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Abstract

Many events and policies (treatments) occur at specific spatial locations,

with researchers interested in their effects on nearby units of interest. I approach

the spatial treatment setting from an experimental perspective: What ideal

experiment would we design to estimate the causal effects of spatial treatments?

This perspective motivates a comparison between individuals near realized

treatment locations and individuals near counterfactual (unrealized) candidate

locations, which differs from current empirical practice. I derive design-based

standard errors that are straightforward to compute irrespective of spatial

correlations in outcomes. Furthermore, I propose machine learning methods to

find counterfactual candidate locations and show how to apply the proposed

methods to observational data. I apply the proposed methods to study the causal

effects of grocery stores on foot traffic to nearby businesses during COVID-19

shelter-in-place policies, finding a substantial positive effect at a very short

distance, with no effect at larger distances.
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1 Introduction

Many actions, events, and policies studied by economists occur at locations in space

and affect (geographically) nearby units or individuals.1 I refer to such studies’ setting

as the “spatial treatment” setting because the level at which these “treatments”

vary are locations in space. The researcher studies the effects of such treatments on

individuals who are located in the vicinity of these treatments but who are conceptually

distinct units. In contrast, in most of the theoretical literature in causal inference,

each individual is thought to in principle be associated with their own treatment

generating potential outcomes, with some work considering “spillovers” and “clustered

assignment” of individual-level treatments. Such a framework was largely sufficient

when both treatment and outcome information was only available aggregated at, for

instance, the county level. More recently, however, precise (geocoded) location data

for treatments and individuals have become more readily available, allowing more

informative analyses of the disaggregated effects of spatial treatments by distance

from treatment.

This paper makes three contributions. First, I develop a framework that allows

me to formalize ideal experiments and analyze questions of causal inference in spatial

settings from a design-based perspective. Second, I show that this design-based

perspective is tractable and useful by deriving (approximately) unbiased inverse

probability weighting estimators and new expressions for their variances, which differ

from commonly used existing estimators and sampling-based variances. Third, I

propose using convolutional neural networks, previously used for image and satellite

data, to parsimoniously condition on the distribution of covariates across space.

These contributions yield succinct practical recommendations that answer three

key methodological questions in spatial treatment settings. First, when studying the

effects of a spatial treatment on individuals who are distance 𝑑 away from it, who

should be in the control group? Second, what is the standard error of the resulting

estimator under the ideal experiment? Third, how can we mimic the analysis of the

ideal experiment when only observational data are available?

1Examples include the effects of: businesses’ location decisions on local competitors, workers, or
consumers; schools, hospitals, or sources of pollution on education, income, and health of nearby
residents; low-income housing, local public goods, or crime risk on property values; centrally
administered treatments such as deworming in schools or COVID-19 vaccination centers on treatment
uptake and effectiveness. See Online Appendix Table OA1 for examples of papers studying these and
other spatial treatments.
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The ideal experiment to study the effects of a spatial treatment on nearby individ-

uals randomizes the location of the treatment among plausible candidate locations.

Such an ideal experiment is implicitly invoked when researchers argue that the location

of the treatment is quasi-random, for instance, due to the exogenous (un-) availability

of candidate locations at the time the treatment is implemented.2

I show that the control group of a commonly used estimator is not valid under

this ideal experiment and discuss how to construct an alternative, valid, control group.

Much of the empirical literature studying spatial treatments with observational data

effectively compares individuals at the distance of interest from the treatment (on

an “inner ring”) to individuals farther away but centered around the same treatment

location (on an “outer ring”). Yet the ideal experiment (or similar quasi-random

variation in the locations of the treatment) does not directly justify this comparison:

Even with random variation in treatment locations, this comparison is invalid for all

but knife-edge scenarios for the surface of potential outcomes across space. Instead,

the ideal experiment justifies comparing individuals on the inner ring around realized

treatment locations to individuals on inner rings around those locations where the

treatment could have been but is not by random chance alone.

I derive inverse probability weighting estimators and their (approximate) finite

population unbiasedness and design-based variance under the ideal experiment and

show asymptotic normality in a leading case. The repeated sampling thought experi-

ment of the finite population analysis holds fixed the individuals in the population,

their locations, and their potential outcomes, varying only the realized locations of the

treatment among a pre-defined set of plausible candidate locations. Inverse probability

weighting allows nonparametric estimation of the average effect of the treatment on

individuals who are, say, distance 𝑑± ℎ away from candidate treatment locations, as

well as other (e.g. kernel) weighted average effects.3 The design-based analysis of the

variance following Neyman (1923) has both conceptual and practical advantages over

other sampling-based alternatives (e.g. Conley, 1999): Design-based variance reflects

the variation that the researcher exploits when claiming causality of estimated effects

2For instance, Linden and Rockoff (2008, p. 1110) argue that “the nature of the search for housing
is also a largely random process at the local level. Individuals may choose neighborhoods with specific
characteristics, but, within a fraction of a mile, the exact locations available at the time individuals
seek to move into a neighborhood are arguably exogenous.”

3See Online Appendix 8 for parametric estimators under correct specification of the treatment
effect by distance.
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by appealing to “quasi-random” variation. When a researcher describes design-based

variation, they do not need to distinguish between sample and population, which

may be difficult to justify in spatial settings (cf. Pinkse et al., 2007). Estimating

the design-based standard error is straightforward. The researcher does not need to

correctly estimate or model the correlation of the outcome across space – a task that

is often tangential to the research question. Importantly, my approach also allows

me to derive standard errors for settings where individuals are exposed to multiple

treatments. In these settings, off-the-shelf alternatives such as “clustering at the level

of the assignment” (Abadie et al., 2022) are not applicable.

In the second half of the paper, I focus on a “spatial unconfoundedness” assumption

for observational data as the analog to randomization in the ideal experiment. Suppose

locations in two neighborhoods look identical in terms of their observable pre-treatment

characteristics. Then the spatial unconfoundedness assumption requires that which

of the two locations the treatment is realized in does not depend on the potential

outcomes of individuals in the neighborhoods.

To implement flexible estimation based on spatial unconfoundedness, I propose

using convolutional neural networks in a way that may be of independent interest

for settings with spatial data. Researchers can plot many economic data, such as

locations of businesses, property prices, school district quality, and the average income

by census tract, on maps. The distribution of spatial covariates across space often

encodes otherwise latent information: Coarse summary statistics such as the number

of units or the average value of a covariate in a circle around a location may not fully

capture the local economic environment. The spatial unconfoundedness assumption

can therefore be more credible when researchers use the information contained in

spatial data more fully. However, controlling for the distribution of units or covariates

across space relative to the location of estimation intrinsically is an extremely high-

dimensional problem. At the same time, economic and institutional knowledge often

suggests equivariances: If all units and covariates in a neighborhood are shifted, their

locations mirrored, or their orientation rotated along some axis equally, economically

the neighborhood remains unchanged, and the location of the predicted outcome

should simply be shifted, mirrored, and rotated analogously. I propose convolutional

neural networks that parsimoniously condition on the distribution of covariates across

space and are automatically equivariant to shift, and I show how to build in other

equivariance using data augmentation when training the network. Researchers may find
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convolutional neural networks useful whenever estimation is more credible conditioning

on covariate values in the neighborhood around the unit of estimation, for instance,

demographics of nearest and farther neighbors. In the spatial treatment setting, I

use such networks to find plausible counterfactual locations of the treatment that are

observationally similar to realized treatment locations.

I apply the proposed methods to study whether grocery stores caused additional

visitors to nearby restaurants during COVID-19 shelter-in-place policies. During

shelter-in-place policies in the San Francisco Bay Area in April 2020, residents were

only allowed to make essential trips, for instance, to get groceries. As mobility was

greatly reduced, restaurants may have benefited from being located near points still

frequented by consumers (grocery stores): Consumers may find it convenient to grab a

coffee or snack while waiting in line to get into the store or to pick up a takeout order

before returning home. Using the proposed convolutional neural networks, I identify

counterfactual grocery store locations that are in neighborhoods with extremely similar

business compositions and relative locations as the real grocery stores.

I find that restaurants within a couple of minutes walking from real grocery

stores had about twice as many visitors as restaurants at the same distance from

counterfactual locations. There is no such difference in visitors at longer distances. For

a causal interpretation, the unconfoundedness assumption requires that restaurants in

neighborhoods with similar business composition and relative locations except differing

by one grocery store do not have systematically different potential outcomes.

A nascent methodological literature studies causal inference in spatial treatment

and related settings. Zigler and Papadogeorgou (2021) and, contemporaneously

to the present paper, Aronow et al. (2020) set up potential outcomes frameworks

and estimands for experimental settings similar to those in the present paper, and

Borusyak and Hull (2020) take a similar design-based perspective but apply it to a

regression framework. The approach of Borusyak and Hull (2020) has the advantage

of accommodating multi-valued and other more complicated treatments, but the

estimands of coefficients in their (unweighted) regressions differ under treatment effect

heterogeneity. These papers do not explicitly estimate design-based standard errors in

their applications, however, instead reporting Conley (1999) standard errors.

The present paper contributes to the literature by showing that design-based

inference, beyond identification, is still conceptually attractive, analytically tractable,

and computationally straightforward. Furthermore, I propose a data-driven method
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for inferring a plausible counterfactual distribution of the treatment under uncon-

foundedness using neural networks, while prior work requires the researcher to specify

it based on institutional knowledge. Similar to Borusyak and Hull (2020), the method-

ological contributions of the present paper are not restricted to spatial settings. The

ideas, results, and proposed methods are more generally applicable to settings where

treatments are separate from the units for which outcomes are measured, rather than

directly assigned to them. I discuss examples in the extensions. Spatial treatments

share some resemblance to spillover effects of treatments in networks (e.g. Athey et al.,

2018; Leung, 2020), and some results from one setting can be applied to special cases

of the other. However, typical networks cannot be projected into low-dimensional

Euclidean space, and typical settings with units in geographic space would require

dense networks with weighted edges that may not be tractable analytically or may

violate typical assumptions on the network structure. Consequently, the appropriate

implementations of estimation under unconfoundedness differ (for instance Leung and

Loupos, 2022, in network settings).

The remainder of this paper proceeds as follows. Section 2 shows that the ideal

experiment does not generally justify the inner vs. outer ring empirical strategy.

Section 3 describes the framework and notation of this paper. Section 4 contains

estimation and inference results under the ideal experiment. Section 5 introduces

the spatial unconfoundedness assumption and describes estimation of counterfactual

locations using convolutional neural networks.4 Section 6 discusses extensions to

non-spatial settings. Section 7 illustrates the use of the proposed methods with the

empirical application. Section 8 concludes.

2 The inner vs. outer ring empirical strategy re-

quires assumptions beyond quasi-random varia-

tion in treatment locations

Many recent empirical studies estimate the effects of spatial treatments at a distance

of 𝑑 by comparing the outcome of individuals 𝑑 away from treatment to the outcome of

4A documented code tutorial implementing the approach using convolution neural networks is
available at https://github.com/michaelpollmann/spatialTreat-example, in addition to the
replication code.
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individuals 𝐷 ≫ 𝑑 away from treatment.5 Visually, the individuals 𝑑 from treatment

are located on an “inner ring” around the treatment, while individuals 𝐷 away from

treatment are located on an “outer ring.” Hence, this strategy is commonly referred

to as an “inner ring vs. outer ring” strategy.

I use an example to show that this estimation strategy relies on “functional form”

assumptions about potential outcomes rather than “design” assumptions about the

ideal experiment. For some locations of outcome units and their potential outcomes,

the inner vs. outer ring estimator is inconsistent under all “ideal experiments” that

generate random variation in treatment location. In other words, one cannot justify

this strategy purely based on the ideal experiment; alternative assumptions are

necessary. I present the cross-sectional example first, and then discuss the “parallel

trends” assumption as one such alternative.

Some economists have the intuition that if the treatment locations are completely

random (uniformly distributed and independent of potential outcomes), and one

correctly specifies a distance after which the treatment has no effect, the inner vs.

outer ring comparison yields a consistent estimator. The intuitive argument posits

that because randomization renders all individuals equally likely to be on the inner vs.

outer ring, the two groups are similar in expectation. Consequently, the estimator

is unbiased, but possibly inefficient by restricting the control group to only a ring

rather than all unaffected individuals. Hence, it appears worthwhile to illustrate with

a simple example that this intuition is incorrect.

