because: (i) si1 ≥ si2 ≥ ui0, given that both hotels are searched and 1 is searched

before 2; (ii) si2 ≥ ui1, since 2 is searched after ui1 is revealed; and (iii) ui1 ≥ ui2, ui0, since 1

is chosen. Under the maintained assumptions and for fixed (εi1, εi2), the probability of the

ordering in (7) is equal to

exp
(
δSi1
)

1 + exp
(
δSi1
)
+ exp

(
δSi2
)
+ exp

(
δUi1
)
+ exp

(
δUi2
) exp

(
δSi2
)

1 + exp
(
δSi2
)
+ exp

(
δUi1
)
+ exp

(
δUi2
) exp

(
δUi1
)

1 + exp
(
δUi1
)
+ exp

(
δUi2
)

(8)

where we let δSij = βSxS
j + γ(rj) + ξSj + εij and δUij = βUxj + ξUj + εij for j = 1, 2. The

expression in (8), sometimes referred to as the “exploded logit” model, is convenient in that

it allows us to write the likelihood in a way that does not rely heavily on computationally

costly simulation methods. Specifically, while we still need to numerically integrate over the

distribution of (εi1, εi2), we do not need to do so for the idiosyncratic shocks
(
ε̃Ui1, ε̃

U
i2, ε̃

S
i1, ε̃

S
i2

)
.

Similarly, for sequence B, there are three possible orderings:

si2 ≥ si1 ≥ ui1 ≥ ui2, ui0

ui1 ≥ si2 ≥ si1 ≥ ui2, ui0

si2 ≥ ui1 ≥ si1 ≥ ui2, ui0

We can write the probability of each of these orderings using the exploded logit formula as in

(8); the sum across the three orderings then gives us the outcome probability associated with

sequence B. Next, summing the outcome probabilities associated with the two sequences we

obtain the likelihood of the observed outcome for consumer i. A similar logic applies to

more complicated outcomes involving more than two hotels and thus we are able to write

the probability of the data in closed form.

Finally, note that the data only covers consumers who clicked on at least one hotel. To

account for this sample selection, we divide the likelihood by the probability of clicking on at

least one hotel (which again can be written in closed form using the exploded logit formula).

This is the (conditional) likelihood that we maximize. More formally, the log-likelihood is
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given by:

ℓ(data; θ) =
∑
t

log

( ∑
ordt

∫
P (ordt;xt, θ)dFε

P (click at least one hotel;xt, θ)

)
(9)

where xt = (x1t, . . . , xJt), ordt indexes the different possible orderings of search and utility

indices for impression t, Fε denotes the distribution of (ε1, . . . , εJ), and P (ordt;xt, θ) denotes

the probability of ordering ordt based on the exploded logit formula (e.g., the expression in

(8)).

We now provide some intuition for the type of variation in the data that allows us to identify

the model (Appendix A.8 contains a more formal identification argument). The correla-

tion between hotel characteristics and the probability that hotels are clicked identifies the

parameters in the search indices. Similarly, the correlation between hotel characteristics

and the probability that hotels are chosen, conditional on being clicked on, identifies the

parameters in the utility indices. Notice that it is necessary to have a model of search in

order to consistently estimate the choice model, since the options in the consideration sets

are endogenously determined, and the idiosyncratic errors of options in the consideration set

will generally not be iid extreme value. In other words, simply estimating a logit model on

the observed consideration sets is likely to lead to biased results.

4.3 Results

We fit our double index model to the training dataset by maximum likelihood. Table 5

presents the results. The first two columns of the table present coefficients and standard

errors for the search index, while the last two columns present coefficients and standard

errors for the utility index. First, notice that, as expected, the rank position coefficients in

the search index are monotonically decreasing. Two positions — positions 5 and 11 — are

an exception to this pattern. This is consistent with the fact that Expedia places “opaque

offers,” i.e., offers in which the consumer does not know the name of the hotel before making

a purchase, in these positions (see Ursu (2018) for more on this point). All other coefficients

estimates seem reasonable. For example, price coefficients are negative in both the search

and the utility indices which suggest that higher prices not only reduce the probability of

booking conditional on searching, but also deter customers from searching in the first place.

