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Abstract

Context effects in multi-alternative, multi-attribute choice are pervasive and yet, paradoxically,

elusive at the same time. For example, simple changes to the spatial layout of alternatives on the

screen can nullify or reverse the effects. Despite the success of dynamic decision models in

explaining the occurrence of context effects, a coherent theory for understanding their elusiveness

is currently lacking. We introduce a novel theoretical framework that relies on attention

modulated comparisons to explain the elusive nature of context effects. We show via simulation

that our model produces the attraction, compromise, and similarity effects simply by assuming

that more time is spent comparing alternatives that are more similar. However, when more time is

spent comparing dissimilar alternatives, model simulations reveal a reversal of the attraction and

compromise effects. The empirical support for this model-based prediction is assessed by

manipulating similarity-based attention in separate experiments for the three context effects (total

N = 317). Further, by allowing the spatial organization of information to constrain the attention

process, the model can explain changes in context effects induced by display layout. We show

that the model’s spatial attention mechanism allows it to capture presentation order effects in a

reanalysis of previously published data. Finally, we develop a continuous approximation of the

full model that permits fitting of choices and response times. In summary, the proposed

framework provides a new tool for understanding not only the existence of context effects in

choice, but also the attentional factors that lead to null or reversed context effects.

Keywords: multi-alternative decision making, evidence accumulation models, attention,

similarity
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Attentional Dynamics Explain the Elusive Nature of Context Effects

Contextual sensitivity of decisions, and more specifically the attraction, compromise, and

similarity effects, have long been of interest in the study of decision making as examples of

violations of principles of classic economic theories of choice. Observance of these violations has

prompted the development of numerous theoretical models attempting to explain the decision

processes responsible for them, particularly the three previously mentioned context effects. While

these theories posit a range of different possible mechanisms, a significant majority incorporate

some notion of attention as a critical process influencing the way in which alternatives are

evaluated.

We build on this line of research to develop a simple yet powerful model of attention

modulated preference formation in multi-alternative, multi-attribute choice. This theory not only

accounts for the presence of the classic context effects, but also how changes in attention

processes can nullify and even reverse these effects. This theory thus unifies a large body of past

research, both empirical and theoretical, that have attempted to understand why context effects

arise and why they appear to be simultaneously both universal (appearing in numerous choice

domains) and fragile (disappearing or reversing in some studies).

In the following sections, we discuss the concept of contextual sensitivity in choice and

describe the three classic context effects. We then provide a brief overview of formal theories that

aim to explain the existence of these effects. The quest to model context effects has been

challenged by recent findings demonstrating the fragility of these effects. We discuss the evidence

for this fragility before introducing our modeling framework, which uses attention processes to

explain why context effects sometimes arise and other times disappear or reverse.

Contextual sensitivity and context effects

Many of the decisions we make in our lives involve choices among multiple options that

have multiple attributes. Imagine you are planning your next vacation. As part of that process,

you need to select a flight, rental car, and hotel room. Each one of these choices involves multiple



ATTENTIONAL DYNAMICS AND CONTEXT EFFECTS 4

options (e.g., different airlines) that vary on many different features (e.g., price, departure time,

length of layover, seat availability, etc.). The question of how people make decisions in these

complex tasks has intrigued researchers in psychology, marketing, neuroscience, and behavioral

economics for decades. One of the key findings related to multi-alternative, multi-attribute choice

is that people’s decisions often display contextual sensitivity. That is, people’s choices among

existing options can be influenced by the introduction of new alternatives.

To illustrate contextual sensitivity in multi-alternative, multi-attribute choice, consider the

scenario of selecting a flight for an upcoming trip. Imagine you are deliberating between two

options. One flight (call this flight A) has a good departure time, but is expensive, and the other

flight (call this flight B) has an inconvenient departure time, but is more affordable. In this case,

there is a trade-off between convenience of departure time and affordability. Now, imagine you

learn of a new flight option (call this flight C) that departs at the same time as flight B, but is more

expensive then flight B. In this scenario, flight C is not a very good option because it is dominated

by flight B. Even though you would never select flight C, it makes flight B look more appealing

and you end up selecting flight B over flight A. This phenomenon is known as the attraction effect

(Huber et al., 1982) and is one example of a context effect in multi-alternative, multi-attribute

choice.

Early research on context effects was aimed at showing violations of principles of classic

economic theories of choice such as simple scalability, regularity, and independence of irrelevant

alternatives (Huber et al., 1982; Tversky, 1972). After this early work in the 1970s and 1980s,

research on context effects in multi-alternative, multi-attribute choice proceeded along two related

branches. One branch was concerned with empirical investigations of the effects in a wide variety

of tasks and species (e.g., monkeys, honeybees, hummingbirds, etc.). This research painted a

picture that context effects were “universal” since they seemed to show up everywhere. However,

about a decade ago, research started suggesting the story was much more nuanced. Studies were

published showing null or even reversed context effects (for a review, see Spektor et al., 2021).

This led to some researchers calling into question the importance of context effects altogether
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(Frederick et al., 2014; Huber et al., 2014).

The other main branch of research in this area was concerned with developing formal

theories to explain the presence of context effects, leading to the development of numerous

cognitive and neural models of these effects. The desire to have a formal theory is rooted in the

fact that these effects cannot be explained by classic decision theories (e.g. classic utility models).

Thus, the primary goal of modelers was developing theories to account for and explain the

existence of context effects, often with a single set of parameters (Trueblood et al., 2015). Most of

these models were not developed to explain null or reversed context effects. Thus, we currently

do not have a rigorous theoretical framework to explain why reversals and null effects occur.

In this paper, we focus on three well-established context effects: the attraction (Huber

et al., 1982), similarity (Tversky, 1972), and compromise (Simonson, 1989) effects. In all three

effects, choices between two options, X and Y , are influenced by a third option Z. The three

options are defined in terms of two attributes, a1 and a2. For the following explanations, let us

assume that Xa1 < Y a1 and Xa2 > Y a2 (see Figure 1). The relationship between the third option Z

and X and Y determines the specific type of context effect.

We use the term target to refer to the option that is traditionally advantaged with the

inclusion of the third option. Likewise, we use the term competitor to refer to the option that is

traditionally disadvantaged with the inclusion of the third option. In the literature, there are

different ways of measuring context effects. In this paper, we use the Relative Choice Share of the

Target (RST; Berkowitsch et al., 2014) and provide alternative measures in the supplement. The

RST calculates the probability of selecting the target divided by the probability of selecting the

target or competitor: pr(T )/(pr(T )+ pr(C)). More specifically, if ZX is a third option that

enhances X (i.e., X is the target in the choice set {X ,Y,ZX}) and ZY is a third option that enhances

Y (i.e., Y is the target in the choice set {X ,Y,ZY}), then the RST is defined as

RST =
pr(X |{X ,Y,ZX})+ pr(Y |{X ,Y,ZY})

pr(X |{X ,Y,ZX})+ pr(Y |{X ,Y,ZY})+ pr(X |{X ,Y,ZY})+ pr(Y |{X ,Y,ZX})
(1)
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A standard context effect occurs when RST > 0.5, which implies that the target is selected more

often in the presence of the third option than the competitor.1

In the attraction effect, the third option is a dominated decoy that is similar but inferior to

either X or Y . Specifically, let AX be a decoy similar, but inferior to X and AY be a decoy similar,

but interior to Y as shown in Figure 1. In the attraction effect, the target is the option that is

similar to, but dominates the decoy (e.g., X in the choice set {X , Y , AX }). Likewise, the

competitor is the dissimilar option (e.g., Y in the choice set {X , Y , AX }).

In the similarity effect, the third option is similar and competitive to either X or Y . In

particular, let SX be similar and competitive to Y and SY be similar and competitive to X as shown

in Figure 1. In the similarity effect, the target is the dissimilar option (e.g., X in the choice set {X ,

Y , SX }) and the competitor is the similar option (e.g., Y in the choice set {X , Y , SX }). In the

similarity effect, the two similar options compete with one another and split the choice shares.

The result is that the dissimilar option is selected more often.

In the compromise effect, the third option is an extreme option that makes either X or Y

appear as a compromise. Specifically, let CX be an extreme option such that X appears as a

compromise between CX and Y . In this case, we have the following relationship among attributes:

Ca1
X < Xa1 < Y a1 and Ca2

X > Xa2 > Y a2 . Let CY be an extreme option such that Y appears as a

compromise between CY and X . Here we have Ca1
Y > Y a1 > Xa1 and Ca2

Y < Y a2 < Xa2 . In the

compromise effect, the target is the compromise option (e.g., X in the choice set {X , Y , CX }) and

the competitor in the extreme option (e.g., Y in the choice set {X , Y , CX }).

Models of context effects

As previously mentioned, researchers studying context effects in multi-alternative,

multi-attribute choice have developed formal computational models to explain the underlying

cognitive processes that give rise to the effects (for reviews, see Busemeyer et al., 2019;

1 Note that by including both choice sets where X and Y are targets, we control for the possibility that an individual
has a strong preference for either X or Y in our calculation of the RST. A strong attribute bias can also be controlled
by using an alternative definition of RST as proposed by Katsimpokis et al. (2022) and discussed in the supplement.
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Figure 1
Locations of standard decoys in two-dimensional attribute space: Two core alternatives (X and
Y) are shown along with attraction (A), similarity (S), and compromise (C) decoys. The subscripts
denote the option that is traditionally advantaged by the inclusion of the decoy.

Trueblood, 2022; Wollschlaeger and Diederich, 2020). Many of these models are based on the

Evidence Accumulation Modeling (EAM) framework (Ratcliff, 1978) and assume that evidence

or preference for different options accumulates over the course of deliberation. Each option is

associated with an accumulator that tracks the preference state for that option over time. The final

decision is determined by the accumulator with the greatest amount of preference at a fixed time

point (external stopping rule) or by the accumulator that reaches a decision threshold first

(internal stopping rule). A key advantage of EAM models is their ability to simultaneously

account for choices and response times.

Although existing EAM models make different assumptions about the nature of

preference accumulation and the cognitive mechanisms that produce the attraction, compromise,

and similarity effects, one thing that most of the models have in common is the idea that attention

is important for explaining context effects (Trueblood, 2022). In decisions between multiple

options with multiple attributes, it is impossible to attend to all of the information at once, and so

attention is assumed to fluctuate between different pieces of information over the course of
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deliberation. Preference accumulates based on the information attended to at each time point. For

example, multialternative decision field theory (MDFT; Roe et al., 2001) assumes that at each

time point, a particular attribute is stochastically attended to and the value of each option on that

attribute is compared to the average of the values of the other options. Similarly, the multiattribute

linear ballistic accumulator model (MLBA; Trueblood et al., 2014) assumes that options are

compared in a pairwise fashion on each attribute, with attention weights that depend on the

similarity of the options involved in a particular comparison. Thus, attention appears to be a

critical feature for understanding how context effects arise in multi-alternative, multi-attribute

choice. This article will expand on this observation.

The elusive nature of context effects

An interesting but puzzling feature of context effects is they are both universal and fragile.

For example, previous research has explored how context influences preferences across a variety

of different domains including perception (Trueblood, 2015; Trueblood et al., 2015; Trueblood

et al., 2013), inference (Trueblood, 2012), similarity judgments (Yearsley et al., 2021), memory

(Maylor & Roberts, 2007), gambles (Farmer et al., 2017; Wedell, 1991), and motor planning

decisions (Farmer et al., 2015). This work aimed to answer the question, do context effects, which

are often found in consumer choice (Evangelidis et al., 2018; Huber et al., 1982; Simonson,

1989), generalize to other domains? Results show that these phenomena can arise outside of

consumer choice (e.g., in perceptual decisions about the size of rectangles; Trueblood et al.,

2013). In addition, research in developmental psychology and behavioral ecology has shown that

the attraction effect occurs in children (Zhen & Yu, 2016), monkeys (Parrish et al., 2015),

honeybees (Latty & Trueblood, 2020; Shafir et al., 2002), hummingbirds (Bateson et al., 2003),

and even slime molds (Latty & Beekman, 2011). Thus, there is a sense that contextual sensitivity

is a universal property of multi-alternative choice behavior.

