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Instrumental variables (IVs) are a commonly used technique for causal inference from observational data.

In practice, the variation induced by IVs can be limited, which yields imprecise or biased estimates of causal

effects and renders the approach ineffective for policy decisions. We confront this challenge by formulating

the problem of constructing instrumental variables from candidate exogenous data as a machine learning

problem. We propose a novel algorithm, called MLIV (machine-learned instrumental variables), which allows

learning of instruments and causal inference to be simultaneously performed from sample data. We provide

formal asymptotic theory and show root-n consistency and asymptotic efficiency of our estimators hold under

very general conditions. Simulations and application to real-world data demonstrate that the algorithm is

highly effective and significantly improves the performance of causal inference from observational data.
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1. Introduction

One of the most critical challenges in applied empirical research is to draw causal inference

from observational data. A central difficulty is endogeneity of variables entering the causal

relationship, arising from either omitted variable bias, simultaneity bias, sample selection

bias, or measurement errors. Instrumental Variable (IV) methods are among the most

frequently used techniques to address endogeneity bias in observational data. Instruments

that are correlated with the endogenous variable but are otherwise not associated with

the outcome variable can be used to partition the variance of the endogenous variable into

endogenous and exogenous components. The method of instrumental variables is based on

using the variation in the exogenous component of the endogenous variable induced by the

the variation in the instrumental variable to make inference of causal effects.
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In recent years, use of the IV method has come under criticism in multiple disciplines

(e.g. Bound et al. (1995) and Young (2017) in Economics; Rossi (2014) in Marketing;

Yogo (2004), Stock and Yogo (2002), and Hausman et al. (2005) in Finance) because

IVs used in practice are often weakly correlated with the endogenous variables, e.g. the

instruments used in practice induce limited variation in the endogenous variables leading to

impractically large imprecision of estimates of causal effects. In the extreme case when the

correlation becomes sufficiently weak, this leads to a formal “weak instruments” problem

whereby standard asymptotics break down, and the estimated parameters are no longer

even consistent and have a non-standard asymptotic distribution (see Stock and Wright

(2000)). The bias becomes worse (Hausman et al. (2005)) when the researcher adds more

weak instruments. The problem can be acute for industrial organization models (e.g.,

Berry et al. (1995), Arellano and Bond (1991), Arellano and Bover (1995), Blundell and

Bond (1998), Hendel and Nevo (2006)), which involve estimating parameters from highly

nonlinear functions and makes even the detection of weak IV’s more challenging.

Constructing strong and valid instruments is, therefore, an important endeavor for causal

inference from observational data. In this paper, we approach the problem of constructing

strong instrumental variables from exogenous information in causal models as a (super-

vised) machine learning problem. We first formulate the choice of construction of instru-

ments in a causal model as a decision problem that is amenable to the learning approach.

The key empirical problem which arises for the econometrician that is distinct from the

machine learner is that, in the typical applied context, the econometrician does not have

the luxury of treating the sample in-hand as the training sample for the decision prob-

lem. Instead, the sample in-hand is typically the only information from which instruments

must be constructed and causal inference must simultaneously be derived. We extend the

standard learning framework to develop an algorithm we term “MLIV Algorithm”, which

allows training of instruments and causal inference to be simultaneously performed from

sample data. The MLIVs exploits the variation in the data by treating each observation

as a realization of a hypothetical test sample, where the decision rule trained from the

remaining data can then be applied. Finally, we provide formal asymptotic theory and

demonstrate semiparametric efficiency for machine learned instrument variables.

Existing approaches for addressing weakness in instruments have primarily been focused

on constructions that approximate the optimal instrumental variables from the available
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exogenous data. Optimal instruments (Amemiya (1974), Chamberlain (1987)) are the ones

that provide asymptotically efficient estimators, but it is not feasible to construct optimal

instruments from data. Much work (Newey (1990), Newey (1993), Donald et al. (2009),

Berry et al. (1995), Blundell and Bond (1998)) has been done to approximate optimal

instruments. For instance, in dynamic panel models literature, Blundell and Bond (1998)

suggested how difference of consecutive lagged values can provide better inference than

directly using the lagged values as instruments. Further, recently, some work (see Belloni

et al. (2012)) has applied machine learning approaches to develop approximations to the

optimal instruments. One challenge with these approaches is that they require explicit

theoretical assumptions on optimal instrument structure, whose relevance will vary by the

application.