The setup for this section is as follows. Suppose the researcher has access to

data from many cities that are sufficiently far apart for treatment in one city to not

affect outcomes in another city. For simplicity, within each city consider locations in

one-dimensional integer space, Z, only. Suppose the potential outcome of individual 𝑖

in the absence of treatment is 𝑌𝑖(0) = 𝑟2𝑖 where 𝑟𝑖 ∈ Z is the location of 𝑖. Further,

suppose that exactly one individual is located at each integer. Let 𝑑 ∈ Z+ be the

inner ring distance, and let 𝐷 ∈ Z with 𝐷 > 𝑑 be an outer ring distance such that

individuals 𝐷 away from treatment are unaffected.

Under this setup, the inner vs. outer ring strategy yields systematically biased

estimates irrespective of how treatment locations are chosen. Specifically, if treatment

5Typically the comparison across individuals is combined with a comparison across time. As dis-
cussed at the end of this section, the across-time comparison conceptually does not affect identification
in the ideal experiment.
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in a city occurs in location 𝑆 ∈ R, then the average (counterfactual) control potential

outcome 𝑌𝑖(0) of the two individuals on the inner ring, at distance 𝑑, is ((𝑆 + 𝑑)2 +

(𝑆−𝑑)2)/2 = 𝑆2+𝑑2. The average control potential outcome of the two individuals on

the outer ring, who are used as the control group, similarly is 𝑆2 +𝐷2. This outcome

is observed by the assumption that at distance 𝐷 treatment effects are 0. Hence,

the inner vs. outer ring strategy overestimates the mean of the control potential

outcomes of individuals at distance 𝑑 by 𝐷2 − 𝑑2 > 0, irrespective of the location of

the treatment, 𝑆. That is, no matter how the location of the treatment is chosen,

whether randomly or endogenously, uniformly or non-uniformly distributed, the inner

vs. outer ring estimator is biased in this example even with infinite data and correct

specification of a distance at which there are no effects.

This example shows that the inner vs. outer ring empirical strategy requires

additional assumptions beyond the quasi-random variation induced by the ideal

experiment. Random variation in the locations of treatments, by itself, cannot

guarantee that the strategy yields consistent estimates. Instead, the researcher must

assume that the outer ring control group correctly estimates the average control

potential outcomes of the treated individuals. Effectively, except for knife-edge cases

of offsetting biases, researchers need to assume that the outcome surface is flat: If the

outcome surface is flat, any distribution of individuals yields unbiased estimates. If, in

contrast, outcomes on inner and outer rings are not equal, only particular weighting

(given by the distribution of individuals across space) of the outer ring may (if the

inner ring average is a convex combination of outer rings values) be able to yield

unbiased estimates. Hence, the validity of the estimator requires a functional form

assumption that remains necessary even asymptotically. The assumption may be most

plausible when 𝐷 − 𝑑 is small such that the control group is located near the treated

group. At the same time, however, 𝐷 needs to be large enough for the outer ring

individuals to plausibly be unaffected by the treatment unless different biases offset

perfectly.

Taking empirical derivatives of the outcome with respect to distance from treatment

and then integrating over distance, as in Diamond and McQuade (2019), is subject to

the same conceptual issue. Consider again the example above with outcomes quadratic

in location but smaller gaps between individuals such that empirical derivatives

(approximately) equal the actual derivative of outcomes: 𝜕𝑌 (0)/𝜕𝑟 = 2𝑟. Integrating
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these derivatives between 𝑆 + 𝑑 and 𝑆 +𝐷 as well as between 𝑆 − 𝑑 and 𝑆 −𝐷 yields

(︁∫︁ 𝐷

𝑑

2(𝑆+𝑣)d 𝑣+

∫︁ −𝐷

−𝑑

2(𝑆+𝑣)d 𝑣
)︁
/2 = ((𝐷2−𝑑2)+((−𝐷)2− (−𝑑)2)/2 = 𝐷2−𝑑2,

which is the same comparison as for the inner vs. outer ring estimator. The key

methodological contribution of Diamond and McQuade (2019) is to develop a com-

putationally feasible estimator that correctly calculates the derivative and performs

the integration in settings where space is multi-dimensional and the distribution of

individuals is sparse and possibly not uniform. The approach still relies on a correctly

specified function form (Diamond and McQuade, 2019, equation 1) that captures the

conceptual essence of the inner vs. outer ring strategy.

Using the inner vs. outer ring strategy with panel data in a difference-in-differences

approach, as is common in practice, does not generally resolve the conceptual issue

raised in this section. The argument made about the levels of potential outcomes

applies equally to the trends in potential outcomes. An absence of pre-trends may be

suggestive of the required absence of differential trends also post-treatment. However,

when researchers estimate the effect of the treatment at not just a single distance 𝑑

but also at other distances 𝑑2, 𝑑3, etc., often using the same outer ring control group at

distance 𝐷, assessing the absence of pre-trends (or magnitude of potential violations)

becomes more challenging than in standard difference-in-differences analyses due to

the large number of estimates and their correlations.

The inner vs. outer ring strategy requires functional form assumptions rather than

the variation induced by an ideal experiment of randomized treatment locations. If

the researcher wishes to use this strategy, they should motivate those functional form

assumptions.

If the researcher instead believes that there is quasi-random variation in the

location of treatments, the estimators and theory developed in this paper are ap-

plicable. In practice, empirical studies providing evidence that distinct sources of

variation, identification strategies, or assumptions, yield similar estimates may be

most convincing.
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3 Setup and notation

Both individuals (outcome units) and treatments are located in a shared (geographic)

space. Individuals, indexed by 𝑖 ∈ I, have fixed location, or residence, 𝑟𝑖 ∈ R2 such

as latitude and longitude.6 In contrast to the standard setting of causal inference,

treatments do not share the same index 𝑖 with individuals. Instead, the treatment

takes values 𝑆 ⊂ R2 corresponding to locations in the same space as the individuals.

Each individual has a potential outcome 𝑌𝑖(𝑆) for each 𝑆, and treatment effects are

contrasts between different potential outcomes. The natural individual-level treatment

effect compares the outcome of 𝑖 when there is treatment at location 𝑠 vs. no treatment

at 𝑠, holding fixed treatments at other locations: 𝜏𝑖(𝑠 | 𝑆) ≡ 𝑌𝑖(𝑆 ∪ {𝑠})− 𝑌𝑖(𝑆 ∖ {𝑠}).
𝜏𝑖(𝑠 | 𝑆) is a marginal effect with background exposure 𝑆 ∖ {𝑠}. Of particular

interest is the treatment effect of 𝑠 when there is no other (relevant) treatment:

𝜏𝑖(𝑠) ≡ 𝜏𝑖(𝑠 | {𝑠}) = 𝑌𝑖({𝑠})− 𝑌𝑖(∅). For ease of notation, define 𝑌𝑖(𝑠) ≡ 𝑌𝑖({𝑠}) and
𝑌𝑖(0) ≡ 𝑌𝑖(∅).

The experimental design generates randomness in where the treatment is realized.

I use calligraphic letters to denote random variables in contrast to roman letters used

for fixed values. The realized treatment locations are 𝒮 ⊂ R2, such that the observed

outcome for individual 𝑖 is 𝒴𝑖 ≡ 𝑌𝑖(𝒮). Let 𝜋𝑠 ≡ Pr(𝒮 ∋ 𝑠) be the experimental

probability of treatment at location 𝑠. Candidate treatment locations refers to locations

𝑠 ∈ S = {𝑠 ∈ R2 : 𝜋𝑠 > 0}, such that 𝒮 ⊂ S.
I state the notation and results in this paper in terms of cross-sectional data only.

If the researcher has access to panel data, all results remain unchanged under the

same ideal experiment after subtracting the corresponding pre-treatment outcome

from each (potential) outcome.

The researcher is interested in the average effects of treatments on individuals who

are a specific distance away. I denote the distance between 𝑠 and 𝑟𝑖 by 𝑑(𝑠, 𝑟𝑖). The

researcher chooses the distance function which is meaningful in their application such

as “straight line distance” or driving time during rush hour. Importantly, the distance

must not vary with the presence or absence of treatment; it must be a “pre-treatment

characteristic.”

The estimand of interest is the expected (over the design distribution) average

effect of the treatment on the treated (ATT) at distance 𝑑± ℎ. Researchers often bin

6It is not essential that locations are in two-dimensional space.
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individuals within a bandwidth ℎ around 𝑑 together when distance is a continuous

variable. Distance bin weights 𝑤𝑖(𝑠, 𝑑) ≡ 1{|𝑑(𝑠, 𝑟𝑖)−𝑑| ≤ ℎ} indicate if 𝑖 is in the bin

around 𝑠.7 Of primary interest is a contrast between one treatment and no treatment:

𝜏(𝑑) ≡
∑︀

𝑠∈S Pr(𝒮 ∋ 𝑠)
∑︀

𝑖∈I𝑤𝑖(𝑠, 𝑑)𝜏𝑖(𝑠)∑︀
𝑠∈S Pr(𝒮 ∋ 𝑠)

∑︀
𝑖∈I𝑤𝑖(𝑠, 𝑑)

. (1)

Estimating the effect of one treatment compared to no treatment is impractical in

some settings because multiple treatments are observed even in small areas. Instead,

the researcher may focus on an average marginal effect of the treatment on the treated

at 𝑑:

𝜏marginal(𝑑) ≡
∑︀

𝑆∈2S Pr(𝒮 = 𝑆)
∑︀

𝑠∈𝑆
∑︀

𝑖∈I𝑤𝑖(𝑠, 𝑑)𝜏𝑖(𝑠 | 𝑆)∑︀
𝑆∈2S Pr(𝒮 = 𝑆)

∑︀
𝑠∈𝑆

∑︀
𝑖∈I𝑤𝑖(𝑠, 𝑑)

. (2)

This effect aggregates the marginal effects of location 𝑠 given all possible background

exposures 𝑆 ∖ {𝑠}. The weights again resemble the ATT, placing more weight on

assignments that are more likely to be realized.

4 Experimental setting: estimation and inference

In this section, I discuss estimators of average treatment effects on the treated (ATT)

for two settings that are particularly relevant in practice. In the first setting, the

researcher has data for separate regions, defined such that treatment in one region

does not affect outcomes in other regions, with at most one realized treatment location

per region. In the second setting, all data are for a single large region with multiple

realized treatment locations as well as unrealized, counterfactual, treatment locations.

4.1 Separate regions

Suppose the researcher collects data from separate regions (or markets) 𝑗 = 1, . . . , 𝐽 ,

formalized in Assumption 1 below. This setting simplifies estimation and inference,

and allows me to highlight the nature and interpretation of the theoretical results.

For ease of notation, let I𝑗 and S𝑗 denote the individuals and candidate treatment

7See Online Appendix 4 for weights other than the ATT. Instead of distance bins, any other kernel
weighting is possible with straightforward modifications, but bins are most common in practice. In
this paper, binning corresponds to the desired estimand rather than a kernel used to estimate a
function at a point. For simplicity of the results, I assume 𝑤𝑖(𝑠, 𝑑) ≥ 0 throughout.
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locations in market 𝑗, respectively, with {I𝑗}𝐽𝑗=1 and {S𝑗}𝐽𝑗=1 forming partitions of I
and S. Denote by 𝒲𝑗 ≡ max𝑠∈S𝑗 1{𝒮 ∋ 𝑠} whether at least one location in region

𝑗 is treated. The probability of this event is 𝜋𝑗 ≡ Pr(𝒲𝑗 = 1). The probability

of treatment at location 𝑠 ∈ S𝑗 conditional on treatment somewhere in region 𝑗 is

𝜋𝑗(𝑠) ≡ Pr(𝒮 ∋ 𝑠 | 𝒲𝑗 = 1). By definition, 𝜋𝑠 = 𝜋𝑗𝜋𝑗(𝑠).

Assumption 1 (Separate Regions). The data (I,S) can be partitioned into regions

{(I𝑗,S𝑗)}𝐽𝑗=1, such that an individual is unaffected by treatments in other regions:

For all 𝑆 ⊂ S, if 𝑖 ∈ I𝑗 and 𝑠 ∈ S𝑗′ with 𝑗 ̸= 𝑗′ then 𝑌𝑖(𝑆) = 𝑌𝑖(𝑆 ∖ {𝑠}).

