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Abstract

Despite the explosive growth of influencer marketing, wherein companies sponsor social me-
dia personalities to promote their brands, there is little research to guide companies’ selection
of influencer partners. One common criterion is popularity: while some firms sponsor “mega”
influencers with millions of followers, other firms partner with “micro” influencers, who may
only have several thousands of followers, but may also cost less to sponsor. To quantify this
trade-off between reach and cost, we develop a framework for estimating the follower elasticity
of impressions, or FEI, which measures a video’s percentage gain in impressions corresponding
to a percentage increase in the follower size of its creator. Computing FEI involves estimat-
ing the causal effect of an influencer’s popularity on the view counts of their videos, which
we achieve through a combination of a unique dataset collected from TikTok, a representation
learning model for quantifying video content, and a machine learning-based causal inference
method. We find that FEI is always positive, but often nonlinearly related to follower size, sug-
gesting different optimal sponsorship strategies than those observed in practice. We examine
the factors that predict variation in these FEI curves, and show how firms can use these results
to better determine influencer partnerships.
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1 Introduction

Influencer marketing has become an integral part of advertising strategy as companies recognize

the importance of collaborating with social media personalities. In its most basic form, firms pay

influencers to share content on social platforms with twofold goals of reaching the target audience

and gaining their trust. While there are many outlets for such sponsorships (e.g., Instagram and

Snap), TikTok has emerged as the most popular one.1 TikTok is a video-focused social networking

service and is largely attributed with popularizing the short form user video. With typical lengths

ranging from 15- to 180-seconds, these videos are ideal for holding the attention of an audience

with an ever-shrinking attention span. In the past few years, many brands have become active on

TikTok by promoting challenges. A typical challenge contains a name in the form of a hashtag (e.g.,

#MakeMomSmile from Colgate), a sentence or two encouraging users to create content matching

a theme (e.g., “Make Mom Smile this Mother’s Day by doing something special for mothers”),

and a few user-generated videos, sometimes sponsored by the company, that can jumpstart the

campaign.2

Figure 1 shows two examples of sponsored posts from two challenges. The left panel shows

a fashion influencer who created a dancing video for Dettol’s #HandWashChallenge that aimed

to promote its hand-washing products. The right panel shows a family influencer who partici-

pated in Walmart’s #UnwrapTheDeals campaign, which featured a special effect animation which

TikTok users could add to their videos to advertise Walmart’s Black Friday deals. As marketers

consider shifting their expenditures toward influencer marketing, there is a growing need to as-

sess the value of sponsoring influencers to create official videos like these, which set the tone for

the challenge, and are key to it gaining wide visibility. An on-going debate is the importance of

influencers with large numbers of followers (e.g., so-called ”mega influencers,” with millions of

followers) as best suited for promoting a campaign, as compared to those with smaller followings

(e.g., “micro influencers,” with thousands followers). While the former have a larger potential

audience, they are typically more expensive than the latter.3 Moreover, the issue is further compli-

cated by the fact that estimating the effect of followers on an outcome like reach is fundamentally

1https://www.emarketer.com/content/tiktok-influencer-marketing
2https://www.tiktok.com/tag/MakeMomSmile
3https://www.businessofapps.com/marketplace/influencer-marketing/research/

influencer-marketing-costs/
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Figure 1: Examples of Sponsored Videos on TikTok
At left, a screenshot of a video posted posted by a mid-sized fashion influencer under Dettol’s
#HandWashChallenge. At right, a screenshot of a video posted by a mega influencer under Wal-
mart’s #UnwrapTheDeals campaign.

a causal question, which poses a number of challenges. We use the two sponsorships shown in

Figure 1 to discuss the key issues.

First, the content of an influencer’s videos affects both how many followers that influencer

has, and how popular those videos become. Consider, for example, the two influencers in Figure

1: the influencer in the right panel of the figure tends to post content related to families, which

may have broad appeal on TikTok, while the influencer in the left panel of the figure typically

posts about fashion, which may have more niche appeal. If this is true, then without accounting

for the different content, we may erroneously infer that follower size, rather than content, is driv-

ing the popularity of the videos. Statistically controlling for the content of a video, however, poses

a challenge: video data is unstructured, containing different modalities (images, audio, text) that

work in synergy to convey the content. Even if we are able to quantify the content of a video,

there still remain a number of other challenges in measuring the causal effect of interest. Another

concern is that the causal effect of follower size on video impressions might, itself, be difficult to

measure effectively. It may, for instance, be nonlinear, akin to the well-known S-shaped response

curve in advertising (Johansson, 1979), or it may differ by the type of content itself (i.e., there may

be heterogeneity in the treatment effect). For instance, perhaps an instructional video about fash-

ion may benefit less from each marginal follower than a social challenge. Finally, while content is
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the most obvious confounder in our setting, there are a number of other potentially unobserved

confounders that may further complicate estimating the effect: for instance, perhaps the family

influencer at right tends to advertise their videos on another social media site, while the fashion

influencer does not. These cross-posting behaviors would be difficult to measure, but may simul-

taneously affect how many followers an account has, and how many views their videos get, again

leading to potentially erroneous inferences about the relationship between the two.

In this paper, we develop a modeling framework for determining the causal relationship be-

tween the number of followers that an influencer has and the reach of their posts that addresses

all of the above issues. We do so through two key components. First, to summarize the content

of a video, we employ a representation learning model based on the variational autoencoder (or

VAE). This part of our model takes as its inputs all the observed information about a post (e.g.,

video, hashtags), and outputs a dense vector representation of the content. Second, conditional

on the learned representation, and other observables about the creator and post, we leverage a re-

cently introduced, machine learning-based causal inference framework called Deep Instrumental

Variables (Hartford et al., 2017). The Deep IV approach allows for the flexible estimation of po-

tentially nonlinear and heterogeneous relationships between cause and effect, in the case when a

valid instrumental variable is present, which crucially, is the case in our empirical setting: TikTok.

We estimate our model using a curated dataset of TikTok videos that appeared on its Discover

page over a period of six months. The Discover page on TikTok shows users a wide variety of

videos grouped by categories that are currently trending in the TikTok community. The page is

updated daily with 1-2 new hashtags, giving us a wide snapshot of popular content on TikTok.

Our dataset consists of more than 200 hashtags, and just over half a million videos that are publicly

accessible under those hashtags. Each of these videos, as well as their creators, were tracked daily

for two weeks after the creation of each video, allowing us to record our two variables of interest:

the follower count of an influencer at the time a video was created, and the impression count of

a video two weeks after its posting. Finally, TikTok provides an ideal setting for our analysis,

because it has revealed in public posts aspects of how its recommendation algorithm works. As

we subsequently explain, this information suggests a valid instrument we can use in conjunction

with the Deep IV approach.

From this modeling framework and our TikTok data, we derive a key quantity of interest for
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firms determining how “big” of an influencer to sponsor: the follower elasticity of impressions,

or FEI. Based on our causal analysis, the FEI captures, for a given video, the expected percentage

change in that video’s impressions corresponding to a unit percentage change in its creator’s fol-

lower size. We quantify FEI over all possible values of the number of followers, which results in

a curve that shows how FEI varies as a function of followers. In turn, these FEI curves allow us

to critically examine the trade-off noted earlier: given a cost structure, what is the optimal level of

popularity of an influencer a firm should target to maximize profit from that sponsorship?

We have three key findings. First, FEI, on average across all videos, is positively, but nonlin-

early, related to the number of followers. We find that the FEI is, on average, inverted U-shaped in

the number of followers: that is, the highest marginal returns on followers tends to be for mid-tier

influencers. When thought of in terms of expected impression counts, the average pattern we find

is consistent with the S-shaped growth curve postulated in a number of prior studies of advertis-

ing (Johansson, 1979). Notably, this causal result differs substantially from a mere correlational,

but not causal, analysis, which suggests the biggest marginal effect comes from very small and,

more notably, very large influencers. This comparison suggests that, without carefully controlling

for video content, heterogeneous effects, and other potential sources of endogeneity, firms may

erroneously amplify the importance of mega influencers, and thus make sub-optimal decisions

about sponsorships. Our second key finding is that the FEI curves systematically vary with how

the firm is trying to engage customers (e.g., entertaining or socializing) and the topics covered in

the video (e.g., food or gaming). Thus, it is optimal to seek different influencer popularities for

different purposes, which is in line with the industry practice of doing so (albeit typically done in

an ad hoc manner based on intuition). Third, we provide counterfactual predictions for how video

impressions would grow based on follower size for the sponsored campaigns in our data set. We

find there are three types of growth curves – S-shaped, concave, and linear – and showcase why

taking an average across campaigns can be misleading for not only the magnitude of FEI but also

its relationship with the number of followers. Together, our findings provide firms with a set of

practical guidelines for optimizing influencer marketing campaigns, based on sound theoretical

underpinnings.

Our work adds to the existing literature in several ways. From a substantive perspective, our

work builds on an early but growing literature on optimizing influencer marketing campaigns

5



(Rajaram and Manchanda, 2020; Yang et al., 2021). In this vein, our work is also connected more

broadly to research on electronic word-of-mouth and user-generated content (Kannan et al., 2017).

In that area, many studies have examined how the number of connections that individuals have

within a network impacts the transfer of information (e.g., Goldenberg et al., 2009; Katona et al.,

2011; Liu-Thompkins, 2012; Susarla et al., 2012; Lee et al., 2018). Some have found a positive effect

of network size (Goldenberg et al., 2009), whereas others find that a larger number of connections

may lead to worse diffusion outcomes (Katona et al., 2011; Liu-Thompkins and Rogerson, 2012).

These findings suggest that the effect of network size on diffusion outcomes may be contingent

on what is being diffused, motivating us to consider non-linear and heterogeneous effect in our

analysis. Other work has recognized the importance of content in social transmission (Zhang

et al., 2017), including how content characteristics like emotion (Berger and Milkman, 2012) and

topic Hong et al. (2011) affect virality on social media. However, they either assume a linear effect

of follower size on reach, or cannot separately identify this effect from other effects of interest,

leaving a more nuanced understanding of the relationship between creator popularity and the

resulting spread of content largely unexplored.

From a methodological perspective, our work adds to a growing literature on using video data,

and unstructured data more generally, in marketing. In particular, video analysis has emerged as

a promising tool for understanding the links between the content of video marketing campaigns

and firm-relevant outcomes (Li et al., 2019), including in the context of influencer marketing (Yang

et al., 2021). In terms of video analysis, our approach aligns with other studies that have consid-

ered how various modalities of a video may interact with each other (Rajaram and Manchanda,

2020). However, our work is distinct in how we approach the problem: we leverage a multi-

modal representation learning framework, which allows us to embed TikTok posts in a lower-

dimensional vector space. Our learning framework is based on the variational autoencoder, first

introduced by Kingma and Welling (2013), and built on recently in marketing by Dew et al. (2022)

and Burnap et al. (2021). Our model is similar in structure to that of the multimodal VAE in

Dew et al. (2022), however it differs both in how the multimodal features were processed, and the

structure of the model. More specifically, our work leverages modality-specific transfer learning

(Zhuang et al., 2020) to process the raw video, audio, and text data, rather than purely hand-

crafted features, and a more sophisticated neural network architecture to merge these domains
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together.

The second component of our modeling framework, causal machine learning, has also gained

significant attention in recent years. Various approaches have been applied in past work in mar-

keting, most notably the causal forest (Guo et al., 2021; Zhang and Luo, 2022). For example, Guo

et al. (2021) apply causal forests to assess the heterogeneous treatment effects of physician pay-

ment disclosure on the subsequent firms’ payments to physicians. In comparison to these meth-

ods, Deep IV (Hartford et al., 2017) does not need the “unconfoundedness” assumption, which

is less likely to be applicable in our context. It allows for unobserved confounders to affect both

the treatment and outcome variables if a valid instrument is present. Deep IV also allows for us

to estimate a response curve, to understand how a continuous variables (follower size) affects a

continuous outcome (impressions). In that sense, our work echoes earlier work in quantifying

advertising response curves in more traditional settings (e.g., Dekimpe and Hanssens, 2007; Zant-

edeschi et al., 2017).

The rest of the paper is organized as follows. First, we describe our curated TikTok dataset.

Then we describe our modeling framework, including our representation learning and causal in-

ference models. After that, we describe several general patterns of results, and the implications

of those results, both for managers of influencer marketing, and for our understanding of adver-

tising response more generally. Finally, we conclude with a summary and discussion of some

limitations.