The MLIV’s we propose instead directly use data to learn the strong instruments without

requiring any structure on the model and optimal instruments. We therefore provide an

alternative and potentially complementary approach to the optimal instrument literature

that addresses weak instrument challenges by using the available exogenous information

to algorithmically optimize the efficiency criterion (Amemiya (1974), Chamberlain (1987),

and Newey (1990)). Consequently, posing it as a computational learning problem gets rid

of the need to rely on any explicit assumptions regarding the model or optimal instrument

structure. Further, it allows access to a broader arsenal of ML and statistical methods.

Indeed the contribution of our paper is to demonstrate that the optimal instrument variable

problem can be algorithimcally solved regardless of the complexity of the model or optimal

instrument structure. Further, we are able to provide very general conditions under which

our method asymptotically achieves the semi-parametric efficiency bound.

We illustrate the effectiveness of the MLIVs in empirical environments consisting of both

linear and nonlinear model parameters. Unlike traditional approaches (e.g., Belloni et al.

(2012), Gandhi and Houde (2019), Blundell and Bond (1998)), which have only looked at a

few specific models (among the vast set of nonlinear models) individually and tried to come

up with analytical approximations for optimal instruments under various assumptions, we

propose a method to learn strong instruments without imposing any explicit assumption on

the optimality structure or even the model itself. We demonstrate Monte Carlo simulations

for (i) a variety of linear causal models and, (ii) a specific nonlinear model Berry et al.
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(1995) (henceforth BLP), and showcase, how MLIV’s substantially improve the precision

of inference in both cases.

For the linear cases, we demonstrate, how MLIVs can still lead to robust estimates even

when core assumptions required by many other methods (e.g., “strong sparsity” on the

optimal instrument structure as in Belloni et al. (2012)) break down. Since many of these

assumptions are hard to come by in applied empirical environments, the MLIVs provide a

flexible solution to the weak IV problem.

For the nonlinear case, we consider the BLP model. By allowing consumers to have

unobserved preferences towards observed product characteristics, BLP allows for captur-

ing very rich substitution patterns between differentiated products. However, there has

been a growing question (see, e.g., Knittel and Metaxoglou (2014)) regarding the reliabil-

ity of mixed-logit systems to identify consumer heterogeneity. Some work (Reynaert and

Verboven (2014), Armstrong (2016)) has argued the potential source for identification chal-

lenges are weak instruments. Extant work has relied on mixed-logit model’s structure to

approximate the analytical form of optimal instruments. We show how the same MLIV for-

mulation can deliver effective results in this setting while providing a more general solution

to weak instrument issues for broader a set of models.

We finally end with applying our method to Acemoglu et al. (2001) (henceforth AJR),

which faced criticism (Chernozhukov and Hansen (2008)) due to weakness of their instru-

ments across various specifications they considered. We contrast their results against ours

and demonstrate how MLIV instruments can help mitigate the curse of weak instruments

and deliver stronger identification.

2. Related Literature

As discussed above, the standard existing approach to weak IV concerns is approached

through approximation of optimal instruments. Most work on optimal instrument variables

in linear models casts the problem as a selection problem among the available exogenous

variables (and their transformations e.g., b-splines). Early work on instrument selection

goes back to ((Kloek and Mennes 1960) and Amemiya (1966)) where they studied using

“selected” principal components of the many available instruments to counter inference

issues due to many instruments. Further work by (Kapetanios and Marcellino (2010)) pro-

posed using factor analysis for decomposing the high-dimensional instruments onto a low-

dimensional space. Both principal component analysis and factor analysis are not targeted
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at approximating the optimal instruments, but rather at coming up with a low dimensional

vector that summarizes the high-dimensional instruments, which could potentially yield

(Amemiya (1966)) better performance in terms of bias and mean squared error.

Recent work on instrument selection assumes strong sparsity of the optimal instruments

structure (i.e. a small set of the available IVs are valid and sufficient for first stage). Work

by (Bai and Ng (2009)) demonstrate how boosting can be used for recovering the sparse

structure but do not provide any formal proof. (Belloni et al. (2012)) explicitly shows how

Lasso can be used for instrument selection among a large set of candidate instruments under

the strong sparsity assumption. Further they are also able to prove theoretical consistency

and other inference results for their IV estimator. Their proposed approach does not work

as well when sparsity is violated, i.e. most instruments are weak, as it selects all of the weak

IVs or drops them all. Unlike the extant literature, our learning approach to instrumental

variables still exhibits asymptotic guarantees and does not rely on any sparsity assumption

on the optimal instrument structure. Further, our approach allows the researcher to apply

a broad arsenal of machine learning methods in constructing the instrumental variables.