Assumption 2 (Assignment Across Regions). Treatments are assigned across regions

according to a completely randomized design where each region has equal marginal

probability of receiving treatment somewhere; 𝜋 = 𝜋𝑗 for all regions 𝑗. That is,

all assignment vectors 𝑊 ∈ {0, 1}𝐽 with
∑︀

𝑗 𝑊𝑗 = 𝐽𝑡 ≡ 𝜋𝐽 are equally likely, and

assignments with
∑︀

𝑗 𝑊𝑗 ̸= 𝜋𝐽 have zero probability:

Pr(𝒲 = 𝑊 ) =

⎧⎨⎩
(︀
𝐽
𝐽𝑡

)︀−1
if

∑︀𝐽
𝑗=1𝑊𝑗 = 𝐽𝑡

0 otherwise.

Conditional on treatment in region 𝑗, assignment to a particular location within the

region is independent of assignment in other regions 𝑗′. For all 𝑠 ∈ S𝑗 and 𝑠′ ∈ S𝑗′

with 𝑗 ̸= 𝑗′:

1{𝒮 ∋ 𝑠} ⊥⊥ 1{𝒮 ∋ 𝑠′} | 𝒲𝑗 = 1,𝒲𝑗′ = 1.

Assumption 3 (One Treatment Per Region). At most one treatment is realized in

each region: For 𝑗 = 1, . . . , 𝐽 :
∑︀

𝑠∈S𝑗 1{𝒮 ∋ 𝑠} ≤ 1 with probability 1.

Under Assumptions 1 and 2, one can rewrite the ATT as

𝜏(𝑑) ≡
∑︀𝐽

𝑗=1 𝜋𝑗
∑︀

𝑠∈S𝑗 𝜋𝑗(𝑠)
∑︀

𝑖∈I𝑗 𝑤𝑖(𝑠, 𝑑)𝜏𝑖(𝑠)∑︀𝐽
𝑗=1 𝜋𝑗

∑︀
𝑠∈S𝑗 𝜋𝑗(𝑠)

∑︀
𝑖∈I𝑗 𝑤𝑖(𝑠, 𝑑)

. (3)

I focus on inverse probability weighting estimators of the ATT that take the form

of a weighted difference in means. The mean of the treated is the simple average of
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individuals at the distance of interest:

𝒴𝑡(𝑑) ≡
∑︀𝐽

𝑗=1𝒲𝑗

∑︀
𝑠∈S𝑗 1{𝒮 ∋ 𝑠}

∑︀
𝑖∈I𝑗 𝑤𝑖(𝑠, 𝑑)𝒴𝑖∑︀𝐽

𝑗=1𝒲𝑗

∑︀
𝑠∈S𝑗 1{𝒮 ∋ 𝑠}

∑︀
𝑖∈I𝑗 𝑤𝑖(𝑠, 𝑑)

while the mean of the control is based on all individuals in untreated regions who are

at the distance of interest from a candidate location and weights them to match the

ATT weights:

𝒴𝑐(𝑑) ≡
∑︀𝐽

𝑗=1
1−𝒲𝑗

1−𝜋𝑗
𝜋𝑗

∑︀
𝑠∈S𝑗 𝜋𝑗(𝑠)

∑︀
𝑖∈I𝑗 𝑤𝑖(𝑠, 𝑑)𝒴𝑖∑︀𝐽

𝑗=1
1−𝒲𝑗

1−𝜋𝑗
𝜋𝑗

∑︀
𝑠∈S𝑗 𝜋𝑗(𝑠)

∑︀
𝑖∈I𝑗 𝑤𝑖(𝑠, 𝑑)

such that the difference in means estimator is

𝜏(𝑑) ≡ 𝒴𝑡(𝑑)− 𝒴𝑐(𝑑). (4)

The next theorem states that the estimator 𝜏(𝑑) is (approximately) unbiased for

the ATT and gives its (approximate) finite population variance. This variance depends

on the following variances of potential outcomes and individual-level treatment effects

aggregated by location or by region:

𝑉 location
𝑡 (𝑑) ≡ 1

𝐽 − 1

𝐽∑︁
𝑗=1

∑︁
𝑠∈S𝑗

𝜋𝑗(𝑠)
(︁∑︁

𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)

�̄�(𝑑)
(𝑌𝑖(𝑠)− 𝜇𝑡(𝑑))

)︁2

𝑉 region
𝑐 (𝑑) ≡ 1

𝐽 − 1

𝐽∑︁
𝑗=1

(︁∑︁
𝑠∈S𝑗

𝜋𝑗(𝑠)
∑︁
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)

�̄�(𝑑)
(𝑌𝑖(0)− 𝜇𝑐(𝑑))

)︁2

𝑉 region
𝑡 (𝑑) ≡ 1

𝐽 − 1

𝐽∑︁
𝑗=1

(︁∑︁
𝑠∈S𝑗

𝜋𝑗(𝑠)
∑︁
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)

�̄�(𝑑)
(𝑌𝑖(𝑠)− 𝜇𝑡(𝑑))

)︁2

𝑉 region
𝑐𝑡 (𝑑) ≡ 1

𝐽 − 1

𝐽∑︁
𝑗=1

(︁∑︁
𝑠∈S𝑗

𝜋𝑗(𝑠)
∑︁
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)

�̄�(𝑑)

(︀
𝑌𝑖(𝑠)− 𝑌𝑖(0)− (𝜇𝑡(𝑑)− 𝜇𝑐(𝑑))

)︀)︁2

�̄�(𝑑) ≡ 1

𝐽

𝐽∑︁
𝑗=1

∑︁
𝑠∈S𝑗

𝜋𝑗(𝑠)
∑︁
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)

where 𝜇𝑡(𝑑) and 𝜇𝑐(𝑑) are the average treated and control potential outcomes, respec-
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tively, with the same weights as the ATT estimand given in Equation 3; they are

defined explicitly in the appendix.

Theorem 1. The estimator 𝜏(𝑑) is similar to an infeasible estimator 𝜏(𝑑) (displayed in

the appendix), which has analytically tractable non-asymptotic design-based properties:

(i) Under regularity conditions (Appendix A.1), 𝜏(𝑑) = 𝜏(𝑑) +𝑂𝑝(𝐽
−1).

Under Assumptions 1, 2, and 3:

(ii) unbiasedness: 𝐸(𝜏(𝑑)) = 𝜏(𝑑)

(iii) variance: var
(︁
𝜏(𝑑)

)︁
= 𝐽−1

𝐽

𝑉 location
𝑡 (𝑑)

𝐽𝑡
+ 𝑉 region

𝑐 (𝑑)
𝐽𝑐

+ 1
𝐽

𝑉 region
𝑡 (𝑑)

𝐽𝑡
− 𝑉 region

𝑐𝑡 (𝑑)

𝐽

Proof: See Appendix A.1.

Remark 1. The variance terms 𝑉 location
𝑡 (𝑑) and 𝑉 region

𝑐 (𝑑) are straightforward to es-

timate with sample analogs (Online Appendix 7), and one can bound 𝑉 region
𝑡 (𝑑) ≤

𝑉 location
𝑡 (𝑑) by Jensen’s inequality. This bounding becomes negligible asymptotically

due to the additional factor 𝐽−1 multiplying the term. 𝑉 region
𝑐𝑡 (𝑑) is a variance of treat-

ment effects that cannot be estimated consistently without strong assumptions. As is

the case for the Neyman variance of the difference in means in standard randomized

experiments, dropping the term yields a conservative estimator of the variance (cf.

Imbens and Rubin, 2015, ch. 6). Indeed, the variance in Theorem 1 simplifies to the

familiar result if there is only one candidate location in each region and it has exactly

one individual at the distance of interest.

Remark 2. I recommend that researchers report the square root of estimates of the

variance in Theorem 1 as the (approximate) standard error of 𝜏(𝑑). The approximation

of 𝜏(𝑑) by 𝜏(𝑑) is necessary for exact finite population results because the denominators

of 𝜏(𝑑) are stochastic: Depending on which candidate locations are treated, the number

of individuals near treated locations may differ. 𝜏(𝑑) uses non-stochastic denominators

and an appropriate re-centering of the estimator, such that the difference between the

Hájek-estimator 𝜏(𝑑) and the (infeasible) estimator 𝜏(𝑑) is typically much smaller than

the difference with the Horvitz-Thompson estimator that only fixes the denominators.

As a result, 𝜏(𝑑) and 𝜏(𝑑) are very close even in small samples in simulations (Online

Appendix 10).
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Remark 3. The variance in Theorem 1 is for 𝜏(𝑑) as an estimator for the in-sample

ATT defined in Equation 3. It relies solely on randomness due to treatment assignment,

not sampling. The underlying thought experiment (repeated samples re-assign the

treatment to the candidate locations) is easy to articulate and corresponds to the

variation required for interpretation as a causal effect. Hence, the researcher does not

need to additionally specify a hypothetical super-population and how the sample arose

from it. Furthermore, the variance can be estimated/bounded (see below) without

tuning parameters or possibly incorrect modeling of correlations between structural

error terms at different distances.

Remark 4. There are two variances, 𝑉 location
𝑡 (𝑑) and 𝑉 region

𝑡 (𝑑), for treated potential

outcomes but only one variance, 𝑉 region
𝑐 (𝑑) for control potential outcomes. One does not

need to define a variance of control potential outcomes aggregated by location (rather

than region), say 𝑉 location
𝑐 (𝑑), because when a region is not treated, the researcher

observes the control potential outcomes around all locations and can aggregate

accordingly. In contrast, in treated regions, the researcher does not simultaneously

observe potential outcomes for different locations being treated separately and can

therefore not aggregate, such that a term involving the less aggregated 𝑉 location
𝑡 (𝑑)

appears.

Remark 5. The estimator 𝜏(𝑑) with distance bin weights places the same weight on

all individuals at distance 𝑑± ℎ from a candidate treatment location equally (up to

the ATT weights reflecting treatment probabilities). At least two alternatives may be

worthwhile. First, one can apply equal weights to each treatment location, rather than

individual, by taking 𝑤eq
𝑖 (𝑠, 𝑑) ≡ 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}/

∑︀
𝑖′∈I 1{|𝑑(𝑠, 𝑟𝑖′) − 𝑑| ≤ ℎ}.

These weights facilitate interpretation of the estimand across distance if there is

substantial heterogeneity in population counts over distance and treatment effects

by treatment location; see Figure 1 for an illustration. Inference for the estimator

𝜏 eq(𝑑) using 𝑤eq
𝑖 (𝑠, 𝑑) is straightforward based on Theorem 1 by averaging outcomes

of individuals at the distance of interest by treatment location. In this case, the

mean and variance results become exact for 𝜏 eq(𝑑) because the denominator is no

longer stochastic as long as each location has at least one individual at the distance of

interest. Second, researchers may choose to deviate from the distance bin weight by

choosing a kernel that is continuous in distance, such as triangular weights 𝑤𝑡𝑟𝑖
𝑖 (𝑠, 𝑑) ≡

(1−|𝑑−𝑑(𝑠, 𝑟𝑖)|/ℎ)1{|𝑑(𝑠, 𝑟𝑖)−𝑑| ≤ ℎ} or weights that equal 1 within some bandwidth

around the distance of interest and then smoothly decay to 0. In the framework of this
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Figure 1: The estimands 𝜏(𝑑) and 𝜏 eq(𝑑) can be substantially different. Consider two
types of regions, which are equally likely to be treated and have individuals distributed
across space as given in panel (a). Panel (b) shows the decay of ATTs over distance for
each region as a solid line. The dashed line shows the estimand 𝜏(𝑑), which weights by
the relative number of individuals at distance 𝑑. The dotted line shows the estimand
𝜏 eq(𝑑), which weights the regions equally.

paper, changes to the weights change both the estimator and estimand. In practice,

the resulting estimator may be more robust to small errors in locations and may have

more attractive properties if one wishes to estimate the function 𝜏(·) in a framework

where asymptotically there are individuals arbitrarily close to any distance of interest

𝑑 for this estimand to be well-defined.

Remark 6. To obtain an estimate of the average aggregate effects of a treatment on

all treated individuals (irrespective of distance), I suggest summing the estimates-by-

distance 𝜏(𝑑) across a partition of distance bins with weights equal to the average (by

treatment location) number of individuals in the respective bin. See Online Appendix 5

for details.

The difference in means estimator 𝜏(𝑑) is asymptotically normal under an appro-

priate sequence of growing, finite populations, by standard arguments. For brevity, the

corollary below states asymptotic normality for a special case. Similar to the variance

result in Theorem 1, asymptotic normality of 𝜏(𝑑) around the in-sample ATT does

not require assumptions about sampling or restrictions on spatial autocorrelations

beyond those already introduced. Instead, the non-degenerate distribution is induced

by randomness in treatment assignment.

