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Online food delivery platforms are essentially a three-sided marketplace consisting of consumers, restaurant

partners and delivery partners. A recommendation system for these platforms faces two main challenges.

First, all sides of the marketplace have different and potentially conflicting utilities. Recommending in

these contexts therefore entails jointly optimizing multiple conflicting objectives. Second, most food delivery

platforms present their food recommendations hierarchically where a recommendation item can be either a

single restaurant or a group of restaurants. Off-the-shelf recommendation algorithms are not applicable in

these settings, as they focus on ranking items of the same type as a one-dimensional list. We propose MOHR,

a multi-objective hierarchical recommender that tackles these challenges. MOHR combines machine learning

with scalable multi-objective optimization for multi-sided recommendation, and incorporates a probabilistic

model for hierarchical recommendation which accounts for consumers’ browsing patterns. The hierarchical

approach ensures consistent consumer experience across different levels of aggregations of the recommended

items, and provides transparency to the restaurant partners. We further develop an efficient optimization

solution for serving MOHR in large-scale online platforms in real time. We implement MOHR at one of the

largest industrial food delivery platforms in the world serving millions of consumers, and experiment with

objectives including consumer happiness, marketplace fairness and partner earnings. Online experiments

show a significant increase in consumer conversion, retention and gross bookings, which combined translate

to $1.5 million weekly gain in revenue. Our work has been deployed globally by the industrial food delivery

platform as the recommendation algorithm for its homepage.

Key words : recommender systems; multi-sided marketplace; multi-objective optimization; heterogeneous

and hierarchical contents; food delivery platforms

1. Introduction

Over the past years, recommender systems are becoming increasingly ubiquitous in retail

(Xiao and Benbasat 2007, Pathak et al. 2010, Zhang et al. 2011, Smith and Linden 2017),

media (Miller et al. 2003, Bennett et al. 2007, Covington et al. 2016), travel (Ghose et al.

2012, Ursu 2018, Chen and Yao 2017, Noulas et al. 2012), news (Prawesh and Padmanab-

han 2014, Dhillon and Aral 2021) and social platforms (Backstrom and Leskovec 2011, Li

et al. 2017, Xie 2010). On one hand, they help the consumers by facilitating information
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acquisition and decision-making; On the other hand, they help the content providers and

e-commerce sellers to efficiently target prospective consumers. Recommender systems have

become the key drivers for consumer growth in many personalization platforms today.

Netflix reported that 80% of what people watch on its platform is from personalized rec-

ommendations (Gomez-Uribe and Hunt 2015). YouTube, the world’s largest video sharing

platform, reported that 70% of watch time is driven by recommendations (Solsman 2018).

While the research on recommender systems has largely focused on optimizing consumer-

side utilities (Adomavicius and Tuzhilin 2005), many recommender systems today are

operating in a multi-sided marketplace consisting of consumers, merchants or retailers, and

potentially other partners as well. In this paper, we consider food delivery platforms such

as Uber Eats, DoorDash and Grubhub, which offer personalized restaurant recommenda-

tions and deliveries to the consumers. They create a three-sided marketplace consisting

of consumers, restaurant partners and delivery partners. Consumers discover and order

food through the platform. Restaurant-partners use the platform as a sales channel to

identify and target customers. And delivery-partners earn income by picking up food from

restaurants and delivering it to the consumers. All sides of this marketplace are crucial to

ensure a seamless consumer experience and the success of the business, which calls for a

recommender system built for the marketplace that is optimized for all sides in it.

A challenge for recommending for a multi-sided food delivery marketplace is that each

side has different and potentially conflicting utilities, and only optimizing for one may hurt

other sides and eventually backfire. A recommender system for the food delivery platform

which only optimizes consumers’ conversion rate (probability of ordering on the platform)

may overly recommend well-established and popular restaurants. Such recommendation

strategies will cause several issues. First, new restaurants will not get enough exposure

on the platform, which hurts marketplace fairness and discourages new restaurants from

signing up. The lack of consumer interaction and feedback collected on these restaurants

as a result of low exposure further impedes the recommender system’s capability to make

accurate predictions about consumer preferences on them, which eventually hurts the

consumers’ experience due to lack of selection and poor personalization. Second, orders

concentrating on a few popular restaurants may hurt supply and demand efficiency and

service reliability. The restaurant may not be able to fulfill a large quantity of orders in a

short period of time, and there might not be enough delivery partners nearby to pick up all
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the food orders and deliver them in time. This can lead to order delays, cancellations and

unfulfillment, in addition to unbalanced job assignments among delivery partners. Third,

optimizing consumer’s short-term conversion rate may lead to recommending restaurants

and dishes that are visually appealing but not of good quality and taste, which hurts

consumer happiness and retention. In addition, overly recommending restaurants that are

known to be of interest to the consumers provides little extra value from the recommender

itself and may cause user fatigue (Ma et al. 2016) and churn. All of these issues hurt one

or more sides of the marketplace and eventually hurt the business. Therefore, a delicate

balance of the multiple objectives from different sides is required in order to maintain a

healthy ecosystem and ensure the success of the business in the long run. While the limits

of user-centric recommendation and the need for doing multi-objective recommendation

has been recognized (Abdollahpouri et al. 2020), a systematic and principled approach

for building and efficiently serving a recommender system in large-scale three-sided food-

delivery platforms is still lacking today. The first part of our work aims at filling this

gap.

Another challenge for building a recommender system for a food delivery platform comes

from the heterogeneity of the recommendation items. A recommendation item can be either

a single restaurant or a collection of them. Most food delivery platforms today adopt this

hierarchical presentation. For example, Figure 6 in Appendix A shows the homepage of

Uber Eats, DoorDash and Grubhub respectively, which are three of the top food delivery

platforms in the US. In addition to single restaurants, we see collections of restaurants

such as “Fastest near you” or “National Brand” appearing as a recommendation item,

which are presented as rows or carousels that can be scrolled through horizontally. The

homepage is therefore a two-dimensional grid and the recommendation algorithm needs to

decide the following: what and how many carousels to show to the consumers, and how to

rank restaurants together with the carousels. Off-the-shelf recommendation algorithms are

not directly applicable in these settings, as they focus on ranking items of the same type

in a one-dimensional list. In addition, rule-based and curated ranking algorithms, such as

pining a particular type of content at a particular position in the feed, are not favorable in

these cases either, as they do not provide transparency to the restaurant partners as to why

a certain item or certain groups of item is ranked on top of another. Moreover, consumers

have limited patience in browsing the app and they may give up at any point if no relevant
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items are found. The second part of our work involves the design of a probabilistic consumer

browsing model for hierarchical recommendation that addresses these challenges, with the

output as a set of calibrated and interpretable ranking scores while explicitly accounting

consumers’ browsing patterns.

In our work, we propose a framework that simultaneously tackles these two challenges

for a three-sided food delivery platform. We develop a three-step model-based framework,

Multi-Objective Hierarchical Recommender (MOHR), that combines machine learning,

hierarchical modeling and multi-objective optimization for ranking heterogeneous items for

the multi-sided marketplace. In the first step (MO), we build machine learning models for

predicting multiple objectives for the individual items given the hierarchy information. In

the second step (H), we obtain predictions of the multiple objectives on aggregation level

(carousel-level), by developing a probabilistic hierarchical model for consumers’ browsing

patterns. In the final step (R), we construct the whole homepage using the multi-objective

ranking scores by solving a constrained optimization problem.

We implement MOHR at one of the largest food delivery platforms in the world, with

multiple objectives for the three-sided marketplace including consumer conversion and

retention, gross bookings and marketplace fairness. We conduct live experiments on global

consumers and compare MOHR with the latest production system. Online A/B experi-

ments show that MOHR pushes forward the Pareto frontier of the top line business metrics,

leading to a significant improvement in consumer conversion, retention and gross bookings,

which translate to $1.5 million weekly gain in gross bookings. We are also able to achieve a

significant performance gain for the new restaurants on the platform, without significantly

impacting consumer-side metrics. Because of the significant business impact, MOHR has

been deployed globally as the recommendation algorithm for the company’s homepage.

Our research contributes to the marketing community both methodologically and man-

agerially. Methodology-wise, we propose a model-based recommendation framework com-

bining machine learning, hierarchical modeling and multi-objective optimization to address

the two prominent challenges in a three-sided food delivery marketplace, namely multi-

sided trade-off and hierarchical recommendation. Managerially, our work provides insights

on the trade-off among the utilities from different sides in a multi-sided marketplace. In

particular, too much emphasis on a particular objective will hurt overall consumer experi-

ence and backfire. We show that it is beneficial and necessary for the business to explicitly
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model and optimize for the conflicting utilities from different sides in order to maintain

a healthy ecosystem and be successful in the long term. Our proposed framework is gen-

eral, flexible and can be readily applied to other recommendation applications within and

outside the food delivery industry.

2. Related Work

2.1. Recommender Systems

There are three types of recommender systems, which are built on content-based filtering,

collaborative filtering, and hybrid approaches respectively (Adomavicius and Tuzhilin 2005,

Ricci et al. 2015, Dhillon and Aral 2021). Content-based recommender systems are based on

a description of the item and a profile of the consumer’s preferences and recommend items

that are similar to items that the consumer has enjoyed in the past (Aggarwal et al. 2016,

Brusilovsky 2007, Mooney and Roy 2000). Collaborative filtering approaches are based on

the assumption that consumers who liked similar items in the past will like similar kinds

of items in the future (Breese et al. 1998, Billsus et al. 1998), and are further classified

as memory-based (Adomavicius and Tuzhilin 2005, Delgado and Ishii 1999) and model-

based (Billsus et al. 1998, Breese et al. 1998). Most recommender systems today adopt a

hybrid approach combining collaborative filtering and content-based filtering (Balabanović

and Shoham 1997, Adomavicius and Tuzhilin 2005, Tso-Sutter et al. 2008, Sahoo et al.

2012), which empirically performs better than pure approaches (Adomavicius and Tuzhilin

2005). In this work, we leverage both the content features for the restaurants (e.g. cuisine

type, location) and model-based collaborative filtering features based on the interaction

history between the consumers and restaurants, contributing to the literature of hybrid

recommender systems.

2.2. The Effects of Recommendations

A large number of studies in marketing, information systems and computer science have

developed understanding on the effects of recommender systems on consumer decision

making. Xiao and Benbasat (2007) provide theoretical perspectives of the effects of rec-

ommender systems on consumer decision making processes, outcomes, and consumers’

evaluations of the recommender systems. Recommender systems affect consumers’ con-

sumption patterns from various aspects, including diversity (Fleder and Hosanagar 2009,

Anderson et al. 2020), exploration (Datta et al. 2018, Chen et al. 2021), homogeneity
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(Chaney et al. 2018) and fragmentation (Hosanagar et al. 2014). In e-commerce, it has

been demonstrated that recommendation and ranking positions have significant impact on

the consumers, including search (Narayanan and Kalyanam 2015, Ursu 2018), willingness

to pay (Carare 2012, Adomavicius et al. 2018) and even consumption preferences (Ado-

mavicius et al. 2013). It has also been shown that recommender systems affect other parties

of the e-commerce marketplace, through impacting demand levels (Oestreicher-Singer and

Sundararajan 2012), seller profits (Chen et al. 2008, Das et al. 2009, Azaria et al. 2013) and

overall welfare (Zhang et al. 2021, Aridor and Gonçalves 2021). In our work, we show that

recommender systems can have positive or negative impact for different sides in a three-

sided food delivery marketplace, and propose a recommendation framework that addresses

the trade-off between the utilities of different sides of the marketplace in a principled way.

2.3. Multi-Objective Recommendation for Multi-sided Marketplace

Past work on recommender systems focused on optimizing consumer-side objectives (Ado-

mavicius and Tuzhilin 2005). Research evolved from optimizing a single aspect of consumer

feedback such as ratings or click-through rates (Adomavicius and Tuzhilin 2005, Hu et al.

2008), to utility-based recommender systems that capture multidimensional preferences of

consumer utilities (Ghose et al. 2012, Li et al. 2017, Carbonell and Goldstein 1998).