Although work on estimating optimal instrument variables in nonlinear models is some-

what limited, the issues with weak IVs are well documented. Empirical Industrial Organi-

zation models are often characterized by a set of nonlinear moment conditions and a large

number of (potentially weak) instruments. For instance, dynamic panel models in the pro-

duction function literature (Melitz and Polanec (2015), Wang and Yu (2012), Ackerberg

et al. (2006)) derive identification from lagged values of the time series, which are often

seen as weak instruments. Blundell and Bond (1998) discuss how traditional estimators

(Arellano and Bover (1995)) suffer from weak instrument issues and propose transfor-

mations of lagged values that deliver more efficient results. Similarly, Armstrong (2016)

argues that many of the empirical challenges associated with identifying substitution pat-

terns in random-coefficient (or mixed) logit models such as Berry et al. (1995) are due to

weak instruments. Gandhi and Houde (2019) discuss methods of analytically approximat-

ing (using explicit assumption of random-coefficients model) the optimal instruments for

BLP. Our approach to strong IV’s provides a more general and more data-driven solution

to such identification challenges without relying on the explicit details (e.g., AR(1), logit)

of the model.
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Our paper is also related to sample-splitting in the econometric literature. Angrist et al.

(1993) and Angrist et al. (1999) introduced the idea of sample splitting to estimate first

stage estimates, and argued for their superior small sample properties. Sample splitting

plays a key role in defining the properties of our estimators by introducing orthogonality

conditions in our asymptotic proofs. We also relate to Ayyagari (2010), Newey and Robins

(2018) and Chernozhukov et al. (2016), which make use of sample splitting to identify

nuisance parameters in partially linear models.

Finally, at a high level, our work is also broadly related to emerging work on machine

learning and causal inference. Belloni et al. (2014) propose a double selection procedure,

where they first use Lasso to select among high dimensional covariates to improve the

performance of treatment effect estimator. Wager and Athey (2018) discuss how random

forest can be used to estimate heterogeneous treatment effects. Many recent methods like

“Deep IV” (see Hartford et al. (2017)), “Dual IV” (see Muandet et al. (2019)), “Deep

GMM” (see Bennett et al. (2019) ), “Adversarial GMM” (see Lewis and Syrgkanis (2018)),

and “Kernal IV” (see Singh et al. (2019)) have come up that involve using machine learning

for causal identification. However, they study a fundamentally different problem of non-

parametric IV regression i.e. estimate f such that y = f(x) + ε. Relatedly, other methods

like (Fan and Liao (2014) and Gautier and Rose (2011)) describe how machine learning

methods can be used for inference with high-dimensional endogeneous regressors.

3. Learning Optimal Instrumental Variables

Consider the causal model framework characterized by P moment conditions:

m(θ0) = E
[
f(xi, zi;θ)

]
θ=θ0

= 0

where θ is K × 1 vector of parameters; f(·) is P × 1 vector of (nonlinear) functions; xi

refer to model variables (data), and zi refers to the instrument variables. We consider the

specific subset set of estimators referred to as instrumental variable estimators such that

the moment conditions have the following form:

f(xi, zi;θ) = ξ(xi;θ)︸ ︷︷ ︸
1×1

· zi︸︷︷︸
P×1

(1)

and satisfy strong exogeneity,

E(ξ(xi;θ)|Z) = 0 (2)
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For instance, for a linear regression (y= θx+ ε) moments are given by E
[
(y−θx) · z

]
. The

generalized method of moments estimator (Hansen (1982)) θ̂GMM minimizes the following

objective function.

QN(θ) = [
1

N

i=N∑
i=1

f(xi,zi, θ)]
′WN[

1

N

i=N∑
i=1

f(xi,zi, θ)],

where the P ×P weighting matrix WN is a symmetric positive definite, possible stochastic

with finite probability limit. N is used to indicate the estimator’s dependence on sample.

Under some sufficient conditions, the GMM estimator is consistent and aymptotically

normal.

3.1. Learning Criterion For Optimal Instrumental Variables

Strong exogeneity implies that any choice of the transformation H(·) of the instruments z

also corresponds to a set of instruments for the GMM problem i.e.,

E
[
ξ(xi;θ)|Z

]
= 0 =⇒ E

[
ξ(xi;θ) ·H(zi)

]
= 0

The problem faced by an econometrician is to choose an “efficient” rule H(·). The most

efficient set of instruments H(zi), referred to as optimal instruments (Chamberlain (1987),

Amemiya (1974), Hansen (1985)), are such that:

H = arg minh V (θ0;h(z)) (3)

where V refers to the asymptotic variance of the parameters θ0 minimized over all possible

functions h. Keeping computational concerns aside, estimating optimal H is infeasible as

it depends on asymptotic variance V (which is unknown) and true model parameters θ0

(which can be estimated once the instruments are estimated).