Similarly, higher review scores positively impact both search and booking. The estimates of

the coefficients in the utility index are also in line with those in Ursu (2018); in particular,

we estimate a price coefficient of -0.2722, which is very close to the estimate of -0.2867 in
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Ursu (2018) (in both models, prices are measured in hundreds of dollars). Finally, note that

the parameter σ is estimated to be close to zero (albeit with a large standard error), which

suggests that the correlation between the unobserved shocks in the search indices and those

in the utility indices is small.

4.4 Model Fit

Table 6 shows the average odds of clicking on a hotel for different positions. Comparing the

first two rows, we can see that the model does a good job at matching the patterns in the

training data, especially for the first few positions. The model tends to overestimate the

odds of search for positions 7-10, but the overall fit is quite good. In the third and fourth

row, we assess the fit of the model out of sample, namely on the testing dataset where ranks

are not randomized but rather optimized by Expedia. Again, the patterns observed in the

data are broadly matched by our model.

Regarding purchase rates, the model fits well, predicting a booking rate in the training data

of 14%, slightly higher than the 13% we see in Table 4. On the other hand, the model

substantially under-predicts purchase rates in the testing data. This is to be expected given

that impressions leading to a transaction were over-sampled in the testing data to a larger

degree relative to the training data (Ursu, 2018).

4.5 Counterfactual Analysis

Given the estimated model, we perform a range of counterfactual exercises to compare our

proposed algorithm to competing algorithms. Specifically, we draw 1,000 customers (i.e.,

choice sets) at random from the testing data. For each customer, we use the model and

the estimated search and utility index parameters to compute the expected consumer wel-

fare, number of searches and revenue under four rankings.17 The four rankings are: (i)

“OPT3G-CS,” our approximately optimal algorithm for maximizing consumer surplus with

an exhaustive search over the top 3 positions and a greedy algorithm for rest of the posi-

tions; (ii) “OPT3G-Rev,” our approximately optimal algorithm for maximizing revenue; (iii)

17We approximate the expectation by Monte Carlo simulation: for each consumer, we draw 200,000 vectors
of the independent idiosyncratic shocks GC: We also draw the common ϵijt normal shocks, right? to the
search and utility indices for all products, determine which product they purchase, and their consumer
surplus, and then output the average across all draws. We do this because there is no closed-form expression
for consumer surplus when the draws are independent (in contrast, when they are perfectly correlated, there
is an expression given by Proposition 1).
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Table 5: MLE estimates of double logit model

Search index Utility index

Coef SE Coef SE
Position 1 1.0578 0.0435
Position 2 0.7900 0.0452
Position 3 0.5936 0.0465
Position 4 0.4684 0.0476
Position 5 0.1601 0.2727
Position 6 0.3289 0.0489
Position 7 0.4025 0.0497
Position 8 0.1918 0.0545
Position 9 0.2249 0.0564
Position 10 0.1615 0.0611
Position 11 -5.5639 1.0058
Position 12 0.1690 0.0647
Star rating 0.2413 0.0132 0.0193 0.0234
Review score 0.0725 0.0096 0.1077 0.0201
Chain 0.1149 0.0262 0.3555 0.0502
Location score 0.1029 0.0109 0.0111 0.0171
Price ($100) -0.2869 0.0138 -0.2722 0.0295
Promotion 0.2583 0.0291 0.0356 0.0686
Constant -8.1309 0.0374 -5.1602 0.0282
σ 0.0002 0.3618

Note: The table shows the estimates of the double logit model. The first two columns report the coefficients
and standard errors for the search index parameters, whereas the last two refer to the utility index parameters.
σ determines the correlation between the shocks in the search and the utility indices. Hotel fixed effects are
included in both the search and the utility index, but are not reported.

“Utility,” the algorithm that simply ranks goods in descending order of their utility indices;

and finally (iv) the Expedia ranking.