However, a lot of the personalization platforms today are a multi-sided marketplace

(Rochet and Tirole 2003, Evans et al. 2011) consisting of multiple stakeholders including

consumers, providers and the system itself. These multi-sided platforms create value by

bringing buyers and sellers together, reducing search and transaction costs (Evans and

Schmalensee 2016). A key to the success of a multi-sided platform is being able to attract

and retain participants from all sides of the business. In recent years, with the increas-

ing awareness of the limitations of user-centric recommendation systems, there has been

an increasing number of literature on recommender systems for multi-sided marketplace

(Abdollahpouri et al. 2020). As an example, researchers have considered seller earnings and

platform profits by explicitly incorporating revenue or profit as objectives for the recom-

mender system (Chen et al. 2008, Das et al. 2009, Hosanagar et al. 2008, Azaria et al. 2013)

and further maximize the total welfare of the system (Aridor and Gonçalves 2021, Zhang

et al. 2021). Multi-sided recommender systems have wide applications in e-commerce (Li

et al. 2018), education (Zheng et al. 2019), loan (Lee et al. 2014), travel (Krasnodebski

and Dines 2016), news (Tintarev et al. 2018), and content-sharing platforms (Zhao et al.
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2019) etc. However, most of the extant applications for multi-sided recommenders are for

two-sided marketplaces consisting of consumers and providers. To our knowledge, we are

the first to consider a unique and challenging setting of a three-sided marketplace in the

context of food delivery platforms.

Multi-sided recommendation usually entails optimizing multiple objectives that are

potentially conflicting with each other. For example, Hosanagar et al. (2008) looked into

the trade-offs between the relevance to consumers and the margin for the firm, and between

short-term and long-term profits, and showed that a profit-sensitive strategy led to an

increased revenue without a significant loss in consumer satisfaction. On the other hand,

Zhang et al. (2021) showed that maximizing profit can actually hurt consumer surplus.

On the fairness front, Wang et al. (2021) showed that optimizing the Pareto frontier of

multiple tasks’ accuracy may hurt the fairness of some tasks.

Building a recommender system for a multi-sided marketplace is essentially a multi-

objective optimization problem (Sawaragi et al. 1985). Methods from the multi-objective

optimization literature have been adapted for multi-sided recommender systems. Examples

include constrained optimization (Rodriguez et al. 2012, Agarwal et al. 2015, 2011, 2012),

learning-to-rerank (Nguyen et al. 2017) and multiple-gradient descent (Milojkovic et al.

2019). The multi-objective optimization component of our framework is related to the line

of work on constrained optimization.

2.4. Consumer Behavior Modeling and Hierarchical Recommendation

Consumers’ browsing behavior on recommender systems is related to consumer search

for decision making. Weitzman (1979) was among the first to model sequential search

behavior. Built on this, Ursu (2018) proposed a sequential search model for understanding

the effect of rankings on consumer online choices in the hotel industry. Shi and Trusov

(2021) developed an empirical model for consumers’ scroll behavior in search engine mar-

keting (SEM) based on laboratory eye-tracking data. Dhillon and Aral (2021) proposed

a neural matrix factorization approach to model consumers’ dynamic interest over time.

These works focused on building structural or temporal models for understanding con-

sumer behavior, but did not leverage the model output or the understanding to improve

the ranking or build a new recommender system. Closer to our work is Liebman et al.

(2019), which leveraged consumers’ in-session sequential behavior for online adaptation to
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listeners’ music preferences. However, the proposed ranking model does not apply to the

heterogeneous and hierarchical recommendation items in our case.

Hierarchical recommendation is proposed to recommend items of different levels of

aggregations. Methodologies based on hierarchical clustering (Zheng et al. 2013, King and

Imbrasaitė 2015) and hierarchical reinforcement learning (Xie et al. 2021) are used to rec-

ommend aggregations of items. Oestreicher-Singer and Sundararajan (2012) studied the

performance of a single-item recommendation in the context of a group of recommended

items. Song et al. (2019) proposed a cascade model for consumers’ sequential scrolling and

decision process, and a multicategory utility model for recommending items on category

levels. To the best of our knowledge, existing works in this area either did not explicitly

model and account for consumers’ browsing behavior (Zheng et al. 2013, Xie et al. 2021), or

the recommendation output is a homogeneous one-dimensional list although the consumer

decision process is modeled in a hierarchical way (Song et al. 2019, Oestreicher-Singer

and Sundararajan 2012, Agrawal et al. 2009). Our work bridges this gap by developing a

probabilistic hierarchical model as a component of the proposed MOHR framework, which

ranks items with different hierarchical aggregations. In addition, we point out that another

critical consideration for hierarchical recommendation is how consumers navigate the page

and interact with items at different horizontal and vertical positions (Alvino and Basil-

ico 2015). In the SEM context, it has been shown that consumers rarely looked at lower

ranking results (Guan and Cutrell 2007) and their dominant browsing pattern looks like

the letter F or a “golden triangle” (Nielsen 2006, Sherman 2005). Ursu (2018) shows that

the click-through rate decreases with lower ranking positions on a hotel recommendation

website. The consumer browsing model in our framework explicitly models consumers’

browsing patterns with the hierarchical recommendation items.

In sum, our work draws on the two strands of literature on multi-objective recommen-

dation and sequential consumer behavior modeling on personalization platforms. It adds

to the literature by proposing a model-based framework combining machine learning, hier-

archical modeling and multi-objective optimization. The proposed framework ranks het-

erogeneous and hierarchical contents in a principled and calibrated way while optimizing

for the multiple sides with conflicting utilities, which addresses two of the most prominent

challenges for a three-sided food delivery marketplace.
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3. Data and Institutional Background

3.1. Three-Sided Food Delivery Marketplace

There has been an emerging wave of food delivery platforms in the past decade. During

the coronavirus (COVID-19) pandemic, the use of online food delivery services increased

67% globally between 2019 and 2020 (Muangmee et al. 2021). These services create a

three-sided marketplace consisting of consumers, restaurant partners and delivery partners.

Consumers place orders on food from the restaurants on the platform. Delivery partners

pick up the food from the restaurants and deliver it to the consumers, when consumers have

the option to add a tip. The platform charges a fixed portion of the consumers’ payment

as the commission fee and pays the rest to the restaurant partners. The delivery partners

earn income from consumers’ tips and the platform’s payment1.

Each side in the food delivery marketplace has different and potentially conflicting util-

ities, and only optimizing for one may hurt others. As an example, optimizing consumers’

conversion can lead to overly recommending popular restaurants. This causes several issues.

First, new restaurants will not get enough exposure on the platform. The lack of consumer

feedback collected on these restaurants further impedes the recommender system’s capabil-

ity to make accurate predictions about consumer preferences. Second, orders concentrating

on a few popular restaurants hurts supply efficiency and service reliability. Restaurants

may not be able to fulfill a large quantity of orders in a short time, and there might not be

enough delivery partners nearby. Lastly, overly recommending restaurants that are known

to be of interest to the consumers provides little extra value and may cause consumer

fatigue (Ma et al. 2016) and churn. All of these issues hurt one or more sides of the market-

place and eventually the business. Therefore, a delicate balance of the multiple objectives

from different sides is needed to maintain a healthy ecosystem and ensure the success of

the business in the long term.

3.2. Hierarchical and Heterogeneous Recommendation Items

As shown in Figure 6 in Appendix A, recommendations on food delivery platforms usually

appear as heterogeneous and hierarchical. The advantages for recommending a collection

of restaurants as carousels in the homepage are threefold: First, carousels can be viewed

as nudges tailored to the different modes of the consumers (e.g. in a hurry, looking for

something healthy) and help them efficiently navigate through the contents. Second, the

title of the carousels provide extra information about the restaurants (e.g. cuisine type) that
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may be critical to consumers’ decision making, but are not clear to the consumers otherwise.

Finally, they alleviate cold-start challenges for new restaurants and new consumers. For

example, “New Restaurants” and “Popular Near You” are non-personalized carousels based

on only content information, which is a popular approach for solving cold-start problems

in recommender systems (Schein et al. 2002).

While carousels are appealing in some contexts, at other times a single restaurant is pre-

ferred as recommendation. For example, an consumer may order from the same restaurant

repeatedly. An ideal recommendation setup is therefore a combination of carousels and

single restaurants. This is the strategy adopted by major food delivery platforms today

(Zhu 2021). It is worth mentioning that hierarchical recommendation is also common out-

side the food delivery industry. The homepage of Netflix is a series of rows where each row

is a coherent group of videos. This setting is found to be favorable to a large, unorganized

collection of relevant videos (Gomez-Uribe and Hunt 2015).

3.3. Data

The company we work with is one of the largest food delivery platforms in the world

serving millions of consumers every day. Consumers’ interactions in the app are logged and

processed through Apache Hive (Thusoo et al. 2009) for data extraction, transformation

and loading (ETL). Specifically, an impression event is logged when the consumer scrolls

through an item. An order event is logged when the consumer places an order. Contextual

information is logged together with the event, including time of day, day of week and

geolocation etc. The data we obtain from the company are randomly sampled from the

global user logs, consisting of about 600 million impressions and 11 million orders between

May 15, 2019 and May 28, 2019.

4. Model

In this section, we describe the three interconnected components of the MOHR framework.

In Section 4.1, we build machine learning models for restaurant-level objectives (MO-step).

In Section 4.2, we develop a probabilistic hierarchical model for aggregating restaurant-

level objectives to carousel-level objectives (H-step). In Section 4.3, we solve a constrained

optimization problem and obtain a multi-objective ranking score (R-step).
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4.1. MO-Step: Machine Learning Models for Restaurant-Level Objectives

Objective values might vary given different sources of the restaurant. A restaurant appear-

ing in “Fast near you” carousel is more appealing to a consumer who is in a hurry than the

same restaurant appearing in “Popular near you” or as a single recommendation. There-

fore, we model the objectives on the (consumer, restaurant, source) level, where source is

the hierarchy information of the restaurant (e.g. belongs to the “Italian food” carousel2).

Table 1 summarizes the notations used for our MOHR framework. Table 2 summarizes the

objectives in our experiments. It’s worth pointing out that although we only discussed the

estimation of four objectives in this section, the MO-step is general and can incorporate

any number of objectives that are of interest to the platform.

In particular, we model the following four objectives: (1) Consumer conversion:

whether the consumer places an order; (2) Consumer retention: whether the consumer

returns to the platform and orders again within the next 14 days3, if the consumer orders in

the current session4; (3) Basket value: dollar amount of the order, if the consumer orders

in the current session; (4) Marketplace fairness: the exposure opportunities that new

restaurants receive on the platform. Consumer conversion captures consumers’ immediate

responses and short-term engagement, which is a common objective used by consumer-

centric recommender systems (Zhang et al. 2019, Covington et al. 2016). Consumer reten-

tion, on the other hand, captures consumers’ long-term engagement, which has attracted

increasing attention for practitioners in recent years (Wu et al. 2017, Zou et al. 2019). Bas-

ket value directly contributes to the revenue of the business. Marketplace fairness ensures

that every restaurant on the platform have fair opportunity of being shown. Details for

each objective are described below.

Consumer Conversion, Consumer Retention and Basket Value Objectives.