To get around these issues, extant work (Berry et al. (1995), Blundell and Bond (1998),

Gandhi and Houde (2019)) has often used approximations of optimal instruments based

on the structure of the specific model. For instance, Berry et al. (1995) argue that the

observed characteristics of the product, the sum of characteristics of the other products

produced by the same firm, and the sum of characteristics of the rival products are good

approximations of optimal instruments. Similarly, in context of dynamic panel models,

Blundell and Bond (1998) propose using lagged differences over lagged values as better

approximations. And in linear models such as 2SLS, it is not uncommon for researchers
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to try quadratic and cubic forms of the available instruments in search for an efficient

estimator. However, it is in general hard to know which transformations are more efficient

without making additional assumptions about the optimal instrument structure.

In contrast, we take a completely data-driven and algorithmic approach to estimate effi-

cient instruments from data, thereby avoiding any reliance on model or optimal instrument

structure assumptions. We denote H (Z;η) as a class of instrumental variable functions

parameterized by η. Such functional approximation models could encompass any of a wide

variety of ML approaches ranging from polynomials and splines to sparse regressions, and

neural nets.

We propose to directly minimize the variance of the estimator (trace of V̂ ) given by:

minη

[
L(η) = tr(V̂N(θ;η))

]
s.t. θ ∈ arg minθ′ Q̂N(θ′;η)

(4)

where Q̂N refers to the sample GMM criterion given by:

Q̂N(θ;η) =

[
1

N

i=N∑
i=1

f(xi,H(zi;η);θ)

]′
WN

[
1

N

i=N∑
i=1

f(xi,H(zi;η);θ)

]

and V̂ is variance-covariance matrix of model parameters θ.

V̂N(θ;η) = (Ĝ′Ŵ Ĝ)−1Ĝ′Ŵ ŜŴ Ĝ(Ĝ′Ŵ Ĝ)−1

ĜN =
1

N

i=N∑
i=1

∂

∂θ
f(xi,H(zi;η);θ)

ŜN =
1

N

i=N∑
i=1

f(xi,H(zi;η);θ)f(xi,H(zi;η);θ)′

This sets up a bi-level optimization problem involving the estimation of the model param-

eters using the GMM criterion and the efficient instruments using the variance minimiza-

tion criterion. Each optimization problem depends on the other. Recent work in computer

science (see Gould et al. (2016), Samuel and Tappen (2009)) has demonstrated how gra-

dient descent methods can be used to solve similar bi-level optimization problems. For

instance, generative adversarial networks (Li et al. (2018), Goodfellow et al. (2014)) are

trained solving a bi-level program. Zoph and Le (2016) demonstrates how search over
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optimal neural network architecture can be posed as a bi-level program and be tractably

solved. We follow a similar procedure and apply gradient descent as outlined next.

Algorithm 1 Gradient Descent for Learning ML Instruments

1. Select a machine learning method H.

2. Initialize η(0) to get an initial estimate of instruments H(z;η(0)).

3. Estimate θ̂(0) minimizing GMM criterion using the generated instruments.

4. Update η such that:

ηi = ηi−1− ν

[
∂L
∂η

+
∂L
∂θ

∂θ

∂η

]
θ=θ(i−1),η=η(i−1)

5. Update the new set of instruments H(z;ηi) and solve the GMM criterion to compute

θi using the set of new instruments.

6. Iterate until stopping criterion is reached.

A potential stopping criterion for our algorithm is convergence of the parameters. In

machine learning, early stopping is employed to avoid overfitting. So gradient descent

iterations are not carried out till convergence but rather stopped once the loss measure

computed on hold-out data starts increasing. Further, depending on the complexity of

GMM criterion, GD iterations can sometimes be carried out lazily i.e., instead of re-

solving the GMM optimization criterion, θ can be treated constant for a certain number

of iterations and η can be updated simply as:

ηi = ηi−1− ν

[
∂L(θ(j))

∂η

]
η=η(i−1)

3.1.1. Gauss Newton Regression: To leverage the full power of MLIV approach we

cast the GMM optimization problem as Gauss-Newton regression which allows to conduct

the GMM step iteratively and lazily. Gauss newton approximation allows us to lazily solve

0 Using implicit function theorem we can show that

∂θ

∂η
=−

[
Q̂θθ(η, θ(η))

]−1[
Q̂ηθ(η, θ(η))