Table 7 shows the average changes in each of these metrics for the OPT3G-CS, OPT3G-Rev

and utility rankings relative to the Expedia algorithm. OPT3G-CS yields an average gain in

consumer surplus of almost $0.80 per customer relative to Expedia. Remember that this is

an average over all consumers, including consumers who do not even search, since our model

allows for non-search as an option. The simulated conversion rate over this population is

in the range of 3-4%, implying a gain in consumer surplus for consumers who purchase of

over $20 (similarly, the revenue numbers may be scaled by 25-30 times, so e.g. OPT3G-Rev
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Table 6: Odds of clicking for different positions

Positions 1 2 3 4 5 6 7 8 9 10

Data - Training 1.0000 0.7843 0.6751 0.5380 0.0063 0.4634 0.3969 0.3218 0.2863 0.2706
Estimates - Training 1.0000 0.7599 0.6395 0.5510 0.0058 0.4887 0.4327 0.3837 0.3591 0.3294
Data - Testing 1.0000 0.6643 0.4996 0.3886 0.0037 0.3115 0.2519 0.2118 0.1755 0.1523
Estimates - Testing 1.0000 0.7211 0.5861 0.4752 0.0197 0.4340 0.3787 0.3350 0.3114 0.2621

Note: The table shows the odds of clicking for positions 1-10 relative to the odds for position 1. The first
row reports the odds in the training data, whereas the second row reports the odds predicted by the model
for the same data. The third and fourth rows repeat this for the testing data.

Table 7: Average changes relative to the Expedia ranking

OPT3G-CS OPT3G-Rev Utility

∆ Consumer Surplus ($) 0.7810 -0.1253 0.5970
∆ Search Count 0.0019 -0.0052 -0.0028
∆ Revenue ($) 0.1449 0.2456 0.0244

delivers in additional revenue of over $6 per purchase).

One might wonder whether achieving this higher surplus requires more search on the part

of consumers, as in principle, higher search costs could offset the gains from finding a better

match. We find that, on average, consumers engage in only 0.0019 additional searches

under OPT3G-CS relative to Expedia. While our model does not provide an estimate of

search costs, this very small difference suggests that the additional search costs implied by

our algorithm are negligible relative to the utility gains. The magnitudes of the consumer

welfare numbers should be interpreted with caution since, in the Expedia dataset, impressions

leading to a transaction were oversampled, though it is unclear whether this is only true of

the testing data (94% purchase rate, versus 13% in the training data), or both. Still, the

comparison is informative about the relative performance of the different ranking algorithms.

Next, Figure 5 shows that there is a trade-off between revenue and consumer surplus. Among

the four algorithms, OPT3G-CS sacrifices some revenue in order to maximize expected con-

sumer surplus, whereas OPT3G-Rev achieves higher average revenues at the cost of much

lower consumer surplus. Notice, however, that OPT3G-CS dominates the Expedia and the

32



Figure 5: Trade-off between consumer surplus and revenue maximization

Note: The figure shows the relationship between the average consumer surplus and the average revenue for
the OPT3G-CS, OPT3G-Rev and Utility algorithms relative to the Expedia algorithm.

utility rankings in terms of both consumer surplus and revenue. In this sense, the Expedia

and the utility rankings are within the Pareto frontier.

Going beyond averages, Figure 6 shows the entire distribution of consumer surplus and

revenue for the OPT3G-CS, OPT3G-Rev and utility algorithms relative to the Expedia

ranking. One can see that the results for the averages continue to hold when we look at the

full distributions of customers.
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Figure 6: Changes in consumer surplus, number of searches and revenue relative to Expedia
ranking

Note: The figure compares the OPT-3, OPT3G-Rev and Utility algorithms to that used by Expedia. For
each of them, the blue box plots (on the left) show the distribution of changes in consumer surplus and the
yellow box plots (On the right) show the distribution of changes in revenues. Each box marks the 25th, 50th
and 75th percentiles, the dotted lines indicate the 5th to 95th percentile range, and the solid lines show the
outliers.