Despite the seemingly ubiquitous nature of contextual sensitivity, the three classic effects

are also very fragile. First, very few participants produce all three effects within a single
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experiment even though most people show the effects in isolation (i.e., in separate experiments)

(Trueblood et al., 2015). Second, there are large individual differences in the strength and

co-occurrence of the effects (Liew et al., 2016). Third, there is evidence that the attraction effect

is much stronger in abstract, stylized stimuli as opposed to natural stimuli (Frederick et al., 2014).

Fourth, the effects are quite sensitive to task features such as the spatial arrangement and

presentation order of the alternatives (Cataldo & Cohen, 2018, 2019; Evans et al., 2021; Spektor

et al., 2018). This has led to the recent conclusion that context effects are elusive (for a review,

see Spektor et al., 2021).

The present paper introduces a new modeling framework with the goal of explaining the

diverse patterns of behavior observed in multi-alternative, multi-attribute choice. This framework

builds off of the prior observation that attention, and in particular the way it dynamically alters the

evaluation of choice alternatives, has a potentially critical role in producing these patterns of

behavior. Whereas past efforts have attempted to produce these specific context effects, our goal

here is to not only understand their presence, but also why they appear to be fragile and how they

may be manipulated empirically.

The aim of the present paper is to propose a modeling framework that builds on and

extends the ideas formalized in existing EAM models. Our goal is not to introduce a new model

to compete with existing models in a head-to-head comparison, but rather to use the proposed

framework to develop a better understanding of the role of attention in the decision process and

what its effects on behavior might look like. With this in mind, we do not build a single model of

attention, but rather a more general framework to evaluate different models of attention and

attention-related factors. Using this framework, we show that seemingly subtle changes in

attention can lead to a complex pattern of standard, null, and reversed context effects. We

corroborate the modeling results with new experiments and the reanalysis of published data. In

totality, our results support prior studies positing that attention may be (partly) responsible for

context effects. We however take a step further and illustrate how either intrinsic or extrinsic

changes in the attention process can lead to a wide range of seemingly contradictory empirical
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observations.

Theoretical Framework for Attention and Decision-making

General Model Description

Based on the rich theory of evidence accumulation in psychology and neuroscience

(Ratcliff et al., 2016), we develop a new computational modeling framework of multi-alternative,

multi-attribute choice where preferences are constructed over time through a sequence of

attention modulated comparisons. In this way, we integrate hypotheses for how attention affects

information acquisition with EAM models of preference formation to study their joint effects on

decisions. We note that this is a framework rather than a single model and thus it is designed to

incorporate a range of different possible assumptions regarding the form of comparisons and

attention. Here we briefly describe the overarching idea of this approach with further detail below.

In the most general form, we will assume that:

• Evidence (or preference) for an alternative is sampled by comparing it to some referent

along a single attribute at any given time. A sequence of comparisons involving different

attributes and / or alternatives may occur over time, but at any point in time a single

alternative is compared to a single referent on a single attribute.

• This referent could be another of the alternatives (i.e. pairwise comparison), a summary of

the choice set along that attribute (e.g., the mean of the choice set), or something formed

from past experience. In this article, we will primarily consider pairwise comparisons

though the framework can readily accommodate other possibilities.

• Attention modulates which of the set of all possible comparisons is made. For mathematical

tractability we will assume that the selection of future comparisons does not depend on the

past sequence of comparisons. With this simplifying assumption, the sequence of

comparisons can be described by a Markov process. This Markov process can account for a

range of different potential factors such as attribute bias (preference for making
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comparisons on one particular attribute) or presentation format induced biases of attention.

History based, non-Markovian attention processes can be included in this framework, but

they are more challenging to handle mathematically.

• The time spent on any given comparison is related to the characteristics of the alternative

and referent being compared. For example, a decision maker may spend more or less time

comparing an alternative and referent that are similar to each other, or alternatively the time

spent could be independent of similarity.

General Mathematical Formulation

Here we describe the general mathematical formulation of this framework without

discussion of specific assumptions about the choice of referent or how attention is modulated. As

noted previously, this is not a single model but rather a framework. Where useful, we will

consider 3-alternative, 2-attribute scenarios for notational convenience.

Consider a choice set consisting of alternatives {(x1
i ,x

2
i )}i=1:3. Here~xi indicates an

individual alternative (i) with 2 attributes. Denote {cm} to be the set of all possible comparisons

that can be made for this choice set. For example, for pairwise comparison where only

intra-attribute comparisons are possible, this would consist of three possible comparisons on each

attribute. Then in a small interval of time ∆t, the preference accumulated for all possible

alternatives is dependent on the given comparison being made:

P(t +∆t) = P(t)+ ~dcm∆t. (2)

Here P is a vector of preferences for the alternatives and ~dcm is a comparison dependent rate of

accumulation, typically taken to be a simple difference between the alternative and referent along

the attribute being attended to in that time interval. For example, if alternatives 1 and 3 are being

compared on attribute 2, the rates of accumulation for the three alternatives would be x2
1− x2

3, 0,

x2
3− x2

1 respectively where alternative 2 has a 0 rate of accumulation since it is not being attended
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to. Further, the rates for alternatives 1 and 3 are the same in magnitude but different in sign since

a comparison that favours one option will disfavor the other.

It is clear that in this approach, the specific comparison being made determines the rate of

preference accumulation. We thus next describe an attention-based model where stochastic

sequences of attention impact preference accumulation. For this discussion, we will consider the

case where one alternative is compared to another, though other referents can be readily

incorporated with appropriate modification as previously discussed. To model a sequence of

comparisons, we need to describe two things: 1) how long each comparison will last and 2) once

one comparison is completed, how the next comparison is chosen. For comparison time, we will

generally assume that the time spent on a particular comparison is dependent on the similarity

between the two items being compared. As an example, more similar options may be compared

for longer times since they are more difficult to distinguish (other assumptions are possible).

Comparison transitions will be modeled as a probabilistic Markov process, which can be

described by a transition matrix. For example, if there are 6 possible comparisons (3 alternatives,

2 attributes) transitions will be modelled by a 6x6 transition matrix P. Figure 2 illustrates the

modeling framework and Markov attention process.

Detailed Model Formulation

Next we describe the attention process that governs the sequence of comparisons made in

more mathematical detail. Let Mcn,cm denote the probability that, in the given time interval ∆t the

decision maker terminates comparison cn and transitions to the comparison cm. This is the

product of the probability of comparison cn ending and the probability of the new comparison cm

being chosen conditioned on the prior one ending. Different theories regarding attention can be

encoded into these two quantities. We thus first formulate the model in general terms using these

two quantities, and in a later section we construct the specific form of those quantities from

specific hypotheses.

Let Tcn be the probability of the current comparison ending. For three alternatives and two
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Figure 2
Visualization of the modeling framework: Panel A illustrates the Markov attention process for
the situation where a decision maker is currently comparing options A and C on attribute 1. The
arrows indicate the possible comparisons that the decision maker could transition to within the
next time point, including the possibility of continuing to compare A and C on attribute 1. Note
that the full Markov process includes all possible transitions among the 6 comparison states, but
only a subset of these are shown in the figure. Panel B illustrates the 6x6 Markov matrix M that
governs the sequence of comparisons. The probabilities Mi, j denote the probability of
transitioning from comparison i to j. The diagonal elements are the probability of remaining on
the current comparison. Panel C illustrates the preference accumulation process for three options
A, B, and C modulated by the Markov attention process. In the first time interval, options A and C
are being compared on attribute 1 and the preference states PA and PC change accordingly. Next,
the decision maker compares options B and C on attribute 2 and the preference states PB and PC
change accordingly. The vertical dotted lines indicate points of transition among comparisons.
This process continues until one of the preference states (PC in the figure) reaches the threshold
(horizontal dotted line) triggering a choice.

attributes, there are 6 such probabilities. Define Pcn,cm to be a transition matrix describing the

probability of transitioning from any one comparison to another, conditioned on a transition

occurring. Note this transition probability matrix P is distinct from the preference accumulator

variable P defined earlier. In this language,

Mcn,cm =Tcn ·Pcn,cm (3)

Mcn,cn =1−Tcn. (4)

The first relation represents the probability of a transition occurring while the second is the

probability of continuing the current comparison. This probabilistic model of attention can be



ATTENTIONAL DYNAMICS AND CONTEXT EFFECTS 14

summarized in the following matrix equation

M = I +T ·P, (5)

where the quantities T and P are matrix representations of the above quantities (indexed over the

set of possible comparison) that encode factors related to attention. T is a 6x6 diagonal matrix of

termination probabilities with the 6 termination probabilities on the diagonal and 0 in all

off-diagonal elements. The off-diagonal entries of P are the conditional transition probabilities,

and the diagonal entries of P are −1. The resulting matrix M is a Markov process describing

sequences of comparisons at the discrete time points ∆t,2∆t,3∆t, ..., i∆t, ....

Here P encodes any process that affects which comparison will be attended to next while

T encodes any factors that determine how much time is spent on a particular comparison. For

timing, we assume that the time spent on any particular comparison is a stochastic quantity that is

exponentially distributed with a characteristic deliberation time τcn . With this in mind and

assuming that the simulation time step is sufficiently small,

T ∆t
cn
≈ 1

τcn

∆t. (6)

The ∆t super-script illustrates that this quantity depends on the computational time interval,

though we will omit this superscript for notational simplicity. The specification of a basic model

within this framework thus requires specifying how the quantities {τcn} and {Pcn,cm} depend on

factors of interest. We describe a few such specific models in the subsequent sections.

Similarity-based Attention

Here we illustrate how attention effects can be encoded in the deliberation time

component of the model ({τcn}) and how this factor alone can account for classic context effects

in multi-alternative, multi-attribute choice. Following Tversky and Simonson (1993) and many

other models of context effects (Noguchi & Stewart, 2018; Trueblood et al., 2014; Wollschläger
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& Diederich, 2012), we consider a pairwise model where the referent to which an alternative is

compared is another alternative in the choice set. A comparison then is determined by the two

alternatives (i, j) being compared along with the attribute (a) that is being attended to:

cn = (i, j,a). For further simplicity and to illustrate the effect of this model factor on its own, we

will assume that all possible comparisons are equally likely so that Pcn,cm is the same for all n 6= m.

We will consider three possible comparison time models depending on the relationship

between similarity and attention (illustrated in Figure 3):

• Similarity Variant: The more similar two alternatives are on the attribute being attended to,

the longer they are compared.

• Dissimilarity Variant: The more similar two alternatives are on the attribute being attended

to, the less time they are compared.

• Independent Variant: The time spent on a comparison is independent of similarity.
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Similarity

Dis-similarity
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Figure 3
Attribute dependent comparison time for attention variants: Sample functions illustrating the
dependence of comparison times on attribute differences. In the independent attention variant
(blue), attention time does not depend on attributes. In the similarity attention variant (black),
more similar alternatives are compared for longer times. In the dissimilarity variant, more
distinct alternatives are compared for longer times. The dashed gray line at the bottom reflects
that most cases will include a minimum comparison time. For the similarity models we use a
function of the shape exp(−λ|xa

i −xa
j |) where xa

i is the value of alternative i on attribute a. For the
dissimilarity model, we use a function of the form log(1+λ|xa

i − xa
j |). These are convenient

functions with the appropriate shape.