]

where Q̂θθ
.
=∇2

θθQ̂(θ;η)∈RK×K and Q̂ηθ
.
= ∂

∂η
∇θQ̂(θ;η).
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the GMM optimization problem i.e., avoid the need for convergence on θ to update η. The

sample moments can be approximated by using taylor expansion as follows:

fN(θ) = fN(θ̂) +GN(θ̂)(θ− θ̂) +Residual(θ)

≈
[
fN(θ̂)−GN(θ̂)θ̂

]
−
[
−GN(θ̂)

]
θ

= v−Fθ

(5)

where,

v= fN(θ̂) +F θ̂

F =−GN(θ̂)
(6)

Hence, the GMM objective function can be written using the linear moment approximation

as follows:

arg min
θ

Q(θ, Ŵ ) =
[
v−F θ̂

]′
Ŵ
[
v−F θ̂

]
(7)

and the linear GMM estimator has closed form solution:

θ̂i = (F ′ŴF )−1F ′Ŵv (8)

Thus the iterative step for the GMM optimization is given as follows:

θ̂i = θ̂i−1 + (F ′ŴF )−1F ′ŴfN(θ̂i−1) (9)

Hence, the GMM problem can be solved iteratively and made part of MLIV gradient

descent algorithm. We detail the complete algorithm in Algorithm 2.
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Algorithm 2 Gradient Descent for Learning ML Instruments using GNR

1. Select a machine learning method H.

2. Initialize η(0) to get an initial estimate of instruments H(z;η(0)).

3. Estimate θ̂(0) by minimizing GMM criterion to convergence using the generated instru-

ments.

4. M - IV GD Steps: Conduct M lazy update steps for η such that:

ηj = ηj−1− ν

[
∂L(θ(i−1))

∂η

]
η=η(j−1)

5. Update the new set of instruments H(z;ηi)

6. N - GMM GD Steps: Estimate θ̂(i) by conducting N number of GNR steps with

the new set of generated instruments:

θ̂j = θ̂j−1 + (F ′ŴF )−1F ′ŴfN(θ̂j−1)

7. Iterate until stopping criterion is reached.

Cross-validation : Our algorithm implies that any machine learning method that relies

on gradient descent can be used to construct the instruments. This includes a large family

of methods including Lasso, Ridge, Neural Nets, gradient boosting, etc. We believe there

is no universal ML method across empirical contexts. Further, it is not necessary for an

econometricians to make that choice a priori. A common approach for ML method selection

in predictive modeling is cross-validation (Webb (2003)) . Webb (2003) discusses how

cross-validation entails partitioning data set of size n samples into two parts. The model

parameters are estimated using one set (by minimising some optimisation criterion) and

the goodness-of-fit criterion evaluated on the second set. In k-cross-validation the second

set consists of bn
k
c samples. The idea behind k-cross-validation is to create a number of

partitions (validation datasets) from the training dataset and fitting the model to the

training dataset (sans the validation data). The model is then evaluated against each

validation dataset and the results are averaged to obtain the cross-validation error. The

econometrician can compare the performance of various ML methods and choose the one

which gives the lowest cross-validated error in the validation data. Most machine learning

algorithms also involve varying degrees of regularization, usually through hyperparameters
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Table 1 Examples of Criterion for ML Algorithms

Objective Criterion Hyperparameters H(z;η)

Lasso L(η) +λ||η||1 λ zη

Ridge L(η) +λ||η||2 λ zη

Elastic Nets L(η) +λ1||η||1 +λ2||η||2 λ1 and λ2 zη

Kernel Regularized Least Squares L(η) +λ||H||2K λ
∑i=N

i=1 ηik(zi, z)

Neural Nets L(η) Network Architecture1 nnet(z;η)

to avoid overfitting. We recommend using cross-validation to tune the hyperparameters

(including number of iterations) by splitting the data into training and validation sets.

Table (1) discusses a few machine learning algorithms and the corresponding regularized

objective function. The regularized objective function contains hyperparameters, which

can be tuned using cross-validation on the validation set. If econometrician is working with

a large dataset or the problem is computationally expensive, she can also consider just

hold-out validation (Webb (2003)) that entails partitioning into two independent samples

i.e training and validation.

However, learning H by minimizing (4) directly might lead to inconsistent estimates,

because if η is very high dimensional, then E
[
ξ(xi;θ0) ·H(zi;η(D))

]
6= 0. The problem of

inconsistency arises because we use the same data D, to learn optimal instruments and

then use the learned instruments to drive inference on same D. Next we discuss, how by

embedding our learning problem within sample-splitting can address these concerns and

preserve standard asymptotic theory in instrumental variables.

