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Abstract

The role of advertising as an “implicit price” has long been recognized by economists and

marketers. However, the impact of personalizing implicit prices on firm profits and consumer

welfare has not been studied. We first conduct a set of large-scale field experiments on Pandora by

exogenously shifting the number of ads played per hour, i.e., the “ad load”, for over seven million

users over a period of 18 months. We first show that while it takes a long time (more than a

year) for the effect of ad load on consumption to stabilize, the treatment effect on subscriptions

reaches steady-state much faster (less than six months). We then use a state-of-the-art machine

learning model to examine the heterogeneous treatment effects of firm’s interventions on ad and

subscription revenues. We next show that by reallocating ads across individuals, the firm can

improve subscription profits by 7% without reducing total profits generated from advertising. To

achieve the same subscription rate using a uniform ad-allocation policy, the firm would need to

increase the number of ads served on the platform by more than 22%. Furthermore, the gains from

personalization emerge quickly after implementation, as subscription behavior adapts to changing

ad load relatively quickly. We also evaluate the welfare implications of personalizing implicit prices.

Our results show that, on average, consumer welfare drops by 2% with the proposed personalization

strategy, and the effect seems to be more pronounced for users that have a higher willingness to

pay.
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Learning
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1 Introduction

The abundance of free online content creates a challenge for online-content providers to monetize their

platforms. In the mid 1990s and early 2000s, to attract large audiences and generate advertising rev-

enues, many firms offered online content for free (Edgecliffe-Johnson, 2009). As the industry matured,

a number of content publishers experimented with subscription paywalls (Pérez-Peña and Arango,

2009). Although some firms, such as Netflix1, have earned substantial profits through this strategy,

the transition to a subscription-only model has not been especially easy for most firms. For instance,

using data on a media publisher’s website visits, Chiou and Tucker (2013) show that instituting pay-

walls led to a 51% drop in online visits. The trade-off between viewership and subscription profits has

led a number of firms, including Hulu, YouTube, Spotify, and Pandora, to adopt a hybrid approach,

offering both an ad-supported free version and an ad-free subscription version. An interesting question

is how those multiple versions should be designed and priced.

In the age of the Internet, digital products have become highly customizable, both in terms of con-

tent (e.g., Pandora’s personalized radio stations) and in terms of pricing. Although academic authors

have discussed the returns to personalizing subscription prices (Shiller et al., 2013) or to engaging

in fine-grained group-pricing strategies (Dubé and Misra, 2017; Smith, Seiler, and Aggarwal, 2022),

these ideas are rarely implemented in industry (DellaVigna and Gentzkow, 2019; Hitsch, Hortacsu,

and Lin, 2019; Bhatia, Moshary, and Tuchman, 2021). Firms such as Amazon and Staples have faced

public backlash for experimenting with charging different prices to different customers (CNET, 2002;

Valentino-DeVries, Singer-Vine, and Soltani, 2012).

Fear of customer backlash has led many firms to instead adopt “versioning” strategies (Shapiro,

Carl, Varian, et al., 1998), where the seller offers each customer a menu of different product options,

for example, ad-supported and paid subscriptions, and allows customers to self-select into choosing

one of them. These versions can further be customized or made available based on what the publisher

knows about its customers, such as when publishers release the hard copy when a new book is released

and delay the release of paperback versions (Clerides, 2002). Versioning strategies have been used to

discriminate in time or geographies by customizing the menu offered to the users, given the granular

data that firms have on individuals this practice can also be personalized. The public appears to

have a much more positive view of personalized product content or quality than of personalized prices

1Netflix is also considering to offer an ad-supported version (Krouse and Vranica, 2022).
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because many people feel that one group of consumers getting different explicit prices for the same

product or service is unfair. Versioning and personalized pricing are two distinct strategies for the

more general problem of price discrimination.

In 2015, the White House’s Council of Economic Advisors report (CEA, 2015) noted that it is

unclear which of these two strategies will become more prevalent in the era of Big Data:

“It is difficult to predict how big data will influence the prevalence of versioning. If it

becomes easier to predict individual customers’ willingness to pay and charge different

prices for an identical product, versioning may be replaced by personalized pricing. On

the other hand, versioning has the benefit of reducing concerns about inequity that arise

with personalized pricing, and big data may facilitate versioning strategies based on “mass

customization,” particularly for information goods that can be customized at relatively

little incremental cost.”

Our goal is to demonstrate the role of advertising as an instrument for combining the two strategies

into an idea that might be called “personalized versioning”: consumers choose between two versions

of a product offering, one of which has quality personalization based on consumer characteristics. In

this paper, we report the results and analysis of a field experiment conducted on Pandora during

2016-2017 that shifted audio ad load for over seven million users. During this period, Pandora offered

two products: (i) the Pandora Plus subscription product, and (ii) the ad-supported product which

was offered free of charge. Both of these products were non-interactive radio products, meaning the

listener could not listen to an audio track on demand but could create stations based on a favorite

artist or track, and personalize her stations by thumbing songs up and down. Both products used the

same music catalog and user interface; the main difference between the two was that Pandora Plus was

ad-free, whereas ad-supported Pandora listeners would encounter ads between tracks, when switching

between stations, or when skipping tracks.2 To manage the trade-off between ad and subscription

revenues between these two versions of the product, Pandora has two levers: (a) setting subscription

prices (explicit price) and (b) changing the number of ads served to ad-supported listeners (implicit

price). Particularly, Pandora can change the number of ads served to each listener by personalizing

the frequency of scheduled commercial interruptions (or “ad pods”) as well as the number of scheduled

2Pandora Plus offers some additional features including offline listening, the ability to replay songs, and higher-quality
audio.
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ads per pod.

Increasing the frequency or length of ad pods increases the opportunities to serve an ad, which

we refer to as “ad capacity.” By contrast, the listener’s realized “ad load,” or the actual number of

ads served per hour, also depends on the consumption level and advertisers’ demand for each listener.

Our goal in this paper is to study the gains that arise from personalizing the ad allocation policy at

the individual level. To achieve this goal, we need to understand how consumption and subscription

decisions vary as a function of firm’s ad allocation strategy, which requires us to overcome the following

challenges:

(a) Consumption endogeneity: Even holding fixed the ad-serving strategy, the realized ad load

experienced by different listeners correlates with their consumption behavior. For instance, the

longer listeners stay on the platform, the harder it is for Pandora to fill their full ad capacity.3

In general, listeners’ product choice and consumption level decisions can both impact and be

impacted by the realized ad load. These correlations create an endogeneity problem, which

motivates our randomized experiment.

(b) Partial control over realized ad load: The realized ad load not only depends on the firm’s

ad-scheduling policy but also on listener behavior (discussed above) and on advertiser demand

(some listeners are in higher demand than others). This partial control causes one listener to

receive more ads than another even when both receive the same policy from the firm, and these

heterogeneous differences need to be taken into account in the firm’s optimization problem.

We exploit a set of large-scale field experiments that exogenously shift the ad-pod frequency and

length for over seven million Pandora listeners during 2016-2017. We then use a state-of-the-art

machine learning model to learn the heterogeneous treatment effects of the firm’s interventions on

the realized profits from ads and subscriptions. To achieve this we use a set of models to understand

heterogeneity in realized ad load, consumers’ extensive-margin decisions (switching between outside

option, plus, and ad-supported options), and consumers’ intensive-margin decisions (number of ad-

supported hours consumed). To build and estimate these models, we combine insights from structural

estimation with those from neural networks.4 We use split neural networks (Kim et al., 2017) to

3Given listener-level frequency caps standard in these ad campaigns, the longer listeners stay on the platform, the
more difficult it is to fill their full ad capacity.

4For a few use cases of neural networks for estimating structural models, see Wei and Jiang (2020), and Kaji, Manresa,
and Pouliot (2020).
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impose exclusion restrictions that enable the model to better learn heterogeneous treatment effects.

Our architecture is similar to Shalit, Johansson, and Sontag (2017), who use neural networks to predict

individual-level outcomes across different counterfactuals. Shalit, Johansson, and Sontag (2017) and

Farrell, Liang, and Misra (2021) show neural networks are effective in learning treatment heterogeneity

and achieve comparable performance to direct methods for learning heterogeneous treatment effects

such as causal forests and treatment-effect projection (Hitsch and Misra, 2018; Wager and Athey,

2018).

Subsequently, we solve the firm’s optimization problem and evaluate the impact of the prescribed

policy using an inverse probability-weighted (IPW) estimator; see Horvitz and Thompson (1952) for

its use and origins in statistics and Hitsch and Misra (2018), Simester, Timoshenko, and Zoumpoulis

(2020), Rafieian and Yoganarasimhan (2021), and Yoganarasimhan, Barzegary, and Pani (2022) for

a few recent examples of IPW estimators in marketing. Our results demonstrate that holding fixed

the total number of ads served, the firm can improve subscription profits by 7% without any loss in

total ad revenue. To achieve the same subscription rate with a uniform allocation strategy, the firm

would have to serve 22% more ads, which would have a negative impact on hours listened. We then

study the impact of the proposed policy on consumer welfare and show that, on average, consumer

welfare declines by 2%. To the best of our knowledge, this study is the first to use a field experiment

to evaluate the returns to personalizing product quality. Our results inform policymakers and firms

regarding the implications and returns to personalizing price/quality of product offerings.

2 Literature Review and Contributions

In analyzing the potential that arises from “personalized versioning,” our findings contribute to four

strands of academic research. First, we contribute to the literature that measures the returns to

personalization. Researchers have studied personalization in a wide variety of contexts, examples in-

clude prices (Rossi, McCulloch, and Allenby, 1996; Shiller et al., 2013; Dubé and Misra, 2017), e-mail

content (Ansari and Mela, 2003; Sahni, Wheeler, and Chintagunta, 2018), website design (Hauser

et al., 2009), search rankings (Yoganarasimhan, 2020), promotions (Hitsch and Misra, 2018; Yoga-

narasimhan, Barzegary, and Pani, 2022), mobile advertising (Rafieian and Yoganarasimhan, 2021),

and ad sequencing (Rafieian, 2019). While the research that involves personalizing advertisement

measures returns to changing ad content or targeting ads to improve ad effectiveness or revenue from
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ads, our work focuses on personalizing ad load as an instrument for improving subscription revenue.

Second, we add to the literature that models product quality as an endogenous decision. In a single-

product setting, Spence (1975) shows that a monopolist may offer a higher or lower quality level than

the social optimum. In a multi-product regime, Mussa and Rosen (1978) and Maskin and Riley (1984)

demonstrate that to attract high-type customers, the monopolist has the incentive to degrade the

quality of lower-end products, which creates a negative externality on customers with lower quality

valuation. This finding relates to the “damaged goods” literature, where a firm has the incentive

to “damage” a developed product to build a lower-quality version (Deneckere and Preston McAfee,

1996). One approach for implementing versioning is by bundling a good with a “bad” like waiting

time, advertising, or search cost (Salop, 1977; Chiang and Spatt, 1982). McManus (2007), Clerides

(2002), and Verboven (2002) provide evidence of versioning in specialty coffee, book publishing, and

European auto industries, respectively. Crawford and Shum (2007) measure the extent of quality

degradation in cable-television subscription bundles, and Crawford, Shcherbakov, and Shum (2015)

study the welfare effects of endogenous quality choice. We show that personalizing product quality

helps limit such distortions. In particular, we find that our proposed optimal personalization of ad load

produces subscription benefits equivalent to a uniform increase in ad load (a degradation in quality)

of about 22%. Previous research in marketing has shown that service-quality variation over time

can improve profits by increasing customer retention, for some consumers, a phenomenon potentially

explained by risk aversion in the consumer learning process (Sriram, Chintagunta, and Manchanda,

2015). Our findings show that another kind of variation in the quality of service – across consumers

– can improve profits in a product line by inducing users to upgrade to higher-end products. The

substitution between products offered in a product line, along with switching costs between products,

presents yet another opportunity for firms to leverage changes in quality of service (ad load) as a

screening mechanism.