To assess the impact of these different similarity-based attention assumptions, we
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performed a simulation study to explore the presence of context effects in the three-alternative,

two-attribute choice domain. To do so, we fixed two alternatives that differ on each attribute but

fall along the line of indifference (0.4,0.6),(0.6,0.4) and varied the location of a third “decoy”

alternative throughout attribute space. We subjected three models, corresponding to the three

comparison time scenarios above, to this in silico experiment. For the Similarity Variant, we

assumed the comparison time distribution for an alternative is exponential with a mean time of

τcn = exp(−λ|xa
i − xa

j |). For the Dissimilarity variant, we used τcn = log(1+λ|xa
i − xa

j |). And for

the Independent Variant, we used τcn = λ. In the Similarity and Dissimilarity variants, λ is a scale

parameter that determines how sensitive the comparison time is to attribute differences. Figure 4

shows that with no additional assumptions, the similarity variant demonstrates all three context

effects.
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Context effects simulation study: To study the effect of adding a decoy alternative to a binary
choice, we fix the attribute values of two alternatives (x and y shown on the plot) and vary the
location of a third “decoy” alternative. For each decoy value, N = 1000 simulations are run and
the number of times each alternative (n(x),n(y),n(d)) is chosen is recorded. Each plot shows the
relative share of alternative x as a function of decoy location (n(x)/n(x)+n(y)). The indicated
regions on the similarity variant demonstrate it simultaneously accounts for the three classic
context effects. For these simulations, we use an attention parameter λ = 5 and threshold b = 0.2.

Given the relative simplicity of this model (only two free parameters, λ and the

accumulation threshold b), we next sought to understand how these effects manifest in the

similarity variant. To do so, we first plotted the mean evidence trace as a function of time for each

model. We simulated 1,000 independent, stochastic evidence traces for standard attraction,

similarity, and compromise choice sets and at each point in time, plot the mean evidence value
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across all traces (Figure 5 top). In the attraction scenario, it is clear that the evidence trace for the

target increases faster than the other alternatives and therefore it is chosen more frequently. The

essential reason for this is that with similarity-based attention, proximity of the decoy to the target

leads to an increase in the time spent on target favourable comparisons, leading to the target being

selected more often.

0 40Time
-10

0

10

Tr
ac

e 
M

ea
n

Attraction

0 40Time

T=(0.4,0.6)
C=(0.6,0.4)

15

D=(0.38,0.58)

Tr
ac

e 
Va

ria
nc

e

0 40Time

Compromise

D=(0.05,0.95)

0 40Time

0 40Time

D=(0.59,0.41)

Similarity

0 40Time

T=(0.4,0.6)
C=(0.6,0.4)

T=(0.4,0.6)
C=(0.6,0.4)

Figure 5
Similarity variant temporal evidence accumulation properties: To understand the genesis of
context effects in the similarity variant, we track the evidence accumulation mean and variance
over time for three choice sets indicative of the three context effects. To do so, we simulate 1000
independent trials for each choice set and quantify the mean and variance of the evidence state
for each choice at each time (illustrated in the respective panels). For all simulations the
attention parameter is λ = 5. No threshold parameter is included since only preference traces are
quantified, not choices. The notation T,C,D is used here since the respective alternatives are the
target, competitor, and decoy for these choice sets. Comparable figures for the independent and
dissimilarity models are in the Supplemental Materials.

The similarity and compromise scenarios however show that the mean evidence traces are

flat for all three alternatives. In retrospect, this is sensible since all three alternatives lie on the line

of indifference (see Figure 1). For every comparison that is favourable for one alternative, there is

an equal and opposite comparison on the other attribute that is equally unfavourable. This leads to

a net zero accumulation when averaged over many independent model choices. We next plotted

the variance in accumulator traces. For each point in time we calculated the variance on the
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accumulation traces across all N=1,000 simulations (Figure 5 bottom). Results demonstrate that

in the similarity and compromise scenarios, the target exhibits more variability, which breaks the

symmetry between the three otherwise equal alternatives. Since the first passage time of a purely

diffusive process to a boundary inversely depends on the rate of diffusion (quantified by the

plotted variance here), the target is chosen more frequently in both cases.

What is the interpretation of this explanation of the compromise and similarity effects?

On average, none of these alternatives is objectively superior and thus there is no net

accumulation of evidence when aggregated over many simulated choices. However, the attention

process introduces intra-trial variability in the length and sequence of attention segments and

therefore accumulation. Due to this variability, it is simply more likely that a favourable sequence

of attention segments will arise for the target than for the competitor or decoy, leading to

increased choice share. We do note that there is a flip side to this. The same high variance can

also lead to an increased chance of a sequence of unfavourable attention segments for the target.

Spatial Attention

We next illustrate how attention processes can be incorporated into the comparison

transition component of the framework (the matrix P), which is independent of the comparison

time T process just discussed. In anticipation of subsequent modeling and analysis, we discuss

two factors that may influence which comparisons are chosen more or less frequently. The first is

attribute preference. When multiple attributes are present, it is conceivable and even likely that in

many cases attributes will be given different weights in the decision process. One way to

incorporate this is through the comparison transition matrix P. For simplicity, we will assume two

attributes here and introduce the parameter w encoding the weight for attribute 1 (and

consequently 1−w is the weight for attribute 2). Multiplying all elements of the matrix P

corresponding to attribute 1 by w (and similarly for attribute 2) naturally incorporates differential

preference for attending to these attributes.

Spatial attention, arising from the presentation structure of information, is another factor
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that may influence decisions. For example, alternatives in different sections of a computer screen

(e.g., left versus right) may receive greater attention and the comparison of physically adjacent

alternatives may be more frequent. These factors can be readily incorporated into this framework

through P as well. We demonstrate this for one scenario, where comparisons of alternatives that

are physically adjacent to each other are more common than those separated. Consider the

three-alternative, two-attribute scenario. Assume the alternatives are ordered left (L), middle (M),

and right (R) when presented. There are three spatial pairs of comparison here (LM, LR, RM).

We can define two parameters pLM, pMR indicating the probability of two of those comparisons

occurring (with the third being 1− pLM− pMR). Combined with the aforementioned attribute

weight w, this yields a three parameter model of spatial attention along with attribute preference

that can be encoded in the transition matrix P.

Similarity-based Attention Experiments

Our modeling framework predicts the presence of the attraction, compromise, and

similarity effects simply from the assumption that more similar alternatives are compared for

longer times. It also predicts the reversal of the attraction and compromise effects when dissimilar

options are compared for longer times (see Figure 4). In the following section, we present three

behavioral experiments that were aimed at testing this model-based prediction. Each experiment

involved choices between three alternatives with two attributes. We manipulated similarity-based

attention by asking participants to identify the pair of options with the most similar attribute

values (similarity condition) or the least similar attribute values (dissimilarity condition) before

making a choice. If context effects arise from the increased attention to comparisons between

similar alternatives, we should observe standard context effects in the similarity condition and

reversed attraction and compromise effects in the dissimilarity condition. We test this hypothesis

for the attraction, compromise, and similarity effects in separate experiments.
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Experiment 1: Attraction Effect

Method

Participants

99 participants (women = 61, men = 37, unreported = 1; age: M = 39.89 , SD = 14.93)

completed the experiment, which was approved by the Institutional Review Board at Vanderbilt

University. Participants were recruited via Amazon Mechanical Turk using the CloudResearch

platform with the intent of having approximately 50 participants per condition. Half of the

participants (N = 50) were randomly assigned to the similarity condition and the other half (N =

49) were assigned to the dissimilarity condition. The sample size was determined prior to starting

the experiment and pre-registered on AsPredicted.org (#69295). The data was analyzed only after

all data had been collected. All participants were compensated $0.50 for the completion of the

study.

Materials

Participants were asked to make investment decisions about businesses, based upon

ratings from two financial advisors. Ratings ranged between 0 to 100 with 0 implying a very low

likelihood of a good return on investment (ROI) and 100 indicating a very high likelihood of a

good ROI. The attribute values of each option were based on those used in Trueblood (2012).

Four types of businesses were used to examine the attraction effect: two focal options (X

and Y ) and two range-frequency attraction decoys (Ax and Ay). The two decoy options were

similar, but inferior to their associated focal option (e.g., Ax was similar, but inferior to X). In

addition to choice sets examining the attraction effect, the experiment also included filler choice

sets where there was a clearly superior option (i.e., a business that dominated the others on both

attributes). In total, there were 10 attraction effect trials with the Ax decoy, 10 attraction effect

trials with the Ay decoy, and 10 filler trials. For the attraction effect trials, the specific attribute

values for each option varied slightly across trials. The mean and standard deviation of the

attribute values for the attraction effect options are provided in Table 1.

https://aspredicted.org/
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Table 1
Summary of attribute values used in Experiment 1 for the attraction effect

Rating 1 Rating 2

Option Mean SD Mean SD

X 34.30 1.59 65.90 1.55
Y 67.40 1.31 32.80 1.01
Ax 28.90 1.97 60.40 1.65
Ay 61.60 1.07 27.70 1.49

Procedures

To examine the effect of similarity- and dissimilarity-based attention mechanisms on

context effects, participants were randomly assigned to one of two between-subject conditions

(similarity or dissimilarity) at the beginning of the experiment.

At the start of the experiment, participants were told that they would be making

investment decisions about businesses. They were told that on each trial, they would see three

different businesses and to select the one that they would like to invest in. They were also told that

they would be given ratings from two financial advisors. The ratings were described to

participants as providing the likelihood of a good return on investment (ROI), with a rating of 0

implying a very low likelihood of a good ROI and a rating of 100 implying a very high likelihood

of a good ROI. Additionally, participants were told that the evaluations of businesses can vary

from advisor to advisor. Thus, two different financial advisors can provide different ratings.

Participants were told to treat the ratings from both advisors equally.

At the beginning of each trial, participants were presented with three businesses and their

ROI ratings from two advisors (Figure 6). For example, on trials testing the attraction effect, the

three businesses consisted of the focal options X and Y and a decoy option (either Ax or Ay). The

options and their attributes were displayed in a table with the different options in different rows

and the two attributes in separate columns. The row locations of the options were randomized.

Before making their choice on each trial, all participants completed a similarity judgment

task (see Figure 6 for an example). In the similarity condition, participants were asked to identify
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Figure 6
Example of a trial in Experiments 1-3. On a given trial, participants first judged the similarity (or
dissimilarity) of the options along attribute 1. Next, they judged the similarity (or dissimilarity) of
the options along attribute 2. Finally, they made a decision about their preferred investment. After
their choice, the participants proceeded to the next trial. An example of a compromise effect trial
in the similarity condition is shown.

the pair of options having the most similar values on each attribute, separately. First, they were

queried about attribute 1 (i.e., Advisor 1) followed by attribute 2 (i.e., Advisor 2). Participants

received feedback following each judgment. After both judgments, the participants selected the

business they preferred (Figure 6). In the dissimilarity condition, participants were asked to

identify the pair of options having the most dissimilar values on each attribute prior to the

investment decisions. Similar to the similarity condition, participants were asked about attribute 1

before attribute 2 and received feedback on each judgment. In both conditions, the attribute values

of the correct pair of options were colored for the participants after they made their pairwise

similarity/dissimilarity judgment. Thus, the most similar/dissimilar options were shown in

colored font when participants were making their investment decision. After making their

decision, participants proceeded to the next trial. Participants did not receive feedback about their

decision. The order of the trials were fully randomized.
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Results

No participants were excluded from the analyses. We used a hierarchical Bayesian model

to test for the presence of the attraction effect in the similarity and dissimilarity conditions

separately. The model estimates the relative choice share for the target (RST, Equation 1;

Berkowitsch et al., 2014), defined as the number of times the target is selected divided by the

number of times the target plus the competitor are selected. If the RST values are greater than 0.5,

then that is evidence of an attraction effect. An analysis using a modified version of RST

(Katsimpokis et al., 2022) yielded nearly identical results and is provided in the Supplemental

Materials, along with analyses of the attraction effect for the two focal options (X and Y )

separately.