2 Data

TikTok provides an ideal empirical context for studying influencer marketing. Besides being one

of the most popular social media platforms for firms to sponsor influencers, it also meets the

full set of criteria for our causal analysis. More broadly, to provide valid answers for our inquiry

around the causal relationship between follower size and video impressions (the treatment effect),

the research setting should ideally satisfy several conditions: First and foremost, posts should be

collected from a platform where a valid instrumental variable (IV) can be leveraged to infer the

treatment effect. Second, social media posts should span a large range of follower sizes and con-

tent types, which can identify the heterogeneity in the relationship between the popularity of the
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influencer, and the popularity of a video. Third, the growth curve for impressions of posts should

be tracked from their introduction (no left censoring) to maturity. Finally, the social media plat-

form should allow brands to collaborate with influencers and the data should contain an identifier

for sponsored videos. Our choice of TikTok as our focal platform enables us to meet all of these

conditions.

2.1 Data Collection

Specifically, to meet these stringent conditions, we curated a dataset with all TikTok videos, both

sponsored and organic, that ever appeared on the public Discover page over a period of six months

(from Oct 2020 to April 2021). Our choice of TikTok as the social media platform and the Discover

page, in particular, was motivated based on how users are exposed to posts: compared to other

browsing channels, the Discover page on TikTok contains videos grouped by categories (termed

as hashtags) that are not personalized to any single user’s content preferences. The Discover

page also updates daily with 1-2 new hashtags, providing us variation in the observed content.

Moreover, the Discover page hashtags reflect topics that are currently trending in the TikTok com-

munity, and include content creators whose follower size ranges from several hundreds to several

millions. Our final dataset consists of 216 hashtags, 30 of them sponsored, and just over half a

million videos that were publicly accessible under those hashtags.4

For each hashtag that appeared on the Discover page during the data period, we collected

key characteristics for every video displayed under that hashtag, including its content, the cap-

tion, and any metadata, which, importantly, captures information about the video’s creator and

the number of views of the video. It is the metadata about a creator that allows us to form our

instrumental variable – the average number of hearts (TikTok’s equivalent of “likes” on Facebook)

received by the creator in the past – which we describe in more detail in the next section. As

some videos might contain multiple hashtags, we tracked each video’s earliest appearance on the

Discover page.5 Most importantly, we continued to track the number of views for each video on

4At first glance, 30 sponsored hashtags may seem like very few. In total during our observation window, there were
in fact 58 sponsored hashtags. However, some sponsored campaigns on TikTok have shorter durations (e.g., several
days), that made it impossible for us to apply our tracking procedure. The 30 we include are those that we were able to
track over at least 14 days, to accurately measure impression counts.

5Since we collect all hashtags and all videos associated with them in chronological order, the earliest appearance
would capture a video’s best possible position to get exposure on the Discover page (i.e., either under the most trending
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Mean Std. Dev. Min Median Max

Followers 486,169 1,335,649 2 60,102 71,000,679
Impressions 1,038,728 2,468,832 109 4,444,500 165,200,000

Table 1: Summary Statistics
Summary statistics of our key independent variable, follower size (”Followers”), and key dependent
variable, impressions (”Impressions”)

a daily basis for at least two weeks after its first appearance. This approach allows us to mea-

sure, first, how many followers the video’s creator had on the day of the video’s posting, and how

many impressions the video attained subsequently. Moreover, since the Discover page generally

features new hashtags, it means our panel of observations generally consists of new videos, for

which we can track the entire history of the video. Our two week period of observation accounts

for more than 90% of a video’s one-month views.

TikTok posts are multifaceted and differ from each other in many ways, including the imagery

in the video, the background audio, edits and effects added to the video, and the caption under the

video. We refer to this set of features, which all fall under the umbrella of unstructured data, as the

content features of a post. The other features of a post that we collect we term the post statistics,

which include measures like how many hashtags were used and whether those hashtags were

trending or not.6

2.2 Descriptive Statistics and Exploratory Analyses

In our analysis, the total number of impressions for a video over a period of two weeks opera-

tionalizes its reach, our main outcome of interest, and the content creator’s follower size when

the video is launched is the focal driver of this outcome. Table 1 presents the summary statistics

calculated across videos in our data set. The follower size variable shows considerable variation

suggesting that our sample contains different types of influencers. The same is the case for the

number of impressions suggesting that our data contains a few very popular videos. Due to right

skewness for both variables, we use their logarithmic transformation in our analysis. Figure 2

plots their marginal distributions.

Before we introduce our framework for causal inference, it is interesting to see what correla-

hashtag or with the highest ranking if the related hashtags are equally trending).
6see the Web Appendix for more details.
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Figure 2: Marginal Distributions
Histograms of the same variables from Table 1, (logged) followers and impressions.

Figure 3: (Correlational) Relationship Between Followers and Impressions
The joint distribution of logged followers and logged video impressions in our data, along with a
smoothed estimate of the relationship.

tional patterns exist in the data. Figure 3 shows the relationship between (logged) follower size

and (logged) video impressions, in terms of both the raw scatterplot, and a smoothed estimate of

the relationship between the two. We see that, correlationally, on average, there is a nonlinear rela-

tionship between follower size and the number of impressions. Interestingly, these results suggest

that influencers with very small or very large number of followers seem to generate the most sig-

nificant growth in impressions. A priori, this finding may seem reasonable: mega influencers are

extremely popular, and often a target for firm partnerships. However, as we show subsequently,

this result is misleading: the simple analysis in Figure 3 does not control for video content or any

other sources of endogeneity.
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3 Methodology

Our causal analysis between follower size and video impressions on TikTok must address four

key issues:

1. Nonlinear treatment effect: First, while we expect creators with more followers to have

higher reach, this relationship may be nonlinear for a number of reasons. For example, early

followers may generally tend to be more “loyal” to a creator, whereas later followers may

follow accounts more broadly, leading to higher marginal effects for low follower counts.

2. The key confound of content: Second, while we expect a positive association between fol-

lowers and impressions, inferring the causal effect of followers requires controlling for the

content of a video. To see how content may confound the relationship, consider an example:

cat videos may be more likely to receive lots of views, and creators who create cat videos

may end up with more followers, because of widespread interest in cats.

3. Heterogeneity of the relationship: Third, beyond simply controlling for the content of the

video, the actual causal effect of followers may depend on the content of the video: given the

huge heterogeneity of content on TikTok, it is possible that the reach effect of followers may

be stronger for certain content types than others. Therefore, to decide which creators to part-

ner with, firms must first understand the relationship between followers and impressions

for the type of content they want to produce. Said differently, in the context of the broader causal

inference literature, there may be heterogeneous treatment effects across different content

types.

4. Unobserved confounders: Finally, while controlling for video content is perhaps the most

salient challenge, there are a number of other potential confounds that may arise in esti-

mating the relationship between followers and impressions, that are almost certainly unob-

served. A subtle but important example is the practice of influencers cross-posting content.

Many influencers have accounts across multiple social networks, and it is common practice

to use one social network to promote their content on another network.7 In these scenarios,

7https://blog.hubspot.com/marketing/cross-posting
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the post on the outside platform may lead to both an increase in followers for the cross-

posting creator, and an increase in views for the particular video being advertised. Thus, in

inferring the relationship between follower size and video impressions, we need to take into

account the potential of unobserved confounders.

To address these four issues, we propose a framework based on two components: first, to summa-

rize the content of the video, and thereby partly address points (2) and (3), we propose a represen-

tation learning model for TikTok posts. This model takes as its inputs TikTok posts, and outputs

a dense vector representation of the post’s content, which, for the remainder of this section, we

will refer to as r. Second, conditional on r, and any other observables about the creator and post,

we leverage a machine learning-based causal inference framework, together with an instrumental

variable informed by how users find content on TikTok, to model the relationship between fol-

lowers and impressions. Based on the Deep IV framework proposed by Hartford et al. (2017), our

model allows us to simultaneously address all four key issues.

3.1 Learning Representations of TikTok Content

We need to distill the essence of a TikTok post into a vector of features that can be seamlessly

integrated in our causal model. These features should capture both what the post is about, and

the overall quality of its content. We learn such a feature vector by leveraging a combination

of two technologies: transfer learning based on pre-trained feature extractors, and multi-modal

representation learning. With transfer learning, we extract a set of features that describe all aspects

of a TikTok post, including its video and accompanying text. The extraction of features using

pre-trained models simplifies the subsequent representation learning process, and allows us to

explicitly incorporate especially relevant features for TikTok posts (e.g., how the posts are edited).

Then, our multi-modal representation learning framework condenses this set of features into a

single, dense, lower-dimensional vector, which we call r, that captures the links across them, and

can be used in a causal model. We briefly describe the two parts, and defer a detailed discussion

to the Web appendix.

Extracting Features with Transfer Learning From each post on TikTok, we extract features

from four modalities: (1) textual features, from both the video and the caption attached below; (2)
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image features, which are learned from the image frames of the video; (3) audio features, which

capture features of the video’s sound; and (4) editing features, which capture how creators edit

their videos on the platform. While the first three are standard in video analysis, the fourth is a

modality unique to TikTok. The specific features we extract include:

• Text: Our textual features are based on three sources: the video’s caption, any text overlaid

on the videos themselves (referred to as stickers), and text capturing the words spoken in any

video voice-overs. Across all three text modalities, we further process the raw text into word

embeddings, leveraging the pre-trained Word2Vec model (Mikolov et al., 2013), yielding our

final set of textual features.

• Image: The visual component of video data consists of sequences of image frames. In our

analysis, rather than extracting and analyzing each individual image frame, of which there

may be thousands, we extract image frames in five second intervals. By doing so, we greatly

reduce the volume of data, while still maintaining a relatively rich set of image frames. To

that collection of frames, we apply two pre-trained neural networks: VGG-19 (Simonyan

and Zisserman, 2014), which is an object recognition model, and SentiBank (Borth et al.,

2013), which predicts the emotional qualities of images. From VGG-19, we first extract the

second-to-last layer of the model for each frame of the video, which has been shown in prior

work to be a good, general-purpose representation of image content (e.g., Wei et al., 2019;

Zha et al., 2015). These features are then synthesized using an LSTM layer in our model,

which accounts for their sequential structure. We also compute an average of the final layer

of VGG-19, averaged across frames, which predicts which of 1,000 potential classes of objects

may be present throughout the video. Finally, from SentiBank, we extract the final model

prediction over 2,089 emotion classes, again averaged across frames, giving us an average

sense of the emotional content of a video.

• Audio: While audio is an important feature of all video data, it is especially important on

TikTok, as many videos are posted with a common audio track, where the audio motivates

the video content. We extract a number of audio features from each video including the

universality of the track, meaning how common it is across TikTok videos, different sound

classes based on the YAMNet model (Gemmeke et al., 2017; Hershey et al., 2017), and other
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high-level acoustic features, capturing the raw traits of the sound itself (e.g., intensity and

pitch).

• Editing: TikTok offers various tools that allow users to easily add special effects to their

videos, including simple edits such as video length and speed, and more complex edits

such as image filters. To measure how a video has been edited, we develop a number of

custom feature extractors, that capture the video length, whether the video has overlaid

images (called “stickers”), the average scene length, the variance of features across frames,

and whether there are any filters applied to the video.

In sum, our feature extractors yield four sets of features, that capture the content of a TikTok post.

More details are available about these features in the Web Appendix.

Representation Learning While many of the features we extract are already relatively high-

level, the full set of features is still very high-dimensional, and each modality is treated separately

by the feature extraction procedure. To further reduce the dimensionality of these features, and

synthesize them in a way that produces a high-level representation of the essence of each post as

a whole, we apply a representation learning procedure based on the variational autoencoder.

Variational autoencoders (or VAEs; Kingma and Welling 2013, Rezende et al. 2014) are based

on traditional autoencoders, which are machine learning models with two components: an en-

coder that compresses the data to a dense vector representation, and a decoder that reconstructs

the original data from that representation. The variational autoencoder is a probabilistic variant

of this framework, where the generative process of the observed data, xi for observation i, is mod-

eled as a function of latent, lower-dimensional vector representations, ri. Mirroring the classic au-

toencoder, the VAE has two parts: the encoder (or “inference network”) specifies an approximate

posterior distribution over r, given data x, by learning a density qϕ(r|x) ≈ pθ(r|x). The decoder

(or “generative model”) models the data generating process as a function of r, x ∼ pθ(x|r). From

the decoder, we can see that the r acts as a sufficient statistic for the data: given r, we can recon-

struct x. In both components, the link between the data and the representation is parameterized

by neural networks, which have parameters ϕ for the encoder, and θ for the decoder. VAEs have

been shown to outperform traditional (non-probabilistic) autoencoders in learning meaningful,
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Figure 4: Network Architecture of the Proposed VS-VAE
Illustration of the network architecture of our representation learning framework, the VS-VAE. At
top is the encoder, and at bottom, the decoder.

low dimensional representations of data, across a variety of domains (Hsu et al., 2017; Yao et al.,

2019).