Corollary 1. Suppose Assumptions 1 and 2 and regularity conditions hold, and there
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is a single candidate location in each region. Then the estimator 𝜏(𝑑) is asymptotically

normal under sequences of growing but finite populations.

Proof: See Li and Ding (2017) for conditions and Example 10 therein for the result.

4.2 Single large region

In some settings, it is not possible to partition the data into separate regions with

treatments in one region not affecting outcomes in another and some regions having

no realized treatment locations. This section addresses estimation and inference in

such settings.

For simplicity of the final results, I focus on designs where treatment assignment

to candidate locations is independent:

Assumption 4 (Independent Assignment). Treatment is assigned to candidate lo-

cations independently, with marginal probability 𝜋𝑠 ≡ Pr(𝒮 ∋ 𝑠) for location 𝑠. For

𝑆 ⊂ S:
Pr(𝒮 = 𝑆) =

∏︁
𝑠∈𝑆

𝜋𝑠
∏︁

𝑠∈S∖𝑆

(1− 𝜋𝑠).

While settings with separate regions could be analyzed as if they were far apart

within a single region, this assumption on assignment differs from the combination

of Assumptions 2 and 3, so the results in this section do not nest the results of the

previous section.

The key idea of this section is that one can use assumptions motivated by the spatial

nature of the treatments to derive estimators for treatment effects, as well as their

standard errors, analogous to the previous section. Even without these assumptions,

the estimators estimate meaningful marginal effects (as defined in Equation 2), see

Theorem 2 (iii), and only some of the structure is needed for the approximate variance

of the estimator to remain valid, see Theorem 2 (iv).

For simplicity, I focus primarily on the following assumption.

Assumption 5 (Additively Separable Effects). The effects of the treatment are

additively separable: For all 𝑖 ∈ I, 𝑆 ⊂ S and 𝑠 ∈ 𝑆:

𝑌𝑖(𝑆)− 𝑌𝑖(𝑆 ∖ {𝑠}) = 𝑌𝑖({𝑠})− 𝑌𝑖(∅) ≡ 𝜏𝑖(𝑠).

Intuitively, the assumption requires that returns to additional realized treatment
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locations are neither increasing nor decreasing in the number of realized treatment lo-

cations nearby. Additively separable treatment effects are an appropriate specification

if the effect of each treatment is independent of the realization of other treatments.

Additive separability implies that one can write 𝑌𝑖(𝑆) − 𝑌𝑖(∅) =
∑︀

𝑠∈𝑆 𝜏𝑖(𝑠). For

instance, the effects of air-polluting power plants (Zigler and Papadogeorgou, 2021)

on exposure to pollution are likely approximately additive. The assumption does

not impose homogeneity of treatment effects: It neither requires different treatment

locations to have the same effect nor does it require a treatment location to have the

same effect on two distinct individuals, even if they are at the same distance from the

location.

The estimator based on additive separability compares individuals at the distance

of interest from realized treatment locations to (properly weighted) individuals at the

distance of interest from unrealized treatment locations:

𝜏(𝑑) ≡
∑︀

𝑠∈S 1{𝒮 ∋ 𝑠}
∑︀

𝑖∈I𝑤𝑖(𝑠, 𝑑)𝒴𝑖∑︀
𝑠∈S 1{𝒮 ∋ 𝑠}

∑︀
𝑖∈I𝑤𝑖(𝑠, 𝑑)

−
∑︀

𝑠∈S
1{𝒮/∋𝑠}
1−𝜋𝑠

𝜋𝑠
∑︀

𝑖∈I𝑤𝑖(𝑠, 𝑑)𝒴𝑖∑︀
𝑠∈S

1{𝒮/∋𝑠}
1−𝜋𝑠

𝜋𝑠
∑︀

𝑖∈I𝑤𝑖(𝑠, 𝑑)
. (5)

To derive standard errors, I use an assumption that restricts, for a given treatment,

which individuals can be affected by it. Specifically, the assumption states that the

treatment does not affect individuals farther away than a fixed, known distance.

Intuitively, the assumption generalizes the assumption of separate regions to allow

overlapping regions. Without assumptions limiting the dependence of outcomes on

treatments, one cannot estimate the variance of the estimator as otherwise only a

single instance from the data generating process is observed. Assumption 6 or similar

is needed to limit the dependence such that the variance can be estimated from the

data. It allows defining exposure mappings (cf. Aronow and Samii, 2017), which

determine for a given individual which treatment configurations lead to identical

(potential) outcomes.

Assumption 6 (No Effect After Distance 𝑑0). For all 𝑖 ∈ I, 𝑆 ⊂ S with 𝑠 ∈ 𝑆: if

𝑑(𝑠, 𝑟𝑖) > 𝑑0, then 𝑌𝑖(𝑆) = 𝑌𝑖(𝑆 ∖ {𝑠}).

The following theorem describes the (approximate) finite population properties of

𝜏(𝑑):

Theorem 2. The estimator 𝜏(𝑑) is similar to an infeasible estimator 𝜏(𝑑) (displayed in

the appendix), which has analytically tractable non-asymptotic design-based properties:
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(i) Under standard regularity conditions 𝜏(𝑑)− 𝜏(𝑑) →𝑝 0.

(ii) Under Assumptions 4 and 5: unbiasedness for ATT, 𝐸(𝜏(𝑑)) = 𝜏(𝑑)

(iii) Under Assumption 4: 𝐸(𝜏(𝑑)) = 𝜏marginal(𝑑) (unbiasedness for marginal ATT)

(iv) Under Assumptions 4 and 6: The variance of 𝜏(𝑑) is

var(𝜏(𝑑)) =
(︀
𝑉𝑡(𝑑) + 𝑉𝑐(𝑑) + 𝑉×(𝑑) + 𝑉∘(𝑑)− 𝑉𝑡𝑡(𝑑)− 𝑉𝑐𝑐(𝑑)− 𝑉𝑐𝑡(𝑑)

)︀
/|S|

with the notation defined in Appendix A.2.

Proof: See Appendix A.2.

Remark 7. The variance expression is similar in style to that in Theorem 1. The

first two terms, 𝑉𝑡 and 𝑉𝑐, resemble variances of individual level potential outcomes

corresponding to treatment and control of a candidate location at distance 𝑑. The

third term, 𝑉×(𝑑) takes observable cross-products between pairs of individuals near

some of the same candidate treatment locations. The fourth term, 𝑉∘(𝑑), includes only

individuals receiving positive weight for multiple candidate treatment locations (as

well as a correction for individuals receiving positive weight despite being farther than

𝑑0 away). The final three terms, 𝑉𝑡𝑡(𝑑), 𝑉𝑐𝑐(𝑑), and 𝑉𝑐𝑡(𝑑), are averages of squares

of differences in potential outcomes that cannot be observed simultaneously, and

are therefore unobservable similar to the variance of treatment effects in Theorem 1.

Dropping the final three terms yields a conservative estimator of the variance because

these terms are non-negative by construction.

Remark 8. To meaningfully reduce the design-based variance of the estimator, one

generally needs to expand the sampling area, rather than the number of individuals or

candidate locations within a fixed area. Adding individuals while holding the sample

area fixed does not generally reduce the variance of the estimator. While �̄�(𝑑) increases

mechanically, the aggregate weights
∑︀

𝑖 𝑣
𝑡 and

∑︀
𝑖 𝑣

𝑐 increase proportionally to �̄�(𝑑)2

in this scenario such that (𝑉𝑡 + 𝑉𝑐)/�̄�(𝑑) remains stable. The effect of increasing

the number of (candidate) treatment locations within a fixed sample area on the

variance of the estimator is more nuanced. However, the estimator of that variance will

generally become more conservative because additional candidate locations increase

the number of unobservable and hence inestimable treatment configurations (captured

by 𝑉𝑐𝑡,𝑢(𝑑), 𝑉𝑡,𝑢(𝑑), and 𝑉𝑐,𝑢(𝑑)) exponentially.
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While the results above are for an estimator motivated by additive separability,

the ideas in this paper can be used to motivate estimators and derive their properties

under alternative assumptions such as:

Assumption 7 (Only Nearest Realized Location Matters). For all 𝑖 ∈ I, 𝑆 ⊂ S with

𝑠 ∈ 𝑆, 𝑠′ ∈ S: if 𝑑(𝑠, 𝑟𝑖) ≤ 𝑑(𝑠′, 𝑟𝑖), then 𝑌𝑖(𝑆) = 𝑌𝑖(𝑆 ∪ {𝑠′}) = 𝑌𝑖(𝑆 ∖ {𝑠′}).

Typically, only the nearest realized treatment location matters if individuals only

access, or visit, a single realized treatment location. For instance, if a developing

country quasi-randomly chooses locations to construct new schools (Duflo, 2001),

it may be plausible to assume that only the nearest realized school matters to an

individual. For the effects of infrastructure projects, such as additional bus or subway

stops, on commute times and real estate prices (Gupta et al., 2022), the appropriate

assumption may depend on the type of transit stop. An additive effects specification

for bus or subway stops may be a good approximation if each stop gives access to

a different transit line. A specification where only the nearest stop matters may be

more appropriate for stops of the same line.

Theorem 3. The average effect of the treatment on the treated, 𝜏(𝑑), is identified

under Assumptions 4, 6, and 7.

Proof: See Appendix A.3.

The proof of Theorem 3 is constructive in that it suggests an estimator that exploits

the combination of assumptions:

𝜏nearest(𝑑) ≡
∑︀

𝑠∈S 1{𝒮 ∋ 𝑠}
∑︀

𝑖∈I
𝒩𝑖(𝑠)

Pr(𝒩𝑖(𝑠)=1|𝒮∋𝑠)𝑤𝑖(𝑠, 𝑑)𝒴𝑖∑︀
𝑠∈S 1{𝒮 ∋ 𝑠}

∑︀
𝑖∈I

𝒩𝑖(𝑠)
Pr(𝒩𝑖(𝑠)=1|𝒮∋𝑠)𝑤𝑖(𝑠, 𝑑)

−
∑︀

𝑠∈S
1{𝒮/∋𝑠}
1−𝜋𝑠

𝜋𝑠
∑︀

𝑖∈I
𝒩𝑖(0)

Pr(𝒩𝑖(0)=1|𝒮/∋𝑠)𝑤𝑖(𝑠, 𝑑)𝒴𝑖∑︀
𝑠∈S

1{𝒮/∋𝑠}
1−𝜋𝑠

𝜋𝑠
∑︀

𝑖∈I
𝒩𝑖(0)

Pr(𝒩𝑖(0)=1|𝒮/∋𝑠)𝑤𝑖(𝑠, 𝑑)

where 𝒩𝑖(𝑠) is an indicator for 𝑠 being the nearest realized treatment location to 𝑖,

and 𝒩𝑖(0) is an indicator for no treatment location within 𝑑0 of 𝑖 being realized. See

Online Appendix 6 for additional discussion.
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5 Analysis of observational data

While the previous section analyzed stylized experiments with randomized assignment

that allow the estimation of causal effects under minimal assumptions, often researchers

can only study spatial treatments in observational data. In this section, I first lay out

a formal assumption under which analysis using observational data can closely mirror

the “ideal experiment” discussed above, and then discuss the challenging practical

implementation of such an assumption with spatial data.

5.1 Unconfoundedness for spatial treatments

With observational data, the assignment of treatment to candidate locations was not

randomized. Instead, the researcher views the experimental setting described above

as the “ideal experiment.” A close analog to true randomization is unconfounded

treatment assignment: When comparing particular locations that are identical along

observable characteristics, the treatment is not systematically assigned to locations

with higher or lower potential outcomes. Propensity scores, giving the probabilities

of treatment at a location given the observable characteristics, then play the roles of

the probabilities such as Pr(𝒮 ∋ 𝑠) of the experimental assignment mechanism. The

analysis proceeds as if the researcher had run this particular ideal experiment.

For an internally consistent ideal experiment, the unconfoundedness assumption for

spatial treatments takes the treatment location as the unit of observation. It conditions

jointly on characteristics of the entire spatial neighborhoods and all individuals in them.

Alternative individual-level unconfoundedness assumptions stating independence of

an individual’s potential outcomes and assignment to a nearby treatment location

may not be consistent with any single experiment that assigns treatment among

candidate locations. This individual-level unconfoundedness may therefore invalidate

the thought experiment on which the standard errors derived in this paper are based.

The formulation of unconfoundedness below therefore adapts the statements in, for

instance, Rosenbaum (2002, p. 78) and Imbens and Rubin (2015, p. 259) to the spatial

setting.