Third, our results contribute to the literature that considers product-line strategy in offering free

(ad-supported) and paid versions of information goods (Shapiro, Carl, Varian, et al., 1998). On

the theoretical side, this literature extends the versioning framework in Mussa and Rosen (1978)

for information goods that rely on both advertising and subscriptions as sources of revenue. T̊ag

(2009) shows that introducing an ad-free subscription decreases consumer welfare because the firm has

the incentive to increase advertising in the ad-supported version to earn more profits from the paid
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product. Researchers have studied the role of dynamics, consumer heterogeneity, competition, quality

learning, and advertiser heterogeneity on the revenue model adopted by firms (Prasad, Mahajan, and

Bronnenberg, 2003; Godes, Ofek, and Sarvary, 2009; Kumar and Sethi, 2009; Halbheer et al., 2014;

Sato, 2019; Lin, 2020).

On the empirical side, Chiou and Tucker (2013) show introducing paywalls can dramatically reduce

viewership. Lambrecht and Misra (2017) present evidence for counter-cyclical quality improvements to

ESPN’s free service. The authors argue consumers are heterogeneous in their valuation of the content,

which may vary over time. This heterogeneity rationalizes a quality-discrimination mechanism along

the time dimension. In this paper, we establish the trade-offs between ad and subscription revenue

and then show that by personalizing the ad schedule (quality of service), the firm could improve

subscription profits. Although the idea of using ads as a screening mechanism in freemium products

is not new (T̊ag, 2009; Sato, 2019), we are not aware of any paper that has empirically investigated

the personalization of product quality, especially in the advertising context.

Another strand of empirical work in this area has established the negative impact of ads on media

consumption (Becker and Murphy, 1993; Gentzkow, 2007; Goldstein et al., 2014). Wilbur (2008)

uses observational data to document the negative impact of TV advertising on viewership. Huang,

Reiley, and Riabov (2018) examine a previous field experiment in Pandora and document that it takes

a long time to reach the steady state to measure the treatment effect of ad load on listenership. In

this paper, however, our focus is to understand the trade-offs between ad and subscription revenues.

We show that the treatment effect of ad load on subscriptions stabilizes much faster than the effect on

listenership. This means that persistent short-run changes in ad load can induce users to substitute

to the paid version. This phenomenon, coupled with switching costs between plus and ad-supported

products, presents an opportunity for the firm to improve subscription profits through personalized

temporary changes in implicit prices. Hence, we solve an optimization problem that enables the firm

to reallocate the ad load across listeners and jointly maximize the profit from both subscriptions and

ad revenue.

Finally, our findings are also relevant to the price-discrimination literature. Although the amount

of advertising on ad-supported media is a quality of service measure, it can also be viewed as an

implicit price that is charged in units of time rather than money. To the best of our knowledge, the

returns to personalizing this implicit price and its welfare implications have not been studied before.
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Theoretically, third-degree price discrimination could improve social welfare (Varian, 1985) or could

even improve consumer surplus by expanding output (Cowan, 2012). Dubé and Misra (2017) examine

the returns to an extreme form of third-degree price discrimination using a large-scale field experiment

at Ziprecruiter. They show that while firm profits improve by about 10%, consumer surplus falls less

than 1%. One of the main differences between our problem and a classical price-discrimination problem

is the fact that the consumer has the option to pay both with time and money. Therefore, listeners are

screened based on both their willingness to pay and their marginal value of time.5 This means that

the correlation between willingness to pay in time and money units could influence the effectiveness

of our personalization algorithm. For instance, income and the marginal value of time could be

positively correlated (Aguiar, Hurst, and Karabarbounis, 2011; Aguiar, Hurst, and Karabarbounis,

2013). Furthermore, income is likely to be negatively correlated with price sensitivity. On the one

hand, the algorithm has the incentive to move more ads toward higher-income individuals because

they are less price sensitive and more likely to upgrade to the paid subscription. On the other hand,

higher-income individuals may place a larger value on their time and are also more likely to churn

when faced with more ads. Because of these trade-offs, the ad-allocation mechanism and its welfare

implications are a priori ambiguous.

The rest of this paper is organized as follows. We first introduce a conceptual model to discuss

the personalized versioning idea and illustrate trade-offs between ad and subscription revenues. We

then discuss the field experiments conducted at Pandora Media and present reduced-form evidence to

illustrate the impact of changing ad load on listeners’ choices. Subsequently, we use a state-of-the-art

machine learning model to learn the heterogeneity in response to changes in ad load among listeners.

Which are then leveraged to reallocate ads to improve firm profits. Finally, we discuss the prescribed

policy and its welfare implications.

3 Conceptual model

In this section, we present a toy model that illustrates how listeners choose between the outside

options, consuming the ad-supported product, or using the paid subscription. We first consider the

personalized versioning problem for a single listener and illustrate the trade-offs in optimizing ad load.

5The idea of using differences in valuation of time for optimizing menu offerings and its welfare implications has been
discussed in Salop (1977), and Chiang and Spatt (1982). However, we are not aware of any empirical work that has
investigated a personalized policy that leverages this heterogeneity.
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Then we discuss the platform-level optimization problem where ad load for all listeners is optimized

simultaneously.

3.1 Single-user optimization

Consider the following random utility model:6

u(z, p; θ, β, α) = max


ϵ0 outside option,

θ − αz + ϵa ad-supported,

θ − βp+ ϵp paid subscription,

where θ is the utility from consuming the product, z specifies the ad load7, and p is the subscription

price. The ad-supported product is bundled with a “bad”, that is advertising, and users’ disutility

per unit of advertising and payment are measured by α, and β, respectively. The parameters α and

β reflect how time and money are valued by users, that is users with higher/lower values of α and β

are more/less sensitive to ads and prices, respectively. Also, let γ and c be the revenue per ad and the

marginal cost of offering the service, respectively. Since we are focusing on a single listener problem,

we assume that the ad load z can change without impacting the price of impressions γ. Finally, ϵ0, ϵa,

and ϵp are independent random variables that follow a type-I extreme value distribution.

Those who tend to have a higher willingness to pay in money terms are likely more sensitive

when paying in time units. For instance, higher-income individuals tend to have lower price elasticity

but higher marginal value of time (Aguiar, Hurst, and Karabarbounis, 2011; Aguiar, Hurst, and

Karabarbounis, 2013). This confound can generate a negative correlation between price (β) and time

sensitivity (α) in this setup. On the one hand, the monopolist has the incentive to serve fewer ads

to more ad-sensitive users, that is larger α. On the other hand, the same users likely have a higher

willingness to pay, that is smaller β, and are more likely to upgrade to the subscription service if they

face higher prices in time terms.

Note that if the seller were to offer only the ad-supported version, customers with higher ad

6We refer the interested readers to the online appendix for a use case of versioning in screening heterogeneous users
even in the absence of a random utility model.

7In this simplified model, we assume users can consume the service in exchange for listening to z ads. In our empirical
exercise, we account for the fact that the intensive margin of consumption (number of hours) could vary across users and
that possibility factors into the ad revenue. We also account for the fact that advertisers’ demand could vary across user
segments.
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sensitivity would receive fewer ads. However, the correlation structure between ad sensitivity (α) and

price sensitivity (β) can lead to both higher or lower frequency of ads for more ad-sensitivity users.

Let us consider the problem of personalizing the ad load z given a fixed price p for the subscription

service. Let us assume the marginal cost of offering service is c, and revenue from serving each ad is

γ. The problem the service provider faces is to

maximize
z

Pa(θ,α,β,z,p)︷ ︸︸ ︷
eθ−αz

1 + eθ−αz + eθ−βp
(γz − c)︸ ︷︷ ︸

expected profits from ads

+

Ps(θ,α,β,z,p)︷ ︸︸ ︷
eθ−βp

1 + eθ−αz + eθ−βp
(p− c)︸ ︷︷ ︸

expected profits from subscription

. (1)

The optimal ad load is determined by equating the marginal effect of increasing ad load on ads

and subscriptions. As discussed above, on the one hand, a higher ad load leads to more profits

from subscriptions and increases revenue conditional on being an ad-supported member; on the other

hand, it lowers profits from the ad-supported users by increasing churn. Furthermore, the correlation

structure between ad and price elasticity can lead to either higher or lower ad load for users with

higher ad elasticity. To illustrate this trade-off, let us hold the price fixed and optimize the ad load

for a set of given parameters (θ, α, β, p, γ, c) while enforcing different correlation structures between α

and β. Let us assume θ = 4, β = 2−(0.1)α, γ = 0.5, c = 1, and p = 5, and let α vary between 1 and 2.

The optimal ad load (z) as a function of ad sensitivity is strictly decreasing and is plotted in panel (a)

of Figure 1. However, if the correlation structure between price and ad sensitivity is stronger, say,

β = 2 − (0.5)α, the optimal ad load could be a non-monotonic function of ad sensitivity as depicted

in panel (b) of Figure 1. This example illustrates that in our multi-product setting, forming ex-ante

predictions on which customer segments, for example, high/low income, bear the cost of personalizing

the ad load is difficult.
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Figure 1: Optimal ad load as a function of ad sensitivity. Left panel: the price sensitivity β = 2− (0.1)α, the optimal ad
load is a decreasing function of ad sensitivity because gains from subscriptions do not outweigh the losses. Right panel:
the price sensitivity β = 2 − (0.5)α, and α varies between 1 and 2. In this case, optimal ad load is a non-monotonic
function of ad sensitivity, because users with higher ad sensitivity are less price sensitive, and uplift from subscriptions
outweighs the losses.

3.2 Platform-level optimization

In section 3.1 we illustrated the trade-offs in optimizing the quality of service in a single-user setting.

However, our objective is to implement personalized versioning for all listeners on the platform. In

this scenario, the assumption that shifting z does not impact the price of impressions is not realistic.

In other words, we need a supply-side model to measure how ad inventory size changes as a function

of impressions’ price. Our field experiments only shift ad load for a small portion of listeners without

a significant impact on the overall ad inventory level. This means that we do not have exogenous

variation in the price of impressions and cannot model the relationship between the total ad inventory

size and the price of impressions. Therefore, we consider a more nuanced problem, that is can the firm

improve profits by personalizing ad load while holding the total ad inventory fixed? In this scenario,

the platform-level counterpart of problem (1) is:

maximize
zi

∑
i

(γzi − c) · Pa(θi, αi, βi, zi, p) + (p− c) · Ps(θi, αi, βi, zi, p) (2)

∑
i

Pa(θi, αi, βi, zi, p) · zi = Γ,

11

Electronic copy available at: https://ssrn.com/abstract=3874243



where i index users with heterogeneous preferences (θi, αi, βi) with a utility function similar to (1).

Ps(.) and Pa(.) are defined as in (1) and are the probability of being a subscriber, or an ad-supported

listener, respectively. Γ is the total ad inventory size, and the rest of the parameters are defined

similar to (1). The constraint on the total inventory size ties the ad load decisions across all users to

each other. This constraint means that, unlike the single-user case, the marginal effects of changing

ad load on profit from ads and subscriptions are not necessarily equal. In the subsequent sections,

we discuss how to solve this problem while overcoming challenges such as the dependence of realized

ad load on advertisers’ preferences for different demographics, and the impact of intensive margin

adjustments (hours consumed) on the number of ads shown to each user.

To summarize, our discussion in this section highlights that: (a) in our multi-product setting, a

priori it is unclear which customer segments bear the cost of personalization (b) in absence of exogenous

variation in the price of impressions, the proper counterfactual to consider is to personalize quality by

re-allocating ads across listeners while holding the total ad inventory fixed, and (c) other nuances such

as advertisers’ preferences and intensive margin adjustments (hours consumed) play an important role

in the platform-level optimization problem which we address in subsequent sections.

4 Field experiments at Pandora Media

Now that we have built a conceptual model to understand the trade-offs, we delve into the field

experiments used in this study. At the time of this experiment, Pandora offered two tiers of products:

(a) ad-supported and (b) plus. The ad-supported and plus versions are both “radio”8 products and

have the same music catalog and user interface. Whereas the plus subscription is ad-free with a

monthly subscription fee of $4.99, ad-supported listeners are exposed to video/audio ads in exchange

for using the service.