The model we used is similar to the one used in Trueblood (2015) and Trueblood et al.

(2015). It is a beta-binomial model where the number of times the target is selected follows a

binomial distribution: Binomial(θ,n), where θ represents the probability that the target is selected

and n is the number of times the target plus the competitor are selected. We estimated a separate θ

parameter for each person. We also assumed that the person-specific θ parameters were drawn

from population-level beta distributions with mean (µ) and concentration (κ) parameters. We

modeled the similarity and dissimilarity conditions separately, thus there were separate µ and κ

parameters for the two conditions. The priors for the hyper-parameters were set to be relatively

vague, with µ∼ Beta(1,1) and κ∼ |N(0,10)|. See the Supplemental Materials for the graphical

model. The model was fit using the python package PyMC3 (Salvatier et al., 2016). Four Markov

chain Monte Carlo (MCMC) chains with 5000 samples each were used to estimate the posterior

distributions. All chains converged with R-hat values less than 1.1.

Table 2 shows the posterior mean and the 95% highest posterior density (HPD) interval

for the µ parameter, estimated separately for the two conditions. If the HPD is above 0.5, then that

suggests that the target was selected more than the competitor, indicating an attraction effect. As

shown in the table, an attraction effect is observed in the similarity condition, but not the

dissimilarity condition. The RST value is below 0.5 for the dissimilarity condition, suggesting a
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reversed attraction effect in that condition. We note that the 95% HPD includes 0.5 and thus there

is only weak evidence of a reversal in the dissimilarity condition.
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Behavioral (top) and modeling (bottom) results for Experiments 1-3: Behavioral results show
the relative choice share of the target for two conditions where attention was directed either
towards similar options or dissimilar options for three context effects: attraction (Experiment 1),
similarity (Experiment 2), and compromise (Experiment 3). Bars show the mean RST, error bars
show the 95% confidence interval, and grey dots show the individual RST values. For model
results, we simulated a synthetic version of the experiment with the actual experimental stimuli
values. We constructed 100 in silico “participants” by drawing 100 random collections of the
parameters (b,w,λ). Each of these simulated participants completed each of the experimental
choices and the relative share of target was computed the same as with the data. Each dot
indicates the RST for each of these in silico participants while the bar indicates the mean RST.
Analysis and plotting conventions are the same as with the data. The parameter sampling ranges
were b = [0.1,0.3], w = [0.3,0.7], and the attention parameters were λ = [0,5] for the attraction
and similarity choice sets and λ = [5,10] for the compromise choice sets.

In order to compare the behavioral results to predictions from the modeling framework,

we performed an in silico experiment. Using both the similarity and dissimilarity model variants,

we simulated 100 “participants” from each model variant by randomly selecting 100 parameter

sets (b,w,λ). The parameter ranges were set to be [0.1,0.3] for b, [0.3,0.7] for w, and [0,5] for λ.

Each in silico participant completed the 20 attraction effect trials from the behavioral experiment

(the filler trials were not included). For each simulated participant, we calculated the RST, similar
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to the behavioral data. The results are shown in the bottom left panel of Figure 7. As shown in the

figure, a standard attraction effect occurs for the similarity model variant and a reversed attraction

effect (repulsion effect) occurs for the dissimilarity model variant. The model predictions are

inline with the behavioral data where an attraction effect occurs in the similarity condition, but

not the dissimilarity condition.

Table 2
Results for Experiments 1-3

Attraction Similarity Compromise

Condition Mean 95% HPD Mean 95% HPD Mean 95% HPD

Similarity 0.553 0.50-0.61 0.530 0.48-0.57 0.616 0.55-0.68
Dissimilarity 0.466 0.42-0.51 0.544 0.50-0.59 0.563 0.50-0.62

Experiment 2: Similarity Effect

Method

Participants

120 participants (women = 63, men = 56, age: M = 40.84 , SD = 13.60 ) completed the

study online via Amazon Mechanical Turk using the CloudResearch platform. Similar to

Experiments 1, we intended to have approximately 50 participants per condition. 59 participants

completed the similarity condition and 61 participants completed the dissimilarity condition. The

sample size was determined prior to starting the experiment and pre-registered on AsPredicted.org

(#69809). We note the that the actual sample size was larger than the pre-registered sample size

due to an error during participant recruitment. The data was analyzed only after all data had been

collected. All participants were compensated $0.50 for the completion of the study.

Materials

Similar to Experiment 1, participants were asked to choose their preferred business based

on the ROI ratings from two financial advisors. There were four options used to examine the

https://aspredicted.org/
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similarity effect: two focal options and two similarity decoys (Sx and Sy). Like Experiment 1, this

experiment also included filler choice sets where there was a clearly superior option. In total, there

were 10 similarity effect trials with the Sx decoy, 10 similarity effect trials with the Sy decoy, and

10 filler trials. For the similarity effect trials, the specific attribute values for each option varied

slightly across trials. The mean and standard deviation of the attribute values for the similarity

effect options are provided in Table 3 and are identical to those used in Trueblood (2012).

Table 3
Summary of rating values used in Experiment 2 for the similarity effect

Rating 1 Rating 2

Option Mean SD Mean SD

X 34.80 0.89 74.90 1.07
Y 54.60 0.68 55.10 0.72
Sx 56.00 0.67 53.70 1.16
Sy 33.00 1.05 76.70 0.95

Procedures

The procedure for Experiment 2 was identical to Experiment 1. Participants were

randomly assigned to either the similarity or dissimilarity condition at the beginning of the

experiment, and then completed 30 randomized trials. On each trial, participants started with

attribute-wise similarity/dissimilarity judgments about the businesses based on their assigned

condition. After making these judgments, participants selected the business that they preferred

and then proceeded to the next trial.

Results

No participants were excluded from the analyses. Similar to Experiment 1, we used a

hierarchical Bayesian model to test for the presence of the similarity effect in the similarity and

dissimilarity conditions separately. The approach was identical to Experiment 1 where we

estimated the RST values using a beta-binomial model. An analysis using a modified version of

RST (Katsimpokis et al., 2022) yielded nearly identical results and is provided in the
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Supplemental Materials, along with analyses of the similarity effect for the two focal options (X

and Y ) separately.

The model specifications for Experiment 2 were also identical to Experiment 1. Namely,

the priors for the hyper-parameters were set to be relatively vague, with µ∼ Beta(1,1) and

κ∼ |N(0,10)|. The model was fit using the python package PyMC3 (Salvatier et al., 2016). Four

Markov chain Monte Carlo (MCMC) chains with 5000 samples each were used to estimate the

posterior distributions. All chains converged with R-hat values less than 1.1.

Table 2 shows the posterior mean and the 95% HPD interval for the µ parameter,

estimated separately for the two conditions. As shown in the table, both conditions have an RST

value greater than 0.5. We note that the 95% HPD includes 0.5 for the similarity condition, thus

there is only weak evidence for a similarity effect in that condition.

Next we performed an in silico experiment using the modeling framework, similar to

Experiment 1. We simulated 100 participants each from the similarity and dissimilarity model

variants by randomly selecting 100 parameter sets within the following ranges: b ∈ [0.1,0.3],

w ∈ [0.3,0.7], and λ ∈ [0,5]. Each in silico participant completed the 20 similarity effect trials

from the behavioral experiment (the filler trials were not included), and we calculated the

resulting RST for each participant. As shown in the middle bottom panel of Figure 7, standard

similarity effects occur for both model variants. These results are similar to the data were we see

RST values above 0.5 in both conditions.

Experiment 3: Compromise Effect

Method

Participants

99 participants (women = 35, men = 64, age: M = 39.79 , SD = 13.37 ) were recruited

from Amazon Mechanical Turk using the CloudResearch platform and completed the study

online. Similar to Experiments 1 and 2, we intended to have approximately 50 participants per

condition. 49 participants completed the similarity condition and 50 participants completed the
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dissimilarity condition. The sample size was determined prior to starting the experiment and

pre-registered on AsPredicted.org (#71161). The data was analyzed only after all data had been

collected. All participants were compensated $0.50 for the completion of the study.

Materials

Similar to Experiments 1 and 2, participants in Experiment 3 made investment decisions

based on the ROI ratings from two financial advisors. There were four options used to examine

the compromise effect: two focal options and two compromise decoys (Cx and Cy). Like the other

experiments, Experiment 3 also included filler choice sets where there was a clearly superior

option. In total, there were 10 compromise effect trials with the Cx decoy, 10 compromise effect

trials with the Cy decoy, and 10 filler trials. For the compromise effect trials, the specific attribute

values for each option varied slightly across trials. The mean and standard deviation of the

attribute values for the compromise effect options are provided in Table 4. Note that the attribute

values of the compromise decoys are 2-units closer to the target than to the competitor, so that the

answer to the similarity ratings is unique on each trial.

Table 4
Summary of rating values used in Experiment 3 for the compromise effect

Rating 1 Rating 2

Option Mean SD Mean SD

X 38.60 1.43 62.40 1.62
Y 62.20 2.36 38.80 1.94
Cx 17.00 3.50 84.00 3.94
Cy 83.80 4.89 17.20 4.39

Procedures

The procedure for Experiment 3 was identical to Experiments 1 and 2. Participants were

randomly assigned to either the similarity or dissimilarity condition at the beginning of the

experiment, and then completed 30 randomized trials. On each trial, participants first made two

https://aspredicted.org/
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attribute-wise similarity/dissimilarity judgments based on their condition, and then they selected

their preferred business.

Results

No participants were excluded from the analyses. Similar to Experiments 1 and 2, we used

a hierarchical Bayesian model to test for the presence of the similarity effect in the similarity and

dissimilarity conditions separately. The model specifications for Experiment 3 were also identical

to Experiments 1 and 2. The model was fit using the python package PyMC3 (Salvatier et al.,

2016). Four Markov chain Monte Carlo (MCMC) chains with 5000 samples each were used to

estimate the posterior distributions. All chains converged with R-hat values less than 1.1. Table 2

shows the posterior mean and the 95% HPD interval for the µ parameter, estimated separately for

the two conditions. As shown in the table, a compromise effect occurred in both the similarity and

dissimilarity conditions. An analysis using a modified version of RST (Katsimpokis et al., 2022)

yielded nearly identical results and is provided in the Supplemental Materials, along with

analyses of the compromise effect for the two focal options (X and Y ) separately.

Next we performed an in silico experiment using the modeling framework, similar to

Experiments 1 and 2. We simulated 100 participants each from the similarity and dissimilarity

model variants by randomly selecting 100 parameter sets within the following ranges:

b ∈ [0.1,0.3], w ∈ [0.3,0.7], and λ ∈ [5,10]. We altered the λ range for these compromise

simulations since we found it necessary for the compromise effect to arise (in later analysis we

will fit this parameter to data to avoid this hand tuning). Each in silico participant completed the

20 compromise effect trials from the behavioral experiment (the filler trials were not included),

and we calculated the resulting RST for each participant. As shown in the right bottom panel of

Figure 7, a standard compromise effect occurs for the similarity model variant and a reversed

compromise effect occurs for the dissimilarity model variant. The results for the similarity model

variant are inline with the data where we observe a standard compromise effect in the similarity

condition. However, the results for the dissimilarity model variant do not match the data. In the
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modeling, we observe a reserved compromise effect, but in the data we observe a standard

compromise effect.

To further examine the compromise effect in the two conditions, we performed

exploratory analyses of the behavioral data, examining the impact of option location on the effects

(these analyses were not pre-registered). In all three experiments, we randomized the row location

of the three options. Thus across trials, the location of the two similar (dissimilar) options in the

similarity (dissimilarity) condition varied. Specifically, the two similar (dissimilar) options could

be located in (1) the top and middle rows, (2) the top and bottom rows, or (3) the middle and

bottom rows. We reran the beta-binomial model for both conditions treating the three locations

separately.