In order to further shed light on how the algorithms perform for any given customer, Table 8

reports the fraction of customers for whom each of the four algorithms maximizes expected

surplus (relative to the remaining three). As expected, OPT3G-CS maximizes consumer

surplus for the vast majority of choice sets. In comparison, the Expedia and the utility

rankings are optimal only for around 10% of customers each. OPT3G-Rev comes in last,

which is not surprising since it targets a different objective function.

Note that there are at least two reasons why OPT3G-CS does not always maximize consumer

surplus. First, OPT-K is an approximately optimal algorithm. As such, it is possible that

other algorithms would sometimes dominate it. Second, our algorithm is (approximately)

optimal for the case in which the idiosyncratic error terms in the utility and search indices

are perfectly correlated, but in estimation we assumed that a component of the shocks

is iid across the two indices. This discrepancy could also cause OPT-K to not achieve

the optimum under the estimated model. This being said, the fact that OPT3G-CS still

maximizes consumer surplus in more than three quarters of choice sets is reassuring and

suggests that we are not too far from the optimal algorithm.

The results so far show that our OPT3G algorithms achieve desirable outcomes relative to
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Table 8: Breakdown of customers by which algorithm maximizes expected CS

OPT3G-CS OPT3G-Rev Utility Expedia

% of customers 76.60% 1.30% 11.20% 11.80%

Note: For each algorithm, the table reports the fraction of customers in the testing data for whom the
algorithm yields a higher consumer surplus than the remaining three.

two competing rankings, the Expedia and the utility ranking. However, they do not say

anything about the performance of OPT3G in comparison with any of the (many) other

possible algorithms. In order to shed some light on this, we draw 1,000 rankings at random,

and apply them to a random subset of 1,000 customers (i.e., choice sets) from the testing

data. Specifically, we draw a random ranking of all the products that ever appear in a choice

set. Then for any particular choice set — a subset of all products — we list them in the order

given by the ranking. We compare the consumer surplus they achieve to that from OPT3G,

as well as other competing algorithms. The left panel of Figure 7 shows the results. We can

see that both our OPT3G algorithms as well as the utility and Expedia algorithms do better

than the vast majority of random rankings. In particular, the OPT3G-CS algorithm achieves

an average consumer surplus that is several standard deviations higher than the bulk of the

distribution for random rankings, which illustrates the value of our algorithm. The right

panel of Figure 7 complements the analysis by looking at average revenue. Again, the four

algorithms all tend to dominate the majority of random rankings, but now OPT3G-Rev

performs better than the others, including OPT3G-CS, illustrating the trade-off between

optimizing revenues and maximizing consumer surplus.
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Figure 7: Comparison with random rankings

Note: The left panel shows the distribution of average consumer surplus for 1,000 random rankings (the blue
histogram) as well as the four algorithms described in the text. The average is taken over choice sets and
utility shocks. The right panel shows the same for average revenue.

5 Conclusion

Engagement with the virtual world seems likely to increase over time. How and where

platforms choose to direct consumer attention is a key component of the online world, shaping

the choices that consumers make. The model presented here offers one way of formalizing this

relationship between platforms and consumers, positing that platforms can affect a search

index that determines what consumers choose to view, though it cannot directly affect the

consumption utility from content. Using this model, we can show that when a platform wants

to optimize for consumer surplus, it should aid search discovery, by promoting products that

are better than the customer would have believed based on their observable characteristics,

i.e. by surfacing products that would have otherwise been overlooked.

One major contribution of the paper is the double index model itself, which translates a

lot of folklore and intuition about online markets into the familiar econometric language of

discrete choice. The specialization to the double logit, which we used in our application,

allowed us to use exploded logit formulas, facilitating easy estimation. But it is not without

loss of generality. While we have shown that the search protocol in Weitzman (1979) can be

used to microfound the model, it would be interesting to explore which other protocols are

consistent with it. Different protocols might lead to more complicated expressions for the

search and utility indices, possibly requiring a more flexible (nonparametric) specification.
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A second direction would be to allow for additional heterogeneity in preferences. For exam-

ple, if consumers are ex-ante differentiated in their taste for characteristics as in the random

coefficients model of Berry et al. (1995), then search rankings should anticipate this hetero-

geneity, and provide a diverse set of product options. This intuition is not captured here, in

line with existing empirical work using the same data (Ursu (2018)).