Using the notations in Table 1, we build machine learning models for consumer conversion,

consumer retention and basket value as:

c(i, j, k) =E[O(i, j, k, z) = 1] = fc(xi, xj, xk, xij, xik, xjk, xijk, z),

r(i, j, k) =E[R(i, j, k, z)|O(i, j, k, z) = 1] = fr(xi, xj, xk, xij, xik, xjk, xijk, z),

b(i, j, k) =E[B(i, j, k, z)|O(i, j, k, z) = 1] = fb(xi, xj, xk, xij, xik, xjk, xijk, z),

(1)

where we drop the dependency on context z for ease of notation. Here xi represents the

set of consumer-level features, xij represents the interaction history between consumer i
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Notation Definition and comments

i Index for consumers

j Index for restaurants

k Source of the restaurant, e.g. “Popular near you”, or “Single” if appears as a single restaurant

q Index for a recommendation item, which can be either a single restaurant within the carousel or

a whole carousel

z Context features such as time of day, day of week, meal period, country, geolocation

O(i, j, k, z) (Restaurant-level) Binary random variable taking value 1 if consumer i orders from restaurant j

from source k under context z, 0 otherwise

R(i, j, k, z) (Restaurant-level) Binary random variable taking value 1 if consumer i returns to the platform

and orders within 28 days of ordering from restaurant j from source k under context z, 0 otherwise

B(i, j, k, z) (Restaurant-level) Continuous random variable taking value as the dollar amount of the basket

value if consumer i orders from restaurant j from source k under context z, 0 otherwise

O(i, k, z) (Carousel-level) Binary random variable taking value 1 if consumer i orders from source k under

context z, 0 otherwise

R(i, k, z) (Carousel-level) Binary random variable taking value 1 if consumer i returns to the platform and

orders within 28 days of ordering from source k under context z, 0 otherwise

B(i, k, z) (Carousel-level) Continuous random variable taking value as the dollar amount of the basket

value if consumer i orders from any restaurant from source k under context z, 0 otherwise

Nj Number of impressions from restaurant j

N1
j Number of orders from restaurant j

I Number of consumers

Q Number of recommendation items (restaurants or carousels)

x= {xiq} Ranking plan, where xiq is the probability of serving item q to consumer i

u= {uiq} Uniform ranking plan, where uiq ≡ 1
Q

ciq, riq, biq, fiq Compact forms for the consumer conversion, consumer retention, basket value and

fairness objectives for consumer i and item q

Table 1 Summary of notations.

Objective Relevant sides Level Notation Definition

Consumer
Consumers, restaurant partners

Restaurant c(i, j, k) P[O(i, j, k, z) = 1]

conversion Carousel c(i, k) P[O(i, k, z) = 1]

Consumer
Consumers, restaurant partners

Restaurant r(i, j, k) E[R(i, j, k, z)|O(i, j, k, z) = 1]

retention Carousel r(i, k) E[R(i, k, z)|O(i, k, z) = 1]

Basket value
Restaurant partners, delivery Restaurant b(i, j, k) E[B(i, j, k, z)|O(i, j, k, z) = 1]

partners Carousel b(i, k) E[B(i, k, z)|O(i, k, z) = 1]

Marketplace
Restaurant partners

Restaurant fr(j)

√
Var(cj |{Ojm}Nj

m=1)

fairness Carousel fk(k)
∑n

l=1 fr(jl)
∏l

l′=1(1− c(i, jl′−1, k)) · pl′−1,l′

Table 2 Summary of objectives.

and restaurant j, while xijk represents the interaction history between consumer i and

restaurant j conditional on j appears in source k, etc. We also include collaborative filtering
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(Breese et al. 1998) features using matrix factorization to capture the similarities among

consumers and items. Details are provided in Appendix B.1.1.

For the consumer conversion and retention objective which are binary classification prob-

lems, we adopt gradient boosting decision trees (Friedman 2001, 2002) as the nonlinear

prediction function fc and fr, which are a family of ensemble methods that combines indi-

vidual weak CART (Breiman et al. 2017) classifiers. For the basket value objective, we

use gradient boosting regression tree as fb with squared loss as the loss function (Hastie

et al. 2009), and truncate the predictions to be non-negative5. They achieve a nice balance

between predictive power and interpretability. Model training is done using the gradient

boosting machine (GBM) on H2O (Click et al. 2017, Hastie et al. 2009), which is a popular

distributed in-memory machine learning platform. A list of the features and the parameters

of the machine learning models can be found in Appendix B.1.2.

Marketplace Fairness Objective. Restaurant recommendation can be viewed as a con-

textual multi-armed bandit problem (Langford and Zhang 2007, Auer et al. 2002, Katehakis

and Veinott Jr 1987) where every arm is a restaurant. The agent for a multi-armed ban-

dit problem balances exploration, which acquires new knowledge, and exploitation, which

optimizes current decisions based on existing knowledge. For food delivery platforms, the

recommender system needs to balance between exploiting well-established restaurants and

exploring new restaurants to maintain a healthy ecosystem and ensure marketplace fair-

ness. We adopt the multi-armed bandit framework with Bayesian modeling for the mar-

ketplace fairness objective as it fits nicely with our use case. A well-adopted approach for

the contextual bandit problem is the upper-confidence bound (UCB) algorithm, where the

optimal action chosen at each step is given by

j∗ = argmax
j

[Q(j)+κσ(j)]. (2)

Here Q(j) is the estimated value of action j, σ(j) is the estimated standard deviation of the

value of j, and κ> 0 controls the level of exploration. In our case, Q(j) can be the estimated

conversion rate for restaurant j, i.e. c(i, j, k) from the previous section. σ(j) measures the

uncertainty of c(i, j, k), which intuitively is high for new restaurants. Therefore, we define

σ(j) to be the fairness objective, and we would like to maximize the exposure for the

restaurants with high σ(j).
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To estimate the fairness objective σ(j), we leverage Bayesian modeling to estimate σ(j)

as the posterior standard deviation for c(i, j, k). Appendix B.1.3 discusses the prior dis-

tribution and the derivation for the posterior distribution for c(i, j, k), which yields the

restaurant-level marketplace fairness objective fr(j) for restaurant j as

fr(j) = σ(j) =

√
(αj +N 1

j )(βj +Nj −N 1
j )

(αj +βj +Nj)2(αj +βj +Nj +1)
, (3)

where αj and βj are the parameters for the prior Beta distribution B(αj, βj) for c(i, j, k),

and there are Nj impressions on restaurant j, out of which N 1
j lead to orders. As a sanity

check, given αj and βj, lower values of Nj lead to higher posterior variance of cj. In other

words, the fewer impressions a restaurant receives, the more uncertain the system is about

the estimation of the restaurant’s conversion rate, hence the higher value for the fairness

objective. We discuss the choice for the prior parameters αj and βj in Appendix B.1.4. A

trailing window of 120 days6 is chosen for the impression counts Nj and order counts N 1
j .

The benefits of the marketplace fairness objective fr(j) are threefold. First, it offers

new restaurants more exposure on the platform. Second, it helps the learning of other

objectives by introducing more training data on the new and low-volume restaurants.

Third, by restricting to a trailing window for counting Nj, it provides a mechanism for

adaptively boost new and low-volume restaurants over time: A restaurant will receive a

high boost when first entering the platform, with Eq.(2) dominated by the second term

(“exploration”); As it accumulates enough exposure, the boosting effects dies down and

Eq.(2) is dominated by the point estimate Q(j) (“exploitation”); Later on, when the

restaurant is not performing well in a certain time period by having a low Q(j), it will lose

exposure (i.e. having low Nj). As a result fr(j) will go back up due to increasing values of

σ(j), therefore offering a “second chance” to the restaurant (“resurrection”).

4.2. H-Step: Probabilistic Hierarchical Model for Carousel-Level Objectives

In the H-step, we aggregate restaurant-level objectives from the MO-step into carousel-

level objectives, using a probabilistic hierarchical model. An important component in this

step is the consumer browsing model, which is described below.

Consumers have limited patience when scrolling through the recommendations. Follow-

ing the sequential search framework in Weitzman (1979), we assume that the consumer

examines the restaurants in the carousel one-by-one. At each position, she performs one of
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the following three options: order from the current restaurant, continue browsing the next

restaurant, or abandon the whole carousel7. Specifically, we propose a consumer browsing

model, which outputs a set of scrolling probabilities that a consumer will scroll to the next

position in a carousel:

pl,l+1 =P(the consumer scrolls to position l+1 | currently at position l). (4)

Figure 1 illustrates the consumer browsing model, where the position index starts at 1

and p0,1 = 1, meaning that consumers always browse the first restaurant in each carousel8.

Figure 1 An illustration of the consumer browsing model and the scrolling factors for a carousel.

Consumer Conversion Objective for a Carousel.With the consumer browsing model,

the carousel-level objectives can be derived as follows. We first compute carousel-level

conversion objective c(i, k)9, the probability that the consumer orders from any restaurant10

in the carousel k under context z. Assuming the restaurant at position l inside the carousel

is indexed by jl, we have

c(i, k) =
n∑

l=1

[
P(consumer i orders from restaurant jl at position l | scrolls to position l)

×P(scrolls to position l)

]
=

n∑
l=1

[
c(i, jl, k)

l∏
l′=1

P(consumer i didn’t order at position l′ − 1, and scrolls to position l′)

]

=
n∑

l=1

[
c(i, jl, k)

l∏
l′=1

(1− c(i, jl′−1, k)) · pl′−1,l′

]
,

(5)

where we define c(i, j0, k) = 0. Equation (5) is intuitive when viewing each term in the

summation one by one: The first term, c(i, j1, k), is the probability that the consumer orders

from the first restaurant in the carousel; The second term, (1− c(i, j1, k)) ·p1,2 · c(i, j2, k), is
the probability that the consumer abandons the first restaurant but scrolls to the second

position and orders, etc11.
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Basket Value Objective for a Carousel. By law of total expectation, the expected

basket value of a carousel can be decomposed as the sum of the basket value at each

position:

E[B(i, k, z)] =

n∑
l=1

E[B(i, jl, k, z)|O(i, jl, k, z) = 1]P [O(i, jl, k, z) = 1]

=
n∑

l=1

b(i, jl, k)P [O(i, jl, k, z) = 1],

(6)

which is a weighted combination of the basket value objective of each individual restaurants

b(i, jl, k) inside the carousel, with the weights being the conversion probability at that

position.

The basket value objective of the carousel is therefore

b(i, k) =E[B(i, k, z)|O(i, k, z) = 1] =E[B(i, k, z)]/P[O(i, k, z) = 1]

=
n∑

l=1

P [O(i, jl, k, z) = 1]∑n
l=1P [O(i, jl, k, z) = 1]

b(i, jl, k),
(7)

where P [O(i, jl, k, z) = 1] = c(i, jl, k)
∏l

l′=1(1− c(i, jl′−1, k)) · pl′−1,l′ is the probability that

the consumer scrolls to position l inside the carousel and orders from the restaurant jl,

as computed in Eq.(5). Therefore, the carousel-level basket value is effectively a weighted

average of the expected basket values of individual restaurants inside the carousel, with

the weights proportional to their predicted conversion at each position while accounting

for the consumer’s scrolling behavior.

Consumer Retention Objective for a Carousel. Following the same derivation above,

the carousel-level consumer retention objective can be computed as

r(i, k) =
n∑

l=1

P [Ol(i, k, z) = 1]∑n
l=1P [Ol(i, k, z) = 1]

r(i, jl, k). (8)

Marketplace Fairness Objective for a Carousel. The carousel-level marketplace fair-

ness objective fc(k) is slightly different as it is not conditioned on the consumer placing

an order. By the same law of total expectation as in Eq.(5), we have

fc(k) =

n∑
l=1

fr(jl)P(consumer i scrolls to position l) =

n∑
l=1

fr(jl)

l∏
l′=1

(1− c(i, jl′−1, k)) · pl′−1,l′ ,

(9)
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which is a weighted sum of restaurant-level fairness objectives fr(jl) at each position inside

the carousel, with the weights being the probability that the consumer scrolls to that

position.

To sum up, the H-step provides an hierarchical modeling approach for estimating each

objective on the carousel level, as an aggregation of restaurant-level objectives inside the

carousel. The predictions generated by the H-step are interpretable and provides levels of

transparency to the consumers and restaurant partners.

4.3. R-Step: Constrained Optimization for Multi-Objective Ranking

4.3.1. Formulation. The final step is to construct the homepage using the output from

the MO-step and H-step while accounting for the multi-sided trade-off. We formulate the

trade-offs as a constrained optimization problem, with the constraints being the amount

of sacrifice that the business is willing to make in some objectives while optimizing for

others.

To describe the holistic ranking framework for both within-carousel ranking and across-

carousel ranking, we introduce q as the index of a recommendation item, which can be

either a restaurant within a carousel, or a whole carousel. We also introduce subscripts for

more compact notations. For example, ciq denotes the conversion rate for consumer i on

item q, and biq, riq, fiq are defined similarly. A ranking algorithm can be expressed as a set

of personalized scores, with xiq being the probability of recommending item q to consumer

i. Let x= {xiq : i= 1, ..., I, q= 1, ...,Q} denote the ranking scores for all consumers and all

items, which is the optimization variable in the R-step.