The version of VAE we develop is a multimodal VAE. Its structure is similar to a standard VAE,

with both encoders and decoders, but it incorporates special structure within each of these compo-

nents that allow it to merge together information from each of the four modalities of TikTok data

(text, image, audio, editing). Specifically, in the encoder, we first use modality-specific networks

that capture the specifics of a given modality. Next, we combine the modality-specific encoders

using a neural network, which allows them to interact in a potentially nonlinear manner. This

joint enconder is then used to estimate the latent representation of a post. The decoder mirrors

this structure. Given the highly structured nature of the modality-specific encoders and decoders,

we refer to our proposed model as a “very structured” VAE, or VS-VAE. Figure 4 shows the over-

all modeling framework. The primary output of this framework comes from the encoder: given

a new TikTok post xi, the encoder gives us an estimate of p(ri|xi) in terms of a posterior mean,

µi, and variance, σi. This posterior mean is the representation we use to control for post content.

Going forward, we will slightly abuse our notation and use r to refer to this mean. We include a

detailed description of each component of our VAE framework in the Web Appendix.

Validating the Representations We validate that our representations capture the content and

quality of TikTok posts in three ways. First, if the VS-VAE is indeed capturing post content, then
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Text Accuracy (Avg.) Image MSE Audio MSE Editing MSE
VS-VAE 0.38 10.81 0.97 0.69
NIR 0.04 35.21 3.96 40.33

Table 2: Reconstruction Statistics under VS-VAE and NIR
For text, we measure the percentage of the reconstructed words that correctly match the original
words (a higher number indicates better fit). For the other three modalities, we calculate the mean
squared error between the reconstructed and original features (higher numbers indicate worse fit).
For image, we average the fit statistic over all image frames.

for a new post, we should be able to use the VS-VAE to accurately reconstruct the post from its

representation. We test this out-of-sample reconstruction, and find that the model is indeed able

to accurately reconstruct what it is given. We report the results in Table 2, where we compare the

reconstruction ability of our model to a no information rate (NIR). For the NIR, we simply predict

the mean value for every feature. The comparison to the NIR gives us a way of assessing the

magnitude of the reconstruction statistics. In short, in comparison to the NIR, we see our model

is able to accurately reconstruct the data, giving us confidence that the representations do indeed

capture the content of videos.

To further validate that the representations meaningfully capture video content, we examine

the distribution of videos in r-space. While the dimensions of r are not interpretable, distances

between videos in r are: posts that are closer in terms of r are expected to have similar features.

Thus, if r meaningfully captures the content of posts, we should find that the closest videos to a

focal video in r-space are similar to that focal video. In Figure 5, we show the top three nearest

neighbors in the latent r space for a set of three focal videos under three randomly selected hash-

tags. For each video, we show five frames, as well as the hashtag that the video was posted under.

Overall, we see there is a high degree of similarity among neighboring videos. For example, the

focal and neighboring videos under #FoodTikTok all start with a dish, followed by the cooking

process, and then show the dish again. The color palettes across the frames are similar as well.

Indeed, across all focal videos, we see that, visually, the neighboring videos follow a similar tra-

jectory, color tones, and objects presented throughout. Less obvious from Figure 5, we also see

that neighboring videos share many other features, including the music used, the extent to which

stickers, or overlaid textual comments, are used, and the scene length.8

The first two analyses illustrate that the representations can capture video content, but it is not

8We again defer more details to the Web Appendix.
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Figure 5: Nearest Neighbors Case Studies
The three nearest neighbors in r-space for three randomly selected focal videos, selected from differ-
ent hashtags.

clear that they capture the underlying quality of a video. While it is difficult to measure quality, one

metric we can use is video popularity: can we predict which videos become surprisingly popular

(or surprisingly unpopular) using r? By surprisingly, we mean that a video outperforms our

expectations, given the hashtag the video is posted in, the popularity of its creator, and its other

initial conditions, in terms of its impression growth. To do this, we first calibrate a hierarchical

logarithmic growth model for impressions over time, with post-level parameters capturing the

initial number of impressions for the post, and its growth rate over time. We include the initial

conditions of the video as predictors of these post-level parameters. We then test whether the

representations r can incrementally explain the post’s initial impressions and growth rate, beyond

just the initial conditions. Indeed, we find they can: our representations can predict with over 70%

accuracy which videos by over- and under-perform their initial conditions. We include complete

details of the impression growth model model and our testing procedure in the Web Appendix.
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3.2 Deep Instrumental Variables

While the representation learning procedure provides a way to control for video content, there

are three remaining concerns for our causal analysis: a potentially nonlinear relationship between

followers and impressions; potentially heterogeneous response functions across content; and the

need to account for possible unobserved confounders. To account for these concerns, we turn to

deep instrumental variables.

Instrumental variables methods have been widely used for causal effect estimation with ob-

servational data, when there may be unobserved confounders. Most existing approaches (e.g.,

two-stage least squares) do so under two strong assumptions: linearity and homogeneity (e.g.

Angrist et al., 1996). That is, the treatment affects all individuals in the same constant way. In our

case, as described above, both of these assumptions are unlikely to be true. To overcome these lim-

itations, a recent literature has emerged blending together standard causal inference approaches

with flexible machine learning models (e.g. Chernozhukov et al., 2017; Athey et al., 2019; Farrell

et al., 2021). In the context of instrumental variables, Hartford et al. (2017) have proposed Deep IV,

a model that generalizes two-stage least squares by estimating both the first and second stages of

the IV framework through deep neural networks, thereby allowing both heterogeneous and non-

linear estimation of causal effects. As Deep IV is, to our knowledge, new to marketing research,

we will now summarize the Deep IV framework, and connect it to our setting, following closely

the exposition in Hartford et al. (2017).

Deep IV assumes the following general model for the data generating process:

y = g(t, x) + e, (1)

where y is the outcome variable; t is the treatment variable; x is a set of observed features that

affect both t and y; z is the instrument; e are some unobserved variables, i.e., the error, that might

be correlated with x, t, and y; and g(·) is a flexible function of both x and t that captures the rela-

tionship of interest. This model essentially assumes a potentially nonlinear relationship between

the treatment, controls, and the dependent variable, while assuming that any unobserved effects

enter in additively. In our context, y is the number of impressions a video receives, t is the number

of followers the post’s creator has, and x contains both the content features of the video (r) and
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any other observables about the post and its creator that are not included in r.

Our goal is to predict counterfactual values of y under different treatment values t, conditional

on observables x. That is, in our context, we want to understand the reach of a video, if the

same video were posted by different creators who vary in their follower sizes. To address such a

question, Hartford et al. (2017) define a counterfactual prediction function,

h(t, x) ≡ g(t, x) + E[e | x], (2)

where, crucially, the expectation of e does not depend on t. Given two treatment values (i.e., two

follower sizes), h(t1, x) − h(t2, x) = g(t1, x) − g(t2, x), suggesting that, if we are able to estimate

h(t, x), we can infer these counterfactual quantities. However, estimating h(t, x) is not straightfor-

ward. We cannot, for instance, simply try to fit the model to the data: under Equation 1,

E[y | t, x] = g(t, x) + E[e | t, x] ̸= h(t, x),

as we have allowed E[e | t, x] ̸= E[e | x].

To get an unbiased estimate of h(·), Hartford et al. (2017) suggest using an instrument. Specif-

ically, as in the standard instrumental variables setting, suppose there exists an variable z, such

that z satisfies the following three conditions:

1. Relevance: F(t | x, z), the distribution of t given x and z, is not constant in z;

2. Exclusion: z does not enter Equation 1;

3. Exogeneity: z is conditionally independent of the error, e;

then we can leverage this instrumental variable to estimate h(·). Specifically, given z, we can write:

E[y | x, z] = E[g(t, x) | x, z] + E[e | x] =
∫

h(t, x)dF(t | x, z), (3)

which allows us, theoretically, to estimate h(t, x) given two observable quantities: E[y | x, z] and

F(t | x, z).

Until now, the derivation has closely followed the standard derivation of instrumental vari-

ables approaches (e.g., Newey and Powell, 2003). The Deep IV framework departs from standard
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approaches by operationalizing Equation 3 directly. Hartford et al. (2017) propose directly opti-

mizing an estimator ĥ(·) for h(·) by minimizing the objective function,

min
ĥ∈H

N

∑
n=1

(
yn −

∫
ĥ(t, xn)dF(t|xn, zn)

)2

, (4)

where H is defined as a set of functions that can be parameterized by a neural network, allowing

ĥ to be rewritten as ĥ = hζ(t, x), where ζ are the parameters of the neural network. Unfortunately,

without knowing F(t | x, z), this equation cannot be used directly. Hence, Hartford et al. (2017)

propose first estimating F(·) with a parametric distribution function F̂(t | x, z). To allow maximal

flexibility in the form of F̂, Hartford et al. (2017) again parameterize it using neural networks,

specifically assuming, for the case of a continuous t, that F̂(t | x, z) is the distribution function of a

mixture of Gaussians, whose parameters depend on the data through a neural network with pa-

rameters η, subsequently denoted as F̂ = Fη(t | x, z). Thus, the Deep IV approach replaces the usual

first stage of the two-stage least squares procedure by computing a flexible estimate Fη(t | x, z) of

the distribution of the treatment given observables. Then, conditional on the learned η from stage

one, denoted η∗, Deep IV solves

ζ∗ = arg min
ζ

1
N

N

∑
n=1

(
yn −

∫
hζ(t, xn)dFη∗(t|xn, zn)

)2

(5)

to learn an estimate of ĥ(·) = hζ∗(·), which can be used to quantify counterfactuals of interest. In

practice, both of these models (for h and F) are trained using stochastic gradient descent, and we

refer readers to Hartford et al. (2017) for additional implementation details.

Applying Deep IV to TikTok Data We now connect the general Deep IV framework to our par-

ticular empirical setting. To estimate the causal impact of an influencer’s popularity, operational-

ized as their follower size, on the reach of a post, operationalized as video impressions, we assume

the following data generating model:

log(Rj) = g(log(Fi(j)), xj) + ej, (6)
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where Rj is the reach of video j, defined as how many impressions the video had at the end of

our tracking period; Fi(j) is the follower size of creator i at the time of posting video j; i(j) is the

one-to-one mapping between video j and the influencer who posts video j; xj is a vector that

includes both summary statistics of this post and its video (e.g., how many hashtags video j uses;

see the Web Appendix for more details) and the representation, r, described previously; and ej is

an error term. We model reach and followers on the log scale to account for their heavy skewness

(see Figure 2, and to enable easy calculation of elasticities, as we describe in a later subsection.

To estimate counterfactual quantities under this model, we need an instrument for followers. We

describe the instrument we use — past video success — in detail in the following subsection.

Given that instrument, the rest of our implementation of Deep IV largely follows Hartford et al.

(2017). We give more details, including our assumed model and network architectures for h and

F, in the Web Appendix.

3.3 Instrument: Past Video Success

All of the preceding exposition assumes that we have a valid instrument for followers on impres-

sions, with which to estimate the counterfactual prediction equation with Deep IV. Such an instru-

ment should cause variation in an influencer’s follower size (the “relevance” condition), but not

directly affect the impression count of the current (focal) video (the “exclusiveness” condition),

nor be correlated with the error term (the “exogeneity” condition). We propose that a creator’s

past video performance meets those criteria. Specifically, given that we do not have a single of-

ficial measure of video performance, we use a video’s hearts count, which is TikTok’s equivalent

of Facebook’s “Likes,” as a practical proxy. Consequently, we define an influencer’s past video

performance as the average number of hearts received among all their videos posted up to the

time of the current post.

Relevance We first aim to demonstrate that an influencer’s past video performance indeed af-

fects their follower size. Intuitively, high past video performance signals that an influencer can

create high-quality content, and thus tends to attract more people to follow them. However, we

can also quantitatively establish relevance: for simplicity, let Past denote the IV, and let Follower

denote the number of followers a creator has at the time of posting. We find that the correlation
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between Past and Follower is fairly high, 0.736. Moreover, regressing Follower on Past, we obtain

a statistically significant coefficient for Past at 0.001, and a large R-square (0.542), further illustrat-

ing that a substantial proportion of variation in an influencer’s follower size can be explained by

their past video performance. Thus, the instrument is relevant.