As shown in Table 5, a compromise effect occurs in the similarity condition when the

similar options (i.e., the target and decoy) are either in the top and middle rows or in the middle

and bottom rows. That is, the effect occurs when the target and decoy are adjacent. A null

compromise effect is observed in the similarity condition when the similar options are in the top

and bottom rows. In this case, the competitor is the middle option.

For the dissimilarity condition, a null compromise effect is observed when the two

dissimilar options (i.e., the competitor and decoy) are either in the top and middle rows or in the

middle and bottom rows, inline with model predictions. It is only when the dissimilar options are

in the top and bottom rows that a compromise effect is observed. In this case, the target option is

in the middle row.

We hypothesize that these patterns of results reflect the role of spatial biases in attention.

In particular, options in the middle row are enhanced due to the ease of comparisons with adjacent

options. In the similarity condition, when the competitor is the middle option (i.e., similar options

are top and bottom), we see an increase in choices for the competitor, nullifying the compromise

effect. Likewise, in the dissimilarity condition, when the target is the middle option (i.e.,

dissimilar options are top and bottom), we see an increase in choices for the target, leading to a

standard compromise effect. Thus, we believe that both similarity-based and spatial attention
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contributed to the effects in this experiment and likely explain the mismatch in modeling and

behavioral results for the dissimilarity condition.

Table 5
Results for Experiments 3

Similarity Condition Dissimilarity Condition

Location Mean 95% HPD Mean 95% HPD

Top & Middle 0.623 0.53-0.71 0.511 0.42-0.60
Top & Bottom 0.553 0.45-0.66 0.646 0.57-0.72
Middle & Bottom 0.659 0.56-0.75 0.528 0.43-0.62

Discussion of Experiments 1-3

Experiments 1-3 examine the impact of similarity-based attention on the manifestation of

context effects. We observe that by simply encouraging participants to attend to similar versus

dissimilar options, we can modulate the strength of the effects. Further, the changes in context

effects we observe in the behavioral data generally follow model predictions. However, we note

that the modeling results in Figure 7 show more pronounced effects (both standard and reversed),

than the data.

There are several possible explanations for the differences between the data and model

predictions. First, for the model simulations, we randomly selected parameters from a large range

of possible values. In reality, some of those parameter sets might not reflect the “best" parameters

for our participants, as would be discovered through quantitative fitting. We did not attempt to

quantitatively fit the data from these experiments because the number of trials was too low for

choice-response time modeling. Instead we discuss quantitative fitting in a later section using data

from Trueblood et al. (2015).

Another possibility for the differences between the data and model predictions relates to

the strength of our behavioral manipulations. In our experiments, attention was manipulated

through a simple judgment task where participants either selected the most similar options on

each attribute or the most dissimilar options on each attribute. It is possible that this judgment
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task did not entirely shift attention in the desired way. That is, participants in the similarity

condition could still compare dissimilar options if they desired and vice versa.

Finally, we believe that there are multiple ways that attention impacts context effects. In

particular, exploratory analyses revealed strong effects of spatial location on the compromise

effect in Experiment 3. It is likely these spatial effects were present in all three experiments and

impacted the strength of the context effects. Thus, while our goal was to manipulate

similarity-based attention, spatial attention likely played an important role as well. The model

predictions did not account for possible spatial biases. Rather our goal with the modeling was to

examine the specific influence of similarity-based attention on the context effects. The absence of

spatial attention biases in the modeling could have led to differences between the modeling and

data.

Despite differences between the data and modeling results, we find the similarity in

qualitative patterns compelling. We believe these results demonstrate that similarity-based

attention contributes to the elusive nature of context effects. In the next section, we explore the

role of spatial attention and context effects in greater detail.

Spatial Attention: Reanalysis of Trueblood et al. 2015

In Trueblood et al. (2015) the attraction, compromise, and similarity effects were

examined using the perceptual paradigm developed in Trueblood et al. (2013) where participants

made decisions about the size of rectangles. In addition to studying the three effects within

participants, the Trueblood et al. (2015) study also manipulated the left to right placement of the

options on the screen. Each choice set had three alternatives: target (T), competitor (C), and

decoy (D). Thus, participants saw a total of six distinct orders in the experiment: TCD, TDC,

CTD, DTC, CDT, and DCT. The main objective of the present analysis is to examine the three

effects across the six orders. The original analysis in Trueblood et al. (2015) did not take these

different orders into consideration. However, Evans et al. (2021) did use this data to examine the

attraction effect for the various orders. Here we also examine the compromise and similarity



ATTENTIONAL DYNAMICS AND CONTEXT EFFECTS 33

effects and include the attraction effect for completeness. Below we provide an overview of the

methods and refer the reader to Trueblood et al. (2015) for a full description.

Method

Seventy-five participants took part in the experiment in exchange for course credit. On

each trial, participants were shown three rectangles and asked to choose the one with the largest

area. The rectangles were solid black and appeared on a white background. The height and width

of the rectangles were varied in order to generate choice sets for the attraction, compromise, and

similarity effects (similar to attributes of price and quality in studies of context effects with

consumer products). For each choice set, the two focal rectangles had equal area, but one

rectangle had larger height and smaller width than the other.

Participants completed 720 trials: 160 with attraction effect choice sets, 160 with

similarity effect choice sets, 160 with compromise effect choice sets, and 240 filler trials where

one rectangle was clearly the largest. For the context effects choice sets, half of the choice sets

included a decoy targeting one of the two focal options and the other half of the choice sets

included a decoy targeting the other focal option. The trials were fully randomized. The left to

right placement of the options was also randomized, resulting in six distinct orders.

Results

No participants were excluded from the analyses. Similar to Experiments 1-3, we used a

hierarchical Bayesian model to test for the presence of the three context effects across the six

different orders. The model specifications were similar to Experiments 1-3. The model was fit

using PyMC3 (Salvatier et al., 2016). Four Markov chain Monte Carlo (MCMC) chains with

5000 samples each were used to estimate the posterior distributions. All chains converged with

R-hat values less than 1.1. Table 6 shows the posterior mean and the 95% HPD interval for the µ

parameter, estimated separately for the three effects and six orders.

Results show that for some spatial orders standard effects emerge, but for other orders,

null or reversed effects occur (see both Table 6 and Figure 8). We hypothesize that the observed
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Table 6
Results for the reanalysis of Trueblood et al. 2015

Attraction Similarity Compromise

Order Mean 95% HPD Mean 95% HPD Mean 95% HPD

TCD 0.424 0.39-0.46 0.516 0.48-0.56 0.467 0.44-0.50
TDC 0.587 0.54-0.63 0.6 0.56-0.64 0.561 0.52-0.60
CTD 0.563 0.53-0.60 0.604 0.57-0.64 0.569 0.53-0.61
DTC 0.631 0.59-0.67 0.642 0.60-0.68 0.586 0.55-0.63
CDT 0.499 0.46-0.54 0.546 0.50-0.59 0.475 0.44-0.51
DCT 0.369 0.33-0.41 0.469 0.43-0.51 0.413 0.38-0.45

differences in RST values across the different orders reflect biases in spatial attention. In

particular, we suggest that greater attention is allocated to adjacent options as compared to

non-adjacent options. In particular, when the target is the middle option (i.e., CTD, DTC), it is

adjacent to both the decoy and competitor. In this case, the target receives more attention and thus

accumulates evidence faster than the other options, leading to standard context effects. Likewise,

when the competitor is the middle option (i.e., TCD, DCT), it receives more attention, resulting in

null or reversed context effects. In the remaining two cases (i.e., TDC, CDT), results are mixed.

For TDC, all three standard effects occur. However, for CDT, only a standard similarity effect

occurs. We believe the difference here is the left versus right placement of the target. When the

target is placed in the leftmost position, we believe it receives enhanced attention because English

(the primary language of our participants) is a left-to-right writing system.

To further examine the impact of spatial attention biases on context effects, we performed

a model simulation exercise using the similarity model variant. For these simulations, we allowed

for the effects of spatial location on attention allocation. In particular, we assumed that the

comparison of adjacent options is ∼ 2.5 times more likely than comparison of non-adjacent

options. For these simulations, we used artificial stimuli values, not stimuli values from the task.

Our goal here is to simply show that the modeling framework can qualitatively produce the

observed behavioral patterns. In a later section, we quantitatively fit and evaluate the modeling

framework using this data. The attribute values for the simulations were T = (0.4,0.6),
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Figure 8
Reanalysis of Trueblood et al. 2015: Behavioral results show the relative choice share of the
target for six different spatial orders for three context effects. Bars show the mean RST, error bars
show the 95% confidence interval, and grey dots show the individual RST values. For the model,
we simulated synthetic data from the similarity attention variant accounting for effects of spatial
location of the alternatives on attention. Specifically, we assumed that comparison of adjacent
alternatives is ∼ 2.5 times more likely than comparison of non-adjacent alternatives. The
alternative attribute values were in each case T = (0.4,0.6), C = (0.6,0.4) with DA = (0.3,0.5),
DC = (0.2,0.8), DS = (0.55,0.45). For the parameters, the attribute weight was w = 0.5, the
threshold b = 0.2 and the attention parameter was λ = 2.5 for the attraction and similarity effects
and λ = 7.5 for the compromise effect.

C = (0.6,0.4) with DA = (0.3,0.5), DS = (0.55,0.45), DC = (0.2,0.8), where DA, DS, and DC are

the decoys for the attraction, similarity, and compromise effects respectively. In these simulations,

we fixed the attribute weight at w = 0.5, the threshold at b = 0.2 and the attention parameter at

λ = 2.5 for the attraction and similarity effects and λ = 7.5 for the compromise effect (a larger

value of λ more robustly produces the compromise effect).

Modeling results show a similar qualitative pattern as the data. In particular, we observe

standard effects when the target is the middle option and reversed / null effects when the

competitor is the middle option. Since the model does not bias left versus right placement of

options (as might occur because of a left-to-right writing system), the simulations are symmetric

and do not capture the observed differences in TDC and CDT. We note that left / right biases are
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easy to incorporate into the model if desired.

Discussion

The reanalysis of Trueblood et al. (2015) revealed that the display layout of options had a

large impact on the presence / absence of context effects. We hypothesized that changes in

display layout might impact how attention is allocated in the task and thus alter context effects.

To this end, we conducted model simulations examining how biases in spatial attention influence

context effects. The modeling results were qualitatively consistent with the behavioral findings,

suggesting that simple biases in attention can have large impacts on choice behavior.

Quantitative Evaluation of the Modeling Framework

To further evaluate the importance and influence of similarity and spatial based attention

factors in these decisions, we quantitatively fit four versions of this model to the full choice-RT

data from Trueblood et al. (2015). We toggle similarity and spatial factors in and out of the

framework (resulting in four models). For the similarity factor, we used the same exponential

dependence of deliberation time on similarity; more similar comparisons are compared for longer

duration. When this factor is not included, all comparisons are distributed equally.

For spatial attention, we included two additional parameters (pLM, pRM) that alter the

weights for different comparisons. This accounts for potential biases for adjacent options and left

versus right comparisons. When this factor is not present, all comparisons are equally probable.

The most extensive version of this model containing both factors has the following seven

estimable parameters: threshold (b), attribute weight (w), non-decision time (tnd), a drift rate

scaling parameter (vscale), the similarity decay parameter (λ), and the two spatial probability

parameters (pLM, pRM). The drift rate scaling parameter is a methodological parameter that

converts attribute units into the preference domain. This is necessary for mathematical

consistency (the left and right side of the preference updating equation must have the same units)

and is discussed further in the Supplemental Materials. The simplest version of the model that

omits both factors contains only four parameters (b,w, tnd,vscale).
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Continuous model extension and model fitting procedure

The fully stochastic version of this model can in principle be fit to choice-RT data using

simulation based methods such as the Probability Density Approximation (PDA) method

(Holmes, 2015; Holmes and Trueblood, 2018; Holmes et al., 2016). This is computationally

cumbersome however. We thus develop a continuous approximation to this model that utilizes

Stochastic Differential Equations in place of full stochastic simulations. Full details of the

description, derivation, and validation of this are in the Supplementary Materials. We briefly note

however that this approximation is theoretically grounded. It is essentially the asymptotic limit

that results from taking the simulation time step in the stochastic model ∆T → 0.