8The radio products offer quasi-audio-on-demand services as they personalize the radio stations to cater to listener
preferences using the feedback (thumbs up/down, and skips) provided by the listeners. In the second quarter of 2017,
Pandora started offering the premium service, which was an ad-free audio-on-demand product.
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PandoraAdvertisers

Ad-supported 
listeners

Plus listeners

𝜁

Figure 2: An illustration of variables that affect the revenues from ads and subscriptions. The overall ad inventory
depends on the price of impressions (γ) and the ad-supported audience. The mix of ad-supported users is determined by
the ad allocation policy that could be personalized (zi). Finally, the price of the subscription plan (p), which is uniform
across users can affect the substitution between the ad-supported and plus services.

Pandora has three main levers that impact listeners’ consumption and its revenue: (a) price of

impressions, (b) price of the subscription service, and (c) ad allocation strategy across users. Fig-

ure 2 illustrates these different levers. Our field experiments create exogenous variation in ad load by

shifting (c) rather than affecting (a) or (b). This is facilitated by exogenously shifting the ad load for

a small random subset of listeners, which means that the overall ad inventory or price of impressions is

not impacted by the experiment. Unlike most digital ads that are sold via online auctions, audio ads

are sold via forward contracts. Advertisers specify demographic targets, e.g., women 25-34 who live

in New York. We do not observe the closing price of the individual advertising contracts and do not

have exogenous variation in the price of impressions and the realized ad inventory. The subscription

prices were also held fixed for all users in the course of the experiment.

The experiments shift the time spent consuming ads, by changing the number of audio ads played

in each ad break (pod) and the frequency at which users become eligible to receive audio ads. Listeners

become eligible for the first ad pod within the first five minutes of a listening session. The subsequent

ad pods are delivered using a set of fixed timers, once an ad pod is delivered, the timer is reset. At

the beginning of every track, the system checks to see if the user is eligible to receive an ad pod, that

is if the timer is set. The length of an ad pod determines the number of ads (one, two, or three ads)

that can be served in an ad break. The experiments start in July of 2016 and shift both frequency

and length of ad pods using six experiment conditions and a control cell, which represents the default

strategy employed by the firm.9 Figure 3 illustrates the ad delivery mechanism and the levers that

9Pandora conducted a previous ad-load experiment in 2014 and the findings from that experiment were reported
in Huang, Reiley, and Riabov (2018). The objective of the previous field experiment was to measure the treatment effect
of ad load on listenership. The goal of our study is to understand the treatment effect of ad load on the overall business
(both subscriptions and ad revenue) and to investigate returns to personalization. To that end, we considered a larger
range of ad load conditions in our experiment and we collected a diverse set of user features in the pre-treatment period
which enable us to study the heterogeneous treatment effects of ad load on revenues from ads and subscriptions across
users.
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(Aimed)

1, 2, or 3 ads 1, 2, or 3 ads 1, 2, or 3 ads* * *

* *

* Changes across experiment conditions.

Figure 3: An illustration of the ad delivery mechanism. The listeners across all experiment conditions become eligible
for the first ad pod after the first five minutes of each listening session. The experiment shifts the red components in the
figure, which are the timers used after the first ad pod, and the number of ads served within each ad pod.

the experiment shifts. Random subsets of users were assigned to each treatment condition and the

treatment persisted for about 18 months. The experiment cells are presented in Table 1 below:

Table 1: The experiment shifts the number of ads delivered in each interruption (pod length) and how often listeners
become eligible for ad pods (pod frequency) in an hour. The size of each treatment cell is specified as the percentage of
all listeners on the platform. Rows and columns correspond to pod frequency and size, respectively. In total, we have
seven cells that include the six conditions shown below and the control condition which consists of 1% of the listeners.

Audio ads per interruption

1 2 3

3 1%
4 2% 0.5%
5 0.5%

Audio ad
interruptions
per hour

6 0.5% 0.3%

The seven cells in our experiment consist of more than seven million listeners. From this point

forward, we refer to each cell in our experiment as FxL, where F and L are intended pod frequency, and

length, respectively. For instance, the 3x1 condition refers to a treatment where the timer in Figure 3

is set to 20 minutes. Therefore, the intended number of ad pods per hour in the 3x1 condition is three

and each pod consists of one ad. The control condition is similar to the 4x2 condition, but the first

ad pod within each listening session is constrained to have at most one ad. The control condition

comprises 1% of the total listeners10 on Pandora. The treatment cells were determined based on the

estimated effect sizes in the previous field experiments and in consultation with stakeholders. Note

that as we move toward higher-capacity treatments such as the 6x3 condition the cell sizes shrink.

10Assigning X% of total listeners to a certain condition means all existing listener ids in addition to those ids that
may be created while the experiment is running will have an X% chance to be assigned to that condition and will be
kept in that condition for the period of the study. We include all users in our analysis, rather than filtering them based
on activity, as it yields the most conservative bound on returns to personalization and is a better representation of the
effect of personalization on the entire platform. We have performed our analyses with the subset of users who had some
activity in the 6 months period leading to the experiment or those who had logged in at least once within the first three
months of the experiment and our results remain qualitatively similar.
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Table 2: Comparing treatment and control groups across some of the pre-treatment features calculated during the first
quarter of 2016. All features except for gender and zip code mean income are normalized such that the mean of control
is equal to 100. Standard errors are reported in the parenthesis. The differences between treatment conditions and the
control cell are statistically indistinguishable at p < 0.05 across all variables.

Experiment condition

Variable 3x1 4x2 6x2 4x3 5x3 6x3 Control

All hours 99.951 100.317 100.023 100.243 100.321 100.621 100
(0.351) (0.249) (0.497) (0.499) (0.499) (0.644) (0.351)

Ad supported hours 99.882 100.215 99.754 100.352 99.948 100.178 100
(0.385) (0.273) (0.542) (0.549) (0.542) (0.704) (0.385)

Thumbs 99.747 99.904 100.218 99.916 99.376 100.047 100
(0.584) (0.413) (0.833) (0.826) (0.821) (1.062) (0.586)

Thumbs up 99.888 100.112 100.317 100.007 99.426 99.959 100
(0.574) (0.406) (0.809) (0.813) (0.809) (1.044) (0.574)

Skipped tracks 99.863 100.104 100.341 100.247 99.547 100.883 100
(0.567) (0.405) (0.823) (0.841) (0.81) (1.07) (0.578)

Station changed 99.093 99.797 101.121 98.62 100.363 100.589 100
(1.04) (0.74) (1.596) (1.387) (1.545) (1.838) (1.053)

Age 99.97 99.964 99.97 99.967 100.05 100.014 100
(0.086) (0.061) (0.122) (0.122) (0.122) (0.158) (0.086)

Gender (Male = 1) 0.45 0.451 0.45 0.451 0.452 0.451 0.452
(0.001) (0.001) (0.002) (0.002) (0.002) (0.002) (0.001)

Zip code mean income 73,427.358 73,429.394 73,411.446 73,380.273 73,462.894 73,522.863 73,438.642
(66.191) (46.87) (93.814) (93.76) (93.454) (120.934) (66.062)

There are two reasons for this: (a) the treatment effects of high-capacity conditions are expected to

be large and detectable even with small sample sizes, and (b) the cost of exposing listeners to high-

capacity conditions such as 6x3 in terms of churn and listening hours is large and to mitigate this cost

fewer users were assigned to high-capacity conditions.

We now illustrate that the randomization algorithm has achieved its goal and treatment assignment

is not systematically correlated with any covariates of interest. We select the set of users across the

six treatment conditions and control groups who were active in the first quarter of 2016 before the

experiment and compare their age, gender, and some of the other key behavioral variables in the

pre-treatment period in Table 2.11 The differences between treatment cells and control across all

variables are statistically indistinguishable from 0 at P < 0.05. Overall, this table shows the treatment

and control groups are not systematically different, and confirms the treatment assignment has been

random.

Note that the ad capacity, that is, the number of opportunities to show an ad per hour, in the

FxL condition ends up being far less than F·L. For instance, a listener in the 6x3 condition ends

up becoming eligible for an ad pod fewer than six times per hour, because the song endings do not

11Due to our agreement with Pandora we cannot reveal the actual estimates for some of these features; therefore, we
have normalized those features such that the sample average of the control group is equal to 100.
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perfectly align with the timers. The experiments shift ad capacity by changing pod frequency and

size, however, the realized number of ads shown to each listener (ad load) also depends on advertisers’

demand. For instance, an increase in the ad capacity, that is the rate at which ads can be shown to

a user, for a user that does not belong to an attractive demographic group for advertisers does not

necessarily translate to an X% increase in the ad load, that is the realized rate of ads for each user.

Table 3 reports the average realized ad load, capacity, and fill rate during the first year of the

experiment. Realized ad capacity is the number of opportunities that the ad delivery system determines

a listener as being eligible to receive an ad, though not all these opportunities get filled as the system

may not be able to fetch ads to serve users. The proportion of ad opportunities that were filled is

referred to as the fill rate. As one would expect, the fill rate tends to fall as we move toward higher-

capacity conditions; for example compare the 3x1 and 6x3 conditions.12 Finally, note the realized ad

load depends on both the realized ad capacity and the fill rate (advertisers’ demand); therefore, an X%

increase in realized ad capacity does not necessarily translate into an X% increase in realized ad load.

This demonstrates the fact that firms need to account for the discrepancy between the intended and

realized change in the implicit price, which leads to an additional layer of complexity relative to the

traditional pricing problems. We refer the interested reader to online Appendix B for more discussion

on the ad delivery mechanism and partial control over realized ad load/capacity.

Table 3: The realized ad load, capacity, and fill rate across experiment cells.

Experiment condition

3x1 4x2 4x3 5x3 6x2 6x3 Control

Realized ad load 2.947 4.659 5.541 6.123 5.602 6.665 4.208
(0.006) (0.007) (0.008) (0.011) (0.008) (0.023) (0.008)

Realized ad capacity 3.512 6.326 8.289 9.35 7.789 10.347 5.56
(0.007) (0.009) (0.008) (0.013) (0.009) (0.025) (0.013)

Fill rate 0.853 0.738 0.676 0.665 0.723 0.657 0.763
(0) (0) (0.001) (0.001) (0.001) (0.001) (0)

12Note that users become eligible for the first ad pod within the first five minutes of a listening session, see Figure 3.
Consequently, for users with a short listening session in the 3x1 condition, the realized ad capacity could be greater than
3.
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5 Average treatment effects

In this section, we examine the impact of ad load on the different revenue sources and consumption

patterns. To that end, we plot the change in the realized ad load, ad revenue, active users, subscription

revenue, ad-supported hours, and all hours, that is, the sum of ad-supported and plus hours, across

the highest and lowest ad-load arms relative to the control condition in Figure 4. The experimentation

system ramps up/down ad load in a four-week period. As illustrated in the figures the ad load starts

increasing in June 2016 and stabilizes by July 2016. The figures measure each outcome of interest as

a percentage change relative to the control arm. For instance, in the 3x1 condition, all hours increase

by about 2% relative to control by the end of the experiment. Higher ad load leads to higher revenues

from ads and subscriptions, but it impacts both extensive and intensive margins of consumption which

could affect profits.

To measure the average treatment effect of ad load on consumption and subscriptions, we normalize

the outcomes to their average in control and scale them to measure differences relative to control:13

Ỹi = 100 · Yi∑
j∈C Yj

NC

, (3)

where C and NC are the set of users in the control condition, and the number of users in control,

respectively. We then consider the following instrumental variable regression:

Ỹi = α+ β · Ai + ϵi, (4)

where i indexes listeners, and Ỹi is a normalized outcome of interest as in (3), i.e., listening hours,

activity dummy, and plus subscription dummy, for each user in a given week. Ai is the average number

of ads per hour delivered to listener i. We use the experiment condition dummies to instrument for

Ai and estimate the treatment effect of ad load on activity, listening hours, and plus subscriptions

for all weeks in the 2016-2017 period.14 The estimates for β during each week along with the 95%

confidence intervals are plotted in Figure 5. Note that the outcome Ỹi is scaled by the average in

13Due to our agreement we cannot reveal the actual numbers for consumption or other metrics used here. Consequently,
we normalize the outcomes relative to the average in control which means that we report the treatment effects as
percentage changes relative to control rather than absolute differences, e.g., in dollars, counts, or hours.