Finally, one might wonder whether the tension between maximizing revenues and optimizing

consumer surplus is a consequence of the fact that the model is static. In a dynamic model

where Expedia takes into account the effect of its rankings not just on today’s, but also on

future outcomes, it’s possible that the two objectives might be more aligned. For instance, if

consumer surplus is a good predictor of the likelihood of customer retention, then maximizing

consumer surplus may also be optimal from a revenue perspective in the long run. Since the

data does not track consumers over time, we are unable to explore this question here, but it

would be an interesting avenue for future research.
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A Appendix

A.1 Additional Microfoundations

As noted earlier, the double index model is sufficiently flexible to nest many models of search.

The Weitzman (1979) model is discussed in the main text. We offer another set of examples

here:

Example 2 (Non-Sequential Search). Consider the non-sequential search model of Stigler

(1961), in which products are ex-ante identical with payoffs drawn independently from FU

supported on [u, ū], and consumers must choose how many products n to sample, paying a

cost c(n) that is convex in the number of products sampled. Let n∗ be the optimal sample

size, and set sj = ū for a randomly chosen n∗ of the products, and sj = u for the remainder.

Example 3 (Random Consideration). Consider the random consideration model used in

Goeree (2008). Each product is searched with probability pj, and then the best option in the

consideration set is chosen. Then this is equivalent to our model where sj takes value ū with

probability pj and value u otherwise (where u and ū are defined as above).

The algorithm also nests as special cases some other algorithmic models of behavior.

Example 4 (Satisficing). Consider a model in which agents “satisfice” in the sense of Simon

(1955), searching ex-ante identical products at random and stopping at the first alternative

that offers them a desired utility level. Let u∗ be that target level and let sj = u∗ for all items.

Example 5 (Cascade Model). Consider the cascade model of sponsored search, introduced

by Kempe and Mahdian (2008).18 Users consider advertisements starting from the top-

ranked position (position 1) down. They click each ad with probability qj and continue down

(“cascade”) to consider clicking the next-ranked ad with probability pj regardless of whether

they clicked the previous ad or not. We can generate this behavior from our model by positing

that search indices are Bernoulli, with s1 = ū+1 with probability q1 and u otherwise, and sj

(j ≥ 2) distributed according to:

sj =

ū+ 1/j with probability qj
∏j−1

k=1 pk

u otherwise

18Aggarwal et al. (2008) contemporaneously developed a similar model. The consumers in Athey and
Ellison (2011) behave similarly, but their model is micro-founded: consumer behavior is a best response to
the way products are ordered following a position auction.
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Example 6. (Price Thresholding) Consider the nonparametric joint assortment and price

choice model of Jagabathula and Rusmevichientong (2017), in which consumers choose the

best product available that has a price (weakly) below some threshold p. Set sj = ū if pj ≤ p

and sj = u otherwise.

A.2 Proof of Lemma 1

Proof. Let j∗ ∈ J ∗ = argmaxj∈J vj. Towards a contradiction assume j′ /∈ J ∗ is purchased.

Then either sj′ < vj∗ or uj′ < vj∗ . If sj′ < vj∗ , then product j∗ is searched before j′ since

sj∗ ≥ vj∗ > sj′ , and the consumer stops before searching j′, since uj∗ ≥ vj∗ > sj′ . On the

other hand, if uj′ < vj∗ , then the consumer either searches j∗ first, or searches j′ first but

does not stop until they search j∗ because sj∗ ≥ vj∗ > uj′ . In either case, the consumer

does not purchase j′ since uj∗ ≥ vj∗ > uj′ . So product j′ cannot be purchased, generating a

contradiction.