For any ranking plan x, its expected total numbers of orders, total gross bookings, total

consumer retention and total fairness can be computed as

C(x) =
I∑

i=1

Q∑
q=1

xiqciq, B(x) =

I∑
i=1

Q∑
q=1

xiqciqbiq,

R(x) =
I∑

i=1

Q∑
q=1

xiqciqriq, F (x) =
I∑

i=1

Q∑
q=1

xiqfiq.

(10)

Let

C∗ =max
x∈E

C(x), B∗ =max
x∈E

B(x),R∗ =max
x∈E

R(x), F ∗ =max
x∈E

F (x), (11)
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be the optimal values for the objectives, where E = {x : xiq ≥ 0,
∑

q xiq = 1,∀i} is the

feasible region for x. We formulate the multi-objective ranking problem as a constrained

optimization problem:

max
x∈E

C(x) s.t. B(x)≥ αbB
∗, R(x)≥ αrR

∗, F (x)≥ αfF
∗, (12)

where 0<αb, αr, αf < 1 specifies the amount of tolerable trade-off for B(x), R(x) and F (x)

when optimizing for C(x)12. The linear programming problem in Eq.(12) can be viewed

as a multi-objective optimization problem (Sawaragi et al. 1985). In Appendix B.2.1, we

prove that the Pareto frontier13 between any two objectives is concave, so that a small

sacrifice in one objective can potentially lead to big improvement in the other.

4.3.2. Solution. Eq.(12) has I ∗Q number of variables, which can be huge given millions

of consumers (I) and thousands of items (Q). This causes scalability issues for solving and

serving the solutions online for large-scale food delivery platforms. To tackle this challenge,

we adopt the trick in Agarwal et al. (2012) and add a quadratic penalty term to the

objective function which leads to analytical solutions14 for x. By KKT conditions, The

final ranking function is reduced to

x̃iq = ciq +λbciqbiq +λrciqriq +λffiq. (13)

Here λb, λr, λf > 0 are the slack variables for the constraints on B(x),R(x) and F (x)

respectively, and are functions of αb, αr and αf . The detailed optimization procedure and

solution are provided in Appendix B.2.2.

Taking a closer look at Eq.(13), the ranking function is essentially a weighted linear com-

bination of the multiple objectives. The basket value objective biq and retention objective

riq is multiplied by the conversion objective ciq while the marketplace fairness objective fiq

is not. This is again because the basket value and retention objective is a counterfactual

estimation conditioning on the consumer placing an order in the current session, while

the marketplace fairness objective is not (Table 2). While we can solve λb, λr, and λf as

functions of αb, αr and αf by solving a linear system as shown in Appendix B.2.2, it can

be expensive due the large scale. In practice, we treat λb, λr and λf as tuning parameters

directly to reduce computation. In addition, λb, λr and λf can also be viewed as the weights

controlling the relative importance of the different objectives.
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4.3.3. Usage. Figure 2 shows a diagram for the full MOHR framework. The ranking

function in Eq.(13) is first used for (horizontal) within-carousel ranking, where ciq, biq,

riq and fiq are plugged in as the restaurant-level objectives from the MO-step. It is then

used for (vertical) across-carousel ranking, where ciq, biq, riq and ciq are plugged in as the

carousel-level objectives from the H-step.

One of the biggest advantages for MOHR is the ability to dynamically rank hetero-

geneous and hierarchical contents in a holistic way, as the ranking scores are calibrated

and comparable across different levels of aggregation. It is also worth noting that the

MOHR framework is readily generalizable to higher orders of aggregated contents as well.

For example, a recommendation item can be a meta-carousel which is an aggregation of

carousels (that is, a carousel of carousels). The objective values for a meta-carousel can be

obtained in the same way as described in the H-step, with a set of inter-carousel scrolling

factors estimated from the consumer browsing model as input.

Real-time machine 
learning models

Restaurant-level 
objectives

Carousel-level 
objectives

MO-step

H-step

Restaurant 

Probabilistic hierarchical 
consumer browsing model

Restaurant Restaurant …

Carousel k

Multi-objective 
optimization

Carousel k1…

…

…

(single restaurant) Carousel k2
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…
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…
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b(i,k)
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Figure 2 (Color online) An overview of MOHR.

5. Results

5.1. Experiment Setup and Performance Measures

5.1.1. Experiment Setup. To the best of our knowledge, we are the first to propose

a hierarchical recommender that ranks contents of various levels of aggregation using a

single holistic framework. The closest baseline is the latest production recommender system
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at the company. It decomposes the hierarchical recommendation problem into two parts,

where carousels and individual restaurants are ranked separately using disjoint state-of-

art hybrid machine learning recommendation algorithms, with consumer conversion as the

single objective. All carousels are ranked above all single restaurants with another machine

learning model determining how many carousels to display. See Appendix C.1 for a detailed

description.

Our experiments were conducted over 28 days15 in June 2019 on 2% of the company’s

global consumers16. Every consumer in the experiment traffic is assigned with a unique

consumer identifier17 which is randomly hashed into the treatment group or control group.

The treatment group information is logged together with consumers’ activities on the

platform during the experiment period.

5.1.2. Performance Measures and Statistical Hypothesis Testing. Table 3 summa-

rize a list of metrics for the online experiments, which correspond to the multiple objectives

for the multiple sides in the three-sided marketplace that are critical to the business.

A consumer may visit the app multiple times during the experiment period. Let Si be

the number of sessions that consumer i generates during the experiment period, and Ois,

Bis be the binary indicator for whether consumer i orders from session s, and the basket

value for the session (0 if there is no order) respectively. To measure consumer retention,

we let Ris be the binary indicator of whether consumer i returns to the app and places

another order in the next 14 days following the current session s. Note that basket value and

retention are measured only on ordered sessions. For marketplace fairness, we measure the

performance of the new restaurants on the platform, which are those joining the platform

within 21 days of the experiment start date. Specifically, we measure the percentage of

the overall impressions and orders from the platform that are on those newly onboarded

restaurants.

Note that the sessions generated by the same consumer are correlated with each other as

they reflect the behavior of the same consumer. Therefore, ratio metrics such as conversion

rate, basket value per order and retention in Table 3 are not from i.i.d. samples. We

explicitly account for this intra-consumer correlation when computing the variance for

those test statistics in hypothesis testing for the online experiments. The resulting p-values

are larger than when the examples are treated as i.i.d., therefore our tests are more rigorous

and conservative and less likely to claim the treatment as effective. See Appendix C.2 for

details.
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Measure Definition / Explanation Relevant sides

Conversion rate
∑

i

∑
s Ois∑

i Si
Consumers, restaurant partners

Basket value per order
∑

i

∑
s OisBis∑

i

∑
s Ois

Restaurant/delivery partners

Retention rate
∑

i

∑
s OisRis∑

i

∑
s Ois

Consumers, restaurant partners

Orders per consumer 1
I

∑
i

∑
sOis Consumers, restaurant/delivery partners

New restaurant impression ratio % of impressions on new restaurants Restaurant partners

New restaurant order ratio % of orders on new restaurants Restaurant partners

Table 3 List of Measurements.

5.2. Offline Analysis

5.2.1. Hyperparameter Selection with Offline Replay. The ranking function in

Eq.(13) contains three hyperparameters λb, λr and λf controlling the relative importance

of the objectives. It is costly to run online experiments to select the optimal values for

these hyperparameters. It is also risky to serve a new framework in production with arbi-

trary hyperparameters before we have an understanding of their effects on the platform.

Therefore, it is necessary to develop an offline evaluation procedure to pick hyperparameter

values for MOHR to be experimented online.

The data for offline evaluation is critical for the quality of the evaluation, as we are

faced with the typical challenge of position bias (Ursu 2018) and off-policy evaluation

(Strehl et al. 2010, Schnabel et al. 2016). To understand position bias, the company has

set aside a small percentage of random sessions for random ranking, where the vertical

list of restaurants are ranked completely at random. Figure 3 confirms position bias on

the number of impressions, number of orders and conversion rate on the random ranking

data, showing that the same restaurant at different positions may appeal very differently

to the consumers. Position bias causes challenges for performing off-policy evaluation. For

example, if MOHR framework predicts to rank restaurant j0 at a certain position for a

consumer, but the existing production system has never presented restaurant j0 at that

position to her, then it is hard to predict whether the consumer would have ordered from

that restaurant.

We adopt the offline replay method proposed by Li et al. (2011), which utilizes random

data for off-policy evaluation, but in the context of bandit algorithms. We adapt their

method to the ranking scenario. Specifically, if it happens that the new algorithm chooses

the same restaurant to be ranked on the top position as in the random ranking data18,

then that event is retained and will be used for estimating the performance of the new
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algorithm. In other words, the replay method is essentially looking for events in the random

ranking data that can serve as “replaying” the ranking under the new algorithm to be

evaluated. The replay method is proven to provide unbiased offline evaluation (Li et al.

2011) without running online experiments.

Figure 4 shows the offline Pareto frontiers from the offline replay analysis19. As expected,

larger values of λb and λf result in better basket value and marketplace fairness at the cost

of the conversion objective20. As consumer conversion is the top-tier business metric for

the company, for online experiments we pick the values for λb and λf such that the drop

in conversion is minimal.

Figure 3 Impressions (left) , orders (middle) and conversion (right) vs. position on random ranking data.
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Figure 4 Offline Pareto frontiers generated by the offline replay analysis. Left: conversion objective (y-axis) vs.

basket value objective (x-axis); Right: conversion objective (y-axis) vs. marketplace fairness objective

objective (x-axis); We omit the tick values for business compliance reasons. The upper and right

directions correspond to better objective values.

5.2.2. Feature Importance and Model Performance. See Appendix C.3 for the model

performance and feature importance of the machine learning-based objectives in the MO-

step.
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5.3. Online Experiment Results

We present the results from the large-scale online controlled experiment (i.e. A/B test-

ing) at the company. Compared with the latest production system at the company, there

are two major changes from the MOHR framework: recommending for the three-sided

marketplace using multi-objective optimization (MO-step and R-step), and recommending

hierarchical items using hierarchical modeling (H-step). To understand the contributions

of the two changes separately, we conduct three sets of experiments: (1) multi-objective

recommendation (“MOR”): the MOHR framework without the hierarchical hierar-

chical modeling component (H-step), where the restaurants are ranked using the multi-

objective ranking score in Eq.(13); (2) hierarchical single-objective recommendation

(“H”): the MOHR framework without the multi-objective optimization component (MO-

step and R-step), where the contents are ranked together holistically by the H-step, with

conversion as the single objective; (3) multi-objective hierarchical recommendation

(“MOHR”): the full MOHR framework combining (1) and (2).

5.3.1. Results on Multi-Objective Recommendation (“MOR”). We experiment with

adding basket value, consumer retention and marketplace fairness objectives to the produc-

tion system which uses conversion as the single objective. Without the H-step, the MOR

framework is not applicable to rank the carousels (vertically) together with the restaurants.

Therefore, we keep the production system’s ranking for the carousels, while use the MOR

framework for restaurant-level rankings, namely within-carousel (horizontal) ranking and

vertical single restaurant ranking.

Constrained by the number of online experiments we can run on live consumer traffic,

we adopt a greedy approach in understanding the effect of incorporating each new objec-

tive into the system. Specifically, we sequentially add more additive terms in the ranking

function in Eq.(13).

Table 4 reports the metrics defined in Table 3 with statistically significant21 differences

between each treatment and control group. We see that by carefully picking the weights for

each objective, we are able to achieve Pareto improvements for the three-sided marketplace

without hurting consumer conversion. With the basket value objective, we observe a 0.5%

relative increase in average basket value per order. In particular, the average basket value

of the top recommended restaurant has increased by 4.5%, confirming the position effect

of the treatments. With the retention objective, we observe a 0.7% relative increase in
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consumer 14-day retention, indicating that the consumers are coming back to the platform

and ordering more often, which also leads to a 0.8% increase in orders per consumer.