14The estimates from reduced-form regressions, i.e., outcomes regressed directly on treatment dummies, are reported
in online appendix C.
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Figure 4: The effect of ad load on consumption, ad, and subscription revenues. The highest ad load condition (6x3)
delivers about 50% more ads compared to the control. Even though the effect of ad load on listenership and activity grows
over the course of the experiment it remains fairly small compared to the change in the level of ad load. Consequently,
the increase in ad revenue remains fairly stable in the high ad load condition even though the listenership drops during
the experiment. Plus subscription revenue grows by about 15% as users substitute to the ad-free version as the number
of ads increases. Note that the impact of the treatment on ad and subscription revenues stabilizes fairly quickly post-
treatment.
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Figure 5: The instrumental variable regression estimates for the marginal effect of an additional ad per hour on con-
sumption and plus subscriptions. While the treatment effect on consumption takes more than a year to stabilize, the
effect of ad load on subscriptions stabilizes within six months of the experiment (December of 2016).

control, hence, β is interpreted as percentage changes in an outcome relative to control. As expected,

we do not detect any treatment effect in the period before the experiments kicked off. Our results

from Figures 4-5 establish two points:

• Magnitude of the effect: A one percent increase in ad load led to a 1.8% and 1% decrease in ad-

supported and all hours after 18 months, respectively. This effect is about 0.7% for weekly active

users. Finally, a one percent increase in ad load led to a five percent increase in plus subscribers

over the same time period. These results show that the treatment effect of ad load on subscriptions

is much larger than its effect on consumption and activity.

• Time to reach steady state: The treatment effect of ad load on listenership takes a long time

to stabilize. For instance, the effect on weekly active users keeps growing even after a year into

the experiment, while its impact on ad-supported hours and all hours takes more than a year to

stabilize, see Figure 5. Nevertheless, the lift on ad revenues in the higher ad load condition (see

Figure 4) remains stable in the course of the experiment. Lastly, the treatment effect of ad load

on subscriptions stabilizes relatively quickly, i.e., by December of 2016 (within six months of the

experiment).

Our findings so far show that the impact of ad load (quality of service) on plus subscription is

large and materializes within six months of the experiments. Furthermore, the impact of ad load on

ad revenue remains fairly stable throughout the experiment, since the impact on listenership in the

same timeframe is significantly smaller than the increase in ad load.
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6 Estimation models

Our goal is to study the impact of personalizing the quality of service on firm profits and consumer

welfare. To optimize profits and evaluate welfare implications, we first need a demand model that

reflects listeners’ choice between being inactive (outside option), using the ad-supported version, or

paying for the subscription service. Also, note the profit structure depends on listeners’ subscription

state. Although the profits generated by a paid subscriber are not a function of consumption intensity,

the profits from an ad-supported user are a direct function of hours consumed and the realized ad

load. In the following subsections, we first estimate a discrete-choice demand model where consumers

choose between the outside option, ad-supported, and paid subscription. Then, conditional on being

an ad-supported user, the number of hours consumed in a given period is estimated. Finally, as

illustrated in section 4, the realized ad load depends on both the treatment condition and demand

from advertisers. Hence, we construct a third model to account for the partial control problem

discussed in section 4.15 Combining these models enables us to optimize profits and study the welfare

implications of personalizing ad load.

6.1 Demand model

We estimate a nested logit model to reflect users’ decision between two nests of options, namely, a

degenerate nest that includes the outside option and another nest where the user decides between the

ad-supported and paid versions. Consider the following discrete-choice demand model:

u(τ ;x) = max



ϵ0 outside option,

θ(x) +
∑
j

ηj(x)1{τ=ej}︸ ︷︷ ︸
v1(x,τ )

+ ϵa ad-supported,

γ(x)︸︷︷︸
v2(x)

+ ϵp paid version,

(5)

where x is a user-specific vector that includes exogenous and pre-experimental endogenous features

at the listener level. The utility of consuming the outside option is normalized to zero, and the

net utility of consuming the ad-supported and paid product in the control condition is captured by

15To allay concerns about selection affecting the performance in the conditional models, in the online appendix we
estimate an alternative model that directly predicts the number of ads and show that our results remain the same.
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θ(x)+
∑

j ηj(x)1{τ=ej}, and γ(x), respectively. This net utility consists of consumption utility and the

disutility caused by ads and payment. One can impose further restrictions to disentangle these parts;

however, our goal is to impose as few assumptions as possible.16 The experiment only affects the ad

load across different conditions; therefore, the treatment effect only enters the utility of ad-supported

product through ηj(x). The treatment condition is represented by a binary vector τ , and ej is a unit

vector whose jth element is equal to 1. The treatment effect of condition j is denoted by ηj(x), which

measures the change in utility of consumption for each treatment arm relative to the control condition.

Finally, (ϵ0, ϵa, ϵp) follows a generalized extreme value (GEV) distribution that allows us to estimate

a nested-logit model, where the probability of each option is as follows:

P(Y = outside, ad-supported, paid|τ ;x) =



1
1+exp(Λ.IV ) ,

exp(Λ·IV )
1+exp(Λ·IV )

exp
(
v1(x,τ)

Λ

)
exp

(
v1(x,τ)

Λ

)
+exp

(
v2(x)

Λ

) ,
exp(Λ.IV )

1+exp(Λ.IV )

exp
(
v2(x)

Λ

)
exp

(
v1(x,τ)

Λ

)
+exp

(
v2(x)

Λ

) ,
where v1(x, τ ), and v2(x) are defined as in equation (5). Also, IV = log

Ä
exp
Ä
v1(x,τ )

Λ

ä
+ exp

Ä
v2(x)
Λ

ää
is the inclusive value of the nest, and 1− Λ ∈ [0, 1] reflects the correlation structure inside the nest.

Functions γ(x), θ(x), and ηj(x) are parameterized as neural networks, which allows them to be

represented as flexible functional forms of pre-treatment features. Note that a neural network with

a terminal softmax activation layer is effectively a flexible logit, and by restricting the values fed to

the terminal layer, we can create flexible structural models. Because we are estimating a nested logit

model instead of a simple logit one, we need to change the terminal layer of the neural network to

reflect the probability structure imposed by the nested logit with a tunable parameter Λ. We impose

a few restrictions on the structure of the neural network. First, treatment dummies only enter the

last layer of the neural network and are multiplied by coefficients ηi(x) that are also parameterized

as neural networks. This technique forces17 the neural network to use the information provided by

16Note that as one increases ad load listeners substitute to the outside option or the paid version. The variation in
the ratio of substitution to the paid version relative to the outside option across different user segments helps us identify
γ(x). This means that even in the absence of price variation by imposing further structure on the utility function one
can disentangle the utility from consumption and the disutility from payment. However, this is beyond the scope of this
paper.

17Note the treatment effect tends to be very small, and if the treatment dummies are inserted in the input layer along
with other features, they may get regularized out by the network. The fact that we use a number of shared layers to
construct ηj(x) and then spread into separate heads forces the model to use the information provided by treatment
dummies and improves the statistical power of our algorithm; see Shalit, Johansson, and Sontag (2017) for more details.
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treatment dummies and has been used in Shalit, Johansson, and Sontag (2017) and Farrell, Liang,

and Misra (2021). Second, because features that may explain heterogeneity in treatment ηi(x) may

be very different from those that explain the cross-sectional heterogeneity (θ(x) and γ(x)), we use

split neural networks (Kim et al., 2017) to separately fit values to each part. In particular, we let

the network that learns ηj(x), that is the “treatment effect,” be disjoint from the network that learns

θ(x) and γ(x), that is the utility from consuming the ad-supported product. Split neural networks

have been mainly used for parallel computing and to boost the training process. In this application,

however, the issue is that the heterogeneity in the treatment effect may be explained by different types

of features that would explain the cross-sectional heterogeneity, and these exclusion restrictions help

the network to learn treatment heterogeneity more efficiently. Note that even though we impose a

split structure, the networks are trained jointly. A schematic view of the architecture is presented in

Figure 6. Note the purple part that learns θ(x), and γ(x) is separate from the green part, which is

responsible for explaining the variation caused by the treatment (ηi(x)). Furthermore, change in the

ad load affects only the utility of consuming the ad-supported version.

To train this model, we minimize a weighted negative log-likelihood function similar to Shalit,

Johansson, and Sontag (2017), which jointly optimizes for the treatment effect τ (.) and parameters

that explain cross-sectional variation θ(.) and γ(.):

minimize
θ,γ,η,Λ

1

N

∑
i

wiL (h(θ(xi), γ(xi), η(xi)), yi; Λ) , (6)

where L(., .) is the negative log-likelihood for the nested-logit model, θ(.), γ(.), and η(.) are functions

parameterized by the neural networks. Finally, N is the total number of users, and wi is an inverse

propensity score for each treatment condition that is equal to N∑N
n=1 1{τn=ei}

. Note that inverse prob-

ability weighting is often used to address selection issues; however, our goal is to balance different

treatment conditions. For instance, if, by design, the size of one treatment cell is significantly larger

than another cell, the optimization problem will have more incentive to fit the data to improve its

prediction power for the larger cell. For instance, if a treatment group is twice as large as another

treatment group, the same type of error is penalized twice for the larger treatment cell relative to

the smaller one. However, our goal is to better learn the differences across treatment cells, and this

weighting balances the prediction power across different counterfactual scenarios (Shalit, Johansson,

and Sontag, 2017).
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Figure 6: A schematic view of the split neural network architecture used for demand estimation. The purple and green
parts of the network are separate. Also, note that treatment dummies enter right before the last layer. This restriction
imposes structure on the network and forces it to learn the relationship between the output and ad load even though the
amount of variation explained by the treatment dummies could be very small. Furthermore, the split structure of the
network allows it to separately learn features that could explain the treatment effect ηi(x) from other constructs that
explain cross-sectional differences, that is θ(x) and γ(x).

6.2 Intensive margin

A change in ad load not only affects the extensive margin of consumption and the choice across different

products within the product line but also affects the intensive margin of consumption, that is hours

spent listening to music conditional on being an ad-supported listener. Consider the following model:

log(Y) = α(x) +
∑
j

νj(x)1{τ=ej} + ϵ, (7)

where x is a set of exogenous and user-generated features collected during the pre-treatment period.

Y is the number of hours consumed conditional on being an active ad-supported user, α(x) represents

the conditional expectation of log(Y) in the control condition, and the νi(x) capture the treatment

effect of assigning a user with features x to condition j on ad-supported hours relative to the control

condition. Finally, ϵ is a random variable with a Normal distribution.

To estimate this model, we again resort to a split neural network model, where one split learns
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α(x) and the other one fits νi(x). Note α(x) and νi(x) are estimated jointly; however, the networks

that estimate them do not share weights and are allowed to have different parameters similar to the

architecture presented in Figure 6. This model is learned by optimizing a weighted ℓ2 loss counterpart

of (6).

6.3 Partial control over realized treatment

As demonstrated in Table 3, the realized ad load is not necessarily equal to the intended ad load. In

other words, the experiments only shift the ad capacity, which is the number of opportunities to show

ads to each listener; however, the realized ad load depends on the advertisers’ interest in different

demographics. Therefore, the treatment depends on both the firm’s actions and the advertisers’

demand, and it needs to be accounted for in our optimization problem for reallocating ads. To that

end, we estimate a model similar to that in section 6.2, with Y being the realized ad load conditional

on being an ad-supported listener. The rest of the parameters and the estimation procedure are similar

to section 6.2.

7 Training and out-of-sample prediction power

In this section, we discuss how the models are trained and demonstrate that they have prediction power

in the hold-out sample. We use the data from December 2016 for training our models. This choice

is made for two reasons: (a) as demonstrated in Figures 4-5, the impact of the treatment on revenue

sources (ads delivered and subscription) stabilizes by December of 2016, and (b) from a practical

standpoint our goal is to select the earliest time where the effects are large enough to effectively sort

users based on heterogeneous treatment effects of the intervention on ad and subscription revenues.