The end result of this approximation is a model of the form

d~P = vscale ∗~vdt +~σd~w, (7)

where P is a time varying vector of preferences,~v is a vector of accumulation rates,~σ is a vector

of variances, and vscale is the previously mentioned methodological scaling parameter. Note that

(~v,~σ) are not estimable parameters. They are fully analytically constructed from the attention

process (see Supplemental Materials). ~v represents the average rate of accumulation properly

averaged over all possible attention states. ~σ represents the variability in that accumulation rate,

accounting for the intrinsic variability of the attention process.

This approximation to the stochastic model is an independent race (IR) to threshold

model. That is, it is three stochastic accumulators independently racing to the choice threshold,

where the first one to reach that threshold is the chosen alternative. The significant benefit of this

simplification is that IR models have known, analytically solvable choice-RT distributions based

on the Wald / Inverse Gaussian distribution (see Supplemental Materials). This dramatically

simplifies the choice-RT fitting process without sacrificing any of the core characteristics of the

modeling framework.

To fit this model, we use a Bayesian approach to fit full choice-RT data, accounting for the
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spatial order of presented alternatives. Following prior studies, we use Differential Evolution

MCMC (DEMC) (Turner et al., 2013). Prior to fitting these models, parameter recovery was

demonstrated (Supplemental Materials) using the same experimental design and stimuli as the

experiment itself.

Results
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Figure 9
Choice - RT fitting for Trueblood et al. 2015 data with spatial ordering: For each of the four
indicated models, we fit the choice - RT data from Trueblood et al. 2015 as described in the
methods. To assess quality of fit, we plot the choice proportion and mean response time predicted
by the model for each participant against the same quantities from the data. R-squared values
quantify this quality of fit and the gray lines indicated the line of agreement. Similar results for
the dissimilarity variants are in the Supplemental Materials.

Figure 9 illustrates the quality of fit for the four model variants by comparing choice

proportions and mean RTs derived from the posterior mean parameter sets for each individual

with those from data. Results illustrate that both similarity and spatial attention factors are needed
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to provide a reasonable account of the data. When only one attention factor is present, the model

performs quantitatively worse. More importantly, the single factor models predict higher

competitor than target choice proportions, which is qualitatively contrary to data.
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Figure 10
Participant parameters for similarity plus spatial attention model: For each of the experimental
participants, posterior mean parameter values were calculated. Histograms for λ and w are
shown and the joint values of spatial attention parameters are shown.

We further analyzed the distribution of participants’ posterior mean parameter values for

the model with both similarity and spatial attention included (Figure 10). Results show the

attribute weight is generally close to 0.5, which is reasonable since the two attributes in question

are length and width of rectangles. The similarity decay parameter λ is significantly different

from 0. Finally, participants broadly show an adjacency bias, but not a substantial bias for

comparisons involving left or right options.

General Discussion

Context effects in choice, particularly the attraction, compromise, and similarity effects,

have received considerable attention over the last several decades. Yet despite being observed

across multiple cognitive domains (Farmer et al., 2015; Farmer et al., 2017; Maylor & Roberts,

2007; Trueblood, 2012, 2015; Trueblood et al., 2013; Wedell, 1991; Yearsley et al., 2021) and

across multiple species (Bateson et al., 2003; Latty & Trueblood, 2020; Parrish et al., 2015; Shafir

et al., 2002), they have proven to be simultaneously fragile (Spektor et al., 2021). In this paper,

we introduced a novel modeling framework that explains the elusive nature of context effects.
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Using this framework, we demonstrate how the presence, absence, and reversal of classic context

effects can be explained by variations in the attention process during evidence accumulation.

The idea that attention is important for understanding context effects is shared by most

dynamic models of context effects (Trueblood, 2022). These models have, in many cases,

assumed that alternatives are compared to each other in a pairwise fashion, that comparisons

between more similar alternatives receive greater weight, and that all alternatives and attributes

cannot be simultaneously attended to. Our work extends and generalizes these prior theories.

Specifically, the framework described here assumes that only one comparison on one attribute can

be attended to at any given time but that the sequence of comparisons is governed by a structured

attention process. Rather than assume a fixed attention process (i.e. similarity-based), we explore

a range of different attention processes and their consequences on choices. Results show that

when more similar alternatives are compared for longer periods of time, the classic context effects

arise. However, if that attention processes is altered (e.g., dissimilar alternative are compared for

longer periods of time), the effects can disappear or reverse, as has been found in a number of

recent empirical studies (Cataldo & Cohen, 2018, 2019; Evans et al., 2021; Spektor et al., 2018).

Importantly, our framework also allows for intrinsic factors, such as an individual’s attribute

biases, and extrinsic factors, such as the spatial arrangement of options in the choice display, to

enter into the attention process. In sum, our work illustrates that attentional dynamics are key to

understanding why context effects can be simultaneously general and fragile.

We validated our modeling framework using a combination of behavioral experiments and

a reanalysis of previously published data. Results from Experiments 1-3 showed that by simply

encouraging participants to attend to similar versus dissimilar options, we were able to modulate

the strength of the three effects in ways that were generally consistent with model predictions. To

test whether attentional biases arising from the spatial layout of items may alter context effects,

we reanalyzed data from Trueblood et al. (2015). In that study the attraction, similarity, and

compromise effects occurred when the target was the middle option, whereas null or reverse

effects occurred when the competitor was the middle option. Our results indicate this is a
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consequence of people’s preference for comparing spatially adjacent options more than

nonadjacent options. This result in particular illustrates how easily experimental factors can alter

empirical findings. In summary, our findings illustrate the critical role of attention in the

generation of context effects. Further, this modeling approach provides a way to disentangle

different factors that may influence attention and their potential effects on observations.

Relationships to Other Modeling Approaches

Our modeling framework builds on ideas from previous theories of context effects,

particularly the idea that attention plays an important role in multi-alternative, multi-attribute

choice (Trueblood, 2022). Although our goal was not to introduce a new model to test against

others in a head-to-head comparison, it is informative to compare and contrast the way that

attention operates in the present framework with the way that attention operates in other dynamic

choice models.

Most dynamic choice models assume that individuals shift a window of attention

throughout deliberation to evaluate various options. Here we highlight three models, MDFT (Roe

et al., 2001), MLBA (Trueblood et al., 2014), and multialternative decision by sampling (MDbS;

Noguchi and Stewart, 2018), to illustrate the relationship between the current framework and

existing theories. We refer readers to Trueblood (2022) for a more in depth review of the role of

attention in dynamic context effects models. In MDFT, the window of attention includes all

options along a single attribute. In MLBA and MDbS, attention is allocated to a pair of options

along a single attribute. In MDFT and MDbS, the window of attention fluctuates stochastically

over time, whereas MLBA assigns deterministic attention weights to the set of pairwise

comparisons. The present framework assumes an explicit sequence of comparisons over time

(specifically pairwise comparisons in the model variants studied here), with a Markov process to

describe the probabilities of switching to different comparisons.

Additionally, both MDbS and MLBA incorporate some notion of similarity-based

attention. In MDbS, the probability of evaluating the value of an option on a particular attribute is
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proportional to the similarity between that option’s value and other values in working memory,

including values retrieved from long-term memory (e.g., memory of prices from past experience).

In MLBA, the attention weight for each pairwise comparison depends on the similarity of the

values being compared. The present framework allows for similarity to affect the amount of time

spent on each comparison. For example, in the similarity model variant, greater similarity among

options leads to longer deliberation time for the comparison of those options.

We also point out some key differences between the current framework and previous

modeling approaches. The current framework is stochastic rather than ballistic as is the case for

MLBA. MDbS utilizes ordinal comparisons between options instead of allowing the size of the

difference between options to influence the rate of evidence accumulation as in our framework.

MDFT incorporates several additional mechanisms not currently included in our framework such

as distant-dependent lateral inhibition and leakage. Finally, while both MLBA and MDFT have

been quantitatively tested using choice-response time data, we are unaware of such testing of

MDbS. Doing so would likely require the development of a continuous approximation of the

model similar to what was done here and in Evans et al. (2019).

Another important distinction between our framework and past approaches is that we

show that a single mechanism, namely similarity-based attention, is sufficient for producing the

attraction, compromise, and similarity effects (see Figure 4). In other dynamic models, additional

mechanisms are required to produce at least one of the three effects. For example, MDFT

accounts for the attraction and compromise effects using distance-dependent lateral inhibition

(Roe et al., 2001), MLBA accounts for all three effects using a combination of similarity-based

attention and asymmetric weighting of advantages and disadvantages (Trueblood et al., 2014;

Tsetsos et al., 2015), and MDbS accounts for the similarity effect by assuming that people tend to

ignore relatively small differences (Noguchi & Stewart, 2018). Our results show that while these

factors may be present, they are not necessary and attention alone can lead to the contextual

sensitivities observed in the classic effects.

Our framework explicitly models the attention process during deliberation. Another
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approach is to use empirical measures of visual attention (i.e., gaze data) as input to the evidence

accumulation process, as in the attentional drift diffusion model (aDDM; Krajbich et al., 2010).

These two approaches are very different: One makes a priori assumptions about the way in which

attention fluctuates between different pieces of information and how it influences choice, while

the other uses exogenous measures of visual attention to inform the model without explaining

why gaze is allocated that way in the first place. Few models have attempted to explain the

allocation and timing of visual fixations during the deliberation process (for an example in simple

value-based choice, see Callaway et al., 2021). The aDDM has proven to be quite useful as a tool

for understanding the moderating effects of visual attention on value-based decision making (e.g.,

Smith and Krajbich, 2018, 2019; for a review, see Krajbich, 2019). It does not however attempt to

understand the process responsible for the allocation of attention. Recently, gaze-dependent

evidence accumulation models have also been leveraged to study context effects in

multi-alternative, multi-attribute choice (Molter et al., 2022). However, because attention is

treated as an exogenous variable in the aDDM and other gaze-dependent models, the models

make no predictions for the effect that different spatial layouts, for example, will have on

attention and (consequently) decision making. The behavior of these models depends on the eye

movement data that gets fed into them. In contrast, the present framework allows us to

incorporate different theories about the role of spatial and other presentation-related factors into

the model’s attention process in order to examine their predicted effects on choice behavior. In the

Future Directions section, we return to the topic of eye-tracking measures and how they might be

used to supplement our modeling framework.

An Alternative Explanation of the Elusiveness of Context Effects

Like other dynamic decision models, our theoretical framework relies on the integration

and accumulation of relative comparisons during deliberation to explain the emergence of context

effects (Busemeyer et al., 2019). Moreover, it uses attentional dynamics during the deliberation

process to explain the elusiveness of context effects. An alternative explanation, suggested by
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Spektor et al. (2021), is that the elusiveness of context effects is due to noisiness in the subjective

representation of the choice set. Certain features of the choice task, such as the spatial

arrangement of the options or the presentation modality of the attributes, could make it more

difficult for decision makers to obtain an accurate representation of the options. Spektor et al.

suggest that when decision makers first encounter a choice, there is some degree of uncertainty or

noise in the representation of the options. Although the uncertainty gradually diminishes over the

course of deliberation, if the level of uncertainty is high, dominance relationships and attribute

orderings will be more difficult to detect, inhibiting the attraction and compromise effects and

potentially leading to reversals of these effects. On the other hand, the similarity effect is less

likely to be impacted by representational noise because any difficulties in detecting dominance

relationships would likely influence the competitor and decoy as opposed to the target. If the level

of uncertainty is low, the attraction and compromise effects should not be impacted and standard

effects are anticipated.