Lastly with the marketplace fairness objective, the number of impressions and orders on

the new restaurants are more than doubled, increasing by 150% and 108% respectively,

without a significant drop in the performance of the well-established restaurants on the

platform. The fact that introducing the marketplace fairness objective by boosting new

restaurants does not significantly hurt consumer conversion is an interesting result to us.

This is explained by two observations. First, it has been shown in Appendix B.2.1 that

the Pareto frontier for the constrained optimization problem is concave, in that a small

sacrifice in one objective can lead to large improvements in others. In this case, the Pareto

frontier is concave enough, so that we are able to achieve a significant improvement in

marketplace fairness without hurting other objectives significantly. Second, this can be

explained as the benefit of consumer exploration (Chen et al. 2021), where boosting new

contents helps the consumers discover new interests, and arguably does not hurt consumer

experience – sometimes even improving it.

Basket value Consumer retention Marketplace fairness Combined

Conversion rate - - - -

Basket value per order +0.5% - - +0.5%

Retention rate - +0.7% - +0.7%

Orders per consumer - +0.8% - +0.8%

New restaurants impression ratio - - +150% +150%

New restaurants order ratio - - +108% +108%

Table 4 Results on multi-objective recommendation (“MOR”). Metric differences that are statistically

significant at 95% confidence interval are reported, in the form of relative changes over the control group.

The combined impact for MOR by including all the objectives is summarized as the

last column in Table 4. Note that only the relative changes of the metrics are reported, as

we are not allowed to reveal the actual values of the key business metrics for compliance

reasons. Although the relative changes in the key metrics are small (less than 1%), they

translate to considerable business impact given the large scale and consumer base of the

company’s global platform. Specifically, the MOR framework has led to $1.3 million weekly

gain in revenue.
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5.3.2. Results on Hierarchical Single-Objective Recommendation (“H”). A key

input to the H-step is the consumer browsing model, which outputs the scrolling factors

pl,l+1 at each position l as defined in Eq.(4). We adopt a global estimation procedure that

estimates a set of non-personalized scrolling factors for the consumer browsing model.

Specifically, at each position l inside the carousel, we compute the ratio of the impressions

happening at position l that are followed by an impression event at position l+ 1 as the

estimate for pl,l+1:

p̂l,l+1 =
number of impressions happened at position l+1

number of impressions happened at position l
. (14)

Appendix C.4 reports the estimated consumer scrolling factors. In practice, we find the

global estimation works well. In addition to consumer conversion, we monitor two other

metrics that are related to consumers’ conversion behavior and the quality of the rec-

ommendations: average vertical order position and search rate. The former measures the

average vertical position of an order in the homepage, and the latter measures the per-

centage of the sessions where the consumers go to the search tab, which is a signal that

the recommendations on the homepage are not relevant or interesting to them.

Metric Conversion rate Average vertical order position Search rate

Relative change over control +1.5%** -5.7%*** -0.9%***

Table 5 Results on hierarchical single-objective recommendation (“H”). Metrics are reported as relative

changes over the control group. ***p < 0.01, **p < 0.05.

From Table 5, the hierarchical single-objective recommender improves conversion rate

by 1.5%, which translates to $1.1 million weekly gain in revenue. There is a significant 5.7%

reduction in average vertical order position and 0.9% reduction in search rate, indicating

that the recommendations on the homepage are of higher relevance so the consumers don’t

need to scroll as much22 or go to the search page to find what they want.

5.3.3. Results on the Full MOHR. Table 6 summarizes the results on the full MOHR

as illustrated in Fig.2. We observe Pareto improvements in all key metrics, which together

translates to $1.5 million weekly gain in revenue. Note that the improvements in conversion

rate (+0.5%), average vertical order position (-3.2%) and search rate (-0.8%) are smaller

compared with H-step only (Table 5). This is an expected result of the trade-off between

the additional objectives (basket value, retention and marketplace fairness) and the original
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conversion objective, which also explains the fact that the revenue gain from the MOHR

framework ($1.5 million weekly) is less than the sum of that from MOR ($1.3 million

weekly) and H ($1.1 million weekly) treatment groups. Nevertheless, we would like to

emphasize that compared with the latest production recommender system, our MOHR

framework is able to deliver Pareto improvements on all key business metrics at no cost

to any of the objectives or any sides in the marketplace.

Metric Conversion rate Basket value per order Retention rate

Relative change +0.5%** +0.5%*** +0.7%***

Metric Orders per consumer New restaurants impression ratio New restaurants order ratio

Relative change 0.9%*** +150%*** +108%***

Metric Average vertical order position Search rate

Relative change -3.2%*** -0.8%**

Table 6 Results on the full multi-objective hierarchical recommender (“MOHR”). Metrics are reported as

relative changes over the control group. ***p < 0.01, **p < 0.05.

While MOHR effectively pushes forward the Pareto frontier for the three-sided market-

place, trade-offs still exist as they are the nature of multi-objective optimization. To better

understand how the objective weights in the MOHR framework moderate the trade-offs

among the online metrics, we conduct additional experiments on the basket value objec-

tive with varying λb. There are three findings as shown in Fig.5. First, with larger λb,

the average predicted basket values of the recommended carousels and restaurants are also

larger (Fig.5a) as expected. As a result, the actual basket size per order is also increased

(Fig.5b). This confirms the effectiveness of the basket value objective and its weight λb as

the tuning parameter. Note that the increasing trend in the actual basket value (Fig.5b)

is less that in the predicted basket value (Fig.5a). This is expected as the recommenda-

tion algorithm has full control on what can be shown (predicted basket value), but only

partial influence on what the consumers will order (actual basket value). Second, within

a reasonable range of λb values, we see a trade-off between conversion rate and basket

value (Fig.5c) in the online metrics, corroborating the findings from the offline analysis.

Finally and most interestingly, when the weight λb is huge so that the ranking function

in Eq.(13) is dominated by the basket value objective23, we observe a significant +2.1%

increase in search rate, and a 2.7% drop in retention of new consumers. This suggests two

consequences when more expensive restaurants and carousels appear in the homepage rec-

ommendation: Consumers are more likely to abandon the homepage recommendation and
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search to order instead; New consumers (who are not yet familiar with the platform) are

left with an impression that the selections on the platform are beyond their affordability,

hurting their willingness to come back in the future. In other words, aggressive boosting

of the objectives may backfire and hurt both the long-term consumer experience and the

business.
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(c) Actual trade-off between consumer
conversion and basket value.

Figure 5 Additional experiments on the basket value objective. Tick values are omitted for business compliance.

Because of its significant business impact, the MOHR framework has been deployed glob-

ally by the company and is currently serving as its recommender system for the homepage.

It was one of the company’s most successful launches over the past few years.

5.4. Robustness Checks

5.4.1. Randomization Check. To check if the random assignment for the online exper-

iments truly holds, we inspect the treatment and control consumers before the experiment

start date, when they were all receiving recommendations from the same production rec-

ommender system. This is called A/A test in the industry. Specifically, we collect 472

metrics related to different aspects of consumer behaviors24 including the key business

metrics in the results above, and conduct hypothesis testing on whether the differences

between treatment and control groups are statistically significant before the experiment

start date. We also perform Kolmogorov-Smirnov (KS) test on the empirical distribution

of p-values for the 472 metric differences, and could not reject the null that they follow a

uniform distribution on [0,1], suggesting that our randomization holds true. See Appendix

C.5 for details.
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5.4.2. Ablation Study on Consumer Browsing Model. We experiment with ablating

the consumer browsing model in the H-step of MOHR. Specifically, we let p0,1 = 1 and

pl,l+1 = 0 for l > 0, instead of using p̂l,l+1 in Eq.(14) as the consumer scrolling factors.

Using the production recommender system as the baseline, the ablated MOHR framework

decreases the average order position by 5.5%, which confirms the benefits of recommending

carousels and single restaurants intelligently together, but does not change any other busi-

ness metrics significantly. Compared with the results in Table 5 where the H-step increases

conversion rate, retention of new consumers and decreases search rate, the result suggests

that the hierarchical consumer browsing model is critical for the improvements from the

H-step.

5.4.3. Eliminating the Novelty Effects. With the MOHR framework, carousels and

single restaurants are mixed together and the homepage appears as a heterogeneous

arrangement of items. One might argue that the new display may introduce a novelty effect

(Koch et al. 2018) and consumers’ engagement levels with the platform might be higher

in the beginning than when they become familiar with the new design. We identified three

pieces of evidence to counter this argument. First, the first three days of experiment data

is discarded in computing the metrics reported in the previous sections, which eliminates

part of the novelty effect. Second, there is an improvement in long-term consumer retention

(+0.7%) which by definition measures consumers’ future engagement with the platform

after finishing the current session. This means that the treatment effect of MOHR persists

for at least 28 days. Lastly, we measured the metrics for the new consumers during the

experiment, whose first interaction with the platform is either always under the current

production system (control consumers) or always under the new display under the MOHR

framework (treatment consumers). Therefore, there is no novelty effect at play for those

consumers. We observe a significant 5.5% increase in the retention of new consumers which

is even larger than the overall retention increase. This suggests that the novelty effect, if

it exists, actually impacts the effects of the MOHR framework negatively as it introduces

a “shock” to the existing consumers with a new display, so that the positive effects on

them are actually smaller than the new consumers who have no prior experience with the

platform.
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6. Discussion

6.1. Research Contributions

This paper proposes a general recommendation framework that addresses two of the most

prominent challenges in a three-sided food delivery marketplace, namely multi-sided trade-

off and hierarchical recommendation. We propose MOHR, which is a model-based three-

step recommendation framework combining machine learning, hierarchical modeling and

multi-objective optimization for recommending restaurants and aggregation of restaurants

in the homepage of the food-delivery platform. In the first step (MO-step), we develop

machine learning models for real-time personalized predictions of the multiple objectives at

individual restaurant level, with content-based, collaborative-filtering based and real-time

contextual features as input. In the second step (H-step), we adopt a probabilistic struc-

tural model for the predictions of the multiple objectives for aggregations of restaurants, or

carousels. Specifically, carousel-level objectives are modeled as an aggregation of individual

restaurant-level objectives, using a consumer browsing model which captures consumers’

browsing patterns on the homepage. The aggregated predictions are calibrated against

those for the single restaurants, which ensures consistent consumer experience across dif-

ferent levels of aggregation of the recommended items, and provides levels of transparency

to the restaurant partners. In the final step (R-step), we formulate the multi-objective

recommendation problem as a constrained multi-objective optimization problem, taking as

input the predictions for the multiple objectives at different levels of aggregations from the

previous step. The variables are the probabilities of serving each hierarchical item to each

consumer, and the constraints specify the amount of tolerable trade-off among the multiple

objectives. With a quadratic penalty term added to the objective function, the solution

becomes a combination of the multiple objectives with an analytical form. Each objective

is associated with a weight, which we treat as tuning parameters controlling the trade-off

across multiple objectives. The output of the framework is a hierarchical ranking function

that accounts for consumers’ browsing patterns and combines multiple objectives, pro-

viding recommendations on heterogeneous contents that are optimized for the three-sided

marketplace.

Methodologically, the benefits of the proposed MOHR framework are three-fold. First,

it provides a general and mathematically principled way to model and optimize for the

multiple sides in the marketplace, all of which are crucial to the success of the business.
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The weights associated with each objective can be treated as tuning parameters, which

offers practitioners full control over the trade-off across multiple objectives. The offline

Pareto frontiers generated by the replay analysis further facilitates the understanding and

decision-making under the multi-sided trade-off when online experiments are expensive.

Second, the hierarchical modeling approach guarantees the interpretability of the ranking

function, and that the predictions for the aggregation of items are calibrated against those

for the single items. This ensures consistent consumer experience across different levels

of item aggregation, and provides transparency to the restaurant partners. Lastly, the

analytical solution from the R-step provides a fast and efficient way to do hierarchical

recommendation without the need to solve huge linear programming problems online,

making it possible to serve the MOHR framework in any large-scale online systems in real

time.