In online appendix D, we show that the estimated heterogeneous treatment effects from December

2016 are persistent and have explanation power a year later (December of 2017). In other words,

while the magnitude of the effects could fluctuate, the rank ordering of users in terms of lift in ads

or subscription revenues remains consistent. The persistence in the rank ordering of heterogeneous

treatment effects across users is important for practitioners because it means that a short-run six

months experiment, which is much less costly to run than a long-run 18 months experiment, would

suffice for learning reliable and persistent treatment effects to optimize revenues.

To train the models, we randomly divided the data set into halves. We train and validate the
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models on one-half of the data. The other half (the hold-out sample) is used for demonstrating the

prediction power of the model in this section and simulating counterfactuals in the next section, where

we solve the firm’s optimization problem. In the remainder of this section, we first introduce some

notation to describe the conditional average treatment effects (CATE) of ad load on the number of

ads delivered and subscription status using the models introduced in Section 6. Next, we examine the

heterogeneity in CATEs for ads and subscription revenues across treatment conditions. Finally, we

show that the predicted CATEs do have explanation power in the hold-out sample.

Let x be the set of pre-treatment outcomes and user features used for describing each individual.18

Also as before, let τ represent each of the seven experiment conditions. Note that the treatment

assignment is persistent, and each listener can participate in only one of the treatment cells. The

models introduced in section 6 enable us to predict user outcomes across “counterfactual” experiment

conditions. We built three sets of models, and we use the following notation to refer to them:

• Extensive margin: Let P0(x, τ ), Pa(x, τ ), and Ps(x, τ ) denote the conditional probability of

choosing the outside option, ad-supported service, and the paid subscription as a function of

pre-treatment user features x and treatment condition τ . These conditional probabilities are

the output from the estimated models in section 6.1.

• Intensive margin: Let C(x, τ ) be the expectation of the number of ad-supported hours con-

sumed in a given period conditional on being an ad-supported user. C(x, τ ) would be the output

of the model discussed in section 6.2.

• Realized treatment: Let A(x, τ ) be the conditional expectation of the realized ad load (num-

ber of ads per hour). A(x, τ ) is the output of the machine learning model discussed in section 6.3.

To demonstrate the effectiveness of our approach, we show that our models are able to detect

heterogeneous treatment effects in terms of change in revenue from subscriptions and ads. First, we

calculate the conditional average treatment effect on the lift in the subscription propensity for each

condition relative to the control condition as:

ζs(xi, ej) = Ps(xi, ej)− Ps(xi, e0), (8)

18We use over 120 different features including user consumption features, subscription status, session activity, and
interaction with ads in the pre-treatment period. We also augment our data with census data to include socioeconomic
and demographic information across different geographic areas.
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where Ps(xi, ej), and Ps(xi, e0) are the predicted probability of user i subscribing to the paid service

when exposed to treatment condition j, and control, respectively. ζs(xi, ej) is the expected lift in

the propensity of subscription when a user with features xi is moved from control to condition j.

Users’ response to changes in ad load is likely heterogeneous and ζs(xi, ej) captures the heterogeneous

response in terms of subscribing to the paid service. For example, moving different types of users

from say control to the 6x3 condition could have very different effects on the expected subscription

revenues generated by them; Users with more disposable income or those who derive higher disutility

from ads may be more likely to move to the subscription service. Figure 7a displays the histogram for

predicted CATEs of treatment condition on subscription status relative to control, ζs(xi, ej), for users

in the hold-out sample.

Similarly, for examining the heterogeneous treatment effects on ad revenues, we calculate the

conditional average treatment effect on the number of ads delivered for each condition relative to the

control condition as:

ζa(xi, ej) = Pa(xi, ej) · C(xi, ej) ·A(xi, ej)− Pa(xi, e0) · C(xi, e0) ·A(xi, e0), (9)

where Pa(xi, ej), C(xi, ej), and A(xi, ej) are the predicted probability of user i being an active ad-

supported user when exposed to treatment condition j, the number of hours consumed conditional on

being an active ad-supported user, and the number of ads received per hour (ad load), respectively.

Pa(xi, e0), C(xi, e0), and A(xi, e0) are defined similarly for the control condition, and e0 is a vector of

all zeros. ζa(xi, ej) is the expected lift in the number of ads shown to a user with features xj when

moved from control to condition j. Note that moving different types of users from say control to the

6x3 condition could have very different effects on the expected ad revenue generated from them. In

particular, the lift in ad revenues depends on: (i) how a listener might react in terms of switching out

of the ad-supported service, Pa(xi, ej), (ii) the hours spent listening to music conditional on being an

ad-supported user, C(xi, ej), and (iii) listener’s attractiveness for advertisers, A(xi, ej).
19 Figure 7b

presents the histogram of predicated CATEs on number of ads delivered, ζa(xi, ej), in the hold-out

sample.

19The conditional models C(xi, ej) and A(xi, ej) are trained on the selected sub-sample of ad-supported users who
had non-zero consumption. While we evaluate the models on the hold-out sample and use inverse propensity weighted
estimates which are model-free, one might worry that this selection may degrade the performance of the prediction
model. In online appendix E, we show that using a model that directly learns the number of ads delivered provides
similar performance.
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Figure 7: The histogram of predicted change in subscription propensity and number of ads delivered for each treatment
arm relative to control in the hold-out sample. The median treatment effect across each condition is represented by the
dashed line, and the solid red line represents zero. Due to our data protection agreement with Pandora, we normalize
the lifts by dividing them by the sample average in the control group.

We now demonstrate that the conditional average treatment effects on subscription propensities

and the number of ads delivered, ζs(xi, ej) and ζa(xi, ej), do indeed have prediction power in the

hold-out sample. We break users in the hold-out sample into five quintiles based on the predicted
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treatment effects of the 6x3 relative to the control condition for both subscriptions and ads20. Then,

we use the hold-out sample to estimate the realized lift in the subscription propensity and number of

ads delivered in the 6x3 condition relative to control across these quintiles. The results are presented

in Figure 8 and show the models are indeed able to capture the heterogeneity in the lift in subscription

and ad revenues across users. Note the models used for making these predictions, that is sorting users

into five groups, were not trained on the hold-out sample, and this prediction power on the hold-out

sample demonstrates that the model was able to learn meaningful patterns that generalize beyond the

training set.
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Figure 8: Realized lift in subscription propensity and ads delivered in the 6x3 condition relative to control as a function
of predicted treatment effect quintile in the hold-out sample.

Our results in Figures 8 illustrate two interesting points:

• Lift in subscription propensity: The lift in subscription propensity for the bottom quintile in

Figure 8a is centered around zero, which means the model has identified customer segments who

are very unlikely to subscribe in response to an increase in ad load, i.e., when moved from control

to the highest ad load condition (6x3).

• Inelastic demand for the ad-supported service: The lift in the number of ads delivered in

Figure 8b is always positive and statistically different from zero including for those users who are

in the bottom quintile. This reflects that demand for the ad-supported service is fairly inelastic,

since the decline in consumed hours or active users, see Figure 4, due to higher ad load does not

20Recall that the 6x3 condition is the most extreme treatment condition in our experiment with the largest treatment
effect.
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lead to lower ad revenues even for the bottom quintile in Figure 8b. In online appendix D, we

show that these patterns persist even in December 2017, 18 months after the experiment started.

These patterns imply that moving all users from control to the highest ad load condition (6x3)

would improve the expected revenues from both subscriptions and ads. However, this change would

mean that the firm should also sell more ads on the advertiser side to increase the ad inventory size.

This decision would affect the price of ad impressions, see the levers in Figure 2, and also impacts ad

revenues. Unfortunately, we do not observe the closing price of the individual advertising contracts

nor do we have exogenous variation in the price of impressions and the realized ad inventory. Note

that our ad load experiments do not shift the overall ad inventory size as they only affect a small

portion of the overall user base. Consequently, we embark on answering a more nuanced problem,

which is whether holding the ad inventory fixed can the firm improve profits by reallocating ads across

individuals.

8 Optimizing profits

To optimize profits, one needs to understand the heterogeneity both in terms of change in subscrip-

tion rates and the number of ads delivered. To construct estimates for the number of ads delivered

and subscription rates, we use the sets of models presented in section 6, namely, a discrete-choice

model that reflects the user’s decision between the outside option, ad-supported consumption, and

the subscription service, a model that determines the number of hours consumed conditional on using

the ad-supported service, and a model that estimates the realized ad load across different treatment

conditions. Throughout this section, we rely on the notation developed in section 7.

Recall from Figure 2 that the profits depend on three sets of decisions: (a) allocation of ads across

listeners, (b) price of the paid subscription, and (c) price of ad impressions. The exogenous variation

in our experiment comes from (a). The price of subscription service (b) was held fixed throughout the

experiment. The firm can change the price of ad impressions (c) and that would affect its ad inventory

size. As discussed above, even with a fixed ad inventory and without exogenous variation in (b) and

(c), the firm faces an implicit pricing problem that involves allocating ads across individuals while

satisfying constraints imposed by advertisers. We show that the firm can increase subscription profits

by reallocating ads across individuals while satisfying the constraints imposed by advertisers. Given

the ad inventory (Γ), the firm’s optimization problem translates to:
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maximize
τ

∑
i

msPs(xi, τ i) (10)

∑
i

Pa(xi, τ i)C(xi, τ i)A(xi, τ i) = Γ,

where i indexes users and ms is the margin from subscriptions. The objective function is the expected

profits from subscriptions across all users. Γ is the total number of ads available in the inventory, and

the constraint ensures that the ads in the inventory are served. Note that the constraint accounts

for the fact that moving different types of users (xi) across treatment conditions (τi) has heteroge-

neous impact on ads served both through heterogeneous changes in activity/consumption, captured

by Pa(xi, τ i) and C(xi, τ i), and also heterogeneity in the realized ad load due to differences in ad-

vertisers’ demand for different types, which is captured by A(xi, τ i). The optimization problem (10)

assigns each user to one of the seven cells to maximize profits while serving Γ ads. In other words,

τ i is a binary vector that takes one of the seven values {e0, e1, . . . , e6}, where e0 is the vector of all

zeros, and ei is a unit vector whose ith element is non-zero. This discrete optimization problem aims

at assigning each user to one of the seven conditions, that is 7N different combinations in total.

The functions above are constructed using the estimates of models developed in section 6. For

instance, note Ps(x, τ ) =
exp(Λ.IV )

1+exp(Λ.IV )

exp
(
v2(x)

Λ

)
exp

(
v1(x,τ)

Λ

)
+exp

(
v2(x)

Λ

) , where v1(x, τ ), v2(x), and Λ are estimated

parameters from the model described in section 6.1. The rest of the functions are also outputs from

estimated models presented in section 6. Note (10) is a discrete non-convex optimization problem

with a non-convex constraint, and even finding a local optimum is NP-Hard for general continuous

non-convex problems in the worst case (Murty and Kabadi, 1985). In its current form, the problem is

intractable. To approach it, we use the Lagrangian relaxation of (10), which yields

maximize
τ

∑
i

msPs(xi, τ i) + λ(Γ)

(∑
i

Pa(xi, τ i)C(xi, τ i)A(xi, τ i)

)
, (11)

where λ(Γ) is the marginal impact of ads on subscriptions. Different values of λ(Γ) lead to different

ad inventory sizes. Note that given λ, we can swap the maximization with the summation in 11 and
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the problem can now be decoupled across users:

∑
i

maximize
τ i

ms · Ps(xi, τ i) + λ · (Pa(xi, τ i)C(xi, τ i)A(xi, τ i))︸ ︷︷ ︸
f(xi,λ,τ i)

, (12)

which is simply equivalent to evaluating f(xi, λ, τ i) for each user i across different treatment conditions

and choosing the maximum.