3.2. The MLIV Estimator Recipe

We introduce a general class of estimators termed as MLIV estimators. Every MLIV

instrument is characterized by a choice of “learning” algorithm. The general procedure to

estimate an MLIV instrument proceeds as follows:

1. Outer Loop: Split the data into a K-fold partition, such that each partition Dk has

size
⌊
n
k

⌋
. For each partition k, define Dc

k to be the excluded data.

1 Other hyperparameters include number of iterations, step size (ν) for GD, and M and N for GNR-MLIV.
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2. Inner Loop: For each partition k, learn the optimal instrument function Hk(·;ηk),
as described in previous section using only the excluded data Dc

k. The hyperparam-

eters pertinent to H should be tuned through cross-validation (i.e. inner loop cross-

validation) using only excluded data Dc
k.

3. For each partition k, generate new instruments such that ẑk =H(zk;ηk) i.e., transfor-

mation learned on Dc
k is applied on Dk.

4. Construct moment conditions using the set of generated instruments. Formally param-

eters of interest are estimated as follows.

θ̂ML ∈ arg min[
1

N

i=N∑
i=1

f(xi,h(zi;ηk(i));θ)]
′WN[

1

N

i=N∑
i=1

f((xi,h(zi;ηk(i));θ)]

Cross-learned instruments by construction preserve asymptotic theory as we discuss next.

3.3. Asymptotic Distribution

In this section, we provide formal asymptotic theory for MLIV estimators. We build on

recent work by (Chernozhukov et al. (2016)) and provide formal conditions for the asymp-

totic efficiency of MLIV estimators. Our proofs only require very general mean-square

consistency conditions. Many off the shelf machine learning algorithms have been shown

to be mean square consistent (for instance, see Scornet et al. (2015) for random forests, see

Steinwart (2005) for support vector machines for similar results). Moreover, the applied

researcher can still use ML toolkits for which mean square consistency results are not

available. The trade-off is that she might not achieve the semi-parametric efficiency bound

(i.e., higher standard errors), but nevertheless, still, achieve very effective performance for

a broad range of empirical settings with minimal assumptions.

Assumption 1. There exists some η∗ such that for each k = 1,2 . . .K
∫ [

h(z, η∗) −

h(z, η̂k)
]2

dP0(w)
p→ 0.

The literature assumes much stronger variants of this assumption to show consistency. For

instance, traditional two-step estimators (also known as M-step estimators) that involve

estimation of some first step (in our case η̂) assume that η̂
p→ η∗ for some η∗ (see Wooldridge

(2010)) to show consistency. However, for MLIV estimator we require a much weaker

assumption i.e., existence of a mean square limit η∗. Note that η̂
p→ η∗ directly implies

existence of mean square limit under mild regularity conditions on h, however it is not

necessarily true the other way round.
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Lemma 1. If assumption 1 is satisfied and for every k = 1,2 . . . ,K E[b(w,θ, η̂k)] <∞,

where b(wi, θ, η̂k) = ξ(xi, θ)
4(h(zi, η

∗)−h(zi, η̂k))
2 and θ ∈Θ such that Θ is compact; Then,

f̂(θ)
p→E[f(wi, θ, η

∗)]

where,

f̂(θ) =
1

n

K∑
k=1

∑
i∈Ik

f(wi, θ, η̂k)

We assume that the fourth moments are bounded. This is a very standard assumption

used in the literature. With this lemma in place, consistency of MLIVs can be established

as discussed next.

Theorem 1. Let {xi, zi} ≡wi be i.i.d random variables distributed by P. If

1. Identification: f η
∗
(θ) = E

[
f(wi, θ, η

∗))
]

= 0 if and only if θ= θ0

2. f η
∗
(θ) is continuous at each θ with probability one

3. E
[

supθ∈Θ ||f(wi, θ, η
∗))||

]
is finite; θ ∈Θ such that Θ is compact; and WN

p→W posi-

tive definite;

4. Assumption (1) is satisfied and E[b(wi, θ, η̂k]<∞ for each k= 1,2 . . . ,K for θ ∈Θ;

then θ̂N
p→ θ0.

Once the results of lemma 1 are established, it immediately follows supθ∈Θ ||f̂(θ) −

E[f(wi, η
∗, θ)]|| p→ 0 (see lemma 2.4 of Newey and McFadden (1994)). Next, consistency

can shown in a straightforward way (for technical details see theorem 2.1 of Newey and

McFadden (1994)).

Next, we demonstrate that MLIV estimator asymptotically achieve the efficiency bound

i.e.,

√
n(θ̂− θ0)

d→N(0, V0)

Assumption 2. For each k= 1,2 . . .K
∫ [

h(zi, η0)−h(zi, η̂k)
]2

dP0(w)
p→ 0.