A.3 Proof of Proposition 1

Proof. Applying Lemma 1, the choice probabilities take the standard logit form:

P (Choose j) =
exp δVj

1 +
∑

k exp δ
V
k

,

since j is purchased if and only if it has the highest vij which happens with probability

proportional to exp δVj .

Ex-ante consumer surplus (i.e. prior to the realization of the common logit shock) is given

by:

∑
j

P (Choose j)E[uij |Choose j]

=
∑
j

P (Choose j)E[vij |Choose j] +
∑
j

P (Choose j)E[uij − vij |Choose j]

=
∑
j

P (Choose j)E[vij |Choose j] +
∑
j

P (Choose j)E[δUj + εij − δVj − εij |Choose j]

=
∑
j

P (Choose j)E[vij |Choose j] +
∑
j

P (Choose j)(δUj − δVj )

= C + log

1 +
∑
j

exp δVj

+
∑

j:ϕj>0

qjϕj ,
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where the second line follows by linearity of conditional expectations, and the final line uses

the consumer surplus formula due to Small and Rosen (1981). Notice that δUj − δVj > 0 ∀j
since the effective index is a minimum of the search and utility indices.

A.4 Derivative of Consumer Surplus

Recall that consumer surplus is given by:

CS
(
r, δS, δU

)
= C + log

(
1 +

∑
j

exp δVj (rj)

)
+

∑
j:ϕj(rj)>0

qj(rrr)ϕj(rj),

where δVj (rj) = min{δSj + f(rj), δ
U
j } is the mean effective index, qj(rrr) =

exp δVj (rj)

1+
∑

k exp δVk (rk)
is the

market share of product j and depends on all other products’ rank positions, and ϕj(rj) =

δUj − δSj − f(rj) is product j’s potential.

When δSj + f(rj) ≥ δUj , the mean effective index is determined by the utility and does not

depend on the ranking, i.e.
∂δVj (rj)

∂rj
=

∂δUj
∂rj

= 0, and product j has non-positive potential, i.e.

ϕj(rj) ≤ 0 and thus does not enter into the second term in the consumer surplus. Therefore

the derivative of consumer surplus with respect to product j’s ranking is zero.

When δSj +f(rj) < δUj , the derivative of consumer surplus with respect to product j’s ranking

is given by:

∂CS
(
r, δS, δU

)
∂rj

=
∂ log

(
1 +

∑
k exp δ

V
k (rk)

)
∂rj

+
∂qjϕj(rj)

∂rj
−

∂
∑

k ̸=j:ϕk(rk)>0 qkϕk(rk)

∂rj

=
exp δVj (rj)f

′(rj)

1 +
∑

k exp δ
V
k (rk)

+ ϕj(rj)

(
exp δVj (rj)f

′(rj)

1 +
∑

k exp δ
V
k (rk)

−
exp δVj (rj)

2
f ′(rj)

(1 +
∑

k exp δ
V
k (rk))2

)

− qjf
′(rj)−

∑
k ̸=j:ϕk(rk)>0

ϕk(rk)
exp δVk (rk) exp δ

V
j (rj)f

′(rj)

(1 +
∑

l exp δ
V
l (rl))2

= qjf
′(rj) + ϕj(rj)

(
qjf

′(rj)− q2j f
′(rj)

)
− qjf

′(rj)−
∑

k ̸=j:ϕk(rk)>0

ϕk(rk)qkqjf
′(rj)

= qjf
′(rj)

ϕj(rj)−
∑

k:ϕk(rk)>0

qkϕk(rk)



(10)
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A.5 Proof of Proposition 2

Proof. For someK < J , such that (i) δSj +f(rj) < −1,∀rj < J−K+1 and (ii)
∑

j:rj<J−K+1−(δSj +

f(rj)) exp(δ
S
j + f(rj)) < ν, and any ranking rrr, first decompose the ex-ante consumer surplus

and then re-arrange:

CS(rrr) = C + log

1 +
∑
j

exp δVj

+
∑

j:ϕj>0

qjϕj

= C + log

1 +
∑

j:rj≥J−K+1

exp δVj

+ log

(
1 +

∑
j:rj<J−K+1 qj

1−
∑

j:rj<J−K+1 qj

)
+

∑
j:ϕj>0,rj≥J−K+1

qjϕj +
∑

j:ϕj>0,rj<J−K+1

qjϕj

≤ C + log

1 +
∑

j:rj≥J−K+1

exp δVj

+
ν

1− ν
+

∑
j:ϕj>0,rj≥J−K+1

qjϕj +
∑

j:ϕj>0,rj<J−K+1

(δUj − δSj − f(rj)) exp(δ
S
j + f(rj))

≤ CSK(rrr) +
ν

1− ν
+

∑
j:ϕj>0,rj<J−K+1

δUj exp(δSj + f(rj)) +
∑

j:ϕj>0,rj<J−K+1

(−δSj − f(rj)) exp(δ
S
j + f(rj))

≤ CSK(rrr) +
ν

1− ν
+max

j
δUj ·

∑
j:ϕj>0,rj<J−K+1

exp(δSj + f(rj)) +
∑

j:ϕj>0,rj<J−K+1

(−δSj − f(rj)) exp(δ
S
j + f(rj))

≤ CSK(rrr) +
ν

1− ν
+max

j
δUj ·

∑
j:rj<J−K+1

exp(δSj + f(rj)) +
∑

j:rj<J−K+1

(−δSj − f(rj)) exp(δ
S
j + f(rj))

≤ CSK(rrr) +
ν

1− ν
+ νmax

j
δUj + ν

≤ CSK(rrr) + ν

(
max

j
δUj +

2− ν

1− ν

)
,

(11)

where CSK(rrr) = C+log
(
1 +

∑
j:rj≥J−K+1 exp δ

V
j

)
+
∑

j:ϕj>0,rj≥J−K+1 qjϕj. The second line

follows on noting that log(a+ b) = log(a) + log(1 + b/a) and then dividing and multiplying

by the logit denominator in the second term to convert to choice probabilities. The third

line follows on noting that log

(
1 +

∑
rj<J−K+1 qj

1−
∑

rj<J−K+1 qj

)
≤

∑
rj<J−K+1 qj

1−
∑

rj<J−K+1 qj
≤ ν

1−ν
. The following

lines make use of the bounds either assumed or implied by the assumptions.

We are left to show CSK(r∗r∗r∗) ≤ CS(rKrKrK), where rrrK ∈ argmaxCSK and rrr∗ ∈ argmaxCS.

We show that rrrK only considers assignments to K or fewer positions. We prove this by

contradiction: Suppose the optimizer of CSK assigned products to positions beyond K.

Then by dropping those products, the choice probabilities for products in the topK positions

must strictly increase, and all other terms comprising CSK remain unchanged, implying

45



that dropping these products is an improvement - a contradiction. Therefore, we have

CSK(rrr∗) ≤ CSK(rrrK) = CS(rrrK).

Then since (11) holds for any ranking, including the optimal, we have:

CS(rrr∗) ≤ CSK(rrr∗) + ν

(
max

j
δUj +

2− ν

1− ν

)
≤ CS(rrrK) + ν

(
max

j
δUj +

2− ν

1− ν

)
.

Re-arranging terms we have:

CS(rrrK) ≥ CS(rrr∗)− ν

(
max

j
δUj +

2− ν

1− ν

)
.

A.6 Derivative of Platform Revenues

Recall that the platform’s revenue function is given by:

π
(
r, δS, δU

)
=
∑
j

qj(rrr)πj,

where qj(rrr) =
exp δVj (rj)

1+
∑

k exp δVk (rk)
is the market share of product j and πj is its revenue.

When δSj + f(rj) ≥ δUj , the mean effective index is determined by the utility and does not

depend on the ranking, i.e.
∂δVj (rj)

∂rj
=

∂δUj
∂rj

= 0. Therefore the derivative of revenues with

respect to product j’s ranking is zero.