Given λ, the complexity of problem (12) is O(N) compared to O(7N ) for (10). Note the shadow

price λ(Γ) corresponding to each value of Γ is not a priori known and one needs to resolve problem (10)

for different shadow-price values λ to find the corresponding ad inventory level Γ. However, this task

can be done easily with binary search techniques. Given a fixed λ, an ad load assignment policy Pλ(xi)

is defined as:

Pλ(xi) = argmax
τ i

f(xi, λ, τ i). (13)

To evaluate the performance of the personalization policy Pλ(xi), we use inverse propensity

weighted estimates similar to Hitsch and Misra (2018), Simester, Timoshenko, and Zoumpoulis (2020),

and Yoganarasimhan, Barzegary, and Pani (2022). This means that our counterfactual estimates of the

personalized policy’s performance are based on realized outcomes and randomization in the hold-out

sample and are model-free. Thus, while our models may be imperfect, our estimates of lift in profits,

ad load, subscriptions, or other performance metrics related to the policy are measured using inverse

propensity weighted estimates which are not extrapolations of a structural model. We construct an

inverse probability weighted estimator for different parameters interest y as follows:

Π̂y(Pλ) =
1

N

N∑
i=1

6∑
j=0

wj1{τ i=ej}1{Pλ(xi)=ej}yi, (14)

where wj =
N∑N

i=1 1{τ i=ej}
is the inverse propensity for each treatment condition and is a fixed number

for each of the seven treatment conditions because we have a randomized control trial. The randomized

treatment assignment for user i is denoted by τ i, and Pλ(.) is a policy function that assigns each user

i to one of the seven treatment conditions. Our goal is to evaluate the performance of a policy Pλ(.)

devised by solving (13). The product of the two indicator functions in (14) filters out observations for

which the assignment rule Pλ and the randomized treatment τ i coincide. Finally, yi is an outcome of
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interest for user i, for example, subscription status or the number of ads received at a given point in

time. Equation (14) then provides a consistent estimator of expectation of yi under a given assignment

rule Pλ.

To illustrate gains to personalizing ad load, we vary λ and solve (13) for users in the hold-out

sample to get a policy Pλ. Then, we evaluate the average number of ads realized under the assignment

rule Pλ and the expected profits from the subscription service during December of 2016 under this

policy using (14). Essentially, for each λ, we get a point on the 2D plane whose x coordinate is the

average number of ads realized, and its y coordinate is the expected profits from subscriptions across

individuals. We vary the shadow price λ to generate points across the Pareto frontier. The results are

plotted in Figure 9. Each purple dot in Figure 9 reflects the performance of the policy Pλ for different

values of λ, which translates to different levels of ads served on the platform. Each pink dot represents

the performance of a personalized ad-allocation strategy. Our agreement with Pandora prevents us

from sharing the actual numbers in dollar terms, and the performance has been reported relative to

the control condition. First, note that the uniform ad allocation policies, e.g., 3x1, control, 4x2, and

so forth, are co-locating around the straight dashed line. The personalized counterpart of the control

condition, that is the pink dot inside the star with the same x coordinate as the control, leads to 7

percent more subscribers than the control condition. Furthermore, the distance between the straight

line, which corresponds to the performance of a uniform policy, and the star is about 22%. Therefore,

if the firm’s goal was to achieve the same number of subscribers using a uniform ad-load strategy, it

would have to increase its ad load by more than 20%.
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Figure 9: Change in subscription profits as a function of the number of ads served. The uniform allocation policies
co-locate around the straight dashed line. Each pink dot represents the performance of a personalized assignment rule.
Holding fixed the number of ads served, the personalized assignment strategy dominates uniform ad-load strategies that
the firm experimented with. The star is the personalized counterpart of the control condition and leads to 7 percent
more subscribers than the control condition.

So far, we have examined the gains from personalization after a six-month period, that is during

December of 2016. To find the minimum time required for such gains to materialize, we compare the

control condition with its personalized counterpart throughout time. Note (14) provides a consistent

estimator of any outcome of interest in any given week. Figure 10 compares the 6x3 and 3x1 condi-

tions, and the personalized counterpart of the control condition relative to the control; that is each

outcome of interest is measured relative to the control. The results demonstrate that the control and

its counterpart lead to similar realized ad load. However, the counterpart increases the Plus subscrip-

tion rate by 7%. Whereas the impact on subscriptions manifests within three to four months after

personalizing the ad load, the effect on all and ad-supported hours in the same time period seems to be

negligible. This finding indicates a dynamic optimization model may be beneficial here. However, due

to the persistent nature of treatment in our experiments, we cannot evaluate the benefits of dynamic

implicit pricing using the current randomized control trial.
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Figure 10: The effect of personalization throughout time. The top-left panel shows the personalized counterpart of the
control condition is delivering approximately the same amount of ads as control, whereas the 6x3 condition is delivering
60% more ads relative to control. The top-right figure shows the personalized counterpart increases the number of
subscribers by 7%, and this gain is expected to materialize within three months of implementing this policy. Note the
impact on ad-supported hours or all hours within three months of implementation seems to be negligible.

We now illustrate the underlying mechanism that enables the algorithm to improve the firm’s prof-

its. Pandora offers two types of products: the subscription service (high-tier) and the ad-supported (low-

tier) product. When the menu of products cannot be personalized, the problem is similar to the one

discussed in Mussa and Rosen (1978) and Deneckere and Preston McAfee (1996). In the absence of

personalization, the seller has the incentive to lower the quality of the low-tier (ad-supported) product
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for everybody to make adopting the high-tier product worthwhile for those who have a higher willing-

ness to pay. However, personalizing ad load limits the distortion to high willingness to pay customers,

and the “implicit price” for other segments falls (quality improves) at the expense of this segment.

In the next section, we investigate how our policy allocates ads across listeners of different age and

income groups. We also investigate the welfare effects of the personalized policy.

9 Distribution of welfare

As we mentioned before, the welfare implications of personalizing ad load are a priori ambiguous due

to possible correlation between willingness to pay in time and money units. For instance, whether

higher-income users would be assigned to higher or lower-ad-load conditions would be unclear, whereas,

in a single-product pricing problem, one would expect low-income users to face lower prices because

they are more price sensitive. To examine the proposed policy, we compare the allocation of ads in the

control condition with its personalized counterpart, that is the personalized assignment rule that serves

the same number of ads as the control condition (marked by the star in Figure 9). Note the policy

assigns each user to one of the seven conditions, and the only experiment arm that has a lower ad load

than control is the 3x1 condition. The propensity of being assigned to the lower-ad-load condition,

that is higher quality of service for the ad-supported product, tends to be monotonically increasing

as a function of zip code income and decreasing as a function of age; see Figure 11. Both younger

individuals and those residing in lower-income zip codes tend to be more price sensitive, and if the

algorithm were to charge prices in dollar amounts, it would likely charge them a lower price. In our case,

the company is following a uniform pricing scheme for the paid service; however, our personalization

algorithm induces wealthier individuals to upgrade to the paid service by personalizing the ad load of

the ad-supported product and provides a better quality of service to other demographic groups.

We now illustrate the impact of our ad-allocation algorithm on consumer welfare by comparing the

control condition with its personalized counterpart, that is the personalized algorithm that delivers

the same overall number of ads. The overall utility for an individual with features x who is assigned

to treatment condition τ is equal to:

U(x, τ ) = log

Å
1 +

[
exp(

v1
λ
) + exp(

v2
λ
)
]λã

, (15)
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Figure 11: Probability of assignment to lower ad load than control as a function of price sensitivity. Note the total
number of ads for this assignment was set to be equal to the control condition, and those assigned to the 3x1 condition
are effectively receiving a higher quality of service on the ad-supported product. (a) Users from lower-income zip codes
tend to be more likely to receive an ad-load “discount.” (b) Older users tend to be less likely to receive a discount. The
algorithm seems to be adjusting the quality of service for users who have a higher willingness to pay to make converting
incentive compatible for them.
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Figure 12: The impact of ad-load personalization on consumer welfare. The figure compares the percentage change in
consumer utility across the control condition and its personalized counterpart. On average, personalizing ad load lowers
consumer utility by 2%.

where v1 and v2 are the utilities associated with the ad-supported, and paid-subscription products,

respectively. Recall that v1 and v2 are functions of x and τ and were defined in (5). To study the

impact of our personalization model on consumer surplus, we can compare the percentage change in

the utility of users in the control condition relative to its personalized counterpart. In particular, we

examine the following construct:

∆UP = 100× U(x,P(x))− U(x, control)

U(x, control)
,

where P(x) denotes the policy that is the personalized counterpart of the control condition. The

distribution of ∆UP is plotted in Figure 12. On average, consumer utility drops by -2% and utility

improves for 41.2% of users.

We now illustrate the impact of this policy on users from different age and income groups in

Figure 13. The results demonstrate the loss in consumer utility is more pronounced for older users

and those from higher-income zip codes. This observation is consistent with our prior findings in

Figure 11 that showed younger users and those from lower-income zip codes tend to be more likely to
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be assigned to lower-ad-load conditions.

10 Discussion and conclusions

The advent of big data and large-scale data-processing technologies has allowed firms to optimize

services, ads, and prices at the individual level. Although a large body of literature has focused on the

implications of personalized pricing, the impact of personalizing the product itself is overlooked. The

public perceives price discrimination to be unfair and companies have largely avoided such practices

fearing a consumer backlash. Given these limitations, whether big data is going to be employed for

personalizing pricing or versioning instead is still unclear. To the best of our knowledge, this study is

the first empirical paper to investigate returns to personalized product versioning.

Although advertising can be used as an instrument to implement versioning for many content

providers, including YouTube, Spotify, or Pandora, the idea of personalized versioning applies more

broadly to other freemium business models. We provide two such examples here. First, in the online

newspaper industry, the number of free pages or the amount of free content available to users can

be used for versioning. Second, among cloud storage services, consider Dropbox’s free plan, which

offers 2GBs of free storage to users. However, users may be eligible for a wide variety of free storage

promotions, including student discounts or offers available to users who purchase HP or Samsung

devices (Martinez, 2014). We are not sure how targeted these strategies are, but the amount of free

space offered to users on Dropbox is surely not uniform. We are not aware if companies have used

these features to experiment with targeted versioning strategies, but as big data and experiments gain

popularity, personalized versioning strategies may become an alternative to personalized pricing.

Our field experiments at Pandora present a unique opportunity to study the impact of personalized

versioning in a product line. The availability of large-scale pre-treatment features allows us to segment

users and prescribe personalized ad schedules. Our study highlights the importance of conducting field

experiments and data-collection efforts for designing reliable prescriptive strategies. We also highlight

challenges that take place in causal inference in two-sided platforms including partial control over

realized outcomes or treatment exposure. The fact that Pandora has allowed us to share the details of

their experiments and analyze the data to evaluate counter-factual strategies21 is, unfortunately, an

21The personalized versioning algorithm developed in this paper is not adopted by Pandora and we used inverse
probability weighting to evaluate its performance using the randomization in the data.
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Figure 13: The average percentage change in consumer utility. The impact of the policy across (a) different income levels
and (b) users of different age.
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exception in the industry, not a norm. We hope that efforts by firms such as Pandora, Yahoo, eBay,

and Ziprecruiter (Lewis and Reiley, 2014; Blake, Nosko, and Tadelis, 2015; Dubé and Misra, 2017)

promote transparency of firm-sponsored research.

Our results show that to achieve the same level of subscribers in the absence of a personalized

ad-scheduling strategy, the firm needs to increase its ad load by more than 20%. This finding shows

personalization can both improve firm profits and the average quality of service. We also find that gains

from ad-load personalization materialize quickly. In particular, within three months of implementing

the personalized counterpart of the control condition, the profits from subscriptions increase by 7%.

Interestingly, the short-term impact of this strategy on the overall consumption of the ad-supported

service is negligible. This finding, combined with switching costs between products, presents an

opportunity for firms to investigate returns to dynamic optimization of implicit prices. Although some

evidence shows firms change their quality of service in time due to demand seasonality (Lambrecht

and Misra, 2017), we believe studying the trade-offs between personalized and time-varying quality

of service adjustments is a fruitful area for future research. Finally, changing ad load could affect

the click-through rate of ads or, in general, their effectiveness. This effect adds an additional layer of

complexity for platforms that are compensated based on conversions or click-through rates. Although

studying how ad effectiveness changes as a function of the number of ads in online platforms is beyond

the scope of this paper, we acknowledge it could play an important role in the firm’s decision to adopt

the personalization algorithm discussed here.
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Online appendix

A. conceptual model for user heterogeneity and versioning

In this section, we illustrate the benefits of personalized versioning with a set of examples. First, we

consider a simple utility model that reflects the discrete choice between the outside options, consuming

the ad-supported product, or using the paid subscription. Consider the following model:

u(z, p | θ, β, α) = max


0 outside option,

θ − αz ad supported,

θ − βp paid version,

(16)

where θ is the utility from consuming the product, z specifies the ad load22, and p is the subscription

price. In the ad-supported condition, users are effectively paying with their time by listening to ads.