This assumption implies that the instruments are estimated in a mean square consistent

manner. This assumption along with MLIV procedure allows us to show asymptotic effi-

ciency of our estimator. Many off the shelf machine learning algorithms have been shown

to be mean square consistent. For instance, see Scornet et al. (2015) for random forests,

see Steinwart (2005) for support vector machines for similar results.
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Lemma 2. If the instruments are estimated in a mean square consistent manner for

each k= 1,2 . . .K i.e
∫ [

h(zi, η0)−h(zi, η̂k)
]2

dP0(w)
p→ 0 then for each k= 1,2 . . .K;∫ [

f(w,θ0, η0)− f(w,θ0, η̂k)
]2

dP0(w)
p→ 0 (10)

See Appendix for proof.

Lemma 3. If assumption 2 is satisfied then estimation of η̂ does not have any asymptotic

effect on the moment conditions for a K fold MLIV estimator i.e

√
nf̂(θ0) =

1√
n

n∑
i=1

f(xi, zi, θ0, η0) + op(1) (11)

where f̂ is given as

f̂(θ0) =
1

n

K∑
k=1

∑
i∈Ik

f(xi, zi, θ0, η̂k) (12)

ηk is the estimator for the kth fold estimated using data excluding the kth fold (i.e., Dc
k).

See Appendix for proof. The MLIV procedure allows for orthogonality restrictions

that play an important role in proving asymptotic efficiency.

Next, another result required for asymptotic normality result is the convergence of the

jacobian term i.e Ĝ(θ̂) = ∂f̂(θ̂)
∂θ

to G=E[∂f(wi,θ,η0)
∂θ

|θ= θ0]. Next we state the formal assump-

tions required for convergence of jacobian.

Assumption 3. G exists and there is a neighbourhood N of θ0 such that

1. For each k= 1,2, . . . ,K, and i∈N[1,P ] and j ∈N[1,D]
∫
|∂f(w,θ0,η0)i

∂θj
− f(w,θ0,η̂k)i

∂θj
|dP0(w)

p→

0

2. for all ||η − η0|| small enough f(wi, θ0, η) is differentiable in θ on N with probability

approaching 1.

3. there exists ξ > 0 and some u(wi), such E[u(wi)] =Op(1) (or E[u(wi)]<∞), and for

θ ∈N and ||η− η0|| small enough, such that∣∣∣∣∣∣∂f(w,θ, η)i
∂θj

− f(w,θ0, η)i
∂θj

∣∣∣∣∣∣≤ u(wi)||θ− θ0||ξ

Assumption 3.2 and 3.3 are standard assumptions used in the literature. Assumption 3.1

directly follows if h is estimated in a mean square consistent manner (see lemma 4).
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Lemma 4. If the instruments are estimated in a mean square consistent manner for

each k= 1,2 . . .K i.e
∫ [

h(zi, η0)−h(zi, η̂k)
]2

dP0(w)
p→ 0 and E

[(
∂ξi(θ0)
∂θj

)2
]
<∞ then for

each k= 1,2 . . .K; ∫ ∣∣∣∂f(w,θ0, η0)i
∂θj

− f(w,θ0, η̂k)i
∂θj

∣∣∣dP0(w)
p→ 0 (13)

See Appendix for proof.

Lemma 5. If assumption 3 is satisfied and for any θ̄
p→ θ, f̂ is differentiable at θ̄ with

probability approaching one, then Ĝ(θ̄)
p→G. where Ĝ(θ̄) = ∂f̂(θ̄)

∂θ
and G= E

[
∂f(wi,θ,η0)

∂θ
|θ =

θ0

]
.

See Appendix for proof. Once this lemma is established, this along with other lemmas

allows us to show asymptotic normality.

Theorem 2. Let {xi, zi} ≡wi be i.i.d random variables distributed according to some P.

If

1. Ŵ
p→ W and W is positive semi-definite; G

′
WG is non-singular for G :=

E
[
∇θf(wi, θ0, η0)

]
and S :=E

[
f(wi, θ0, η0)f(wi, θ0, η0)

′
]

2. For each k= 1,2 . . . ,K f(wi, θ, η̂k) is continuously differentiable in some neighbourhood

N of θ0.

3. For each k= 1,2 . . . ,K E
[

supθ∈Θ ||∇θf(wi, θ, η̂k)||
]
<∞

4. Assumption 1-3 is satisfied.

If the GMM estimator is consistent, then

√
n(θ̂− θ) d→N (0, ((G′WG)−1G′WSWG(G′WG)−1))

Once lemma 1-5 are established, we can invoke Newey and McFadden (1994)’s theorem

3.4 and asymptotic normality follows in a straightforward way. In the next theorem we

show that asymptotic variance V0 is consistently estimated by V̂ .