Currently, the idea of representational noise has not been incorporated into a formal model

of decision making. Future work could explore whether it is possible to extend our framework to

allow for uncertainty in the attribute values that diminishes over time. We note that there are

many ways of adding noise to models and care must be taken to make sure that the addition of

noise does not result in model tractability issues. As of now, our framework explains the elusive

nature of context effects purely through subtle changes in attention during the deliberation

process, treating the attribute values as given.

Benefits of the Current Modeling Approach

We have stressed that our proposed model is a framework in the sense that it encompasses

many possible model variants. For example, we showed how three different assumptions about

the relationship between similarity and deliberation time could be incorporated into the

framework. The similarity variant, which assumes that the more similar two options are, the

longer they are compared, provided the best qualitative account of participants’ choices when
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they were encouraged to attend to similar options. The dissimilarity variant, which assumes a

negative relationship between similarity and deliberation time, best matched the empirical

patterns when participants were encouraged to attend to dissimilar options. It is possible that

under different circumstances, attention may be allocated differently. Further, attribute biases and

spatial attention mechanisms can be encoded in the conditional transition matrix that contains the

probabilities of switching to different comparisons. A model variant in which comparisons

between adjacent options are more probable than comparisons between nonadjacent options was

able to account for spatial order effects present in previously published data (Trueblood et al.,

2015). The flexibility of our modeling framework is one of its primary advantages, and there are

many other possible modifications that could be made.

Another advantage of the current modeling framework is that it can be fit to choice-RT

data and that its parameters are recoverable (see Supplemental Materials). This is important, as

other dynamic models of context effects have been shown to have relatively poor parameter

recovery (Evans et al., 2019). Complex models with many parameters often have strong

parameter trade-offs, where increases in one parameter can be compensated by decreases in

another (e.g., Miletić et al., 2017). When this occurs, the parameters are said to be weakly

identified and it is no longer possible to reliably interpret the parameter estimates. Because our

model exhibits good recovery of parameters, we can use the parameters to draw inferences about

the underlying cognitive processes mediating choice behavior.

Future Directions

Future studies should collect process data to examine the assumptions of the proposed

framework. Eye tracking methods have proven to be particularly useful for this purpose. For

example, eye tracking studies have shown that in multi-alternative, multi-attribute choice tasks,

pairs of options are compared on single attributes at a time (Noguchi & Stewart, 2014), pairs of

similar options are attended to more frequently than pairs of dissimilar options (Noguchi &

Stewart, 2014, 2018), and the inclusion of asymmetrically dominated decoys focuses attention on
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the target option and the dominance attribute (Marini et al., 2020). Alternative methods, such as

the hidden-attribute protocol, can also be used to shed light on process mechanisms (Marini et al.,

2022). An obvious application of these methods to the current framework would be to test

whether people do indeed transition more frequently between adjacent options than nonadjacent

options, and whether the ratio of the transition frequencies between adjacent and nonadjacent

options is associated with spatial order effects in choice, as predicted by the modeling framework.

More generally, this framework can serve as a platform to understand the consequences of

different attention-related factors on decision making and under what circumstances those factors

may be important. A significant strength of our approach is that it allows the researcher to

explicitly model attention as part of the decision process. For example, this model could be

extended to account for potential sequential dependencies in attention. For mathematical

tractability, we have assumed that the conditional probabilities of transitioning to different

comparisons do not depend on the past sequence of comparisons. This is likely overly restrictive

and can be expanded upon in future work. Alternative forms of comparison can also be

investigated. We have for simplicity assumed comparisons are within-attribute and between two

items in the choice set, but comparison against other exemplars may be possible. This is just a

sampling of possible extensions.

Conclusions

Context effects in multi-alternative, multi-attribute choice are widely documented and yet,

paradoxically, quite fragile. Their elusiveness challenges previous theories of context effects,

which have largely focused on explaining the existence of the effects. In this paper, we introduced

a novel computational modeling framework that relies on attention modulated comparisons to

explain the fragile nature of context effects. The flexibility of our framework makes it possible to

test a number of different theories about the role of attention in the deliberation process. Further,

we developed and validated a tractable approximation of the full model that can be used to fit

choices and response time data. Using this framework, we demonstrate how attention may be
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critical in understanding the simultaneous generality and fragility of these effects. Generality

arises from the properties of attention allocation, while fragility is a result of the ease with which

that attention can be altered either intentionally or unintentionally. In summary, the proposed

framework is a powerful tool for understanding the elusive nature of context effects through the

lens of attentional dynamics during deliberation.
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Supplemental Materials for “Attentional Dynamics Explain the Elusive Nature of Context

Effects”

Bayesian Model of the Relative Choice Share of the Target (RST)

Figure 1 illustrates the graphical model used to estimate the Relative Choice Share of the

Target (RST) in Experiments 1-3 as presented in the main text. The same model was also used in

the reanalysis of Trueblood et al., 2015.

i = 1,…, N

Ti + Ci

Ti

!i

µ "

µ ~ Beta(1,1)

" ~ |N(0,10)|

a = µ"
b = (1-µ)"
!i ~ Beta(a, b)

Ti ~ Binomial(!i , Ti + Ci)

Figure 1
Hierarchical Bayesian graphical model used for testing the presence of the attraction,
compromise, and similarity effects in Experiments 1-3 and the reanalysis of Trueblood et al.
(2015).

Comparing Two Versions of RST

The model in Figure 1 is based on the traditional RST measure, in which the frequency of

target selections is summed across the ternary choice sets {X ,Y,ZX} and {X ,Y,ZY}. Recently,

Katsimpokis et al. (2022) demonstrated that the conventional RST can lead to biased inferences

when the total number of target and competitor selections differs across the two choice sets. This
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can happen when one of the two decoys (ZX or ZY ) is strongly preferred, as sometimes occurs

with compromise or similarity decoys. To mitigate this problem, the authors proposed an “equal

weights” version of RST defined as

RSTEW = 0.5 ·
(

P(X |{X ,Y,ZX})
P(X |{X ,Y,ZX})+P(Y |{X ,Y,ZX})

+
P(Y |{X ,Y,ZY})

P(X |{X ,Y,ZY})+P(Y |{X ,Y,ZY})

)
(1)

Note that RSTEW is the simple average of the RST calculated within each choice set.

Following Katsimpokis et al. (2022), we constructed a hierarchical Bayesian

beta-binomial model for RSTEW by estimating separate θ parameters for the two choice sets

(Figure 2). Each individual’s θ parameters were assumed to be drawn from population-level beta

distributions with separate mean (µ) and concentration (κ) parameters. A group-level estimate of

RSTEW can be computed by averaging the µ parameters across the two choice sets, i.e.,

µEW = 0.5 · (µ1 +µ2). We modeled the similarity and dissimilarity conditions separately in

Experiments 1-3. The model was fit in JAGS via the runjags R package (Denwood, 2016). Four

Markov chain Monte Carlo (MCMC) chains with 5000 samples each were used to estimate the

posterior distributions. All chains converged with R-hat values less than 1.1.

Table 1 shows the posterior means and 95% highest posterior density (HPD) intervals for

the µEW parameters across conditions. If µEW is greater than 0.5, then that is evidence of a

positive context effect. The results were nearly identical to the results for the traditional RST

presented in the main text. The only qualitative difference is that the HPD for the dissimilarity

condition in the similarity effect experiment overlapped with 0.5 using RSTEW , whereas it was

completely above 0.5 using traditional RST. However, the overall conclusions were unaffected by

the type of RST selected.

Additional Results for Experiments 1-3

In addition to the RST, we also examined the strength of context effects in Experiments

1-3 for each focal option separately. For this analysis, we calculated the change in choice shares
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Table 1
Results for Experiments 1-3 using the equal weights version of RST

Attraction Similarity Compromise

Condition Mean 95% HPD Mean 95% HPD Mean 95% HPD

Similarity 0.556 0.51-0.60 0.509 0.47-0.56 0.618 0.57-0.66
Dissimilarity 0.467 0.42-0.51 0.532 0.49-0.57 0.564 0.52-0.61

of each focal alternative (∆Pa, a = X ,Y ; Wedell, 1991). This measure compares the choice

proportion of a particular focal alternative in the ternary choice set when that particular focal

alternative is the target and when it is not. Thus, ∆Pa is defined for each focal option separately:

∆PX = P(X |{X ,Y,Dx})−P(X |{X ,Y,Dy}),

∆PY = P(Y |{X ,Y,Dy})−P(Y |{X ,Y,Dx}),
(2)

where Dx and Dy are decoy options. When ∆Pa > 0, this indicates a standard context effect for the

particular focal alternative.

Similar to the main text, no participants were excluded from the additional analyses. We

used a hierarchical Bayesian model to estimate ∆PX and ∆PY . The graphical model is shown in

Figure 3. It is a beta-binomial model where the number of times a focal option is selected follows

a binomial distribution: Binomial(θ,n), where θ represents the probability that the option is

selected and n is the number of times a particular of context effect choice set appears.

Specifically, the parameter θ is estimated separately for the choice sets where the focal option is

the target and for the choice sets where the focal option is the competitor. We also assumed that

the person-specific θ parameters were drawn from population-level beta distributions with mean

(µ) and concentration (κ) parameters. The difference in the µ parameters is the group-level

estimate of ∆Pa. We modeled the similarity and dissimilarity conditions separately, thus there

were separate estimates of ∆Pa for the two conditions. The model was fit using the python

package PyMC3 (Salvatier et al., 2016). Four Markov chain Monte Carlo (MCMC) chains with
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5000 samples each were used to estimate the posterior distributions. All chains converged with

R-hat values less than 1.1.

Table 2 shows the posterior mean and the 95% highest posterior density (HPD) interval

for ∆PX and ∆PY , estimated separately for the two conditions. If the HPD is above 0, then that

suggests that the target was selected more than the competitor, indicating a context effect. As

shown in the table, the results are similar to those obtained using the RST.

Table 2
Estimates of ∆PX and ∆PY for Experiments 1-3

Attraction Similarity Compromise

Condition Mean 95% HPD Mean 95% HPD Mean 95% HPD

Similarity ∆PX 0.085 0.01-0.16 -0.026 -0.10-0.04 0.228 0.14-0.32
Similarity ∆PY 0.084 0.00-0.17 0.103 0.03-0.18 0.158 0.06-0.26
Dissimilarity ∆PX -0.066 -0.15-0.02 0.022 -0.04-0.08 0.116 0.02-0.21
Dissimilarity ∆PY -0.044 -0.12-0.04 0.100 0.03-0.17 0.123 0.03-0.21

Continuous Model Extension

For purposes of efficiency, parameter estimation, and response time modeling, it will be

useful to have a continuous, stochastic differential equation (SDE) approximation of the discrete

model described in the main article. We show here that the model can be approximated by a SDE

of the form,

dPj = v̄ jdt +σ jdw, (3)

where Pj represents the preference for alternative j, v̄ j is the “average” accumulation rate

(averaged over all possible comparisons), σ j is the amplitude of the stochastic variability, and dw

is a standard Gaussian white noise increment. The key is to determine the values of v̄ j and σ j

based on the discrete process described above. We note that in many historical models, great care

is taken in determining what the average accumulation rates (v̄ j) should be for a race model while

noise parameters are often taken to be free parameters to be estimated or fixed at some value.

Here both will be derived as a properties of the discrete model formulated previously. We first
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derive the average accumulation rates v̄ j and subsequently derive a relationship between the

variances σ j.

Approach

In order to derive these quantities, consider the following simplified scenario. Fix a time

interval T and divide it into smaller increments of time increment ∆s. Then there are N∆s = T/∆s

time increments in the full unit of time. Define Scm to be the number of those time steps spent on

comparison cm. By determining the statistical properties of these random variables (mean and

variance in particular), we can construct (v̄ j,σ j).