Therefore, parameters α and β reflect how time and money are valued by users, that is users with

higher/lower values of α and β are more/less sensitive to ads and prices, respectively. Also, let γ and

c be the revenue per ad and the marginal cost of offering the service, respectively. Finally, let θα = θ
a

and θβ = θ
b . If θβ > z and

θβ
θα

> z
p , the user picks the ad-supported version. And if θα > p and

θβ
θα

< z
p , the paid version is purchased; otherwise, the outside option is preferred. Figure 14 illustrates

the decision regions for different types when price is set to p and ad load is equal to z.

22In this simplified model, we assume users can consume the service in exchange for listening to z ads. In our case
study, we account for the fact that the intensive margin of consumption (number of hours) could vary across users, and
that possibility factors into the ad revenue.
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Figure 14: Decision regions for different types (θα, θβ) for price vector (p, z), where p and γz are assumed to be larger
than c. Types that lie in R1 pick the outside option, types in R2 subscribe for the paid service, and those in R3 choose
the ad-supported version.

Amonopolist that can perfectly discriminate along both ad load and price dimensions will maximize

its profits for each type (θa, θb). Note that a listener of type (θα, θβ) has a willingness to consume

at most z = θα ads, and pay price p = θβ. For a listener with γθα > max(θβ, c), the monopolist

will only offer the ad-supported service with (p, z) = (∞, θα), and for those with θβ > max(γθα, c),

only the subscription service is offered with (p, z) = (θβ,∞), and when none of these conditions are

satisfied serving the customer would not be worthwhile and (p, z) = (∞,∞). Figure 15 demonstrates

the decision regions for a monopolist based on the type of products sold, and the profits over regions

R2 and R3 are equal to:

Π∗ =

∫ ∞

θβ=c

∫ 1
γ
θβ

θα=0
(θβ − c)f(θα, θβ)dθαdθβ +

∫ ∞

θα=
c
γ

∫ γθα

θβ=0
(γθα − c)f(θα, θβ)dθβdθα , (17)

where f(θα, θβ) is the joint density of (θα, θβ).
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Figure 15: Decision regions for different types (θα, θβ) for a price-ad load-discriminating monopolist. Serving customers
in region R1 is not worthwhile; those in R2 will purchase the paid subscription and the rest will use the ad-supported
service.

The results above demonstrate that when the monopolist has full information, he will only make

one of the products available to each customer. However, these results rely on the crucial assumption

that the monopolist can accurately observe the type of each listener (θα, θβ). Our goal is to illustrate

the benefits of offering a personalized menu of products when the seller has partial information about

the type of consumers or randomness exists in choices made by the customers. We call this practice

“personalized versioning,” which is akin to combining second- and third-degree price discrimination.

The seller uses its information about the type of each customer to offer a personalized menu rather

than only one product or price.

Let us consider a few simple examples to illustrate this idea:

• Separable types: Consider a monopolist (he) who needs to provide service to a customer (she).

The monopolist knows that with probability ρ1, the customer is of type (θ
(1)
α , θ

(1)
β ), and with

probability ρ2 = 1− ρ1, she is of type (θ
(2)
α , θ

(2)
β ). If θ

(1)
α > θ

(2)
α and θ

(2)
β > θ

(1)
β (see Figure 16 for

visual illustration), it is optimal for the monopolist to offer the paid version when the realized

type is 1 and offer the ad-supported product when the realized type is 2. In this case, by

offering a menu (p, z) = (θ
(1)
α , θ

(2)
β ), the firm can extract monopoly profits regardless of the type

of customer. In particular, if the customer is of type 1, she purchases the paid version, whereas
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Figure 16: Perfectly separable condition. The seller is uncertain if the consumer is of type 1 or 2, but offering a menu
with (p, z) = (θ

(1)
α , θ

(2)
β ) yields profits that are equal to the case where the seller has full information.

if she is of type 2, she uses the ad-supported product. In other words, in this case, using a menu

can fully separate types from each other and resolves the uncertainty.

• Inseparable types: Let us now consider a more nuanced case. The customer can be of one

of two types with probabilities ρ1 and ρ2 = 1 − ρ1. This time (θ
(2)
α , θ

(2)
β ) > (θ

(1)
α , θ

(1)
β ); see

Figure 17 for visual illustration. In this case, the optimal menu corresponds to one of the five

red dots in Figure 17. Depending on the values of γ, c, ρ1, ρ2, (θ
(1)
α , θ

(1)
β ), and (θ

(2)
α , θ

(2)
β ), either

of these can be the optimal menu to offer. The only case where both products are offered is when

(p, z) =

Å
θ
(1)
α , θ

(1)
α

θ
(2)
β

θ
(2)
α

− ϵ

ã
. Note that in this case, the existence of type 1 imposes a positive

externality on the ad load, that is the quality of service when type 2 is realized. In other words,

if the seller were certain the customer is of type 2, he would have the incentive to increase the

ad load. However, in this case, because the customer is served under both conditions the ad

load cannot be increased to more than θ
(1)
α

θ
(2)
β

θ
(2)
α

to make it incentive compatible for the type 2

customer to use the ad-supported service23.

The examples above illustrate that the combination of personalization and versioning can make

use of both the partial information that the firm may have and the customer’s private information.

We refer to this approach as personalized versioning. Note the application of personalized versioning

23Recall from Figure 15 that if
θβ
θα

> 1
γ
, the seller is better off providing the ad-supported service.
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Figure 17: Inseparable condition. The uncertainty in the types cannot be perfectly dealt with by using a personalized
menu. The optimal menu (p, z) is one of the five red dots, and depending upon the types and realization probabilities
either one can be optimal.

is not limited to the case where uncertainty is present in parameter estimates, but also applies in

random utility models even when parameter uncertainty is neglected. In section 3 we used a random

utility model that corresponds to (16) to illustrate the trade-offs involved in personalizing ad load.

50

Electronic copy available at: https://ssrn.com/abstract=3874243



B. Ad delivery mechanism and partial control over realized ad load/capacity

In section 4, we discussed the field experiment and presented results on randomization checks, and

realized changes in ad load across experiment cells. In this section, we discuss the realized effect on

ad load and capacity in more detail.

Our experiment consists of seven cells: 3x1, 4x2, 6x2, 4x3, 5x3, 6x3, and control. The experiment

shifts the timers in the ad delivery system. For instance, in the 3x1 condition, the timer is set to 20

minutes, and this number is equal to 15 minutes for the control, 4x2, and 4x3 conditions. The only

difference between the 4x2 and the control condition is that the first ad pod24 within each listening

session in the control condition is constrained to be of length one. Note that a listener in the 6x3

condition ends up becoming eligible for an ad pod fewer than six times per hour (every 15 minutes),

because the song endings do not perfectly align with the timers, see Figure 3. For example, the ad

capacity, that is, the number of opportunities to show an ad per hour, in the 6x3 condition ends up

being far less than 6×3=18. Figure 18 presents the realized ad capacity across different experiment

conditions. Note that the ad capacity for the FxL condition is often much smaller than F·L, since the

song endings do not align with the timers. There is only one exception and that is the 3x1 condition.

As highlighted in Figure 3, the listeners across all conditions become eligible for the first ad pod within

the first five minutes of each listening session, therefore, the realized ad capacity may end up being

larger than three in the 3x1 condition, especially for listeners that have short listening sessions.

When a listener (she) becomes eligible to receive an ad, the ad delivery system makes a request to

fetch an ad for her. If she belongs to a demographic group that is attractive to advertisers it is easier

to fetch ads for her. However, if the system runs out of ads to show to her those opportunities (ad

capacity) are not filled. For instance, a listener may be eligible to receive eight ads in a given hour,

but the system may end up fetching only five ads in the ad inventory that could be played for her. In

our data, we record both the number of opportunities (ad capacity) and the realized number of ads

(ad load) delivered in an hour for every user.

To summarize, pod length and frequency determine ad capacity rather than ad load. Figure 3 and

Figure 18 illustrate that the realized ad capacity for the FxL condition ends up being far less than F·L

as the song endings do not perfectly align with the timers. Furthermore, the realized number of ads

shown to each listener (ad load) also depends on advertisers’ demand. As we move to more extreme

24The listeners across all experiment conditions become eligible for the first ad pod after the first five minutes of each
listening session.
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Figure 18: Realized audio ad capacity across different treatment arms

conditions such as the 6x3 condition it becomes more difficult to shift both ad capacity and ad load,

see Table 3. Figure 19 depicts the density of realized ad load for users in different treatment cells.

Although higher-ad-capacity conditions have a higher realized ad load, the distribution becomes more

dispersed as the capacity increases, compare Figures 18 and 19. This finding is indicative of the fact

that filling higher capacities for users tends to be more difficult because running out of ads to serve

in the higher-capacity conditions is more probable. Table 3 in the body illustrates these findings by

reporting the average realized ad load, capacity, and fill rate during the first year of the experiment.

To further demonstrate the partial control problem, we plot the lift in ad load between the control

and 6x3 condition across different consumer groups based on their pre-treatment ad load in Figure 20.

The figure shows the increase in ad load in the 6x3 condition relative to the control condition is

not uniform across different listener groups. The lift in ad load is more pronounced for consumers

who received more ads in the pre-treatment period. This heterogeneity in the lift reflects the role of

advertisers’ demand in the realized ad load and shows that the additional capacity is more likely to

be filled for those consumers who are more attractive to advertisers. This demonstrates the fact that

firms need to account for the discrepancy between the intended and realized change in the implicit

price, which leads to an additional layer of complexity relative to the traditional pricing problems.
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Figure 19: Realized ad load across different treatment arms
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Figure 20: Realized lift in ad load (ads/hours) in the 6x3 condition relative to control as a function of pre-treatment ad
load. Note the lift in ad load could vary drastically across different groups, due to differences in the attractiveness of
different segments for advertisers.
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C. Reduced-form regressions

In Figure 5 of section 5, we illustrated the average treatment effect of changing ad load on consumption

and subscription status using a series of instrumental variable regressions. In this section, we present

the reduced-form regressions that correspond to those IV regressions. In particular, we regress the

normalized outcomes (3) directly on the treatment dummies using the following specification:

Ỹi = α+
6∑

j=1

βj · 1{τ=ej} + ϵi, (18)

where i indexes listeners, and Ỹi is a normalized outcome of interest, i.e., listening hours, activity

dummy, and plus subscription dummy, for each user in a given week. We present the results of these

analyses for the last week of each quarter after the experiment kicked off in Tables 4-9. Similar to

our pooled IV results in Figure 5, our results here show that the treatment effect of ad load changes

remains stable after Q4 2016, however, the impact on consumption takes longer than a year to stabilize.

Table 4: Activity and subscription status in the last week of Q3-2016 across different treatment arms relative to control.

Dependent variable:

All hours Ad-supported hours Active user Subscription rate

(1) (2) (3) (4)

Control 100.000∗∗∗ 100.000∗∗∗ 100.000∗∗∗ 100.000∗∗∗

(0.218) (0.234) (0.110) (0.809)

3x1 0.288 0.814∗∗ 0.364∗∗ −4.188∗∗∗

(0.308) (0.330) (0.156) (1.143)

4x2 −0.375 −0.522∗ −0.106 3.913∗∗∗

(0.267) (0.286) (0.135) (0.990)

6x2 −1.144∗∗∗ −1.546∗∗∗ −0.413∗∗ 6.959∗∗∗

(0.377) (0.405) (0.191) (1.400)

4x3 −0.878∗∗ −1.185∗∗∗ −0.430∗∗ 8.956∗∗∗

(0.377) (0.405) (0.191) (1.401)

5x3 −0.862∗∗ −1.794∗∗∗ −0.471∗∗ 12.886∗∗∗

(0.377) (0.404) (0.190) (1.399)

6x3 −1.415∗∗∗ −2.169∗∗∗ −0.536∗∗ 14.129∗∗∗

(0.453) (0.486) (0.229) (1.682)

Observations 7,350,278 7,350,278 7,350,278 7,350,278

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5: Activity and subscription status in the last week of Q4-2016 across different treatment arms relative to control.