6.2. Managerial Implications

Our proposed MOHR framework is general, flexible and can be readily applied to other

recommendation applications within and outside the food delivery industry. Doordash and

Grubhub as examples of other food delivery platforms, YouTube as a video streaming

platform, and Airbnb as a peer home-sharing platform, are all operating in multi-sided

marketplaces and the recommendation contents can be heterogeneous and hierarchical.

The MOHR framework illustrated in Fig.2 is readily applicable to these platforms, with

any number of objectives. The holistic framework also reduces the burden of maintaining

separate machine learning systems for ranking and recommending contents of different

levels of aggregations.

Components of the MOHR framework can be applied in a modularized fashion. Section

5.3 demonstrates that a subset of its components, namely MOR and H, can act as a com-

plete framework to address a particular challenge. Therefore, if a platform is concerned

with multi-objective recommendation in a multi-sided marketplace but the recommenda-

tion contents are not hierarchical, it can adopt the MOHR framework without the H-step

(i.e “MOR” in Section 5.3.1); if a platform is concerned with hierarchical recommendation

but do not need to optimize for more than one objective, it can adopt only the H-step (i.e

“H” in Section 5.3.2).

Results and analysis under the MOHR framework provide insights on the trade-offs

among multiple objectives in a multi-sided marketplace. On one of the world’s largest food
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delivery platform, we experimented with objectives including conversion and retention for

the consumers, marketplace fairness for the restaurant partners, and earnings for the deliv-

ery partners. Compared with the latest production system, the MOHR framework is able

to achieve Pareto improvements for all objectives. In particular, it improves long-term

consumer experience (retention), marketplace fairness and partner earnings without sig-

nificantly impacting consumers’ short-term engagement (conversion). Within the MOHR

framework, trade-offs exist as a natural outcome for optimizing multiple conflicting objec-

tives. As it is expensive to generate the full Pareto frontiers in online experiments, we

propose to adopt offline replay analysis to generate Pareto frontiers using offline data, to

help understand the trade-off between multiple objectives for the three-sided marketplace.

We also observe that if the weight for a particular objective is too large, it will hurt overall

consumer experience and backfire. For example, an aggressive boost of the basket value

objective leads the new consumers on the platform to believe that the selections on the

platform are expensive, hurting the long-term experience of those with low price elasticity.

Insights like these help inform better managerial decision-making on multi-sided platforms.

Lastly, we would like to call out the connection between the proposed marketplace

fairness objective and the cold-start problem as a well-known challenge for recommender

systems. For new items or items with low exposure on the platform (i.e. cold-started items),

the marketplace fairness objective assigns a high value to them, leading to an increased

exposure. This also helps the machine learning models generate more accurate predictions

for the new restaurants. Over time, as the new restaurants accumulate more exposure, the

marketplace fairness objective assigns a lower value to them, leading to a “graduation”

from the cold-start phase. As a result, the items will be recommended mainly based on

the values of the other objectives. Therefore, the proposed marketplace fairness objective

addresses the cold-start challenge on the restaurant side in a dynamic, adaptive and data-

dependent fashion. In addition, from our experiments the marketplace fairness objective

does not necessarily hurt consumer experience, which can be explained as the benefit of

consumer exploration (Chen et al. 2021), where boosting new contents helps the consumers

discover new interests and potentially improves long-term consumer experience.

6.3. Challenges, Limitations and Future Research

A challenge and limitation of the MOHR framework is its scalability with a large number

of objectives. With an increasing number of objectives added, it could become unscalable
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to tune the weights for each objective in an A/B testing framework with a combinatorial

number of candidates for the weight vector. Multi-armed bandit experiments (Burtini et al.

2015) are more efficient experiment designs than A/B testing, where the experiment traffic

is dynamically allocated to different treatment groups based on their short-term perfor-

mance metrics. However, they are not feasible for long-term objectives such as consumer

retention in our application, which requires the consumer to consistently receive the treat-

ment for an extended period of time. Another alternative is to learn the optimal weight

combination offline using more sophisticated methods such as Bayesian optimization. How-

ever, we found those methods suffer from training-serving skew due to its off-policy nature,

which introduces additional challenges for off-policy learning in addition to the reward

design. In practice, we adopt a greedy approach for adding new objectives, where each

objective is added and tuned sequentially. This reduces the tuning complexity from expo-

nential to linear in the number of objectives.

The consumer browsing model has two limitations. First, in our application the model is a

global static estimate based on a snapshot of consumer behavior logs. It is not personalized

and could become outdated after the model is launched to global traffic. In addition,

different consumers have different browsing patterns, and even the same consumer could

have different browsing patterns under different contexts. A future research direction is

to build a personalized and real-time consumer browsing model, which takes as input

the consumer’s history, current in-session behavior and real-time contextual features, and

generates a real-time prediction of the probability that the consumer will continue scrolling.

The whole MOHR framework still holds in this case, but with pl,l+1 in Eq.(4) plugged in

as the output from a personalized real-time machine learning model instead. Second, the

consumer browsing model assumes a linear browsing pattern (i.e. consumers inspect one

item at a time without going back and forth), following the sequential search framework

proposed by Weitzman (1979). This assumption can be relaxed by assuming that the

consumers first inspect a set of items and then choose one from the set, which calls for a

choice modeling component with position bias taken into account.

Lastly, the objectives in the MOHR framework are estimated by separate machine learn-

ing models. However, different objectives may be related to each other in addition to the

conflicts, and one may leverage the relatedness for better predictive power. For exam-

ple, consumers’ short-term engagement might be indicative of their long-term happiness.
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Multi-task deep learning models (Ruder 2017) are well-suited in this case to jointly and

efficiently learn multiple related and conflicting objectives. The multiple machine learning

models in the MO-step can be replaced with a single large multi-task deep learning model,

with the other components of MOHR unchanged.

Endnotes
1Therefore, earnings for the restaurant partners, delivery partners and the platform are all positively correlated

with consumers’ payments, or gross bookings.

2If the restaurant appears as a single recommendation time, we say it belongs to a single-restaurant carousel.

3The 14 day time window is aligned with the key business metric for the company.

4The condition is counterfactual, meaning that the machine learning model will have a prediction for this objective

regardless of whether the consumer orders in the current session.

5Theoretically it is possible for gradient boosting regression trees to generate negative predictions even if all

training labels are positive, although we didn’t observe this from our models.

6We also experimented with 90 days and 180 days as the time window. The results were not statistically different.

7When the consumer abandons the current carousel, she can either go to the next carousel that’s immediately

below the current one, or abandon the session completely. It is easy to show that the vertical browsing behavior does

not affect the pointwise ranking algorithms, so we did not explicitly model them in the MOHR framework.

8This is empirically guaranteed to be true by the design of the homepage of the app.

9We drop the dependency on z in c(i, j, k), c(i, k), b(i, j, k), b(i, k), r(i, j, k), r(i, k) for ease of notation, but we would

like to emphasize that these estimates all take contextual features z as input.

10From our empirical data, in more than 99.98% of the sessions are with zero or one order. Therefore it is reasonable

to assume that the consumer places at most one order in the current session.

11When n = 1, Eq.(5) computes the conversion rate of a single-restaurant carousel, which equals the conversion

rate of the only restaurant inside it.

12The formulation is equivalent to having B(x), R(x) or F (x) as the objective while constraining on others. This

is because the primal problem in Eq.(12) is feasible and bounded, so strong duality holds.

13Solution x1 is said to dominate solution x2 if (C(x1),B(x1),R(x1), F (x1)) ≥ (C(x2),B(x2),R(x2), F (x2))

element-wisely, and at least one of the inequalities is strict. A solution x is called Pareto optimal if there is no solution

x′ ̸=x such that x′ dominates x. Pareto frontier is the set of all Pareto optimal solutions.

14The benefit of having analytical solutions is that we don’t need to solve the large-scale linear programming

problem online, and only need to plug in the values for the analytical form instead.

15Note that a 28-day experiment is considered to be a long-term experiment at the company, and the long-term

consumer retention metric the company monitors is also defined using a 28-day window.

16We are not allowed to disclose the number of consumers, sessions and orders from the experiments due to business

compliance reasons. But we would like to point out that given the large scale of the business, the data gives us more

than enough statistical power to conduct hypothesis testing on the performance metrics defined in the next section.

17We only look at signed-in consumers as sign-in is required to place an order on the app.

18The random ranking data provided by the company is restaurant-level random ranking and we unfortunately

don’t have carousel-level random ranking data from the company. Nevertheless, the selected parameters from the

replay analysis using the restaurant-level random ranking data perform reasonably well in the online experiments.
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19We unfortunately could not generate the Pareto frontier for the consumer retention objective using the replay

method. The reason is that it requires at least 28 days of random ranking data to observe consumer retention, but

the random ranking data we have from the company is only one week.

20Note that the Pareto frontier for the basket value objective is noisy, while the Pareto frontier for the marketplace

fairness objective is much smoother. This is expected as the marketplace fairness objective is measured by the number

of impressions a restaurant receives, which the recommender system has (almost) full control by determining which

restaurants to put on top. On the other hand, the basket value objective depends on the consumer placing an order

on the restaurant, which is a stochastic event that the recommender system only has partial influence on. In other

words, the basket value objective incorporates one extra layer of randomness, leading to a noisier Pareto frontier.

21The statistical significance is measured under 0.95 confidence level.

22Note that the control group ranks all carousels on top of all single restaurants. So the MOHR framework actually

presents fewer contents in the top positions, yet it’s still able to reduce the average vertical order position by 5.7%

compared with control. This further confirms the increased quality of the homepage.

23The basket value objective, which is measured in dollar amounts, is about 2 orders of magnitude larger than the

other three objectives. Therefore λb = 0.1 means that the term for the basket value objective, λbciqbiq, is roughly 10

times the value of the other terms, making the ranking function in Eq.(13) dominated by the basket value objective.

24We unfortunately don’t have access to consumers’ personal attributes such as age, gender and demographic

information.
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Appendix. Recommending for a Three-Sided Food Delivery Marketplace:

A Multi-Objective Hierarchical Approach

A. Illustration of hierarchical recommendation items

(a) Uber Eats. (b) DoorDash. (c) Grubhub.

Figure 6 Screenshots of the homepage of three major food delivery apps.

B. Additional Technical Details for MOHR

B.1. MO-Step

B.1.1. Collaborative filtering features based on matrix factorization. To leverage the idea of

collaborative filtering that similar consumers enjoy similar contents, we build matrix factorization models to

learn a latent vector representation for every consumer, restaurant and source. Suppose there are I consumers

and J restaurants in total, we learn their latent representations by

{ui}Ii=1,{vj}J
j=1 = argmin

{ui}Ii=1
,{vj}Jj=1

I∑
i=1

J∑
j=1

(uT
i vj − rij)

2 +λu

I∑
i=1

∥ui∥2 +λv

J∑
j=1

∥vj∥2, (15)

where rij is the number of orders between consumer i and restaurant j, λu and λv are positive penalization

coefficients preventing the optimization from learning wild values. This optimization problem also has a

Bayesian interpretation with Gaussian prior on the representations, in which case λu and λv are determined

by the variance parameter of the priors. See Section 4.2 in Dhillon and Aral (2021) as an example.
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Eq.(15) is a biconvex problem and can be solved efficiently using alternating least squares (ALS) (Koren

2009). The output of the optimization problem, ui’s and vj ’s, are used as latent representations for the

consumers and restaurants. We build another matrix factorization model on (consumer, source) level similar

to Equation (15) but changed vj to source representation w̃k and rij to rik, the order counts between consumer

i and source k:

{ũi}Ii=1,{w̃k}K
k=1 = argmin

{ũi}Ii=1
,{w̃k}Kk=1

I∑
i=1

K∑
k=1

(ũi
T w̃k − rik)

2 +λu

I∑
i=1

∥ũi∥2 +λw

K∑
k=1

∥w̃k∥2, (16)

and obtain another set of representations, which are ũi for consumers and w̃k for sources. For the individual

machine learning models defined in Eq.(1), ui and ũi are included as part of consumer-level features xi, vj

is part of restaurant-level features xj , and w̃k is part of source-level features xk.