Assumption 8 (Spatial Unconfoundedness). Among a known set of locations S̃ ⊂ R2,

treatment assignment to locations 𝑠 ∈ S̃ is unconfounded at distance 𝑑± ℎ, meaning
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that

𝜋𝑠 ≡ Pr(𝒮 ∋ 𝑠) = 𝑒
(︁
𝑍𝑠, (𝑋𝑖)𝑖∈I: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ

)︁
where 𝑍𝑠 are fixed, observable characteristics of the spatial neighborhood of 𝑠 and 𝑋𝑖

are fixed, observable characteristics of individual 𝑖. Specifically, treatment probabilities

do not depend on potential outcomes, and locations with identical characteristics have

equal probability of treatment.

The researcher specifies the neighborhood and individual characteristics (for in-

stance, including their locations 𝑟𝑖 relative to the location 𝑠) that one needs to

condition on to satisfy unconfoundedness based on institutional knowledge relevant to

the application.

In addition to unconfoundedness, a positivity (overlap) condition for the candidate

locations S ⊂ S̃ of interest is required to ensure that for any neighborhood characteris-

tics of treatment locations in the sample, there is some chance of observing such a

neighborhood both with and without realized treatment. In practice, positivity has

two implications: First, one should not condition on latitude and longitude because in

any given sample one cannot find observations with the same latitude and longitude

but different exposure to the spatial treatment. Second, because typically no two

neighborhoods are exactly the same – among else, the unconfoundedness assumption

above implicitly conditions on the number of individuals – some smoothing and equiv-

ariance are typically required. For instance, the approach recommended below can

build in equivariance to shifts and rotations of space, imposing that absolute locations

(latitude and longitude) and orientation (direction of North) are irrelevant. Instead,

the approach only conditions on the relative locations of different units and spatial

characteristics.

Turning towards estimation, some economists are concerned about the effect of

using an estimated propensity score rather than the known experimental assignment

probabilities. These concerns can be at least partially alleviated by using a “double

robust” moment condition and sample splitting (Chernozhukov et al., 2018). The

resulting estimator tends to be more robust against small estimation errors in the

propensity score. Take, as the level of observation, the pair (𝑖, 𝑠) ∈ I× S. Let 𝜇𝑑 be

the expected outcome at distance 𝑑 given neighborhood and individual characteristics
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as well as treatment status, and let 𝑒 be the propensity score. The moment condition

𝜓𝜏(𝑑)(𝒴 ,𝒮, 𝑍,𝑋) = 1{𝒮 ∋ 𝑠}
(︁
𝒴 − 𝜏(𝑑)− 𝜇𝑑

(︀
𝑍,𝑋,𝒮 ∖ {𝑠}

)︀)︁
−
𝑒(𝑍,𝑋)

(︀
1− 1{𝒮 ∋ 𝑠}

)︀
1− 𝑒(𝑍,𝑋)

(︀
𝒴 − 𝜇𝑑(𝑍,𝑋,𝒮)

)︀ (6)

satisfies Neyman orthogonality (Chernozhukov et al., 2018). It corresponds closely to

the IPW estimator 𝜏 in Equation 5 under Assumption 4 of independent assignment

to locations.

5.2 Finding counterfactual treatment locations using convo-

lutional neural networks

The key challenge in implementing an approach based on the unconfoundedness

Assumption 8 is to find locations without treatment that are in neighborhoods

otherwise similar to the neighborhoods of locations where a treatment is observed

in the data. There are two aspects to this challenge: First, standard methods for

propensity score estimation, such as logistic regression, are ill-suited for conditioning

on detailed (relative) locations of spatial features in the neighborhood of any given

point. Second, with continuous latitude and longitude, the space of possible locations

is infinite and any fine discretization may create an impractically large number of

possible locations.

I use convolutional neural networks to overcome this challenge. The key insight here

is that spatial data can typically be “plotted on a map.” Different spatial covariates

are placed at different levels of a third, non-spatial dimension. Spatial data share the

same data structure as image data, where the third non-spatial dimension corresponds

to the intensity of color channels. Convolutional neural networks have enjoyed recent

popularity for analyzing image data (Krizhevsky et al., 2012).

In the proposed implementation, the output of the convolutional neural network at a

particular point in space is an assessment of how similar the point and its neighborhood

are to the real locations of the treatment and their neighborhoods. Convolutional

neural networks can computationally quickly make such assessments at many points

in space. One can then collect the counterfactual locations with assessments similar

to real locations and proceed with propensity score estimation within this sample.

Intuitively, while the neural network becomes good at distinguishing arbitrary locations
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in space from real treatment locations, there will be “false positives” that it cannot

distinguish from real locations. These counterfactual locations are in neighborhoods

resembling the neighborhoods of real treatment locations, or else the neural network

could have told them apart.

The convolution operation 𝑓 on a grid 𝑣 of input values 𝑣𝑥,𝑦 is computed as

𝑓(𝑣)𝑥,𝑦 =
𝑘∑︁

𝑎=−𝑘

𝑘∑︁
𝑏=−𝑘

𝛽𝑎,𝑏 · 𝑣𝑥+𝑎,𝑦+𝑏

such that the value at grid cell (𝑥, 𝑦) is based on input values within 𝑥± 𝑘, 𝑦 ± 𝑘 for

a fixed 𝑘. The coefficients 𝛽, which are estimated by the neural network, capture

the weight placed on input values at locations relative to (𝑥, 𝑦). By using the same

𝛽 to compute the convolution at all points (𝑥, 𝑦), convolutional neural networks

can be dramatically more parsimonious than fully connected neural networks and

enforce equivariance to shift. Using multiple layers of convolutions combined with

non-linear activation functions at each grid cell allows the network to learn non-linear

relationships.

In training the neural network, key implementation choices involve data augmenta-

tion (Simard et al., 2003) and the setup as a generative adversarial task (Goodfellow

et al., 2014) while retaining the ease of training “image classification” algorithms.

Data augmentation can effectively impose an equivariance to operations such as shift,

rotation, and mirroring. Equivariance formalizes the economic logic that relative

locations of spatial features and characteristics matter, rather than their absolute

locations and orientations. Generative adversarial networks draw from the modes of

the treatment distribution across space rather than estimating mean locations (cf.

Goodfellow, 2016; Lotter et al., 2016), thereby generating more realistic separate loca-

tions, and implicitly maintain an internal estimate of the distribution of the outcome

across space, which here resembles the propensity score. In Online Appendix 2 and 3,

I discuss the implementation both generically and for the application of this paper in

more detail.

For inference, I recommend researchers report standard errors conditional on the

estimated counterfactual treatment locations and propensity scores. These standard

errors reflect a well-defined thought experiment of randomizing treatment assignment

among a known set of locations, under which the estimator has desirable properties.
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Inference results for convolutional neural networks are, to the best of my knowledge,

not currently available, and the estimator selecting counterfactual locations that are

most similar to realized treatment locations (akin to matching) is a highly non-smooth

function of the data and neural network parameters. At the cost of a less-interpretable

thought experiment, researchers may reduce the variance due to the neural network by

computing estimates for different “draws” of counterfactual locations from the neural

network (based on input data with slightly different shift and rotation) and averaging

the estimates as well as standard errors across draws.

6 Extension: non-spatial settings

While I discuss the methods and theory in this paper in the context of spatial

treatments, they are applicable more generally. There are two defining features: The

treatments are separate units from the individuals whom they affect, and the distance

between treatment and individuals is observed and unaffected by the treatment. For

the immediate applicability of the methods and results in this paper, treatments need

to be binary, but the conceptual insights apply similarly to non-binary treatments.

The space treatments and individuals are located in also need not be a geographic

space or two-dimensional, as long as it is observed by the researcher.

For an example of a non-spatial setting, consider the question of how a new entrant

affects outcomes for existing firms selling differentiated products. In the notation of this

paper, the (fixed) location of existing firm 𝑖’s product in (potentially multi-dimensional)

product space is given by fixed characteristics 𝑟𝑖, and 𝑠 ∈ 𝒮 is the location of an

entrant. In a design-based approach to this problem, the researcher specifies alternative

points (“candidate locations”) in product space where new entrants would have been

plausible. A structural model of potential profits at different entrant locations may

determine these probabilities of entry at a given location. For quasi-random variation,

the researcher postulates that idiosyncratic cost or preference shocks co-determine

realized entry locations. If these shocks are independent of the potential outcomes of

existing firms (conditional on the expected profit of the entrant), unconfoundedness

Assumption 8 may be satisfied. The methods proposed in this paper then allow the

researcher to study how entry differentially affects firms for whom entrants are or are

not close (in product space) competitors.

Recent work has brought attention to some other settings that are not well-
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described by individual-level treatments. Adao et al. (2019); Goldsmith-Pinkham

et al. (2020); Borusyak et al. (2022) study the Bartik (1991), or shift-share, design,

specifically. In the canonical example, cities 𝑖 are affected by shocks to different

industries 𝑠 ∈ S. In the context of this paper, the distance between a city and an

industry is related to the industry share, which is taken as fixed, and the quasi-random

variation is due to which industry experiences a shock. Borusyak and Hull (2020) study

such settings within a regression framework allowing treatments to be non-binary but

requiring correct functional form and treatment effect homogeneity for interpretation.

The present paper focuses on binary treatments in a potential outcomes framework,

yielding non-parametric inverse probability weighting estimators and finite population

design-based standard errors.

Some applications fitting into the framework of this paper are currently analyzed

as individual-level treatments with clustered assignment. For instance, when studying

the effect of state laws on the outcomes of residents in the cross-section (or panel),

the level of the treatment does not coincide with the level of the outcome variable.

For such applications, the framework of the current paper yields results identical

to those for experiments with clustered assignment by imposing that state laws can

only vary across states. One may argue that, if interest is in the effect of, say, a

universal minimum wage, the framework of this paper is more appropriate than one

with individual-level treatments. Conceptualizing potential outcomes as functions

of an individual-level minimum wage may incorrectly miss spillover, or equilibrium,

effects. At the individual-level, there may be a difference between changing only

one’s own treatment or the treatment of everyone in the state. However, in practice,

this misspecification has no impact on estimation and inference as long as one only

considers assignments clustered at the state-level and there are no spillovers across

states. The advantage of the framework of this paper is that it very naturally allows

studying for instance, “spillovers” that are mediated by distance. Distance is often left

implicit in these applications. Distance may measure whether an individual resides in

the state, a neighboring state, or farther away; or more generally and continuously

how close the individual is to the state, for instance, geographically or by the number

of flight connections.

The framework of this paper further generalizes the potential outcomes framework

with interference, which itself generalizes the potential outcomes framework under the

stable unit treatment value assumption (SUTVA). Specifically, outcomes for individual
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𝑖 under SUTVA only depend on 𝑖’s own treatment, 𝒴𝑖 = 𝑌𝑖(𝒜𝑖) with treatment 𝒜𝑖 ∈ R
(Rubin, 1974, 1980). With interference, 𝑖’s outcome may depend also on the treatments

of other individuals, 𝒴𝑖 = 𝑌𝑖(𝒜) with 𝒜 = [𝒜1,𝒜2, . . . ,𝒜𝑛] ∈ R𝑛 (Aronow and Samii,

2017). In the present paper, treatments are not directly associated with individuals.

Hence, the framework of this paper generalizes the treatment to not (necessarily) be

of the same dimension as the number of individuals, 𝒴𝑖 = 𝑌𝑖(𝒜) with 𝒜 ⊂ A where A
is the set of possible treatment assignments and may differ from R𝑛.

7 Application: foot traffic in times of COVID-19

In this section, I demonstrate the use of the proposed methods to study the effect

of grocery stores on the number of visitors to restaurants during COVID-19 shelter-

in-place policies.8 Here, grocery store locations are the treatment locations, and

restaurants are the individuals for whom I estimate average effects by distance from

treatment. I use data on the location of businesses in the San Francisco Bay Area,

shown in Figure 2(a), and the number of visitors to them from SafeGraph, available to

academic researchers. While this particular application has not been studied in prior

work, existing empirical studies could have been replicated for this demonstration if

location data was publicly available.9

When consumers make only essential trips, such as getting groceries, other busi-

nesses relying on foot traffic, such as restaurants, may benefit from being located

nearby. Local governments in the San Francisco Bay Area urged residents to only

make essential trips during shelter-in-place policies in April 2020. At the same time,

other businesses such as restaurants remained open for takeout business. However,

drastically reduced foot traffic and customers over time led to financial distress for

many businesses (Yang et al., 2020). In such times, a location along consumers’

essential trips may benefit these businesses.