Dependent variable:

All hours Ad-supported hours Active user Subscription rate

(1) (2) (3) (4)

Control 100.000∗∗∗ 100.000∗∗∗ 100.000∗∗∗ 100.000∗∗∗

(0.219) (0.238) (0.110) (0.706)

3x1 1.003∗∗∗ 1.544∗∗∗ 0.462∗∗∗ −5.418∗∗∗

(0.309) (0.336) (0.155) (0.998)

4x2 −0.615∗∗ −0.785∗∗∗ −0.210 2.293∗∗∗

(0.268) (0.291) (0.134) (0.865)

6x2 −1.499∗∗∗ −2.196∗∗∗ −0.447∗∗ 8.126∗∗∗

(0.379) (0.412) (0.190) (1.223)

4x3 −1.410∗∗∗ −2.163∗∗∗ −0.564∗∗∗ 11.858∗∗∗

(0.379) (0.412) (0.190) (1.223)

5x3 −1.834∗∗∗ −3.156∗∗∗ −0.843∗∗∗ 14.945∗∗∗

(0.379) (0.412) (0.190) (1.222)

6x3 −2.478∗∗∗ −3.888∗∗∗ −1.051∗∗∗ 17.941∗∗∗

(0.455) (0.495) (0.228) (1.469)

Observations 7,350,278 7,350,278 7,350,278 7,350,278

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 6: Activity and subscription status in the last week of Q1-2017 across different treatment arms relative to control.

Dependent variable:

All hours Ad-supported hours Active user Subscription rate

(1) (2) (3) (4)

Control 100.000∗∗∗ 100.000∗∗∗ 100.000∗∗∗ 100.000∗∗∗

(0.215) (0.233) (0.109) (0.591)

3x1 1.998∗∗∗ 2.946∗∗∗ 0.644∗∗∗ −5.581∗∗∗

(0.303) (0.329) (0.154) (0.835)

4x2 −0.468∗ −0.691∗∗ −0.460∗∗∗ 2.738∗∗∗

(0.263) (0.285) (0.134) (0.723)

6x2 −1.794∗∗∗ −2.512∗∗∗ −0.993∗∗∗ 8.267∗∗∗

(0.372) (0.403) (0.189) (1.023)

4x3 −1.861∗∗∗ −2.955∗∗∗ −1.233∗∗∗ 10.620∗∗∗

(0.372) (0.403) (0.189) (1.023)

5x3 −2.617∗∗∗ −4.516∗∗∗ −1.419∗∗∗ 14.838∗∗∗

(0.372) (0.403) (0.189) (1.022)

6x3 −3.156∗∗∗ −5.027∗∗∗ −1.867∗∗∗ 17.215∗∗∗

(0.447) (0.484) (0.227) (1.229)

Observations 7,350,278 7,350,278 7,350,278 7,350,278

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7: Activity and subscription status in the last week of Q2-2017 across different treatment arms relative to control.

Dependent variable:

All hours Ad-supported hours Active user Subscription rate

(1) (2) (3) (4)

Control 100.000∗∗∗ 100.000∗∗∗ 100.000∗∗∗ 100.000∗∗∗

(0.219) (0.243) (0.112) (0.548)

3x1 2.134∗∗∗ 3.401∗∗∗ 0.678∗∗∗ −5.615∗∗∗

(0.310) (0.344) (0.158) (0.774)

4x2 −0.215 −0.334 −0.345∗∗ 2.795∗∗∗

(0.268) (0.298) (0.137) (0.671)

6x2 −1.928∗∗∗ −3.040∗∗∗ −1.077∗∗∗ 9.398∗∗∗

(0.379) (0.421) (0.194) (0.949)

4x3 −2.031∗∗∗ −3.096∗∗∗ −1.475∗∗∗ 10.937∗∗∗

(0.380) (0.421) (0.194) (0.949)

5x3 −2.939∗∗∗ −4.673∗∗∗ −1.764∗∗∗ 15.182∗∗∗

(0.379) (0.421) (0.194) (0.948)

6x3 −3.759∗∗∗ −6.054∗∗∗ −2.267∗∗∗ 16.315∗∗∗

(0.456) (0.506) (0.233) (1.140)

Observations 7,350,278 7,350,278 7,350,278 7,350,278

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 8: Activity and subscription status in the last week of Q3-2017 across different treatment arms relative to control.

Dependent variable:

All hours Ad-supported hours Active user Subscription rate

(1) (2) (3) (4)

Control 100.000∗∗∗ 100.000∗∗∗ 100.000∗∗∗ 100.000∗∗∗

(0.225) (0.249) (0.114) (0.566)

3x1 2.179∗∗∗ 3.392∗∗∗ 0.554∗∗∗ −5.457∗∗∗

(0.318) (0.352) (0.161) (0.800)

4x2 −0.532∗ −0.835∗∗∗ −0.759∗∗∗ 3.955∗∗∗

(0.276) (0.305) (0.140) (0.693)

6x2 −1.510∗∗∗ −2.599∗∗∗ −1.298∗∗∗ 10.684∗∗∗

(0.390) (0.431) (0.197) (0.981)

4x3 −1.758∗∗∗ −3.082∗∗∗ −1.528∗∗∗ 12.532∗∗∗

(0.390) (0.431) (0.198) (0.981)

5x3 −2.814∗∗∗ −5.043∗∗∗ −2.185∗∗∗ 16.985∗∗∗

(0.390) (0.431) (0.197) (0.980)

6x3 −3.527∗∗∗ −6.174∗∗∗ −2.349∗∗∗ 18.201∗∗∗

(0.469) (0.518) (0.237) (1.178)

Observations 7,350,278 7,350,278 7,350,278 7,350,278

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9: Activity and subscription status in the last week of Q4-2017 across different treatment arms relative to control.

Dependent variable:

All hours Ad-supported hours Active user Subscription rate

(1) (2) (3) (4)

Control 100.000∗∗∗ 100.000∗∗∗ 100.000∗∗∗ 100.000∗∗∗

(0.234) (0.262) (0.119) (0.575)

3x1 2.114∗∗∗ 3.173∗∗∗ 0.897∗∗∗ −5.802∗∗∗

(0.331) (0.370) (0.168) (0.813)

4x2 −0.569∗∗ −1.238∗∗∗ −0.635∗∗∗ 4.100∗∗∗

(0.287) (0.321) (0.145) (0.705)

6x2 −1.411∗∗∗ −2.491∗∗∗ −1.072∗∗∗ 10.695∗∗∗

(0.405) (0.454) (0.206) (0.997)

4x3 −1.761∗∗∗ −3.447∗∗∗ −1.738∗∗∗ 13.386∗∗∗

(0.406) (0.454) (0.206) (0.997)

5x3 −2.330∗∗∗ −5.082∗∗∗ −2.166∗∗∗ 17.077∗∗∗

(0.405) (0.453) (0.205) (0.996)

6x3 −3.604∗∗∗ −6.424∗∗∗ −2.369∗∗∗ 18.932∗∗∗

(0.487) (0.545) (0.247) (1.197)

Observations 7,350,278 7,350,278 7,350,278 7,350,278

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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D. Persistence in heterogeneous treatment effects

In section 7 we showed that our models are able to sort users based on the magnitude of the treatment

effect on ad and subscription revenues using data from December 2016. In this section, we illustrate

that the heterogeneous treatment effects detected in this time period are persistent. In particular,

we show that if one sorts users in the hold-out sample based on the predicted treatment effect on

subscription and ad revenues, the ordering does not only explain the lift in December 2016, see

Figure 8, but it also has explanation power in December 2017.

In section 7 we divided the listeners in the hold-out sample into five quintiles based on the predicted

treatment effects of the 6x3 relative to the control condition for both subscriptions and ads. We then

demonstrated that the realized lift in subscriptions and ads were indeed correlated with predicted

treatment effects in Figure 21. We replicated this analysis but instead of using December 2016 data

for calculating we used data from a year later, that is during December 2017. We present these results

in Figure 21. Note that the magnitude of the effects could be slightly different from those in Figure 8,

but the ordering remains consistent. This means that the ordering of users based on treatment effects

predictions using 2016 data is still valid a year later in 2017. This is very interesting and shows that

it is possible to use the short-run 6 months data to detect heterogeneous treatment effects that are

persistent.
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Figure 21: Realized lift in subscription propensity and ads delivered in the 6x3 condition relative to control in December
of 2017 on the hold-out sample as a function of predicted treatment effect quintile using December 2016 as training.
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E. A direct estimation model for ads delivered

In section 7, we combined three models to predict the number of ads played to each listener under dif-

ferent treatment conditions (counterfactual states). A model that predicts the probability of being an

active ad-supported listener Pa(x, τ ), a model that predicts the number of listening hours conditional

on being active and ad-supported C(x, τ ), and finally a model that predicts the ad load conditional

on being active and ad-supported A(x, τ ) across different conditions. The predicted number of ads

for an individual with pre-treatment features x and in treatment condition, τ was calculated as:

predicted # of ads delivered = Pa(x, τ ) · C(x, τ ) ·A(x, τ ). (19)

Since models C(x, τ ) and A(x, τ ) are trained on listeners conditional on being ad-supported and

active one might be concerned about selection. However, note that we only use these models to

solve for the allocation policy (12), and we do not use the predictions of the models to evaluate

the realized number of ads or subscriptions in the counterfactuals. In particular, the performance of

the model in terms of lift in subscriptions and delivered ads are calculated using inverse propensity

weighted estimates in the hold-out sample, which is similar to the approach used by Hitsch and

Misra (2018), Rafieian and Yoganarasimhan (2021), Simester, Timoshenko, and Zoumpoulis (2020),

and Yoganarasimhan, Barzegary, and Pani (2022). This means that even if the errors are correlated

across the first model that learns the probability of being ad-supported and the models used for

predicting listening hours and ad load, this correlation does not affect the counterfactual estimates of

model performance, e.g., Figures 9-10, because those results are based on inverse propensity weighted

estimates and do not depend on the predicted values themselves. Nevertheless, here we show that

we obtain similar performance if we use a model that directly predicts the number of ads delivered

instead of the approach used in (19).

Let Yi be the number of ads played to listener i during the training period (December of 2016).

Note Yi = 0 for paid listeners or inactive users in that time period. We model Yi as follows:

Yi = 1f(xi,τ i)>0 · f(xi, τ i), (20)

where f(x, τ ) is parameterized as a neural network. A schematic view of the neural network’s structure

is presented in Figure 22. We use a weighted objective similar to (6) with mean-squared error as the
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loss to train the model. Let A(x, τ ) be the model that predicts the number of ads served to each

individual. Using this model instead to predict the number of ads served to each individual transforms

the optimization problem (13) into:

∑
i

maximize
τ i

ms · Ps(xi, τ i) + λ · A(xi, τ i)︸ ︷︷ ︸
f(xi,λ,τ i)

. (21)

Similar to our approach in section 8, we shift λ in equation (13) to obtain different personalized

policies albeit using the joint model A(xi, τ i) for predicting the number of ads served. The counterpart

of the Pareto frontier in Figure 9 for the new set of personalized policies using the joint model is pre-

sented in Figure 23. The performance remains similar to our approach in section 8 and the personalized

counterpart of control achieves about a 7% gain in subscription profits relative to control.
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Figure 22: A schematic view of the neural network architecture used for estimating the realized number of ads delivered
across experimental conditions.
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Figure 23: Change in subscription profits as a function of the number of ads served using a joint prediction model for
the number of ads served. The performance of the personalized policies is similar to Figure 9.
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