When δSj +f(rj) < δUj , the derivative of platform revenues with respect to product j’s ranking
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is given by:

∂π
(
r, δS, δU

)
∂rj

=
∂qjπj

∂rj
+

∂
∑

k ̸=j qkπk

∂rj

= πj

(
exp δVj (rj)f

′(rj)

1 +
∑

k exp δ
V
k (rk)

−
exp δVj (rj)

2
f ′(rj)

(1 +
∑

k exp δ
V
k (rk))2

)
−
∑
k ̸=j

πk

exp δVk (rk) exp δ
V
j (rj)f

′(rj)

(1 +
∑

l exp δ
V
l (rl))2

= πj

(
qjf

′(rj)− q2j f
′(rj)

)
−
∑
k ̸=j

πkqkqjf
′(rj)

= qjf
′(rj)

(
πj −

∑
k

qkπk

)
(12)

A.7 Proof of Proposition 3

Proof. For any ranking rrr, because
∑

j:rj<J−K+1 qj < ν, we have:

π(rrr) =
∑

j:rj≥J−K+1

qjπj +
∑

j:rj<J−K+1

qjπj

≤ πK(rrr) + νmax
j

πj

(13)

The same argument from consumer surplus applies so we have πK(rrr∗) ≤ πK(rrrK) = π(rrrK),

where rrrK ∈ argmax πK and rrr∗ ∈ argmax π. As a result, we have:

π(rrr∗) ≤ π(rrrK) + νmax
j

πj

A.8 Identification

In this section, we argue that the double logit model is identified as long as a small number

of moments are observed. One caveat is that one of those moments is the probability that a

user clicks nothing on the page, which we do not see in the present dataset. This is not to

say that we don’t think that the double logit model is identified from the present data, but

it would require a different argument than the one we present here. In addition, we abstract

from correlation between the error terms in the utility and search indices, consistent with

our empirical findings.
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The following moments are assumed to be observed in the data: (i) the probability that

nothing is clicked, p0 (not present in the current data); (ii) the probability that j is clicked

first, {pj}j∈J (observed in current data); (iii) the probability that j is clicked first and then

search is terminated without purchase, {p0j}j∈J (observed in current data). For simplicity,

we assume that the probabilities in (i) and (iii) are strictly positive.

We first derive expressions for these moments. Let δj ≡ βxj + ξj and δ̃j ≡ β̃x̃j + ξ̃j be

the mean utility and search indices respectively. The decision to click option j first (or not

click at all) is entirely analogous to the choice in any other discrete choice model, and has a

familiar functional form:

pj =
eδ̃j

1 +
∑

k e
δ̃k

(14)

Having decided to click on j, terminating search without purchase indicates that the payoff

to the outside option exceeds the payoff to j and the search indices of the remaining options,

i.e., the event occurs if and only if si,j > ui,0 > max{ui,j,maxk ̸=j si,k}. The probability of

this event can be expressed using the “exploded logit” formula as:

p0j =
eδ̃j

1 + eδj +
∑

k e
δ̃k

1

1 + eδj +
∑

k ̸=j e
δ̃k

(15)

Now we can use a familiar trick in (14) to solve for the mean search indices {δ̃j}j∈J :

δ̃j = log

(
pj
p0

)
With those known, equation (15) can be re-arranged:(

1 + eδj +
∑
k

eδ̃k

)(
1 + eδj +

∑
k ̸=j

eδ̃k

)
− eδ̃j

p0j
= 0

This is a quadratic equation in eδj , where all the remaining terms are known. And since the

coefficients on both the degree two and degree one terms in the quadratic are both positive,

from the usual formula for the solutions of a quadratic equation there can be only one non-

negative solution (a solution must exist if the model is correct). Solving these quadratics

for each j and then taking logs identifies all the utility indices {δj}j∈J . From there, the

parameters (β̃, β) are identified as the solution to a linear system under a rank condition.
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