The causal interpretation of the cross-sectional estimators of this paper rests on

the spatial unconfoundedness assumption: Restaurants in neighborhoods differing in

their number of grocery stores, but similar in terms of all other kinds of businesses

and observable characteristics, would have comparable numbers of visitors if they

8See Online Appendix 3 for the exact definitions of grocery stores and restaurants used in this
analysis.

9See Online Appendix Table OA1 for examples of empirical studies of spatial treatments.
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(a) map of sample

grocery store other business restaurant

(b) example location

Figure 2: The sample includes businesses in the San Francisco Bay Area between San
Francisco and San Jose (panel (A)). The locations of real grocery stores are marked
by solid red triangles. Restaurants are marked by black circles. The black triangles
are grocery stores outside the main study area; their location is considered fixed and
restaurants near them are not part of the estimation procedure. In total, there are
167 grocery stores, as well as 1627 distinct restaurants that were open as of January
2020 within 0.5 miles from any of the grocery stores (real or counterfactual within the
main study area). Panel (b) zooms in on a location in Redwood City, also indicating
locations of other businesses (green squares), and illustrates the size of grid cells as
well as circles with radii 0.05mi, 0.10mi, and 0.15mi around the two grocery store
locations in the plotted area.
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had similar exposure to grocery stores. The key argument is that when businesses

chose their locations before the COVID-19 pandemic, they faced many different

considerations and constraints. For grocery stores, the exact locations of nearby

restaurants were not the primary concern. Similarly, holding the relative locations of

all other businesses fixed, neighborhoods with one more/fewer grocery store appeared

similar to restaurants.

For this application, I assume unconfoundedness conditioning on the relative

locations of businesses by industry. Panel (b) of Figure 2 illustrates these controls

by plotting as green squares other businesses near a particular grocery store in the

sample. I superimpose a grid with cells of size 0.025mi × 0.025mi that shows the

discretization used by the convolutional neural network. In estimation, these other

businesses are divided into seven groups by their four-digit NAICS code, as listed in

Online Appendix Table OA3, and the count of businesses by industry for each grid cell

is used as a covariate. In training the network, I impose continuous shifts to the grid,

such that the discretization becomes less relevant, as well as rotation and mirroring

to build in equivariance such that only relative locations matter. In principle, one

could similarly control for any other variables that can be plotted on a map, such as

average house price by grid cell or the fraction of individuals with college degrees in

the census tract covering the grid cell, if such data are available and relevant for a

given application. Details on the implementation of the neural network and propensity

score estimation are given in Online Appendix 3.

Researchers can assess the plausibility and quality of the counterfactual grocery

store locations predicted by the neural network and the estimated propensity scores

by considering two notions of balance.

Figure 3 assesses whether restaurants near real grocery stores, compared to restau-

rants near counterfactual locations, are exposed to one additional grocery store at the

distance of interest, with no differences in exposure at other distances. Each panel

focuses on restaurants at a different distance from (real and counterfactual) grocery

store locations. The line shows the difference in the average number of real grocery

stores by distance from these restaurants. In each panel, there is little difference

in exposure for restaurants near real and counterfactual restaurants, except at the

distance for which these restaurants serve as treated and control, respectively. Hence,

the estimated effect at a particular distance indeed reflects the difference between

one more/fewer grocery store at that distance. Because balance in exposure to real
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grocery stores is essential for interpretation, I include covariates describing exposure

directly in the propensity score estimation. If there were differences in exposure at

other distances, one could not interpret the estimates as the effect of adding one more

grocery store. Instead, under appropriate assumptions, it may reflect the effect of

shifting a grocery store from another distance to the distance of interest.

In Figure 4, we see that other observable characteristics of the neighborhoods of

real and counterfactual grocery store locations are similar. Each panel shows the

fraction of all businesses that are classified as a particular industry, by distance from

the grocery store locations. The two lines show the fraction for businesses near real

and counterfactual grocery store locations, respectively. At the distances shown,

the composition of businesses, as given by their industries, appears similar in the

neighborhoods of either type of location. Overall, the reasonable balance suggests

that the neural networks succeeded in finding counterfactual locations similar to real

grocery store locations. Note that restaurants, recreation, museums, and religious

locations are used as predictors in the neural network, but dentists and automotive

businesses are not.10 Except for restaurants, none of these industries are used in the

propensity score estimation.

Researchers can also informally inspect the suitability of counterfactual locations

by plotting both real and counterfactual locations on a map. Systematic differences

between real and counterfactual locations imply that estimated effects reflect not just

differences in exposure to grocery stores, but also these other differences.

Figure 5 shows estimates and standard errors by distance from treatment for the

estimator given in Equation 5. Standard errors take the counterfactual grocery store

locations predicted by the neural network and the estimated propensity scores as

given. Standard errors are based on Assumption 4 of independent assignment and

Assumption 6 that treatments have no effect beyond a distance of 𝑑0 ≡ 0.2 miles.

Independent assignment may appear implausible if one believes that clustering of

grocery stores close to one another is particularly likely or unlikely. In practice,

I observe real grocery stores both in isolated locations and close to other grocery

stores. However, if information on the covariances (joint location probabilities) was

available one could impose it instead of independent assignment (zero covariance). No

effect beyond 0.2 miles appears plausible given the substantively close to zero point

10The count of dentists and automotive businesses is used by the neural network together with all
“other industries” as a single covariate per grid cell.
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Figure 3: Differential exposure of treated and control restaurants to grocery stores at
different distances. Each panel holds fixed restaurants that are at a particular distance
from real or counterfactual grocery stores.
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Figure 4: Industry composition of businesses near real and counterfactual grocery
stores.
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Figure 5: Estimated average effect of grocery stores on restaurants at different distances.
The outcome is the inverse hyperbolic sign of the number of visits as recorded by
SafeGraph. Bars indicate ±1.96 standard errors.
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estimates beyond 0.1 miles in Figure 5. Note, however, that such a figure is not proof

of the sharp null hypothesis of no effect of any possible grocery store exposure beyond

such distances. Without further assumptions, the figure only suggests zero average

marginal effects. If each grocery store brings a separate set of potential customers

to nearby restaurants, treatment effects may be approximately additively separable

(Assumption 5), in which case average marginal effects equal average effects.

The estimates show substantial positive effects of being located very close to a

grocery store, with no effect past a few minutes of walking. Table 1 shows the point

estimates corresponding to Figure 5 up to a distance of 0.25 miles. For the restaurants

in the closest bin of up to 0.025 miles, the average effect more than doubles the number

of SafeGraph-recorded visitors both when estimating an approximate percentage effect

using inverse hyperbolic sine units and when estimating effects in levels. In the

second closest bin of restaurants between 0.025 and 0.05 miles from grocery stores,

the estimated effects are smaller and not statistically significant at the 5% level (using

a normal approximation). For any longer distance, the effects are both economically

small and statistically insignificant. Effects close to 0 past a couple of minutes of

walking may be due to either the unwillingness of consumers to walk longer distances

or the lack of a need to do so because there typically is a closer alternative restaurant

or coffee shop.

Table 1 also shows double robust estimates of treatment effects. For these esti-

33



T
ab

le
1:

E
st
im

a
te
d
eff

ec
ts

o
n
th
e
n
u
m
b
er

o
f
v
is
it
s
to

re
st
a
u
ra
n
ts

u
si
n
g
d
iff
er
en
t
es
ti
m
a
to
rs
.
T
h
e
fi
rs
t
p
a
n
el

u
se
s
th
e
in
v
er
se

p
ro
b
a
b
il
it
y

w
ei
gh

ti
n
g
es
ti
m
at
or
s
fo
r
sp
at
ia
l
ex
p
er
im

en
ts

p
ro
p
os
ed

in
th
is

p
ap

er
.
T
h
e
se
co
n
d
p
an

el
u
se
s
a
d
ou

b
le

ro
b
u
st

ve
rs
io
n
of

th
e
sp
at
ia
l
ex
p
er
im

en
t

es
ti
m
at
or
.
F
or

ea
ch

p
an

el
,
“I
H
S
”
re
fe
rs

to
th
e
eff

ec
t
in

in
ve
rs
e
h
y
p
er
b
ol
ic

si
n
e
u
n
it

an
d
“l
ev
el
”
to

eff
ec
ts

in
le
ve
ls
.
S
ta
n
d
ar
d
er
ro
rs

ar
e
gi
ve
n
in

p
ar
en
th
es
es
.
R
ow

s
la
b
el
ed

“p
er
ce
n
t
in
cr
.”

sh
ow

th
e
p
er
ce
n
t
in
cr
ea
se

(o
r
d
ec
re
as
e)

re
la
ti
ve

to
th
e
m
ea
n
v
is
it
s
of

th
e
co
n
tr
ol

re
st
au

ra
n
ts

at
th
at

d
is
ta
n
ce
.

D
is
ta
n
ce
:

0.
00
0
m
i

0.
02
5
m
i

0.
05
0
m
i

0.
07
5
m
i

0.
10
0
m
i

0.
12
5
m
i

0.
15
0
m
i

0.
17
5
m
i

0.
20
0
m
i

0.
22
5
m
i

–
0.
02
5
m
i

–
0.
05
0
m
i

–
0.
07
5
m
i

–
0.
10
0
m
i

–
0.
12
5
m
i

–
0.
15
0
m
i

–
0.
17
5
m
i

–
0.
20
0
m
i

–
0.
22
5
m
i

–
0.
25
0
m
i

S
pa
ti
al

E
xp
er
im

en
t
E
st
im

at
or
s:

IH
S
:

1.
05

0.
41

0.
25

0.
09

0.
16

0.
01

-0
.0
4

0.
00

-0
.0
5

0.
13

(0
.4
7)

(0
.4
9)

(0
.5
0)

(0
.5
7)

(0
.6
3)

(0
.5
7)

(0
.6
5)

(0
.6
4)

(0
.6
0)

(0
.5
3)

p
er
ce
n
t
in
cr
.:

18
7

52
29

9
17

1
-4

0
-5

14

le
ve
l:

13
.0
7

3.
75

-1
.3
5

0.
68

1.
84

0.
83

-0
.3
6

-0
.5
0

-6
.6
9

0.
35

(
7.
46
)

(
8.
07
)

(1
0.
91
)

(1
0.
13
)

(
7.
84
)

(
9.
42
)

(
9.
89
)

(
8.
58
)

(1
0.
31
)

(
5.
97
)

p
er
ce
n
t
in
cr
.:

11
6

30
-9

5
16

7
-3

-4
-3
5

2

D
ou

bl
e
R
ob
u
st

E
st
im

at
or
s
fo
r
S
pa
ti
al

E
xp
er
im

en
ts
:

IH
S
:

1.
16

0.
45

0.
27

0.
03

0.
12

-0
.0
3

-0
.0
8

0.
01

-0
.0
6

0.
08

p
er
ce
n
t
in
cr
.:

22
1

57
31

3
13

-3
-8

1
-6

8

le
ve
l:

14
.9
7

2.
86

0.
28

-0
.2
8

0.
07

-0
.7
2

-2
.3
3

-0
.6
4

-3
.6
7

0.
23

p
er
ce
n
t
in
cr
.:

13
2

23
2

-2
1

-6
-1
7

-5
-1
9

2

34



mates, I estimate the propensity score and outcome models using cross-fitting: When

predicting treatment status or outcome level for a grocery store or restaurant, I use

only grocery stores or restaurants that are at least 1 mile away. The results are

qualitatively and quantitatively similar to the inverse probability weighting estimators

suggesting that “overfitting” and noise in propensity score estimation may not be of

first-order concern.

8 Conclusion

The causal effects of treatments occurring at locations in space on individuals located

nearby are of interest across fields of economics and social sciences. In this paper,

I argue that identification, estimation, and inference using design-based ideas are

conceptually attractive, analytically tractable, and computationally feasible. I show

that an ideal experiment varying the location of the treatment does not validate the

inner vs. outer ring empirical strategy commonly applied in empirical practice. Instead,

this ideal experiment validates the comparison of individuals near realized treatment

to individuals near counterfactual locations where the treatment could have happened

(but did not). The finite population design-based variances derived in this paper

express the variation due to the ideal experiment. Design-based inference removes

the need to specify a hypothetical super-population and sampling scheme. Because

counterfactual locations of treatments are typically not available in observational data,

I propose a computationally feasible method using convolutional neural networks

to identify locations that are observationally equivalent to real treatment locations.

These counterfactual locations allow the estimation of causal effects in observational

data under a “random conditional on observables” (unconfoundedness) assumption.