B.1.2. Details for the machine learning models. Table 7 summarizes the features used for predicting

consumer conversion, consumer retention and basket value. Note that for the count-based features such as the

number of impressions/views/orders, we include both the raw count and the normalized count as features,

where the normalized count are divided by the average impression/view/order count at the position of the

event, in order to correct for the position bias as illustrated in Fig.3. The name/id of the source (e.g. i.e. the

name of the carousel or “single” if the training instance is a single restaurant recommendation) is explicitly

used as a feature.

For the gradient boosted trees as the predictive machine learning model, we use learning rate of 0.1, and

maximum depth of the tree as 8, which is the same model architecture and capacity as the latest production

system at the company. For the conversion rate model, the training data is unbalanced with a positive

sample ratio as low as 1.8%, which could potentially cause challenges to the binary classification models. We

therefore experimented with down-sampling the negative examples. However, we didn’t find a performance

boost on the test data, which could be explained as fact that the training data is big enough (around 600

million). In the final version of MOHR, the individual machine learning models are all trained without data

reweighting or resampling.

B.1.3. Bayesian modeling for the marketplace fairness objective. We now describe the Bayesian

modeling procedure to estimate σ(j), the posterior variance for c(i, j, k) as the value for the fairness objective.

The order event O(i, j, k, z) is a Bernoulli random variable with parameter c(i, j, k). Therefore, we choose

Beta distribution as the prior for c(i, j, k). Proposition 1 below states the posterior for c(i, j, k).

Proposition 1 Suppose the prior distribution for c(i, j, k) is B(αj , βj), and that there are Nj impressions on

restaurant j, out of which N1
j lead to orders. Then the posterior distribution for c(i, j, k) is B(αj +N1

j , βj +

Nj −N1
j ), and its posterior variance is σ(j)2 =

(αj+N1
j )(βj+Nj−N1

j )

(αj+βj+Nj)2(αj+βj+Nj+1)
.

Proof of Proposition 1. For ease of notation we drop the dependency on i, k for now and denote c(i, j, k)

as cj for restaurant j. Suppose there are Nj impressions on restaurant j, Oj1, ...,OjNj
are random variables

represents the corresponding conversion events where Ojm = 1 means the m-th impression on restaurant j
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Feature Definition

xi

(Normalized) Impression/view/order count/ratio from consumer i in the past X days

Average basket values from consumer i in the past X days

Consumer embedding ui and ũi from matrix factorization

xj

(Normalized) Impression/view/order count/ratio on restaurant j in the past X days

Average basket values from restaurant j in the past X days

Percentage of consumers churned after ordering from restaurant j in the past X days

Restaurant embedding vj from matrix factorization

Delivery radius of restaurant j

xk

Source name (name of the carousel or “single” if appearing as single restaurant recommendation)

(Normalized) Impression/view/order count/ratio from source k in the past X days

Average basket values from source k in the past X days

Source embedding w̃k from matrix factorization

xij

(Normalized) Impression/view/order count/ratio between consumer i and restaurant j in past X days

Haversine distance between restaurant j and consumer’s delivery location

Estimated delivery time range

Delivery fee, busy area fee, service fee

uT
i vj , i.e. dot product of consumer embedding and restaurant embedding from matrix factorization

cos(ui,vj)

||ui||||vj ||
, i.e. cosine similarity between consumer embedding and restaurant embedding

xik

(Normalized) Impression/view/order count/ratio from consumer i in source k in the past X days

Average basket values from consumer i in source k in the past X days

ũi
T w̃k, i.e. dot product of consumer embedding and source embedding from matrix factorization

cos(ũi,w̃k)
||ũi||||w̃k||

, i.e. cosine similarity between consumer embedding and source embedding

xjk

(Normalized) Impression/view/order count/ratio from restaurant j in source k in the past X days

Average basket values from restaurant j in source k in the past X days

xijk

(Normalized) Impression/view/order count/ratio from consumer i, restaurant j, source k in the past X days

Average basket values from consumer i, restaurant j, source k in past X days

z

Source k (name of the carousel or “single restaurant”)

Vertical position of the recommendation

City, geolocation, language, device

Temporal features including day of week, local hour of day, meal period

Table 7 List of features for the machine learning models in the MO-step. X=7,14,30,60,120.

leads to an order, and 0 otherwise. In other words, Oj1, ...,OjNj

i.i.d.∼ Bernoulli(cj). The conjugate prior for

Bernoulli distribution is the beta distribution with parameters (αj , βj):

p(cj) =
1

B(αj , βj)
cα−1
j (1− cj)

β−1, (17)

where B(αj , βj) is the Beta function acting as a normalizing constant. The likelihood for Oj1, ...,OjNj
is

p({Ojm}Nj

m=1|cj) =
(
Nj

N1
j

)
c
N1

j

j (1− cj)
Nj−N1

j , (18)
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where N1
j =

∑Nj

l=1Ojm is the number of orders (i.e. impressions that lead to orders) on restaurant j, and(
Nj

N1
j

)
is the combination number. Multiplying Eq.(17) and (18), we get the posterior for cj as

p(cj |{Ojm}Nj

m=1) =
p({Ojm}Nj

m=1|cj)p(cj)∫ 1

cj=0
p({Ojm}Nj

m=1|cj)p(cj)dcj

=
1

B(αj +N1
j , βj +Nj −N1

j )
c
α+N1

j −1

j (1− cj)
β+Nj−N1

j −1,

(19)

which is another Beta distribution with parameters (αj +N1
j , βj +Nj −N1

j ).

Plugging in the formula for the variance of Beta distribution, we get the posterior variance for cj as

σ(j)2 =
(αj +N1

j )(βj +Nj −N1
j )

(αj +βj +Nj)2(αj +βj +Nj +1)
(20)

which concludes the proof. □

B.1.4. Choice of prior parameters for the marketplace fairness objective. To reduce the number

of parameters, we let αj = α,βj = β,∀j, that is, all restaurants follow the same prior distribution for its

conversion rate. This is a reasonable assumption to ensure fairness across all restaurants (i.e. no prior bias

for any of the restaurants). There are three considerations for picking the values for α and β for the prior

distribution. First, the prior mean should not be too far from the actual point estimate for the conversion

rate, which is around 2% in our training data. Second, it is preferable to have the posterior relatively stable

and robust to bot attacks such as a huge amount of fake view and orders from a new restaurant. Third, the

posterior variance in Eq.(19) should be able to differentiate new restaurants with few impressions and orders

from the well-established restaurants. The first condition implies the mean of a Beta distribution B(α,β),
α

α+β
should be close to 2%. The second condition implies that α and β should be large enough to guard the

posterior against noisy data, while the third condition implies that α and β should be small enough so that

the numerator and denominator in Eq.(19) is not dominated by them. Given these considerations, we set

α= 2 and β = 98 and find them to work well empirically.

B.2. R-Step

B.2.1. Proof of the concavity of the Pareto frontier.

Proof of the concavity of the Pareto frontier. We prove the case for the trade-off between the conversion

objective C(x) and the basket value objective B(x). The cases for other objectives readily follow.

Given B∗ is a fixed constant independent of x, we let λ := αbB
∗ and rewrite the optimization problem as

max
x∈F

C(x)

s.t. B(x)≥ λ
(21)

where F = {x∈ E :R(x)≥ αrR
∗, F (x)≥ αfF

∗} is the feasible region for x. Let x∗
λ be the solution to Eq.(21)

which is a function of λ. We would like to show that C(x∗
λ) is concave in B(x∗

λ) as a function of λ. We

decompose the proof into two steps, which are the two claims below.

Claim 1: z(λ) :=C(x∗
λ) is a concave function of λ.

Proof. Define the Lagrangian function as

Lλ(x, µ) =C(x)+µ(B(x)−λ), µ≥ 0. (22)
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Therefore the dual problem for Eq.(21) can be written as

Dλ(µ) =max
x∈F

Lλ(x, µ) =−µλ+max
x∈F

(C(x)+µB(x))

:=−µλ+κ(µ),
(23)

where κ(µ) := maxx∈F (C(x)+µB(x)). Because Eq.(21) is a feasible linear optimization problem, strong

duality holds, i.e.

z(λ) =max
x∈Gλ

C(x) =min
µ≥0

Dλ(µ), (24)

where Gλ = {x ∈ F : B(x) ≥ λ} is the feasible region for Eq.(21). For any positive λ1, λ2 and t ∈ [0,1], we

have
z(tλ1 +(1− t)λ2) =min

µ≥0
(−µ(tλ1 +(1− t)λ2)+κ(µ))

≥ tmin
µ≥0

(−µλ1 +κ(µ))+ (1− t)min
µ≥0

(−µλ2 +κ(µ))

= tDλ1
(µ)+ (1− t)Dλ2

(µ)

= tz(λ1)+ (1− t)z(λ2), ∀t∈ [0,1].

(25)

Therefore by definition of concavity, z(λ) is concave in λ.

Claim 2: B(x∗
λ) is a piecewise linear function of λ. Specifically, B(x∗

λ) = λ0 for λ ≤ λ0, B(x∗
λ) = λ for

λ> λ0.

Proof. Let

x0 = argmax
x∈F

C(x) (26)

be the solution to a modified version of Eq.(21) that relaxes the feasible region from G to F . If there is more

than one solution to Eq.(26), pick x0 to be the one such that B(x) is maximized. Let λ0 =B(x0). λ0 can be

bigger or smaller than λ. We discuss the two cases separately below.

If λ≤ λ0, then x0 is also the solution to the original optimization problem in Eq.(21). Therefore B(x∗
λ) = λ0.

Otherwise, if λ> λ0, next we show that B(x∗
λ) = λ. Because G ⊆F and x∗

λ = argmaxx∈G C(x), we have

C(x∗
λ)≤C(x0). (27)

We know that

B(x0) = λ0 <λ≤B(x∗
λ). (28)

If C(x∗
λ) = C(x0), by Eq.(28) it contradicts with the assumption that x0 is picked among the optimal

solutions such that B(x) is maximized. Therefore the inequality in Eq.(27) is strict, i.e.

C(x∗
λ)<C(x0). (29)

Note that if B(x∗
λ) > λ, we have B(x∗

λ) > λ > B(x0). By linearity of B(·), we have that there exists a

x′ = t′x0 +(1− t′)x∗
λ such that t′ ∈ (0,1) and B(x′) = λ. Then by linearity of C(·) and Eq.(29), we have

C(x′) = t′C(x0)+ (1− t′)C(x∗
λ)

> t′C(x∗
λ)+ (1− t′)C(x∗

λ)

=C(x∗
λ).

(30)
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A

B

Figure 7 An illustration of a concave trade-off curve. A small sacrifice in one of the objectives can lead to a big

improvement in the other.

Because the feasible region G is convex and x′ is a linear combination of two points within G, we have x′ ∈ G

but C(x′)>C(x∗
λ). This contradicts the fact that x∗

λ is the optimal solution for Eq.(21). So we must have

B(x∗
λ) = λ for λ> λ0. So B(x∗

λ) is a piecewise linear function in λ.

Finally, combining Claim 1 and 2, we arrive at the conclusion that C(x∗
λ) is concave in B(x∗

λ). In other

words, the trade-off curve between C(x∗
λ) and B(x∗

λ) with varying λ is a concave curve. The benefit of

a concave trade-off curve is illustrated in Fig.7. Comparing with point A on the trade-off curve, point B

achieves a big boost in B(x∗
λ) with only a small sacrifice in C(x∗

λ). □

B.2.2. Formulation and solution for the constrained optimization problem in R-step. We

adopt the trick in Agarwal et al. (2012) and add a quadratic penalty term to the objective function in Eq.(12)

for an efficient and scalable solution that can be readily served in large-scale online systems. Specifically,

we penalize the squared Frobeniums norm between x and a uniform ranking plan u= {uiq =
1
Q
,∀i, q} that

assigns equal probability to all items for all consumers25:

max
x∈E

C(x)− γ

2
∥x−u∥2F

s.t. B(x)≥ αbB
∗, R(x)≥ αrR

∗, F (x)≥ αfF
∗,

(31)

Proposition 2 below provides the solutions to Eq.(31). Propsition 3 provides guidance on serving the

solution for online systems.