Exclusiveness and Exogeneity Having established the relevancy of the proposed IV, we now

argue that the instrument also meets the more difficult conditions of exclusiveness and exogene-

ity. Intuitively, exclusiveness (or the exclusion restriction) means the instrument only drives the

outcome through the treatment, and exogeneity means the instrument is uncorrelated with the

error term (i.e., any potential confounders). In our context, to establish these conditions, we fist

logically argue that past video performance only affects current video performance through the

number of followers of the creator. To establish that, we first need to understand how users dis-

cover content on TikTok. On TikTok, there are five possible channels through which users can

discover content: (1) TikTok’s personalized “For You” feed; (2) the Discover page,9 (3) the Follow-

ing feed, (4) searching on TikTok, and (5) sharing. We now explore each of these channels, and

show how past video performance does not drive discovery through any of them, except through

the mechanism of following.

1. For You: The first channel, the For You feed, is a customized list of videos recommended by

TikTok based on each user’s activities and interests on the platform. According to TikTok,

whether or not an account has had previous high-performing videos is not a direct factor in

the recommendation system.10 Therefore, from the perspective of direct content recommen-

dation, an influencer’s past video performance will not affect how TikTok promotes his/her

current video and thus its impression. However, there may still be indirect targeting: high

past video performance might be the result of an influencer posting content of a particular

kind that is popular or trendy (e.g. cooking, dancing). TikTok then might be more likely

to target users with a current video of the same type, based on popularity of the content.

However, since we control for the video content through r, this mechanism will not violate

our identification.
9https://newsroom.tiktok.com/en-us/discover

10https://newsroom.tiktok.com/en-us/how-tiktok-recommends-videos-for-you
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2. Discover Page: TikTok’s Discover page shows users a list of hashtags (i.e., video categories)

that are currently trending. After clicking a hashtag, users are taken to a ranked listing of

videos under that hashtag. Both the list of hashtags and the videos under each hashtag

are the same for every user. In terms of our instrument, the primary concern is that past

video performance affects exposure of a video on this page. This could happen in one of

three ways: (1) through the hashtag (part of the video caption) itself (i.e., past success under

a hashtag causes an influencer to post again under a related tag), (2) through the ranking

of the video under a hashtag (i.e., creators with more successful past videos are ranked

more highly), or (3) through the thumbnail of the video visible on the discover page (which

may be informed by a creator’s past success). We control for all of these in our model:

(2) is included directly as covariates as part of x in Equation 6, and both (1) and (3) are

accounted for through the video representation r, which, among other things, captures the

visual content of the video.

3. Following Feed: The following feed is, perhaps, the easiest to address: when a user follows

a creator, that creator’s videos will appear on the user’s feed. It is not possible to appear

on the following feed without following; thus, exposure to videos here happens exclusively

through the follower count.

4. Searching: If a user is interested in some particular content or influencer on TikTok, they

can search them directly using TikTok’s search bar. If the search relates to the content of the

video, this will be captured directly in our model through the post features, r. If, on the other

hand, the user searches for the influencer directly, this suggests the user already knows of

the existence of the influencer, which likely happens either when the influencer is famous,

or when there are some concurrent exogeneous shocks that suddenly make the influencer

to widely known. In the first case, prior fame will be captured by the influencer’s follower

count; in the second case, exogeneous shocks are not problematic, insofar as they are, by

definition, unrelated to past video performance.

5. Sharing: Other than these four direct channels, a video might also get impressions indirectly

by being shared to others. The concern here is, again, if past video success directly drives

impressions via sharing. Given users may share similar content over time, and influencers
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may tend to post similar content over time, influencers who have historically been more

successful might continue getting more shares for their current videos. This concern is alle-

viated in our context, since the driving effect is the similarity of the content, and we control

directly for content. Alternatively, regardless of content, people may have a higher propen-

sity to share because of the influencers themselves, especially if the influencer is a celebrity.

To control for celebrity status, we include whether an influencer is verified or not as part of

our post statistics (i.e., part of x).11.

In summary, past video performance, operationalized by number of hearts given, on average,

to a creator’s past videos, is a logically valid instrument for measuring the impact of number of

followers on reach: given how people find content on TikTok, past video performance only affects

the number of impressions of current videos through the number of followers a creator has, or

through other factors that are explicitly controlled for, making it conditionally independent of the

error term in our model.

Validity Test Finally, to further empirically test the quality of past video success as our IV, we

perform a validity check recently proposed in the machine learning literature by Li et al. (2022).

The proposed method leverages machine learning to validate the typically impossible-to-check

exclusiveness and exogeneity assumptions in a nonlinear IV framework. Generally speaking, if

the instrument can predict the error term of the focal model, then it cannot possibly be a valid

instrument. Therefore, we check whether the error term from Equation 1, which should be inde-

pendent from the instrument, can be predicted by the instrument z and known covariates x with

a machine learning model any better than a model that is identically zero. Let ê denote the esti-

mated error term in our Deep IV framework. We then separately estimate ê using another machine

learning model, using x and z as inputs. We then compare the MSE loss of predicting ê using x

and z, with the MSE loss from a model that predicts identically zero. Specifically, denoting the

former as ℓ and the latter as ℓ0, we compute

γ = 1 − ℓ

ℓ0
. (7)

11TikTok has a full list of criteria to determine whether an influencer could be rewarded as verified which contain a
large variety of aspects that might make an influencer special, including being a celebrity (https://newsroom.tiktok.
com/en-us/how-to-tell-if-an-account-is-verified-on-tiktok)
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If γ is close to zero, it means the loss of the model predicting ê with x and z is close to a model that

just predicts 0, which is exactly what we expect if the instrument is valid. Indeed, in our case, we

find γ = 0.00023, offering empirical evidence on the validity of our instrument.

3.4 Deriving Follower Elasticities from Deep IV

Given this instrumental variable, the output of our Deep IV framework is an estimate hζ∗ of the

counterfactual prediction function, as defined in Equation 2. Intuitively, the counterfactual pre-

diction function lets us understand how (log) impressions of a video causally vary as a function

of the popularity of the influencer that posts the video. We now show how the counterfactual

prediction function can be used to derive our key quantity of interest: the follower elasticity of

impressions.

More specifically, in our context, hζ∗ is a function of both log followers, and the set of post char-

acteristics x (which contains the post representation r): hζ∗(log(F), x). As described in Equation 2,

this counterfactual prediction function is not the function g(·) from the data generating process,

which is the true object of interest, but the sum of g(·) and the error term conditional on x. How-

ever, we can still use h to predict the reach of a post defined by x under different values of log(F),

by taking differences of h. That is, concretely, suppose we have a video with features x, and we

want to understand how many more impressions we would get on the video if it were posted

by an account with log(F′) followers, as opposed to log(F) followers. To do that, we can simply

compute:

hζ∗(log(F′), x) − hζ∗(log(F), x).

Because the underlying model for h is a neural network, the learned h captures both nonlinear

effects between F and R, and interactions between F and x in determining R. In this way, h allows

us to understand how the effect of F on R may vary by the covariates, x, or what the broader

literature has referred to has heterogeneous treatment effects (e.g., Imai and Ratkovic, 2013; Wager

and Athey, 2018).

In our context, the “treatment” is continuous, rather than the more common setting where

the treatment is a discrete intervention. Thus, when describing the relationship between F and

R given x, we need to derive functional quantities, that capture the marginal effect of increasing
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F on R. To do that, we again consider taking differences of h. Suppose we are considering how

the reach of a video with features x would change if we increased its log followers from log(F) to

log(F) + ϵ, ϵ > 0. By the definition of h, we can compute the expected change in the reach of the

video resulting from that ϵ increase by:

E[log(R) | log(F) + ϵ, x] − E[log(R) | log(F), x] = hζ∗(log(F) + ϵ, x) − hζ∗(log(F), x). (8)

In the limit, as ϵ → 0, we can use this to derive marginal effects of the number of followers on the

reach of a post, which we refer to as the heterogeneous marginal effect, or HME. Mathematically, the

HME corresponds to:

HME(F | x) =
∂

∂ log(F)
E[log(R) | F, x]. (9)

In practice, we compute this numerically, by computing the change in the estimated hζ∗ for small

values of ϵ. We call this the heterogeneous marginal effect because it depends on x, the post

features. That is, the marginal effect of increasing followers may be different, depending on what

type of video we are posting.

Finally, based on these marginal quantities, we can compute what we term the follower elastic-

ity of impressions, or FEI, which is a central quantity of interest in determining optimal influencer

selection, as we will demonstrate later. Specifically, the follower elasticity of impressions is the

percentage change in impressions corresponding to a percentage change in the video’s creator’s

followers (analogous to the common price elasticity). Mathematically, given x, in the neighbor-

hood around a given follower value F0, we can approximate the relationship between R and F

by:

log R ≈ HME(F0 | x) log F + c(F0), (10)

where c(F0) is a term that does not depend on F. In words, we see that, pointwise, the HME is the

coefficient of a log-log model of R on F. From this, we can see that the HME is, in fact, equivalent

to the follower elasticity of impressions, conditional on video features x. That is, we can interpret

the HME as the percentage increase in impressions associated with a unit percentage increase in

followers. Since the HME varies at different levels of followers, the FEI will also vary. Hence,

when examining the FEI, we often plot what we call the FEI curve, which is simply the value of
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the FEI at different values of followers. As we will show in the next section, these FEI curves, and

more generally this interpretation of the HME and an elasticity, is crucial in determining whether

a firm will benefit from sponsoring an influencer with a higher number of followers.

3.5 Benefits of Our Framework

Before describing our results, we first briefly emphasize the key benefits of our combination of

representation learning and Deep IV. The key to our framework is that the mechanisms behind

content discovery on TikTok yield a plausible instrumental variable. Given the potential for un-

observed confounders, and the lack of experimental variation in the data, utilizing this IV is es-

sential for computing our counterfactual predictions. While simpler IV methods, including the

classic two-stage least squares approach, could have been utilized, such methods would not yield

nonlinear or heterogeneous estimates of the (continuous) treatment effect of popularity on reach,

which are essential in our context, and will be the focus of many of our results in the following

section.

Deep IV has many benefits, but it is not the only nonparametric IV estimator proposed in

the literature. Compared to other nonparametric IV methods like sieve- or kernel-based methods

(Newey and Powell, 2003), Deep IV does not require a strong prior understanding of the DGP

(data generating process) by the researcher and stays computationally tractable, especially when

there are more than a handful of inputs and a large number of training samples, by employing

deep learning algorithms. More recent work by Farrell et al. (2021) has further established the

convergence properties of deep learning-based frameworks under various network architectures

and a general class of nonparametric regression-type loss functions.

Finally, in our framework, we use representation learning to capture the content of videos be-

fore doing our causal estimation. In contrast, one could, in theory, avoid this stage by utilizing

the video data directly as the covariates x in the Deep IV framework. We favor the representa-

tion learning approach primarily because optimizing the Deep IV model directly with the raw,

large-dimensional video inputs is infeasible. Despite trying numerous architectures, when using

the raw video data in the Deep IV estimation, we were never able to achieve satisfactory con-

vergence. In this sense, our representation learning approach plays a role similar to unsupervised
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pre-training, which prior work in the deep learning space has found can help avoid overfitting and

convergence issues (Erhan et al., 2010). A second benefit of the representation learning approach is

that the dense vector representations of videos can be useful for validating the meaningfulness of

the inputs, and for performing other validation analyses, as we illustrated in an earlier subsection.

4 Results

We begin by discussing our results—our heterogeneous follower elasticity curves—at a high level,

before describing their implications for designing successful influencer marketing campaigns.

4.1 Follower Elasticity Curves

To begin, in the left panel of Figure 6, we plot the average FEI curve for all videos in our dataset,

averaging over all video types (i.e., over all x). We see that, overall, the FEI is positive, suggesting

that additional followers can always generate more impressions, though at different rates. We

find the average FEI follows an inverted U-shape, suggesting that a percentage gain in followers

yields, on average, the largest percentage gain in impressions for relatively small influencers: the

maximal average FEI is attained at just 4,000 followers. To understand what this inverted U-

shape implies about the overall reach of a hypothetical video, in the right panel of Figure 6 we

convert the FEI curve into an expected counterfactual prediction curve. This curve tells us how

many impressions we expect a video with a given number of followers to achieve.12 We see that

the counterfactual prediction curve is S-shaped. This result is very different from the pattern

implied by the descriptive analysis, in Figure 3, which suggested that the highest marginal rates

of return for followers are in the low and high ranges.