I demonstrate the use of these methods by studying the causal effects of grocery

stores on the number of visitors to nearby restaurants during COVID-19 shelter-in-

place policies. In this application, the counterfactual grocery store locations proposed

by the neural network are in neighborhoods that are indeed observationally similar to

the neighborhoods of real grocery stores. I estimate substantial effects for restaurants

very close to a grocery store, on average more than doubling the number of visitors,

as measured in data from SafeGraph. The design-based standard errors take into

account the complex ways in which exposure to grocery stores (the treatment) is

correlated across restaurants (outcome units) by design of the ideal experiment. Hence,
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I find significant externalities between businesses. Such externalities may lead to

socially undesirable concentrations of consumers during a pandemic, as well as spatial

inequities across business owners to the extent that they are unanticipated and not

internalized through, for instance, differential rent.

A Proofs

A.1 Theorem 1

Define the estimator

𝜏(𝑑) ≡ 𝜇𝑡(𝑑)− 𝜇𝑐(𝑑) +

∑︀𝐽
𝑗=1𝒲𝑗

∑︀
𝑠∈S𝑗 1{𝒮 ∋ 𝑠}

∑︀
𝑖∈I𝑗 𝑤𝑖(𝑠, 𝑑)(𝒴𝑖 − 𝜇𝑡(𝑑))∑︀𝐽

𝑗=1 𝜋𝑗
∑︀

𝑠∈S𝑗 𝜋𝑗(𝑠)
∑︀

𝑖∈I𝑗 𝑤𝑖(𝑠, 𝑑)

−
∑︀𝐽

𝑗=1
1−𝒲𝑗

1−𝜋𝑗
𝜋𝑗

∑︀
𝑠∈S𝑗 𝜋𝑗(𝑠)

∑︀
𝑖∈I𝑗 𝑤𝑖(𝑠, 𝑑)(𝒴𝑖 − 𝜇𝑐(𝑑))∑︀𝐽

𝑗=1 𝜋𝑗
∑︀

𝑠∈S𝑗 𝜋𝑗(𝑠)
∑︀

𝑖∈I𝑗 𝑤𝑖(𝑠, 𝑑)

where

𝜇𝑡(𝑑) ≡
∑︀𝐽

𝑗=1 𝜋𝑗
∑︀

𝑠∈S𝑗 𝜋𝑗(𝑠)
∑︀

𝑖∈I𝑗 𝑤𝑖(𝑠, 𝑑)𝑌𝑖(𝑠)∑︀𝐽
𝑗=1 𝜋𝑗

∑︀
𝑠∈S𝑗 𝜋𝑗(𝑠)

∑︀
𝑖∈I𝑗 𝑤𝑖(𝑠, 𝑑)

𝜇𝑐(𝑑) ≡
∑︀𝐽

𝑗=1 𝜋𝑗
∑︀

𝑠∈S𝑗 𝜋𝑗(𝑠)
∑︀

𝑖∈I𝑗 𝑤𝑖(𝑠, 𝑑)𝑌𝑖(0)∑︀𝐽
𝑗=1 𝜋𝑗

∑︀
𝑠∈S𝑗 𝜋𝑗(𝑠)

∑︀
𝑖∈I𝑗 𝑤𝑖(𝑠, 𝑑)

.

For brevity, I suppress the dependence on 𝑑 in the following. Let 𝑝 denote the the

non-stochastic denominator used in 𝜏 ; 𝑝𝑡 and 𝑝𝑐 the stochastic denominators of �̂�𝑡 = 𝒴𝑡

and �̂�𝑐 = 𝒴𝑐 from the main text; and �̃�𝑡 =
𝑝𝑡
𝑝
�̂�𝑡 and �̃�𝑐 =

𝑝𝑐
𝑝
�̂�𝑐. Then 𝜏 = 𝑝

𝑝𝑡
�̃�𝑡 − 𝑝

𝑝𝑐
�̃�𝑐

and 𝜏 = 𝜇𝑡 − 𝜇𝑐 + �̃�𝑡 − 𝑝𝑡
𝑝
𝜇𝑡 − �̃�𝑐 +

𝑝𝑐
𝑝
𝜇𝑐.

For part (i) of Theorem 1, apply the mean value theorem to the function

Δ̃(𝑝𝑡, 𝑝𝑐, �̃�𝑡, �̃�𝑐) ≡
𝑝

𝑝𝑡
�̃�𝑡 −

𝑝

𝑝𝑐
�̃�𝑐 − (𝜇𝑡 − 𝜇𝑐 + �̃�𝑡 −

𝑝𝑡
𝑝
𝜇𝑡 − �̃�𝑐 +

𝑝𝑐
𝑝
𝜇𝑐)

with endpoints �̂� = (𝑝𝑡, 𝑝𝑐, �̃�𝑡, �̃�𝑐) and 𝑥 = (𝑝, 𝑝, 𝜇𝑡, 𝜇𝑐) to obtain

𝜏 − 𝜏 = (�̃�𝑡 − 𝜇𝑡)
(︁ 1

�̇�𝑡/𝑝
− 1

)︁
− (�̃�𝑐 − 𝜇𝑐)

(︁ 1

�̇�𝑐/𝑝
− 1

)︁
+ (

𝑝𝑐
𝑝
− 1)

(︁𝑝2
�̇�2𝑐
�̇�𝑐 − 𝜇𝑐

)︁
− (

𝑝𝑡
𝑝
− 1)

(︁𝑝2
�̇�2𝑡
�̇�𝑡 − 𝜇𝑡

)︁

36



where variables �̇� lie between �̂� and 𝑎 for 𝑎 = 𝜇𝑡, 𝜇𝑐, 𝑝𝑡, 𝑝𝑐. Consider a sequence of finite

populations with a growing number of regions 𝐽 where no region dominates in size:

For instance, assume for all 𝑗:
∑︀

𝑠∈S𝑗 𝜋𝑗(𝑠)𝑤𝑖(𝑠, 𝑑) ∈ [𝑐, 𝑐], and potential outcomes

are bounded in absolute value. Then by Theorem 1 of Li and Ding (2017) and using

Slutsky’s Theorem and the Delta Method, each of the factors of the four products is√
𝐽-asymptotically normal, implying part (i).

For part (ii) notice that 𝒲𝑗1{𝒮 ∋ 𝑠}𝒴𝑖 = 𝒲𝑗1{𝒮 ∋ 𝑠}𝑌𝑖(𝑠) and (1 − 𝒲𝑗)𝒴𝑖 =

(1−𝒲𝑗)𝑌𝑖(0) for 𝑖 ∈ I𝑗. When taking expectations, 𝐸(𝒲𝑗1{𝒮 ∋ 𝑠}) = 𝜋𝑗𝜋𝑗(𝑠) and

𝐸(1−𝒲𝑗) = 1−𝜋𝑗 . The result then follows immediately by comparing the definitions

because only the numerators of 𝜏 are stochastic and 𝜏 = 𝜇𝑡 − 𝜇𝑐.

I outline the key steps of the variance derivation for part (iii) here and give detailed

step-by-step derivations in the proof in Online Appendix 4. The quantity of interest is

var(𝜏). Observed outcomes 𝒴𝑖 can be replaced by potential outcomes 𝑌𝑖(𝑠) and 𝑌𝑖(0)

by the same argument as for part (ii). Dropping 𝜇𝑡 − 𝜇𝑐 and the −1 component of

−(1−𝒲𝑗), factoring out the denominator 𝑝, letting 𝒯𝑗(𝑠) ≡ 𝒲𝑗1{𝒮 ∋ 𝑠} and using∑︀
𝑠∈S𝑗 𝒯𝑗(𝑠) = 𝒲𝑗:

var(𝜏) = var
(︁ 𝐽∑︁

𝑗=1

∑︁
𝑠∈S𝑗

𝒯𝑗(𝑠)
(︀
𝑌 𝑡
𝑗 (𝑠) +

𝜋𝑗
1− 𝜋𝑗

𝑌 𝑐
𝑗

)︀)︁
/𝑝2

where 𝑌 𝑡
𝑗 (𝑠) ≡

∑︀
𝑖∈I𝑗 𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑡(𝑑)), 𝑌

𝑐
𝑗 ≡

∑︀
𝑠∈S𝑗 𝜋𝑗(𝑠)

∑︀
𝑖∈I𝑗 𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(0) −

𝜇𝑐(𝑑)).

Because 𝑌 𝑡
𝑗 (𝑠) and 𝑌

𝑐
𝑗 are non-stochastic, the variance of the sum depends only on

covariances cov(𝒯𝑗(𝑠), 𝒯𝑗′(𝑠
′)) that can be calculated based on Assumptions 2 and 3:

cov(𝒯𝑗(𝑠), 𝒯𝑗′(𝑠
′)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜋𝜋𝑗(𝑠)(1− 𝜋𝜋𝑗(𝑠)) if 𝑗 = 𝑗′, 𝑠 = 𝑠′

−𝜋2𝜋𝑗(𝑠)𝜋𝑗(𝑠
′) if 𝑗 = 𝑗′, 𝑠 ̸= 𝑠′

−𝜋(1−𝜋)
𝐽−1

𝜋𝑗(𝑠)𝜋𝑗′(𝑠
′) if 𝑗 ̸= 𝑗′.

The squared sums of potential outcomes of differing treatment states are

(𝑌 𝑡
𝑗 (𝑠) +

𝜋𝑗
1− 𝜋𝑗

𝑌 𝑐
𝑗 )

2 = 𝑌 𝑡
𝑗 (𝑠)

2 + 2
𝜋𝑗

1− 𝜋𝑗
𝑌 𝑡
𝑗 (𝑠)𝑌

𝑐
𝑗 +

(︀ 𝜋𝑗
1− 𝜋𝑗

𝑌 𝑐
𝑗

)︀2
.
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Rewrite products 𝑌 𝑡
𝑗 (𝑠)𝑌

𝑐
𝑗 of potential outcomes of conflicting treatment states using

(𝑌𝑖(𝑠)−𝜇𝑡)(𝑌𝑖(0)−𝜇𝑐) =
1

2

(︁
(𝑌𝑖(𝑠)−𝜇𝑡)

2+(𝑌𝑖(0)−𝜇𝑐)
2− (𝑌𝑖(𝑠)−𝑌𝑖(0)− (𝜇𝑡−𝜇𝑐))

2
)︁

and similarly at different levels of aggregation. The squares of demeaned treated and

control potential outcomes become the marginal variances; the final squared term

becomes the variance of treatment effects. The remaining steps simplify the expression

into the terms shown in the main text.

A.2 Notation and Proof of Theorem 2

Notation Define exposure mappings (Aronow and Samii, 2017) based on Assump-

tion 6 as follows. M𝑖 ≡ 2{𝑠∈S: 𝑑(𝑠,𝑟𝑖)≤𝑑0} is the set of all possible ways in which

treatment can be assigned to those locations that possibly affect 𝑖. With slight

abuse of notation, denote 𝑖’s potential outcome under exposure 𝑚 ∈ M𝑖 by 𝑌𝑖(𝑚).

Let the random variable ℳ𝑖
𝑚 be the indicator for whether exposure 𝑚 of indi-

vidual 𝑖 is realized. Then 𝒴𝑖 =
∑︀

𝑚∈M𝑖
ℳ𝑖

𝑚𝑌𝑖(𝑚). Define the random variables

𝒯 𝑡
𝑠 ≡ 1{𝒮 ∋ 𝑠} and 𝒯 𝑐

𝑠 ≡ 1{𝒮 /∋ 𝑠} and probabilities 𝜋𝑚,𝑎
𝑖,𝑠 ≡ Pr(ℳ𝑚

𝑖 𝒯 𝑎
𝑠 = 1) and

𝜋𝑚,𝑎,𝑚′,𝑎′

𝑖,𝑠,𝑖′,𝑠′ ≡ Pr(ℳ𝑖
𝑚𝒯 𝑎

𝑠 = 1 and ℳ𝑖′

𝑚′𝒯 𝑎′

𝑠′ = 1), which are straightforward to compute

under Assumptions (4) and (6).