The average accumulation rate for alternative j over that full unit of time would be

v j = ∑
{cm involving j}

Scm

N∆s
(xak

j − xak
i ), (4)

where ( j, i,ak) are the indices associated with comparison cm. (i, j) indicates the alternatives

being compared while ak is the attribute being attended to. This average drift rate will be a

stochastic quantity (v j ∼ N(v̄ j,σ j)) whose mean is

v̄ j = ∑
{cm involving j}

〈
Scm

N∆s

〉
(xak

j − xak
i ) (5)

and variance is

(σ j)
2 = ∑

{cm involving j}
Var

(
Scm

N∆s

)
(xak

j − xak
i )2. (6)

Note that in deriving the variance for the drift, the assumption that Scm are independent is required.

This is of course not the case since those quantities must sum to N∆s. However we were unable to

find a way around this. We have performed simulation studies to verify that this representation of

the variance is a good approximation to the simulated variance from the discrete process. We also

note that the resulting SDE race model exhibits the same characteristics as the discrete model

(e.g. exhibits all context effects for the same parameters). Thus while this approximation is not
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strictly correct, it does not appear to have a substantive effect on the variance estimates and

provides a drastic simplification that allows us to write an analytic estimate for that variance.

Derivation of Average Accumulation Rates

The average rate of preference accumulation for alternative j is given by

v̄ j = ∑
{cn involving j}

fcn

(
xak

j − xak
i

)
, (7)

where fcn = ⟨Scn/N∆s⟩ is the asymptotic fraction of each unit time spent on comparison cn, the

sum is taken over all comparisons involving alternative j, and ak is the attribute on which

comparison cn is based. The vector f⃗ = ( fc1, ..., fclast ) is the “stationary vector” of the Markov

chain M. The stationary vector satisfies f⃗ M = f⃗ and therefore f⃗ can be calculated by finding the

left eigenvector of the matrix M associated with the eigenvalue 1.

The elements of f⃗ represent the asymptotic probability that at any instant in time the

comparison cn is being attended to. Thus, v j represents the weighted average of the accumulation

rates for all comparisons where the weights are determined by the Markov process M. Notice that

while the Markov chain M was dependent on the size of the time increment ∆s, these asymptotic

probabilities do not. This in combination with Equ. (5) completes the derivation of v̄.

Derivation of Variances (σ j)

What we are going to derive here is as follows. Suppose you have a given unit of time T

which contains N∆s = T/∆s time steps. Above we derived the expected fraction of those steps that

will be spent on each possible comparison. That estimate will however have a variance. What is

that variance? This is what we will derive. There is little intuition behind this derivation and thus

we simply provide the details.

Let Scm be the number of steps (of the N∆s available) of the random walk spent on

comparison cm. Then Scm is normally distributed according to Scm ∼ N(N∆s fcm,N∆sσcm). In order

to determine σcm , define F to be a square matrix where each row is an identical copy of the
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stationary state row vector f⃗ derived above. Further define Z = [I −M+F ]−1 where I is the

appropriately sized identity matrix. This is often referred to as the “Fundamental Matrix” for the

Markov chain. Note that invertibility is guaranteed since this is a regular, ergodic Markov

process. Then

σ
2
cm

= Var
(

Scm

N∆s

)
=

2 fcmzcm,cm − fcm − f 2
cm

N∆s
. (8)

We note that while there is an apparent dependence of σcm on ∆s, for sufficiently small

increments, this converges to an asymptotic value. We have validated that this variance estimate is

a good approximation to the actual variance by comparing it to results of brute force simulations

(Figure 4). There, we simulated the Markov process many times, calculated the true variance σ2
cm

,

and compared it to the approximate value. Results show good agreement, validating this

approximation. With these approximations for σ2
cm

, we can now fully construct the required noise

parameters in Equ. (6).

Full Description of the Continuous Model

Any time one constructs a race to threshold model such as this, there is usually a

dimensional mismatch. The left and right sides of an equation must have the same units. Consider

the first term v̄ jdt in Equ. (3). The units of this term are measured in units of the attribute value.

However, P and b (the threshold) are measured in units of preference. When only choice

proportions are being modeled, this is not a significant issue, but when modeling response times it

must be accounted for. One way to do so is to introduce a scaling parameter vscale that maps

attribute strength into the preference domain. Note that this is a single, condition independent

scaling parameter that applies to all attribute values. With this scaling parameter, we can update

the model in Equ. (3) as

dPj = vscale ∗ v̄ jdt +σ jdw, (9)

where all relevant quantities on the right hand side of this expression are described in Eqs. (5),

(6). Unless otherwise stated, vscale = 1 will be used for all simulation studies.
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To ensure that this resulting continuous model exhibits the same choice behavior as the

full discrete model, we simulated the same context effect numerical experiment as in the main

text. Results (Figure 5) show that the models indeed predict the same choice behavior, validating

this continuous approximation of the full discrete model.

Continuous Model Choice-RT Likelihood Function

The resulting model in Equ. (9) is an independent race (IR) model. Each alternative has a

single preference state accumulator, which accumulates independently of the other alternatives,

until one reaches the decision threshold b, triggering a choice. A primary benefit of this SDE

formulation over the full stochastic formulation is that the IR model has an analytic solution for

its choice-RT distribution (see Wikipedia).

Consider a single accumulator

dx j = v jdt +σ jdw (10)

with x j(0) = 0. The first passage time to a threshold b > 0 is

f j(t) = IG(b/v,(b/σ)2), (11)

where IG is the Inverse Gaussian distribution’s probability density function (PDF). That is, f j

describes the hitting time distribution for accumulator j, in the absence of any other

accumulators. This is however not the quantity of interest. The probability of one accumulator

hitting x = b at time t without any other accumulator hitting prior to that is needed. This is the

first passage time. This can be readily calculated as

FPTj(t) = f j(t)∏
i̸= j

(1−Fi(t)), (12)

where Fi(t) is the cumulative distribution function (CDF) associated with the PDF fi(t). This is

https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution
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precisely the probability that accumulator j completes at time t with no other accumulator

completing prior to that.

We can thus calculate the choice-RT first passage time distributions for this SDE model in

two steps. First, construct the necessary drift rates and variances from the specified model and

input stimuli parameters. Using these composite quantities, calculate the FPTj using the PDF and

CDF for the inverse Gaussian.

Fitting Methods

We fit each of the four choice-RT models to data from Trueblood et al., 2015 using a

custom, Matlab based implementation of Differential Evolution Monte Carlo (DEMC, Turner

et al., 2013). Fits were performed at the individual level. In models where spatial attention

parameters were included, the ratios pLM/pLR, pRM/pLR were log-sampled to ensure even

sampling of values below and above one. Standard practice for DEMC is to use 3 chains per

parameter. We thus used 21 chains (7 parameters). The following priors were used for the

parameters: b ∼U(0,10), tnd ∼U(0.05,1), w ∼U(0.1,0.9), vscale ∼U(0,20), λ ∼U(0,10),

log10(pLM/pLR) and log10(pRM/pLR)∼ N(0,1), where U,N indicate Uniform and Normal

distributions.

Parameter Recovery

To illustrate parameter recovery for this model and fitting approach, we simulated data

directly out of stimuli sets seen by one participant. All filler trials were removed, leaving 480

stimuli sets factored over similarity, compromise, and attraction effects as well as the six different

spatial orderings. We simulated a single trial from each stimuli set with the parameters

b = 1,w = 0.5, tnd = 0.15,λ = 3,vscale = 10, pLM/pLR = 1.6, pRM/pLR = 1.2. This results in 480

choice-RT pairs, matching the structure of the experimental data. Results in Figure 6 demonstrate

good recovery of parameters.
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𝑇1,𝑖 𝑇2,𝑖

𝑇1,𝑖 + 𝐶1,𝑖 𝑇2,𝑖 + 𝐶2,𝑖

𝜃1,𝑖 𝜃2,𝑖

𝜇1 𝜅1 𝜇2 𝜅2

𝑖 = 1,… , 𝑁

𝜇1 ~ Beta(1,1)

𝜅1 ~ 𝑁(0,10)

𝑎1 = 𝜇1𝜅1

𝑏1 = 1 − 𝜇1 𝜅1

𝜃1,𝑖 ~ Beta(𝑎1, 𝑏1)

𝑇1,𝑖 ~ Binomial(𝜃1,𝑖 , 𝑇1,𝑖 + 𝐶1,𝑖)

𝜇2 ~ Beta(1,1)

𝜅2 ~ 𝑁(0,10)

𝑎2 = 𝜇2𝜅2

𝑏2 = 1 − 𝜇2 𝜅2

𝜃2,𝑖 ~ Beta(𝑎2, 𝑏2)

𝑇2,𝑖 ~ Binomial(𝜃2,𝑖 , 𝑇2,𝑖 + 𝐶2,𝑖)

Figure 2
Hierarchical Bayesian graphical model for the equal weights version of the relative choice share
of the target (RSTEW ). The two choice sets {X ,Y,ZX} and {X ,Y,ZY} are denoted respectively by
the subscripts 1 and 2.
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i = 1,…, N

Xi + Yi + Axi

Xi

!Ti

µT"T

#PX = 

µT - µC

i = 1,…, N

Xi

!Ci

µC "C

Choice Sets where
X is Target

Choice Sets where 
X is Competitor

Xi + Yi + Ayi

µT, µC ~ Beta(1,1)

"T, "c ~ |N(0,10)|

aT, aC = µj"j

bT, bC = (1- µj) "j

!Ti , !Ci ~ Beta(aj, bj)

Xi ~ Binomial(!ji , Xi + Yi + Ai)

Figure 3
Hierarchical Bayesian graphical model used for estimating ∆Pa for Experiments 1-3. The
estimation of ∆PX for the attraction effect choice sets is shown. Estimation of ∆PX for the
compromise and similarity effects is similar. Estimation of ∆PY for all three effects is similar.
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Figure 4
Markov Model Variance Approximation. Here we validate the continuous model variance
approximation for Σcn in Equ. (8). We fix the relevant parameters at w = 0.5,λ = 0.5 and simulate
Nacc = 10,000 identical copies of the Markov state transition process with a time step of
∆s = 20ms using a two attribute, ternary choice set consisting of {(3,6),(6,4),(5,5)}. Thus there
are six possible comparisons that can be made (3 alternatives and 2 attributes). From the direct
simulations we calculated Var(Scm/N∆s) (solid lines) as well as the approximated variance in
Equ. (8) (dashed lines). Note that in order to get an estimate for the mean time spent in each
comparison state for each Markov state trace, we averaged over a T = 5sec time interval. Thus
the simulated variances exhibit defects near the start and end time due to this averaging. For
clarity we show agreement for only the first three comparisons, though similar agreement is found
for the remaining three. We also performed similar simulations with ∆s = 2ms and found similar
results. These results validate the approximation for Σcn in Equ. (8).
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Figure 5
Discrete and continuous models capture context effects. a) Decoy plane depicting how moving
a third alternative around attribute space influences the relative share for the target (T / T + C)
when the target and competitor are held fixed. Arrows point to regions that demonstrate various
context effects. Parameters are fixed at values shown in Panel b. Model parameters are set to
w = 0.5,b = 2,λ = 0.5,coll = 0.
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Figure 6
Parameter recovery for Trueblood et al. 2015 model fitting. To assess whether parameters of
the models fit to the Trueblood et al. 2015 data are recoverable, we simulated a synthetic data set
from the most complicated model with both spatial attention and a similarity attention process.
Simulation parameters were b = 1,w = 0.5, tnd = 0.15, λ = 3, vscale = 10, pLM/pLR = 1.6,
pRM/pLR = 1.2 using the exact stimuli values from one of the experimental participants as inputs.
Results show the posterior distributions for 6 of the 7 parameters (non-decision time was
similarly recovered). Red vertical lines indicate the parameter values used for the simulation.
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