While the average curve is suggestive, the real power of our framework comes from its ability

to compute FEI curves for any value of x, allowing us to see how the FEI varies as a function of

what’s actually being posted. We first consider different engagement tactics firms may use in their

campaigns on TikTok. In some cases, firms use challenges to educate consumers on how best to

12As described in the previous section, the FEI is essentially the derivative of the counterfactual prediction curve.
Hence, to convert an FEI curve to a counterfactual prediction curve requires us to make some assumptions about the
overall level of impressions of the video (i.e., the constant from integration). For average curves, like in Figures 6, we
assume the constant is just the average number of impressions of all videos in the data. For later cases, we use the
actual level of impressions observed for that video.
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Figure 6: Average FEI and Counterfactual Prediction
At left, we plot the average follower elasticity of impressions, averaged over x, computed at different
levels of log followers. At right, we plot the counterfactual prediction curve, which is the average
predicted impressions of a video, given its number of followers. Uncertainty bands are 95% confi-
dence intervals for the mean, computed by bootstrapping.

use their products, while at other times, they may integrate their brands into social activities that

encourage people to participate. These different challenge types mirror a classification scheme

previously proposed by Dolan et al. (2019) for how firms can engage customers on social media.

In particular, Dolan et al. (2019) classify social media posts into the categories informational, en-

tertaining, and socializing. Table 3 gives specific definitions for these labels, and several examples

hashtags matching each. Using the heterogeneous FEI curves enabled by our framework, we can

explore whether different types of influencers may be more effective for different engagement tac-

tics. To that end, we first recruited independent raters to assign the informational, entertaining,

and socializing labels to each of our 216 hashtags. Then, we computed an average FEI curve for

all videos from the hashtags belonging to each of those categories. Figure 7 shows the results:

we find that there are significant differences in FEI based on the engagement tactic. Influencers

with less than 10K followers achieve faster impression growth for entertaining and informational

hashtags, while the influencers with a larger number of followers do so for socializing hashtags.

The result has face validity as the spread of social content relies more so on the follower size of

influencers.
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Engagement Tactic Definition Examples

Informational Content that provides users with resources
and helpful information (e.g., content about
events, places, opportunities, people or
celebrities).

#WomenInStem,
#HomeOffice,
#FallDIY

Entertaining Content that is meant to be fun and entertain-
ing, without explicit informational value

#GreenScreenScan,
#FallGuysMoments,
#OhNo

Socializing Content that encourages users to interact
with one another, and stimulates their desire
for social integration and social benefits

#LaughingDuet
#PerfectMatch
#GroupChat

Table 3: Engagement Tactics
Definitions and examples of the three engagement tactics we use to classify hashtags.

Figure 7: Average FEI by Engagement Tactic
The average FEI for videos that were labelled as coming from entertaining, informational, or social-
izing hashtags, computed at different values of log followers (averaged over x). Uncertainty bands
are 95% confidence intervals for the mean, computed by bootstrapping.

Besides engagement tactics, firms also design campaigns featuring different types of content,

typically based on the specific product or promotion they are advertising. To understand how the

FEI curve varies by the actual topic of the video, we first classify videos using a k-means clustering

of the associated hashtags (see the Web Appendix for more details). We find five broad content

topics: life (e.g., #WeekendVibes, #GoodMorning), holidays (e.g., #Christmas2020, #HappyHol-

idays), skills (e.g., #Yoga101, #InkDrawing), food (e.g., #HomeCooked, #HealthyCooking), and
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gaming (e.g., #GamerGoals, #GamingTikTok). Again, we find that the average FEI curve varies

substantially based on topic. We plot the average FEI curve by topic in Figure 8.

Figure 8: Average FEI by Content Topics
The average FEI for videos that were categorized by their hashtag as belonging to one of five content
topics, reflecting what the videos are about at a high level. The FEI is computed at different values
of log followers, averaged over x within the topic. Uncertainty bands are 95% confidence intervals
for the mean, computed by bootstrapping.

We find that, while FEI always peaks somewhere in the mid-range of followers, the timing of

this peak, and the overall magnitude of the elasticity, varies significantly by content topic. Holiday

posts, for instance, have a generally lower elasticity than all other video types, suggesting that,

overall, the returns on holiday-themed influencer campaigns may be lower than other types. In

terms of the shapes of the curves, we see that, while food and gaming topics are inverted U-

shaped, their peaks are substantially different: gaming videos peak much later than food videos,

suggesting there may be higher returns to sponsoring more popular influencers in the context of

gaming. Moreover, we see that for the other three topics – life, holidays, and skills – the curves

exhibit what we call an inverted N-shape: they have an early elasticity peak, followed by a second

peak in middle levels of log followers. This shape suggests that, for these video types, investing in

small tier influencers may be especially effective. One plausible explanation, especially in the life

and skills categories, is that smaller influencers feel more authentic, leading to higher elasticities

for low follower counts.
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4.2 Patterns Across Sponsored Campaigns

Until now, we have focused on establishing general patterns of FEI across video types, regardless

of whether those videos were part of a sponsored challenge or not. Now, we zero in on just the

sponsored challenges in our data, to understand how FEI varied across them. Recall that our data

contained 30 sponsored challenges. Because the content and structure of each of these campaigns

was different, we may expect to see different FEI curves. Thus, for each campaign, we estimate an

FEI curve, based on the x learned from the official videos posted under that challenge. To simplify

our analysis, after learning the FEI curve for each video, we compute the average FEI over six

ranges, corresponding to six tiers of influencers: sub-nano (fewer than 1,000 followers), nano (1-

10K followers), micro (10-50K), mid-tier (50-500K), macro (0.5-1M), or mega (more than 1 million

followers). We report these average FEIs for each campaign in Table 4.

As seen in Table 4, we observe three recurring patterns in how the FEI, and, by implication, the

counterfactual predictions, vary across campaigns: the FEI curves are either first increasing and

then decreasing, which implies an S-shaped counterfactual prediction curve (like we observed

on average in Figure 6); relatively constant, corresponding to a linear counterfactual prediction

curve; or monotonically decreasing, corresponding to a concave counterfactual prediction curve.

For example, in Figure 9, we plot the FEI and counterfactual prediction curves for Walmart’s #Un-

wrapTheDeals campaign, which we previously discussed in the introduction (see Figure 1), and

whose curves are similar to the average shapes shown previously in Figure 6. On the plot, for ref-

erence, we also label regions of the x-axis corresponding to the six tiers of influencers. In contrast,

in Figures 10 and 11, we plot two examples from Apple and Dettol (the latter of which was the

other video in Figure 1). Relative to the Walmart video, the Apple video (which was a workout

tutorial called #CloseYourRings) has a counterfactual prediction curve that is very concave, sug-

gesting that the highest marginal effectiveness comes from smaller influencers. Said differently,

the concave shape suggests that additional followers become less and less effective in reaching

consumers. In contrast, the Dettol video’s counterfactual prediction curve is more linear, suggest-

ing the marginal effectiveness is more consistent across influencer tiers. Even at high levels of

popularity, this shape suggests there are still sizable reach gains possible with increasing follower

sizes. These differences will have major implications for optimal influencer partnerships, as we
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<Nano Nano Micro Mid-tier Macro Mega
S-shaped
#UnwrapTheDeals 0.21 0.42 0.38 0.19 0.11 0.05
#WhatsYourPower 0.22 0.45 0.42 0.27 0.10 0.06
#VideoSnapChallenge 0.16 0.54 0.62 0.29 0.13 0.05
#GetCrocd 0.14 0.48 0.66 0.30 0.14 0.05

Linear
#CaliStarChallenge 0.21 0.24 0.20 0.28 0.26 0.23
#HandWashChallenge 0.25 0.36 0.32 0.27 0.30 0.20
#MoreHappyDenimDance 0.18 0.24 0.20 0.21 0.25 0.22
#ScoobDance 0.15 0.17 0.14 0.22 0.20 0.16
#ASOSFashunWeek 0.32 0.39 0.33 0.31 0.34 0.28
#TheSplashDance 0.25 0.27 0.31 0.30 0.32 0.34
#ReadySETgo 0.29 0.34 0.29 0.37 0.30 0.26
#LetsFaceIt 0.27 0.32 0.30 0.37 0.33 0.28
#DoPacSun 0.35 0.29 0.27 0.28 0.22 0.20
#MerryBOSSmas 0.16 0.20 0.14 0.18 0.12 0.10
#MoodFlip 0.21 0.27 0.22 0.30 0.28 0.25
#ThisIsBliss 0.26 0.34 0.32 0.36 0.34 0.32
#UptheBeat 0.19 0.26 0.28 0.25 0.25 0.22
#katespadenyhappydance 0.12 0.18 0.22 0.22 0.20 0.14
#PerfectAsIAm 0.22 0.34 0.28 0.28 0.32 0.30
#exprESSIEyourself 0.14 0.20 0.19 0.22 0.23 0.22

Concave
#CloseYourRings 0.43 0.24 0.24 0.12 0.11 0.05
#ItWasntMe 0.38 0.22 0.20 0.17 0.10 0.04
#HeinzHalloween 0.44 0.28 0.23 0.15 0.09 0.05
#StrictlyCurl 0.62 0.27 0.18 0.13 0.11 0.06
#MONCLERBUBBLEUP 0.35 0.18 0.18 0.13 0.09 0.03
#ShowUpShowOff 0.68 0.33 0.24 0.16 0.12 0.05
#GotMilkChallenge 0.53 0.42 0.22 0.18 0.09 0.04
#GoForTheHandful 0.66 0.27 0.19 0.17 0.11 0.05
#MicellarRewind 0.39 0.22 0.20 0.14 0.10 0.03
#CancelTheNoise 0.45 0.28 0.21 0.15 0.12 0.05

Table 4: Campaign FEI by Influencer Tiers
For each sponsored challenge, we compute the average of the FEI curve of that challenge over six in-
tervals, corresponding to different influencer tiers. We then grouped these curves into three buckets,
based on the implied shape of the corresponding counterfactual prediction curve: S-shaped, linear,
and concave.
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discuss in a later subsection.

Before we discuss the implications for optimal influencer selection, we first want to under-

stand if there are any factors that seem predictive of which types of campaigns yield each of the

three curve types. To that end, we examine the actual content of each campaign, including its

name, description, and the types of videos posted under that challenge. We give examples of

campaigns in each curve type category in Table 5. We find that the S-shaped, linear, and concave

growth tightly correspond to three salient campaign attributes: campaigns based on adding special

effects to videos tend to exhibit S-shaped curves; challenges that encourage self-expression via either

dancing or outfit change tend to exhibit linear curves; and product demonstration challenges tend

to exhibit concave curves.

There are several plausible explanations for these patterns. The first relates to the audience

size, or demand, for particular types of campaigns: product demonstration videos, which exhibit

a concave impression growth curve, can only attract an audience that is interested in their prod-

ucts, which is a smaller niche than, say, the community of TikTok users interested in dancing

and outfit change videos. As a result, smaller influencers yield a higher marginal effectiveness

in reaching that niche audience than larger influencers. For special effects videos, the stronger

S-shaped pattern suggests a more prominent thresholding effect: a special effect will only catch

on if a sufficiently popular influencer posts it.

Another possible explanation is follower quality. While our model implicitly assumes all fol-

lowers are equally interested in the content posted by an influencer, that is not necessarily true:

an influencer’s early followers may be more interested than those who “hop on the bandwagon”

once the influencer is already well established. The concave shape, then, may be a result of this

higher level of interest for early followers in the case of product videos, while more linear shapes

suggest that all followers are equally interested.

4.3 Connections to the Advertising Literature

Although we have described our findings so far in the context of managers of influencer marketing

campaigns, influencer marketing can be viewed as a type of advertising on social media. Thus, our

findings can also speak to the extant literature on advertising response, in the context of influencer
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Figure 9: Walmart’s #UnboxTheDeals FEI and Counterfactual Prediction Curves
At left, the FEI curve, and at right, the counterfactual prediction curve for impressions of Walmart’s
#UnwrapTheDeals video, given the (log) number of followers. The vertical lines in the right panel
delineate the six influencer tiers on the x-axis.

Figure 10: Apple’s #CloseYourRings FEI and Counterfactual Prediction Curves
At left, the FEI curve, and at right, the counterfactual prediction curve for impressions of Apple’s
#CloseYourRings video, given the (log) number of followers. The vertical lines in the right panel
delineate the six influencer tiers on the x-axis.