Proposition 2 The solution to Eq.(31) is

xiq =
1

γ
(ciq +λbciqbiq +λrciqriq +λffiq −µi)+

1

Q
, (32)

for any xiq > 0. Here λb, λr, λf are the slack variables for the constraints on B(x),R(x) and F (x) respectively,

and are functions of αb, αr and αf . µi is the slack variable for the constraint
∑

q
xiq = 1.
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Proof of Proposition 2. First, we write out the element-wise form of Eq.(31):

max
{xiq}∈E

∑
i,q

(xiqciq−
γ

2
(xiq −

1

Q
)2)

s.t.
∑
i,q

xiqciqbiq ≥ αbB
∗,∑

i,q

xiqciqriq ≥ αrR
∗,∑

i,q

xiqfiq ≥ αfF
∗,

xiq ≥ 0, i= 1, ..., I, q= 1, ...,Q,∑
q

xiq = 1, i= 1, ..., I,

(33)

where ciq, riq, biq, and fiq are the values for the consumer conversion objective, consumer retention objective,

basket value objective and fairness objective between consumer i and item q, respectively. The objective for

the maximization problem in Eq.(33) is concave, the inequality are all affine functions. Therefore, the KKT

conditions are necessary and sufficient conditions for optimality. We use them to solve Eq.(33).

Let λb, λr, λf , δiq and µi be the non-negative slack variables for the five sets of constraints in Eq.(33), which

are used to define the Lagrangian:

L({xiq}, λb, λr, λf ,{δiq},{µi}) =
∑
i,q

(xiqciq −
γ

2
(xiq −

1

Q
)2)−λb(

∑
i,q

xiqciqbiq −αbB
∗)

−λr(
∑
i,q

xiqciqriq −αrR
∗)−λf (

∑
i,q

xiqfiq −αfF
∗)

− δiqxiq +µi(
∑
q

xiq − 1).

(34)

By stationarity from the KKT conditions, we have

−ciq + γ(xiq −
1

Q
)−λbciqbiq −λrciqriq −λffiq − δiq +µi = 0, (35)

which yields

xiq =
1

γ
(ciq +λbciqbiq +λrciqriq +λffiq + δiq −µi)+

1

Q
. (36)

By complementary slackness from the KKT conditions, xiq > 0 only when δiq = 0. Therefore

xiq =
1

γ
(ciq +λbciqbiq +λrciqriq +λffiq −µi)+

1

Q
(37)

for any xiq > 0. □

Proposition 3 Ranking according to xiq in Eq.(32) is equivalent to ranking according to

x̃iq = ciq +λbciqbiq +λrciqriq +λffiq. (38)

Proof of Proposition 3. When serving the ranking plan x for consumer i, only the relative ordering of

xiq matters. Therefore the intercept 1
Q
, the multiplier 1

γ
and µi do not have affect the final ranking results.

□
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We now show that λb, λr, and λf can be solved as functions of αb, αr and αf in addition to the other

inputs. By primal feasibility from the KKT conditions, we have
∑

q xiq = 1,∀i. Plugging in Eq.(36) and solve

for µi we have

µi =
1

Q

∑
q

(ciq+λbciqbiq +λrciqriq +λffiq + δiq), i= 1, ..., I, (39)

Which are I linear equations involving the unknown variables µi(i= 1, ..., I), λb, λr and λf .

By complementary slackness from the KKT conditions, we have

λb(
∑
i,q

xiqciqbiq −αbB
∗) = 0,

λr(
∑
i,q

xiqciqriq −αrR
∗) = 0,

λf (
∑
i,q

xiqfiq −αfF
∗) = 0.

(40)

The first equation in Eq.(40) implies either λb = 0, or (
∑

i,q
xiqciqbiq − αbB

∗) = 0, which is another linear

equation for µi(i= 1, ..., I), λb, λr and λf after plugging in Eq.(36). Similar observations hold for the other

two equations in Eq.(40). Therefore, combining Eq.(39) and Eq.(40), we have a linear system with I + 3

unknowns and I +3 equations, which can be solved using any linear equation solver.

In practice, I is the number of consumers, so solving the linear system directly can be expensive. We

propose instead of solving λb, λr and λf as a function of αb, αr and αf which are treated as tuning parameters,

we propose to treat λb, λr and λf as tuning parameters directly to reduce computation. In addition, λb, λr

and λf can also be viewed as the weights controlling the relative importance of the different objectives.

C. Additional Experiment Details

C.1. Latest Production Recommender System at the Company

The latest production recommender system at the company is a framework using three disjoint machine

learning (ML) models to rank carousels and single restaurants in the homepage, based on conversion rate as

the single objective: (1) A (consumer, restaurant)-level model predicting the conversion objective on restau-

rant level, i.e. the probability that the consumer will order from the restaurant in the current session, which

is used to determine the ranking among the single restaurants and within each carousel (ML Model A); (2)

A (consumer, carousel)-level model predicting the conversion objective on carousel level, i.e. the probability

that the consumer will order from any restaurant inside the carousel in the current session, which is used to

determine the ranking among the carousels (ML Model B); (3) A (consumer,number of carousels)-level

model predicting the conversion rate under different number of carousels recommended, which is used to

determine how many carousels to display in the current session (ML Model C). Figure 8 shows an overview

of the production recommender system.

All of the models are real-time personalized machine learning models, using the state-of-art hybrid recom-

mender systems (Burke 2002) based on gradient boosting decision trees with the features and hyperparame-

ters same as those in Appendix B.1.2. For fair comparison, we adopt the same model architecture and model

size for estimating the individual objectives in the MO-step of the MOHR framework for the experiments at

the company.
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…

…

…

1. Within-carousel ranking: ML Model A

…

App Homepage

…

2. Across-carousel ranking: ML Model B

4. Single-restaurant ranking: ML Model A

3. Number of carousels to show: ML Model C

Figure 8 An overview of the latest production recommender system at the company.

Because the framework is unable to generate calibrated ranking scores across carousels and single restau-

rants, all of the carousels are ranked above all of the single restaurants in the production recommender

system.

C.2. Variance Correction For Ratio Metrics with Intra-consumer Correlation

Different sessions from the same consumer during the experiment period could be correlated with each other.

To explicitly account for this intra-consumer correlation, we derive the corrected variance calculation for the

three ratio metrics in Table 3 in the hypothesis testing procedure. Without loss of generality, we present the

derivation for the conversion rate metric below. The derivation for the basket value per order and retention

rate readily follows.

Following the notation in Table 3, let

Ō=
1

I

∑
i

∑
s

Ois, S̄ =
1

I

∑
i

Si (41)

be the average number of orders O and average number of sessions S per consumer. Therefore, the conversion

rate metric C = Ō/S̄ is the ratio of the two. We assume that the observations within each consumer could

be correlated, but the observations across different consumers are independent. By multivariate central limit

theorem, we have (
Ō
S̄

)
I→∞∼ N

[(
µO

µS

)
,

(
σ2
O/I Cov(O,S)/I

Cov(O,S)/I σ2
S/I

)]
(42)

where µO and σ2
O are the mean and variance of the random variable O (number of orders from each consumer),

µS and σ2
S are the variance of the random variable S (number of sessions from each consumer), and Cov(O,S)

is the covariance between O and S. By multivariate delta method, we have the conversion rate

C = Ō/S̄ ∼N(µO/µS, σ
2
C), (43)
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where

σ2
C = V ar(

Ō

S̄
)

=
(

∂
∂Ō

( Ō
S̄
) ∂

∂S̄
( Ō
S̄
)
)( σ2

O/I Cov(O,S)/I
Cov(O,S)/I σ2

S/I

)(
∂
∂Ō

( Ō
S̄
)

∂
∂S̄

( Ō
S̄
)

)
=
(
1
S̄
− Ō

S̄2

)( σ2
O/I Cov(O,S)/I

Cov(O,S)/I σ2
S/I

)(
1
S̄

− Ō
S̄2

)
=

1

I

[
σ2
O

S̄
+

Ō2

S̄4
σ2
S − 2Ō

S̄3
Cov(O,S)

]
.

(44)

When computing the p-values for C, σ2
O, σ

2
S and Cov(O,S) can be plugged in as the sample variance and

covariance estimated from the data. Generally speaking, the estimated variance is larger when considering

the intra-consumer correlation compared with treating all sessions to be i.i.d.. So the variance correction in

Eq.(44) yields a p-value that’s larger than if treating all sessions as i.i.d., making the hypothesis testing more

rigorous and conservative.

C.3. Results on the MO-Step

Table 8 summarizes the model performance and top important features for the machine learning-based

objectives, namely consumer conversion, consumer retention and basket value.

C.4. Results on the H-step

Table 9 and Fig.9 presents the estimated scrolling factors in the experiment. Note that there are at most

6 restaurants presented in every carousel. To see more restaurants within the carousel, there is a “see all”

button at the top right corner of every carousel. The H-step is only applied to the top 6 positions within

each carousel.

Horizontal position

U
se

r s
cr

ol
lin

g 
fa

ct
or

Figure 9 Scrolling factors from the consumer browsing model.
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Model name Model performance Top 10 important features

Test AUC = 0.8797

Normalized (consumer, restaurant) order count

Local hour of day

Consumer view count

Normalized (consumer, restaurant) impression count

Consumer Normalized (consumer, restaurant) click count

conversion uT
i vj , i.e. dot product of consumer embedding and restaurant embedding

Consumer order-to-impression ratio

Restaurant delivery time

Meal period

(restaurant, source) order-to-impression ratio

Test AUC = 0.7847

Consumer order counts in the past 120 days

Restaurant average basket value

Consumer order counts in the past 14 days

Consumer order counts in the past 7 days

Consumer Delivery radius

retention Consumer ride count

City

% of consumers churned after ordering from restaurant j in past 60 days

% of consumers churned after ordering from restaurant j in past 30 days

% of consumers churned after ordering from restaurant j in past 120 days

Test rMSE = 0.1135

(consumer, restaurant) average basket value in the past 120 days

Consumer average basket value in the past 120 days

uT
i vj , i.e. dot product of consumer embedding and restaurant embedding

Local hour of day

Basket (restaurant, source) average basket value in the past 120 days

value Source name

Restaurant average basket value in the past 120 days
cos(ui,vj)

||ui||||vj ||
, i.e. cosine similarity between consumer and restaurant

(consumer, restaurant) average basket value in the past 60 days

Consumer average basket value in the past 60 days

Table 8 List of features for the machine learning models in the MO-step.

Horizontal position Consumer scrolling factor p̂l,l+1

0 100.00%

1 31.96%

2 6.58%

3 5.32%

4 4.65%

5 5.99%

6 0.36%

Table 9 Estimated values for the scrolling factors from the consumer browsing model.
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C.5. Randomization Check

We compute the p-values for the metric differences between treatment and control group 28 days before the

experiment start date, when both treatment and control consumers are expected to receive recommendations

generated by the same algorithm. Table 10 shows that the A/A testing p-values are all greater than 0.05 (or

0.10 depending on the significance level of choice), suggesting that there is no significant difference in the

treatment and control group in terms of the key business metrics, before the experiment start date.

Metric Conversion rate Basket value per order Retention rate Orders per consumer Search rate

A/A testing p-value 0.326 0.452 0.947 0.853 0.286

Table 10 p-values for the A/A testing on key business metrics.

We further collected a comprehensive set of 472 metrics capturing various aspects of consumer behavior

on the platform and across different surfaces, and computed the p-values for the 472 metric differences.

Under the null hypothesis that treatment and control group consumers are not statistically different, the p-

values should follow a uniform distribution. We conduct the Kolmogorov-Smirnov (KS) test on the empirical

distribution of those 472 p-values, and could not reject the null that they follow a uniform distribution on

[0,1] (Fig.10), suggesting that our randomization holds true.

Figure 10 Histogram of the p-values for the 472 metric differences for A/A test. Kolmogorov-Smirnov (KS) test

which compares the empirical distribution of the p-values against the uniform distribution on [0,1]

has p-value of 0.11, which fails to reject the null hypotheses that these metrics are not statistically

significantly different during the A/A testing period.