The variance terms used in the statement of the theorem are, for 𝑎 ∈ {𝑐, 𝑡},

𝑉𝑎(𝑑) ≡
1

|S|
∑︁
𝑠∈S

∑︁
𝑖∈I

∑︁
𝑚∈M𝑖

𝜋𝑚,𝑎
𝑖,𝑠

𝑤𝑖(𝑠, 𝑑)

�̄�(𝑑)
𝑣𝑚,𝑎
𝑖,𝑠 (𝑑)(𝑌𝑖(𝑚)− 𝜇𝑎(𝑑))

2

𝑉×(𝑑) ≡
1

|S|
∑︁
𝑠∈S

∑︁
𝑠′∈S

∑︁
𝑖∈I

∑︁
𝑚∈M𝑖

∑︁
𝑖′∈I

∑︁
𝑚′∈M𝑖

∑︁
𝑎∈{𝑐,𝑡}

∑︁
𝑎′∈{𝑐,𝑡}

1{𝑖 ̸= 𝑖′}1{𝜋𝑚,𝑚′

𝑖,𝑖′ > 0}

·
(︀
𝜋𝑚,𝑎,𝑚′,𝑎′

𝑖,𝑠,𝑖′,𝑠′ − 𝜋𝑚,𝑎
𝑖,𝑠 𝜋

𝑚′,𝑎′

𝑖′,𝑠′

)︀(︁
− 𝜋𝑠
1− 𝜋𝑠

)︁
1{𝑎=𝑐}(︁

− 𝜋𝑠′

1− 𝜋𝑠′

)︁
1{𝑎′=𝑐}

· 𝑤𝑖(𝑠, 𝑑)𝑤𝑖′(𝑠
′, 𝑑)

�̄�(𝑑)2
(𝑌𝑖(𝑚)− 𝜇𝑎(𝑑))(𝑌𝑖′(𝑚

′)− 𝜇𝑎′(𝑑))
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𝑉∘(𝑑) ≡
1

|S|
∑︁
𝑠∈S

∑︁
𝑠′∈S

∑︁
𝑖∈I

∑︁
𝑚∈M𝑖

∑︁
𝑎∈{𝑐,𝑡}

∑︁
𝑎′∈{𝑐,𝑡}

1{𝑠 ̸= 𝑠′ or 𝑎 ̸= 𝑎′}

·
(︀
𝜋𝑚,𝑎,𝑚,𝑎′

𝑖,𝑠,𝑖,𝑠′ − 𝜋𝑚,𝑎
𝑖,𝑠 𝜋

𝑚,𝑎′

𝑖,𝑠′

)︀(︁
− 𝜋𝑠
1− 𝜋𝑠

)︁
1{𝑎=𝑐}(︁

− 𝜋𝑠′

1− 𝜋𝑠′

)︁
1{𝑎′=𝑐}

· 𝑤𝑖(𝑠, 𝑑)𝑤𝑖(𝑠
′, 𝑑)

�̄�(𝑑)2
(𝑌𝑖(𝑚)− 𝜇𝑎(𝑑))(𝑌𝑖(𝑚)− 𝜇𝑎′(𝑑))

𝑉𝑎𝑎(𝑑) ≡
2

|S|
∑︁

𝑎∈{𝑐,𝑡}

∑︁
𝑠∈S

∑︁
𝑠′∈S

∑︁
𝑖∈I

∑︁
𝑚∈M𝑖

∑︁
𝑖′∈I

∑︁
𝑚′∈M𝑖

1{𝜋𝑚,𝑚′

𝑖,𝑖′ = 0}𝜋𝑚,𝑎
𝑖,𝑠 𝜋

𝑚′,𝑎
𝑖′,𝑠′

(︁ 𝜋𝑠
1− 𝜋𝑠

𝜋𝑠′

1− 𝜋𝑠′

)︁
1{𝑎=𝑐}

· 𝑤𝑖(𝑠, 𝑑)𝑤𝑖′(𝑠
′, 𝑑)

�̄�(𝑑)2

(︁𝑌𝑖(𝑚) + 𝑌𝑖′(𝑚
′)

2
− 𝜇𝑎(𝑑)

)︁2

𝑉𝑐𝑡(𝑑) ≡
1

|S|
∑︁
𝑠∈S

∑︁
𝑠′∈S

∑︁
𝑖∈I

∑︁
𝑚∈M𝑖

∑︁
𝑖′∈I

∑︁
𝑚′∈M𝑖

1{𝜋𝑚,𝑚′

𝑖,𝑖′ = 0}𝜋𝑚,𝑡
𝑖,𝑠 𝜋

𝑚′,𝑐
𝑖′,𝑠′

𝜋𝑠′

1− 𝜋𝑠′

· 𝑤𝑖(𝑠, 𝑑)𝑤𝑖′(𝑠
′, 𝑑)

�̄�(𝑑)2
(︀
(𝑌𝑖(𝑚)− 𝑌𝑖′(𝑚

′))− (𝜇𝑡(𝑑)− 𝜇𝑐(𝑑))
)︀2

where �̄�(𝑑) ≡ 1
S
∑︀

𝑠∈S 𝜋𝑠
∑︀

𝑖∈I𝑤𝑖(𝑠, 𝑑) is the average (per location) expected number

of treated individuals, and the fixed, computable weights 𝑣𝑚,𝑎
𝑖,𝑠 (𝑑) are

𝑣𝑚,𝑎
𝑖,𝑠 (𝑑) ≡

(︁ 𝜋𝑠
1− 𝜋𝑠

)︁
1{𝑎=𝑐}(︁

(1− 𝜋𝑚,𝑎
𝑖,𝑠 )

(︁ 𝜋𝑠
1− 𝜋𝑠

)︁
1{𝑎=𝑐}𝑤𝑖(𝑠, 𝑑)

�̄�(𝑑)

+
∑︁
𝑖′∈I

∑︁
𝑚′∈M𝑖

∑︁
𝑠′∈S

1{𝜋𝑚,𝑚′

𝑖,𝑖′ = 0}𝜋𝑚′,𝑎
𝑖′,𝑠′

(︁ 𝜋𝑠′

1− 𝜋𝑠′

)︁
1{𝑎=𝑐}𝑤𝑖′(𝑠

′, 𝑑)

�̄�(𝑑)

+
∑︁
𝑖′∈I

∑︁
𝑚′∈M𝑖

∑︁
𝑠′∈S

∑︁
𝑎′∈{𝑐,𝑡}∖{𝑎}

1{𝜋𝑚,𝑚′

𝑖,𝑖′ = 0}𝜋𝑚′,𝑎′

𝑖′,𝑠′

(︁ 𝜋𝑠′

1− 𝜋𝑠′

)︁
1{𝑎′=𝑐}𝑤𝑖′(𝑠

′, 𝑑)

�̄�(𝑑)

)︁
.

Proof The proof, sketched below, is mostly analogous to the proof of Theorem 1.

Approximate 𝜏(𝑑) by 𝜏(𝑑) ≡ 𝜏marginal +𝒟 where

𝒟 ≡ 1

|S|
∑︁
𝑠∈S

(︁
1{𝒮 ∋ 𝑠}

∑︁
𝑖∈I

𝑤𝑖(𝑠, 𝑑)

�̄�(𝑑)
(𝒴𝑖−𝜇𝑡(𝑑))−

1{𝒮 /∋ 𝑠}
1− 𝜋𝑠

𝜋𝑠
∑︁
𝑖∈I

𝑤𝑖(𝑠, 𝑑)

�̄�(𝑑)
(𝒴𝑖−𝜇𝑐(𝑑))

)︁
and 𝜇𝑡(𝑑) and 𝜇𝑐(𝑑) are defined with the same weights as 𝜏marginal(𝑑) (Equation 2) but

with 𝑌𝑖(𝑆) and 𝑌𝑖(𝑆 ∖ {𝑠}), respectively, replacing 𝜏𝑖(𝑠 | 𝑆). The result for 𝜏 − 𝜏 in

Appendix A.1 with bounded potential outcomes implies 𝜏(𝑑)− 𝜏(𝑑) →𝑝 0 as long as 𝑝𝑡

and 𝑝𝑐 converge to their expected value 𝑝. For this convergence, consider a sequence

of finite populations, indexed by 𝑘, growing in the sense that |I𝑘| → ∞ and |S𝑘| → ∞.
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Assume, for all 𝑠, 𝜋𝑠 ∈ (𝜂, 1− 𝜂) with 𝜂 > 0 and that no treatment location dominates

in size asymptotically (for instance, for all 𝑠 ∈ S𝑘:
∑︀

𝑖∈I𝑘 𝑤𝑖(𝑠, 𝑑) ∈ [𝑐, 𝑐]). Then

𝑝𝑡 and 𝑝𝑐 converge in probability to 𝑝 by the law of large numbers for independent

(1{𝒮 ∋ 𝑠} are independent across 𝑠 by Assumption 4) non-identically distributed

random variables, establishing part (i).

Unbiasedness for 𝜏marginal(𝑑) follows directly by taking expectations of the numerator

of 𝒟. Under Assumption 5, the expected value simplifies to 𝜏(𝑑) because 𝜏𝑖(𝑠 | 𝑆) =
𝜏𝑖(𝑠).

To characterize the variance, one can rewrite 𝒟 in terms of fixed potential outcomes

by using the exposure mappings, specifically∑︁
𝑠∈S

1{𝒮 ∋ 𝑠}
∑︁
𝑖∈I

𝑤𝑖(𝑠, 𝑑)(𝒴𝑖 − 𝜇𝑡(𝑑))−
∑︁
𝑠∈S

1{𝒮 /∋ 𝑠} 𝜋𝑠
1− 𝜋𝑠

∑︁
𝑖∈I

𝑤𝑖(𝑠, 𝑑)(𝒴𝑖 − 𝜇𝑐(𝑑))

=
∑︁
𝑖∈I

∑︁
𝑚∈M𝑖

∑︁
𝑠∈S

∑︁
𝑎∈{𝑐,𝑡}

ℳ𝑚
𝑖 𝒯 𝑎

𝑠 𝑌
𝑠,𝑎
𝑖 (𝑑,𝑚)

with 𝑌 𝑠,𝑎
𝑖 (𝑑,𝑚) ≡

(︁
− 𝜋𝑠

1−𝜋𝑠

)︁
1{𝑎=𝑐}

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑚)− 𝜇𝑎(𝑑)). Importantly, only ℳ𝑚
𝑖 𝒯𝑠,𝑎

is stochastic in the expression above. Hence, the variance depends on covariances

cov(ℳ𝑚
𝑖 𝒯 𝑎

𝑠 ,ℳ𝑚′

𝑖′ 𝒯 𝑎′

𝑠′ ) = 𝜋𝑚,𝑎,𝑚′,𝑎′

𝑖,𝑠,𝑖′,𝑠′ − 𝜋𝑚,𝑎
𝑖,𝑠 𝜋

𝑚′,𝑎′

𝑖′,𝑠′ .

Where 𝜋𝑚,𝑎,𝑚′,𝑎′

𝑖,𝑠,𝑖′,𝑠′ = 0 such that 𝑚 and 𝑚′ cannot be observed simultaneously,

rewrite terms
∑︀

𝑠

∑︀
𝑠′(𝑌𝑖(𝑚) − 𝜇𝑎(𝑑))(𝑌𝑖(𝑚

′) − 𝜇𝑎′(𝑑)) with 𝑎, 𝑎
′ ∈ {𝑡, 𝑐} depending

on whether the current locations 𝑠, 𝑠′ are treated or control under exposures 𝑚,𝑚′,

respectively. When 𝑎 = 𝑎′, these terms are multiplied by a factor of opposite sign

compared to the terms appearing in the proof of Theorem 1. To obtain a formula

suggesting a conservative estimator of the variance, when 𝑎 = 𝑎′ instead rewrite

(𝑌𝑖(𝑚)− 𝜇𝑎(𝑑))(𝑌𝑖′(𝑚
′)− 𝜇𝑎(𝑑))

=
1

2

(︁
(𝑌𝑖(𝑚) + 𝑌𝑖′(𝑚

′)− 2𝜇𝑎(𝑑)))
2 − (𝑌𝑖(𝑚)− 𝜇𝑎(𝑑))

2 − (𝑌𝑖′(𝑚
′)− 𝜇𝑎(𝑑))

2
)︁
.

The remaining steps simplify the summations over such terms. Step-by-step derivations

are available in Online Appendix 9.
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A.3 Proof of Theorem 3

Independent assignment implies that for each individual 𝑖 and candidate treatment

location 𝑠, there is a positive probability the location is the nearest realized treatment

location. The assumption that only the nearest realized location matters implies that

in this case 𝑌𝑖(𝑠) is observed, rather than 𝑌𝑖(𝑠 ∪ 𝑆) for some set of other locations

𝑆 farther from 𝑖 than 𝑠. The control potential outcome 𝑌𝑖(0) is observed when no

treatment location within distance 𝑑0 is treated, which occurs with positive probability

under independent assignment.
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