Figure 11: Dettol’s #HandWashChallenge FEI and Counterfactual Prediction Curves
At left, the FEI curve, and at right, the counterfactual prediction curve for impressions of Dettol’s
#HandWashChallenge video, given the (log) number of followers. The vertical lines in the right
panel delineate the six influencer tiers on the x-axis.
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Table 5: Campaign Descriptions by Curve Type
For each of the curve types, we show four examples of campaigns with that curve type, including
the hashtag name, a description of the campaign, and an example video.
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marketing. We now make this connection more explicit.

The literature on advertising has extensively explored question of marginal effectiveness of

advertising with respect to exposure. In that literature, there has been some debate as to whether

advertising response is S-shaped or concave, and whether a threshold effect exists, wherein an

ad is only effective if its exposure exceeds a certain level (Rao and Miller, 1975; Johansson, 1979;

Cannon et al., 2002; Vakratsas et al., 2004). Distinct from this literature, our response curves use

impressions, rather than sales, as the dependent variable, and follower size, rather than advertis-

ing expenditure, as the explanatory variable. Nonetheless, there are parallels: since influencers

are typically paid based on their follower sizes, and since a given follower size cannot guarantee a

given number of impressions, follower size plays a similar role to advertising expenditure. Like-

wise, while impressions are not the same as sales, they are often a metric of primary concern in

influencer marketing, and can be assumed to be proportional to sales.

Building on these equivalencies, our results suggest that, in the context of influencer adver-

tising, an S-shaped response curve indeed can exist, and is quite prevalent, but only for certain

types of content. In addition, if there is a threshold effect, it disappears at an extremely early point

(i.e., at less than 1,000 followers). Generalizing beyond our context, these findings suggest that

there may be two reasons for the limited empirical evidence of S-shaped responses to advertising.

First, threshold effects may not exist in the limited product classes for which data are available in

past studies. Second, while the range of followers of social media users can range from zero to

the millions, more traditional advertising is typically not done at extremely low levels. Given we

find a threshold exists at only very small numbers of followers, its likely that such an effect would

be impossible to observe with traditional advertising data. We also identify concave and linear

shaped response curves for different content, the latter of which has rarely been documented in

the advertising literature. It indicates that for some content, saturation of the potential audience is

yet to come, making influencers (individuals with large followings) more important in expanding

the potential of some campaigns to go viral. That we observe these response curves on TikTok,

but not historically in advertising may be attributable to the less mature content market on social

media that still experiences explosive growth in attention.
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4.4 Optimal Influencer Selection

Finally, now that we have established some patterns in when different patterns in FEI emerge,

we turn to the most important implication of FEI: determining which influencers a firm should

sponsor. Just as price elasticity of demand is crucial for determining optimal pricing strategies, the

follower elasticity of impressions is crucial for determining optimal influencer partnerships. Our

video-level FEI curves can guide firms in choosing an optimal popularity level for an influencer to

collaborate with for a specific campaign. Doing so requires three ingredients: first, the features of

the desired video, x, from which we can compute the predicted FEI curve for that video; second,

an assumption about how impressions translate into revenue; and third, the cost structure of the

sponsorship. With these three ingredients, we can use the FEI, together with how impressions

translate to revenue, to compute an estimate of the marginal revenue associated with an additional

follower. Then, from the cost structure, we can estimate a marginal cost, again in terms of an

additional follower. Setting the two equal yields the first order conditions for optimal influencer

selection.

To illustrate, we focus on the case study of Walmart’s #UnwrapTheDeals campaign that was

shown in the right panel of Figure 1, and discussed again Figure 9. The focal question is, what level

of popularity should Walmart target for an influencer to promote this campaign? To operationalize

“this campaign,” we use the features from the actual video depicted in Figure 1. With this x,

we then compute the FEI curve, and the counterfactual prediction curve, which we previously

displayed in Figure 9. As shown in the plot, the impression of the same Walmart video is predicted

to range from several thousands to more than 1 million when posted by different influencers,

indicating that follower size is indeed crucial in driving video impressions. Generally speaking,

more followers lead to more video impressions. However, the speed at which the number of

impressions grow differs across the influencer tiers, again following a similar effect as before: the

highest marginal return comes from the middle. Depending, then, on the marginal revenue with

respect to followers, partnering with the most popular influencer may be suboptimal.

To actually determine an optimal partnership based on this curve, we need to make some

assumptions about the way impressions generate value for Walmart, as well as the costs of the

partnership. For this study, we assume a $value/impression rate of $0.02, which was set to match
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the average cost-per-view of a video ad on Youtube.13 On the cost side, firms typically pay in-

fluencers based on their follower size.14 Assuming that the payment is linear in the number of

followers, the marginal cost of sponsoring an influencer for an ad post is constant. Following

industry norms, we assume a pay rate at $10/1K followers.15. Based on this, we find that the opti-

mal influencer for our Walmart example is a mid-tier influencer with around 150K followers. Our

analysis suggests that Walmart’s maximum profit ($8,225) from paying the suggested influencer is

37% more than paying the best micro influencer with 50K followers and is 700% more than paying

a mega influencer with 1.5M followers, which was Walmart’s choice in reality.

While the previous analysis was based on a single set of assumptions, the benefit of thinking

about optimal selection through FEI is that it is generalizable to any assumed cost and revenue

structures. Thus, in Figure 12, we analyze under what conditions a given follower size would

make sense, in terms costs per thousand followers, and revenue per impression. In each cell,

we label the follower size (in thousands of followers) for the optimal influencer. Note that in

the context of the Walmart campaign, influencers with millions of followers (suggested at the left

bottom corner of the heatmap) will be justified only if either their payment rate is low, and (or) the

firm places a high value on an impression on the TikTok platform.

Finally, we consider how the different curve shapes described in the previous subsection sug-

gest different optimal follower sizes. Following the logic described previously, Walmart’s impres-

sion curve is S-shaped, suggesting increasing followers in the mid-range yields the most “bang

for the buck.” For concave curves, on the other hand, like Apple’s #CloseYourRings campaign,

increasing followers on the lower end of the distribution is more effective. This suggests that, all

else equal, a smaller number of followers may be more optimal. Dettol’s #HandWashChallenge,

on the other hand, had an almost linear impression growth curve: linear curves suggest that the

marginal returns by increasing followers remain roughly constant, suggesting a higher number of

followers may be more optimal. Indeed, using our FEI-based logic, with the same assumptions

as above, the optimal number of followers for Apple and Dettol follow this logic: we compute

the optimal follower size for the Apple campaign is around 100K, substantially less than Walmart,

while the optimal size for Dettol is over twice that, 225K, substantially more than Walmart.

13https://influencermarketinghub.com/how-much-do-youtube-ads-cost/
14https://influencermarketinghub.com/influencer-rates/
15https://nealschaffer.com/how-much-to-pay-influencer/
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Figure 12: Walmart’s Optimal Follower Size By Condition
The heatmap shows the optimal number of followers (in thousands) Walmart should target based
on the cost per thousand followers on the x-axis, and revenue per impression on the y-axis.

5 Conclusion

In this work, we have examined the relationship between an influencer’s follower size and the

reach of their videos on the short video platform TikTok. Given the explosive popularity of TikTok

for influencer marketing, understanding this relationship is an essential ingredient in firms’ deci-

sions about influencer marketing. Since cost structures in influencer marketing typically depend

on the popularity of the influencer, firms must understand how this popularity actually trans-

lates into reach, in terms of the number of video impressions, to optimize their TikTok influencer

campaigns. In this vein, our work makes several contributions: first, we propose a combination

of representation learning and causal machine learning methods, which can be used to carefully

quantify the causal effect of popularity on reach (or, in our case, number of followers on impres-

sions). From this analysis, we derive the central quantity of follower elasticity of impressions, FEI,

which can be used to decide the optimal popularity level of their influencer partners. Through

our application of the framework to TikTok, we have demonstrated the rich heterogeneity in FEI

across many variables of interest to firms, and illustrated how differences in FEI affect optimal de-

cision making. Finally, our findings speak to several on-going academic debates about response

to advertising and optimal advertising strategies. While our empirical setting and specific find-
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ings are restricted to TikTok, our methodological framework is generalizable to other social media

platforms.

In short, without careful causal analysis and consideration of the FEI, our results suggest that

firms may erroneously err toward thinking that more popular TikTok influencers are better. In-

stead, we show that, counter to what might be concluded from simple correlation analyses, on

average, the highest returns come from considering influencers of middling levels of popularity.

That is, our follower elasticity metric often exhibits an inverted U-shape with respect to influencer

popularity. Moreover, our findings suggest the content of a campaign plays a huge role in how

popular of an influencer should be optimally sponsored, and more generally in how a video’s

eventual impressions respond to its creator’s popularity. We show that optimal influencer strate-

gies vary in predictable ways, based on how the firm is trying to engage with customers, what

their campaigns are about in terms of content, and how exactly their campaigns are structured, in

terms of the kinds of videos they encourage customers to construct. Based on how campaigns vary

along these dimensions, their follower elasticity curves may exhibit a variety of shapes, suggesting

different optimal partnerships. By characterizing these general patterns along interpretable, ac-

tionable factors, we give managers a framework to think about what makes influencer campaigns

successful, beyond the simple case study analyses that are common pointed to in practice.16

While our work offers one way to systematically evaluate influencer partnerships, it is not

totally comprehensive. Here, we only considered how influencers vary on a single dimension:

popularity. In reality, influencers may also vary in other ways, including on what type of content

they typically post, and how well that content matches the brand. We have also only analyzed the

case where a firm is collaborating with a single influencer. In the case they wish to sponsor multi-

ple influencers, there may be more complexities to consider, although the concept of FEI will still

be important. In general, we hope future work will build on the methods and metrics developed

in our work to explore these questions in more depth. Influencer marketing is a complex topic

that is of central interest to modern marketers; we hope our work makes an initial contribution to

the study of the topic that can be built on by future research.

16For example: https://www.tiktok.com/business/en-US/blog/branded-hashtag-challenge-harness-the-power-of-participation
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Web Appendix

Web Appendix A: Post Statistics

For each post, our post statistics include metadata information about 1) the hashtags used by the

post, 2) the ranking and age of the post within the hashtag, 3) the sponsorship status of the post,

and 4) the post’s creator. We now describe each of these in more detail and present their summary

statistics below.

Hashtags Each post may contain multiple hashtags, which influence how widely a video is seen.

One such hashtag is #fyp, which stands for “For You Page.” The For You page (FYP) is TikTok’s

personalized landing page, where the platform recommends videos to their users based on its

internal algorithm. It is widely believed that including #fyp on a post increases the likelihood of a

post being featured on the FYP. Thus, we include an indicator variable to capture whether a post

contains the #fyp hashtag (“Has FYP”). We also track the total number of hashtags used in a post

(“Num hashtags”) and among them how many are trending (“Num trending”).

Rank and Age On the Discover page, under each hashtag, there is a list of videos. The videos

that are listed towards the top of the page get more exposure than those lower down. We track

a video’s rank under each hashtag on the Discover page (“Ranking”), and whether the hashtag

was trending (“Is trending”). Finally, for each day a post is tracked, we record how old the post is

(“Video age”) and how old the hashtag is (“Hashtag age”) to represent their relative trendiness.

Sponsorship For each post, we check if it is sponsored by a firm (“Is sponsored”) or organic.

Creator For each creator, we check if he/she is a verified user (“Is verified”) as a general measure

of their speciality from various aspects.
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Variable N Mean Std. Dev. Min Median Max

Num Hashtags 518,303 6.662 3.275 0 6 47

Num Trending 518,303 1.078 0.853 0 1 10

Has FYP 518,303 0.604 0.489 0 1 1

Hashtag Age 518,303 6.003 13.316 0 1 148

Is Trending 518,303 0.767 0.423 0 1 1

Ranking 518,303 1029 586.495 1 1,037 2,000

Video Age 518,303 35.212 102.947 0 1.327 2,015

Is sponsored 518,303 0.001 0.031 0 0 1

Is verified 518,303 0.003 0.171 0 0 1

Table 6: Summary Statistics of the Post Statistics
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Web Appendix B: VS-VAE Architecture Details

The text encoder consists of a Bi-LSTM layer with dimension size 64 for the three text sources

and a fully connected layer of the same size 64 for the concatenated output from the three Bi-

LSTM layers. The image encoder consists of one LSTM layer with dimension size 4096 for the

sequential VGG-19 features and three fully connected layers of sizes 4096, 1024 and 512 for the

final image vector including the LSTM output of the VGG-19 features, the object vector and the

visual sentiment vector. The audio and editing encoders consist of one fully connected layer of

size 64 and 16, respectively. The joint encoder takes the concatenation of the encoded features of

size 656 from the four separate encoders as input and further compresses it into size 256 through

one fully connected layer. The decoders consists of layers with the same dimensions yet inverted

as those of the encoders. For all fully connected layers in both encoders and decoders, we use the

Rectified Linear Unit (ReLU) as the nonlinear activation function.

We experimented with batch sizes 16, 32, 64, 128, 256, and found 32 to be optimal for the

training of our VS-VAE. The model was trained for 300 epochs with early stopping and a learning

rate of 1e-5. To prevent overfitting, we use L2-regularization on the weights of our model. We

experimented with weight penalties of 0, 0.05, 0.1, 0.3, and 0.6 and found 0.05 to be optimal for

both the encoder and decoder. To minimize our VS-VAE loss, we use Adam as the optimizer. As

mentioned in the data section, our video data have around 1500-2000 videos under each of the

hashtags. In total, we have more than 0.5M unique videos spanning over all hashtags. They are

randomly split by hashtag into three parts: the training set, the validation set and the test set, at

the ratio of 8:1:1. In other words, they are split randomly but the ratio is preserved within each

hashtag. This strategy ensures, at least from the data perspective, that all impactful, recurring

content attributes resulting from belonging to a specific hashtag on video impression growth can

be well-captured, even under some imbalance in the video volume across hashtags.
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Web Appendix C: Deep IV Implementation Details

As in Hartford et al. (2017), we train the networks in both stages of Deep IV via stochastic gradient

descent. To select the best hyperparameters, we perform out-of-sample validation for both stages

by simply evaluating their respective losses on held out data. Each stage is evaluated sequentially,

with the second stage validation based on the best possible network from the first stage. In the

end, for the model for F we find the optimal architecture is a mixture of 10 Gaussian distributions,

with 3 fully connected layers with sizes 128, 64 and 32 for the network modeling their parameters.

For the model of h, we find an optimal structure of 4 fully connected layers, with size 128, 64,

32 and 1, respectively. For all layers, we use the Rectified Linear Unit (ReLU) as the activation

function. The model is trained on batches of size 256 for 100 epochs with early stopping and a

learning rate of 1e-5. To prevent overfitting, we set the dropout rate to be 0.2.
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Web Appendix D: Deriving the Hashtag Topics

To classify each of our hashtags into a content topic, we learn embeddings of the words within

that hashtag, then use those embeddings to derive a representation of the overall meaning of the

hashtag, which we then cluster across hashtags. Hashtags are typically concatenations of com-

mon words. Hence, we first develop an algorithm that automatically segments each hashtag into

separate words. The algorithm works by subsetting the overall hashtag name into strings which

can be matched to a dictionary. Then, the words that are found are matched to pre-trained GloVe

embeddings. This yields 50-dimensional word embeddings for each segmented word. To com-

bine them into a single embedding, we use average pooling over all embeddings in the hashtag

name. As an example, consider the hashtag “#HomeOffice”: we first segment it into “Home”

and “Office” and take the average of the two word embeddings as the semantic representation

for “#HomeOffice”. Consequently, each hashtag is represented by a single 50-dimensional vector.

We then identify five topics among all hashtags that each has at least 15 exemplars in our dataset

based on the k-means clustering of their semantic representations. Matching the hashtag closest

to each of the five cluster centers to the most popular content categories suggested on TikTok,17

we summarize the five topics as 1) life, 2) holidays, 3) skills, 4) food, and 5) gaming.

17https://www.statista.com/statistics/1130988/most-popular-categories-tiktok-worldwide-hashtag-views/
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Web Appendix E: Extracting Content Features from TikTok Posts

From each post on TikTok, we extract features from four modalities: (1) textual features, from both

the video and the caption attached below; (2) image features, which are learned from the image

frames of the video; (3) audio features, which capture features of the video’s sound; and (4) editing

features, which capture how creators edit their videos on the platform. While the first three are

standard in video analysis, the fourth is a modality unique to TikTok. TikTok features numerous

built-in editing tools for videos, which allow creators to add different effects to their videos (e.g.

visual filters, musical and animal voice effects). Given the centrality of these features to TikTok

posts, we create an innovative set of features to measure their presence in a post. We now describe

each of these feature sets in more detail.

Text Our textual features are based on three sources: the video’s caption, any text overlaid on

the videos themselves (referred to as stickers), and text capturing the words spoken in any video

voice-overs. Both the video description and sticker text are readily extracted from the TikTok

post. For the voice-over, we first identify if the background music of a video belongs to any sound

types related to speaking (e.g. speech, conversation or monologue) using YAMNet, a pre-trained

audio classification model (Gemmeke et al., 2017; Hershey et al., 2017). If so, we then employ

Google’s speech-to-text API to convert the audio to words.18 Across all three text modalities, we

further process the raw text into word embeddings, leveraging the pre-trained Word2Vec model

(Mikolov et al., 2013). Hence, our final set of textual features is a collection of word embeddings,

across these three sources.

Image The visual component of video data consists of sequences of image frames. In our anal-

ysis, rather than extracting and analyzing each individual image frame, of which there may be

thousands, we extract image frames in five second intervals. By doing so, we greatly reduce the

volume of data, while still maintaining a relatively rich set of image frames.19 We apply two

pre-trained architectures to process these video frames into more meaningful features.

The first architecture is the popular VGG-19 model, a 19-layered deep neural network origi-

18https://cloud.google.com/speech-to-text
19A TikTok video is normally 3-60 seconds long with 30-60 frames per second.
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nally trained to classify 1,000 unique classes of objects in images (Simonyan and Zisserman, 2014).

For each of our image frames, we feed the frame through VGG-19, and extract the second-to-last

(4,096-dimensional) fully connected layer. Intuitively, the layers of VGG-19 learn representations

of image content at increasing degrees of abstraction. Thus, the later layers of the model yield a

high-level representation of the image content. A robust set of prior studies has shown that the

final layers of the VGG-19 architecture can serve as the basis for a variety of other prediction tasks

(e.g. Wei et al., 2019; Zha et al., 2015), exactly because they form an abstract representation of the

image content, which is what we take advantage of here. In addition to the 4,096-dimensional

representation, we also include as visual features the actual 1000-dimensional object probabilities

returned by VGG-19. These probabilities capture whether one of the 1,000 classes of objects VGG-

19 was trained on are present in a shot, giving us a more concrete understanding of what, exactly,

was in each frame of the video.

The second architecture is a pre-trained convolutional neural network model trained on the

SentiBank data (Borth et al., 2013). The SentiBank dataset is a set of tagged images used for “vi-

sual sentiment” analysis. The model provides probabilities over two-word (adjective-noun) im-

age concepts, like “creepy house“ or “happy dog.” In contrast to simple sentiment schemes like

positive-negative, the SentiBank ontology is richer and captures many of the concepts actually

used in social media posts. The number of visual concepts is quite large (2,089), and the output of

the SentiBank is a 2,089-length vector of probabilities.

In sum, for each image frame, our set of features comprise of three vectors: the 4,096-dimensional

VGG-19 representation, which captures a holistic representation of the image; (2) the 1,000-dimensional

VGG-19 object class probabilities, which captures a wide range of potential objects that might be

present in the image; and (3) the 2,089-dimensional SentiBank visual sentiment probability vec-

tor, which captures emotional features of the image. In the end, we performed a max pooling

over the image frames to generate a single object vector and visual sentiment vector for maximal

inclusiveness. Together with the matrix of VGG-19 features with dimension #frames×4096, they

summarize all the extracted visual features for each video.

Audio The other key aspect of video data is the audio track. In fact, audio is a central component

of TikTok as it often provides a unifying link between videos within a hashtag. Background audio
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on TikTok can be selected from TikTok’s music library, from music clips used in other videos, or

uploaded as “original sound” by the creator. Our audio features try to capture both the features of

the sound itself, as well as, how the sound connects to other videos on the platform. Specifically,

we collect three types of audio features:

• Universality: A single number from 0 to 1 that captures how many other videos within a

hashtag use the same audio.

• Sound classes: We feed the audio through YAMNet (Gemmeke et al., 2017; Hershey et al.,

2017), a deep neural net that predicts 521 audio event classes, based on the AudioSet-YouTube

data. These features include various sound bytes that characterize laughter, conversation,

and different musical instruments. The specific feature we use is the 521-dimensional output

probabilities, averaged over the entire sound track.

• Acoustic features: Finally, we extract standard acoustic features, capturing the raw traits of

the sound itself (e.g., intensity and pitch).

In sum, the audio for video is summarized by a 543-dimensional representation.

Editing TikTok offers various tools that allow users to easily add special effects to their videos,

including simple edits such as video length and speed, and more complex edits such as image

filters. These tools are frequently used, and are often highly salient in the final videos posted on

the platform. We summarize these features below:

• Video length: The actual length of the video, in seconds, which tends to correlate with video

content. For instance, cooking-related videos can be either short (e.g., just show the finished

product), or long (e.g., tutorial-style with all the steps).

• Stickers: Whether the videos have textual stickers added to them, and if so, how many, and

how many words are in each.

• Scene Length: To quantity the overall speed of visual transitions of a video, we use the

average scene length which might vary remarkably from video to video. Specifically, we

identify the scene boundaries or transitions that occurs in a video by identifying the dis-

continuity between two consecutive image frames. We adopt the traditional intensity-based
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scene detection algorithms that compare the sharpness of the changes in color histograms

across consecutive frames. With the scene transitions, a video scene is identified as the con-

tent between each two consecutive transitions, and the length of a scene is then the length

of the time period between the two transitions. Finally, we take the average of the scene

lengths among all detected transitions.

• Feature Variance: Through editing, a creator could artificially create different content com-

plexity to fit in different video genres. For example, in case of videos of news or story shar-

ing with negligible background fluctuations, there are very small changes in both spatial

and temporal domains. On the other extreme, in case of high-action content such as DIY

projects, they are normally accompanied with rapid visual changes throughout the video.

The amount of information with in and differentiating each frame, and thereby, the content

complexity is fairly high. In the paper, we define both the spatial and temporal content com-

plexity of a video as the average variance of the object/sentiment probabilities across its key

frames and across the object/sentiment classes. Mathematically, for any video i,

Spatial Content Complexityi,k =
1
|Ti| ∑

t∈Ti

(
1

|Sk| ∑
i∈Sk

(pijt − pit)2

)

Temporal Content Complexityi,k =
1

|Sk| ∑
j∈Sk

(
1
|Ti| ∑

t∈Ti

(pijt − pij)2

)

Here, j represents the class, k ∈ {object, sentiment}, Sk denotes the set of k, and Ti denotes

the set of key image frames for video i. Then, pijt represents the probability of class j in frame

t for video i, pit represents the mean probability across all classes in frame t for video i, and

pij represents the mean probability for class j across all image frames for video i.

• Filters: We cannot directly assess if a filter has been applied. However, we can measure

the aesthetic quality of the image with metrics such as lightness and symmetry, which are

affected by the use of image filters (Bhattacharya et al., 2013).

In total, we learn a 157-dimensional vector of editing features from the data.
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Web Appendix F: Details of our Representation Learning Algorithm

While the feature extraction process helps structure the raw data, the dimensionality of the fea-

ture space it is still massive. To make these features more amenable for use within the deep

IV framework, while also accounting for synergies and correlations across the different modal-

ities, we build a representation learning model that embeds TikTok posts in a lower dimensional

space. Specifically, our framework is based on the variational autoencoder (VAE), a deep genera-

tive model used previously for learning representations of multimodal data (Dew et al., 2022). It

takes as input all of the content-related features, and returns a vector representation, r that cap-

tures the essence of the content, such that given r, the original content could be reconstructed.

Before describing our specific model, we briefly describe variational autoencoders.

F.1 Variational Autoencoders

The variational autoencoder is a type of autoencoder, which is a machine learning model that has

two key components: an encoder that compresses the data to a dense vector representation and a

decoder that reconstructs the original data from that representation. The variational autoencoder

is a probabilistic variant of this framework, where the generative process of the observed data, xi

for observation i, is modeled as a function of latent lower-dimensional vector representations, zi.

Mirroring the classic autoencoder, the VAE has two parts as well - the encoder, or the inference

network, specifies a variational distribution over the latent space qϕ(r|x) that approximates the

true posterior distribution pθ(r|x) of the latent variables (r) based on the observed data (x). The

decoder, or the generative network, models the generative process x ∼ pθ(x|r) where pθ(x|r) is the

probability distribution of the observed data (x) given the latent variables (r). Thus, the r acts as a

sufficient statistic for the data: given sufficiently rich encoders and decoders, r captures all of the

information of the original data x.

To learn representations of the data, we thus need to learn the amortized (i.e., shared across all

observations) encoder and decoder parameters, ϕ and θ, respectively. We do so by minimizing the

Kullback-Leibler (KL) divergence between the true posterior and the approximate posterior, as a

function of θ and ϕ. This minimization corresponds to maximizing the evidence lower bound, or
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ELBO, given by:

ELBO(θ, ϕ) = Er∼qϕ(r|x)[log pθ(x|r)] − DKL[qϕ(r|x)||p(z)) (11)

Here, DKL[·||·] is the KL divergence. The first term of the above equation can be interpreted

as maximizing reconstruction accuracy. The second term serves as a regularizer that penalizes

estimates that are far from the prior. In other words, the log-likelihood encourages the decoder

to reconstruct the data well, while the regularizer ensures that the encoder learns smooth latent

representations of the input data. In the standard VAE model, the latent variables are not shared

across data points, so the ELBO can easily decomposed into a sum where each term depends only

on a single data point:

ELBOi(θ, ϕ) = Eri∼qϕ(ri |xi)[log pθ(xi|ri)] − DKL[qϕ(ri|xi)||p(zi)) (12)

This objective function can then be maximized using standard numerical methods.

F.2 Our Multimodal Autoencoder

We extend the previous VAE framework to accommodate the different modalities of TikTok posts.

First, we use modality-specific encoders that capture the specifics of a given modality (e.g., audio).

Next, we combine the modality-specific encoders using a neural network, which allows them to

interact in a potentially nonlinear manner. This joint econder is then used to estimate the latent

representation of a post. The decoder mirrors this structure. Given the highly structured nature of

the modality-specific encoders and decoders, we refer to our proposed model as “very structured”

VAE, or VS-VAE. Figure 4 in the main body shows the overall modeling framework, visually. We

describe each component in more detail.

Encoder Recall the goal of the encoder is to infer the approximate posterior distribution of the

latent representation zi for video i, given its content, xi. In line with the typical assumption em-

ployed in a standard VAE, we assume a Gaussian approximation to the posterior, such that

p(zi | xi) ≈ q(zi | µi, σi I). (13)
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Thus, the encoder maps the data xi to the variational parameters µi, σi. The encoder has two

parts: first, each modality is encoded separately through a modality-specific encoder. We index

modalities by m = 1, . . . , M, and denote this first-stage modality specific encoding as:

hm
i = ModalityEncoderm

ϕm
(xim), (14)

where hm
i is the intermediate representation learned from video i’s modality m. Typically, these

modality-specific encoders take the form of a deep neural network, parameterized by ϕm, whose

architecture varies depending on the modality. Subsequently, the intermediate representations are

concatenated together using a joint encoder, denoted by,

(µi, log σi) = JointEncoderϕ0
([h1

i , . . . , hM
i ]), (15)

where the function is again modeled using a deep neural network, parameterized by ϕ0.

For each modality, we structure its encoder to reflect the unique structure of the data of that

modality. We outline each of these architectures here:

• Text: The input to the text encoder is the sequential list of word embeddings from each of

the three sources of text (video description, sticker text, and voice-over). To extract features

from each of these word embeddings, we pass them separately through a Bi-LSTM layer,

which is the typical choice to accommodate sequences of text, as it learns the meaning of a

sentence by processing word sequences in both forward and backward directions (Schuster

and Paliwal, 1997). The output of the Bi-LSTM is a vector of hidden states, which constitute

the text-specific representation, hText
i .

• Image: The input to the image encoder includes the vectors of VGG-19 features for each

of the video frames, the 1000-D object vector, and the 2089-D visual sentiment vector. To

extract features from the sequential VGG-19 features, we pass them through a LSTM layer

that combines them into a single 4096-D VGG-19 vector while keeping the temporal relations

between each frame. We then concatenate the hidden states of this LSTM with the other

two input modalities, and pass it through several fully connected layers, to learn the video-

specific representation, hVideo
i .

57



• Audio: The input to the audio encoder is the 543-D audio feature vector, including the

percentage measure of music universality, the music classes, and the ten standard acoustic

features. We pass these through through multiple fully connected layers to get the audio-

specific representation, hAudio
i .

• Editing: The input to the editing encoder is the 157-D editing feature vector, which we pass

through a single fully connected layer to get the editing-specific representation, hEditing
i .

• Joint: Finally, the joint encoder takes each of the modality-specific representations, hText
i , hVideo

i , hAudio
i ,

and hEditing
i , and feeds them through a single-layered fully connected network to provide the

variational parameters µi and σi.

Decoder The goal of the decoder is to reconstruct the observed data from the multimodal rep-

resentation, zi. This reconstruction involves specifying a generative model for the data xi, pa-

rameterized as a function of the representation zi. We assume that, conditional on zi, each of the

modalities is independent, and thus can be specified using a modality-specific decoder. Mirroring

our notation for the encoder, we generically write,

x̂m
i = Decoderm

θm
(zi),

where x̂m
i indicates the parameters governing the data generating process for xm

i . For instance, for

words, x̂m
i is the probability of seeing that word. For real-valued features, x̂m

i is the expectation of

that value. The specific architectures for each modality’s decoder are:

• Text: To generate text, the latent representation is first passed through a fully connected layer

to create separate Bi-LSTM inputs for the three sources of text: video description, sticker

text and voice-over. Then for each of them, we pass the Bi-LSTM outputs through a time

distributed fully connected layer with softmax activation to get the probability of each word

at each given time step.20 Therefore, for each video, the output of the text decoder is a

matrix of probabilities for every word and each position in the text. We employ categorical

cross-entropy loss for the text reconstruction, which corresponds to modeling the text with

20The time distributed layer applies the same activation function to each of the time stamps.
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a categorical likelihood.

• Image: The image decoder reconstructs the VGG-19 feature matrix, the object and the visual

sentiment vector. To do so, we first pass zi through multiple fully connected layers to obtain

(1) the inputs for an LSTM, which is then used to reconstruct the VGG-19 features; and (2)

the reconstructed object and visual sentiment vector means. We employ a mean squared

error loss for the image reconstruction, which corresponds to a Gaussian likelihood for the

image features.

• Audio and Editing: Both of these modalities use a single-layered fully connected network

as decoders, together with the mean squared error loss for feature reconstruction, again

corresponding to a Gaussian likelihood over the features.

Overall Loss To optimize the parameters θ and ϕ, we use the same ELBO loss as defined for the

VAE in Equation 12, but extend it to capture the reconstruction losses for the multiple domains.

Specifically, the loss for our VS-VAE model is as follows, where for simplicity, we suppress the

notation of domain-specific parameters θ and ϕ in the right hand side parentheses:

LVS-VAE(θ, ϕ) = ∑
m
Lrecons,m = Lreconst + Lreconsi + Lreconsa + Lreconse + LKL(θ, ϕ). (16)

To minimize this loss, we use the Adam optimizer (Kingma and Ba, 2014). The model is trained

on batch size 32 for 300 epochs with early stopping and a learning rate of 1e-5. To prevent over-

fitting, we use an L2-regularizer on the weights of our model. The specific details of the model

architecture are given in Web Appendix B.
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Web Appendix G: Predicting Video Popularity

To predict the popularity of a TikTok video, we proceed in two steps: the first part of our analysis

aims to quantify general impression growth patterns, using only the non-content factors listed

below. We refer to this step as “Stage 1” of our modeling framework. The results (described in

more detail below) show that content unrelated features explain only a small part of the variance

in the growth of impressions. We then leverage the content of videos as expressed by our VS-VAE

representations to assess. This step is what we refer to as “Stage 2” of our predictive model. The

good performance of our “Stage 2” prediction indicates that our representations can well capture

the quality differences across the video content that drives its surprisingly good or bad popularity

growth.

Figure 13: Non-content Factors

G.1 Stage 1: Baseline Model

We use a logarithmic growth specification as our baseline model, with the content-unrelated fea-

tures as covariates. Intuitively, videos tend to have an initial period of fast impression growth,

followed by relatively slow growth, which mirrors the assumptions of logarithmic growth. We

estimate a Bayesian, multi-level logarithmic growth model, with post- and hashtag-level param-

eters, which are themselves predicted by the set of content-unrelated features. Let yijt denote the

impression count for video j under hashtag i observed on day t, where t = 1 corresponds to the
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video’s first appearance under the hashtag.21 We specify yijt as follows:

yijt = Aij log(t) + Bij + ε ijt (17)

Aij = exp(aij), Bij = exp(bij) (18)

ε ijt ∼ N (0, τ2) (19)

where aij is the log growth rate of video j under hashtag i and bij is its log starting impression. To

capture the variation in growth rates and starting impressions, we assume a hierarchical, multi-

level structure on aij and bij, such that:

aij ∼ N (α0i + [xu
ij, yij1]′αi, σ2

α,i), (20)

bij ∼ N (β0i + xu
ij
′βi, σ2

β,i), (21)

where xu
ij is the set of non-content covariates for video j under hashtag i. In short, our multi-level

formulation assumes that each video’s growth parameters arise from a combination of hashtag-

specific effects (αi, βi) and the content-unrelated features for that video. The realized initial im-

pression yij1 is also included as an independent variable in the model of aij. Finally, each of these

hashtag-level parameters is drawn independently from Gaussian priors:

αi ∼ N (µα, σ2
α I), (22)

βi ∼ N (µβ, σ2
β I), (23)

Since we don’t have any prior knowledge, we specify diffuse distributions for the set of hyperpa-

rameters τ2, σ2
α,i, σ2

β,i, µα0 , µβ0 , σ2
α,0, σ2

β,0, µα, µβ, σ2
α, σ2

β. More specifically, we assume that the param-

eters for the intercepts (µα0 , µβ0) and covariates (µα, µβ) are mutually independent. We assume a

diffuse normal prior for both µα0 and µβ0 and each element of µα and µβ. In case of the variance

terms, including both the estimation variance terms τ2, σ2
α,i and σ2

β,i and the coefficient variance

terms σ2
α,i, σ2

β,i, σ2
α,0, σ2

β,0, σ2
α, and σ2

β, we follow the convention of specifying a gamma prior for the

inverse of the variance of each parameter.

21If a video has been listed under multiple hashtags, we only consider its earliest appearance to avoid duplication.
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Crucially, using Bayesian R2 (Gelman et al., 2019), we find that non-content covariates are able

to explain only about 33% of the variation in aij and bij across all hashtags. That nearly two-thirds

of the variation is unexplained suggests that a large number of videos may exceed, or fall short

of, their “destiny” — the performance we would expect by looking at who posted the video, and

under what hashtag. In the following subsection, we use the content of the videos for demand

prediction.

G.2 Stage 2: Residual Prediction based on the Modeled Video Content

We build neural network predictors to predict both the direction and value of the unexplained

impression growth from Stage 1 based on the learned video representations from our VS-VAE

framework.

To measure how much the realized popularity growth of a video is different from its estimated

baseline in the previous subsection, we calculate its growth residuals defined as follows

aij − âij , bij − b̂ij (24)

where the parameter aij (bij) represents the logarithmic fitted growth rate (starting impression) we

ultimately try to predict. The estimate âij (or b̂ij) represents the estimated value determined by

only the non-content baseline factors from the first-stage estimation. The difference then captures

a video’s growth rate (or starting impression) that cannot be explained prior to accounting for its

content. A positive difference refers to over-performance, meaning that its high-quality content

helps it to realize a growth rate (or starting impression) higher than expected (hidden gem). A

negative difference, on the other hand, refers to under-performance as a result of the video’s lower-

than-expected popularity growth (lemon) under its unsatisfactory content.

Mathematically, the difference takes the following form:

aij − (µα0 + X ijµα) (25)

bij − (µβ0 + X ijµβ) (26)

It is calculated based on the common parameters (α0, µα, β0 and µβ) representing all hashtags in
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our dataset, thus capturing not only the video-level but also the recurring content attributes re-

sulting from belonging to a specific hashtag that help a video achieve its observed growth.

We use neural networks to flexibly capture the link between the video content and the un-

explained impression growth. To classify over- and under-performing videos and predict the

magnitude of their unexpected popularity (or lack thereof), we build sign classifiers and numeric

predictors that take the learned video representations as input and provide the binary signs and

the numeric values of the growth residuals, respectively, as an output. They consist of three fully

connected layers with size 128, 64 and 1. We adopt the Rectified Linear Unit (ReLU) as the nonlin-

ear activation function for the first two layers and softmax activation for the last layer of the sign

classifiers and linear activation for that of the numeric predictors. They are trained by optimizing

the binary cross-entropy and mean squared error loss, respectively.
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