Theorem 3. If assumption 3 and 2 are satisfied and G′WG is nonsingular then Ŝ
p→ S

and V̂
p→ V0

See Appendix for proof.
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In this theorem we show that MLIV estimators achieve the semi-parametric efficiency

bound and the sample analog of variance estimator consistently estimates the asymptotic

variance V0.

Finally, let us consider the case when the optimization routine is not mean square con-

sistent or the routine can not guarantee the global optima. In such a scenario as long as

assumption 1 is not violated i.e the estimation procedure has “some” mean square limit,

then all asymptotic properties (except efficiency) still hold and can be shown using the

same arguments. The only trade-off is that we might get higher standard errors than if we

knew the true optimal instrument function H. However, from an applied econometrician’s

perspective using MLIV’s will nonetheless provide significant gains over just using raw

exogenous data.

Next, we demonstrate through simulations in Section 5 that MLIVs exhibit desirable

small sample properties and could help alleviate the problem of weak instruments for a

wide variety of applied problems.

4. Linear IV and the Learning Heuristic

Next, we consider the special case of linear causal models and discuss an assumption to

simplify the estimation of MLIV instruments. Consider the following linear causal model

framework

y= θ(0) + (x(1))′θ(1) + (x(2))′θ(2) + ε (14)

The observed covariates xi ≡ (x
(1)
i , x

(2)
i ) possesses both exogeneous (x

(1)
i ) and endogeneous

(x
(2)
i ) variables. The econometric error ε satisfies:

E(ε | x(1), z) = 0 =⇒ E(H(x(1), z) · ε) = 0 (15)

where zi refers to the exogenous variables from which instruments will be constructed. In

the case of conditional homoscedasticity2 considered by Chamberlain (1987), the optimal

such rule that minimize the variance of θ̂GMM are given by

Hi

(
x

(1)
i , zi

)
=E[x

(2)
i |x

(1)
i , zi]

Thus, the MLIV optimization routine, simplifies to that of a supervised machine learning

problem, with the choice of the rule Hi as: predict x(2) from
{
x(1), z

}
. This makes the

2 Note that Belloni et al. (2012) demonstrate results for their Lasso based estimator under similar assumptions.
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estimation of the linear MLIV simpler and allows the use of most off-the-shelf ML toolkits.

Further, in the linear case with homoscedasticity the asymptotic efficiency of MLIVs is

directly implied from mean square consistency of the ML method.

Choosing ML Methods: As before, cross-validation can also be used to select ML

methods, along with hyperparameter tuning. For every fold k in our algorithm, we can

further partition the excluded data Dc
k into training and validation sets. The econometri-

cian can compare the performance of various ML methods and choose the one which gives

the lowest cross-validated error in the validation data.

5. Simulation Studies

In this section, we conduct multiple simulation studies, where we demonstrate how MLIVs

can help mitigate the curse of weak instruments. We consider two cases: (ii) linear causal

model with many weak instruments, none of which are strong, and (ii) random coefficients

logit model of demand.

5.1. Many Instruments with Strong Sparsity

We first consider the case in which the first stage is sparse, that is, there are many avail-

able instruments but there exist only a small set of strong instruments whose identity is

unknown (Belloni et al. (2012)). Availability of many candidate instruments is a common-

place in many empirical problems. For instance, a very common problem is to estimate

the effect of expenditure on advertisements, on product demand. However, in many cases

researchers, have access only to aggregate level demand data, that creates potential endo-

geneity concerns with respect to ad spends. To correct for this, researchers (see Dinner et al.

(2013)) have used online advertising cost in similar but different markets as instruments.

Such instruments also commonly know as Hausman-type instruments (see Hausman et al.

(1994) and Hausman (1996)) are very common in literature and have been used in many

other problems as well. However, such instruments always come under the scanner due

to their high-dimensional nature and potential weakness. In this simulation, we consider

a similar cases, where researcher has access to many instruments, but out of all candi-

date instruments, only a small subset are strong enough for causal estimation. This is also

where the scope of our method overlaps with existing literature on instrument selection

(Belloni et al. (2012), Bai and Ng (2009), Kapetanios and Marcellino (2010) and Amemiya

(1966)). Compared to prior work which largely looks at the many-instruments problem as
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a selection problem, our method, on the other hand, attempts to directly learn the optimal

function H. We demonstrate that this alternative framing of the problem delivers many

benefits to the econometrician.

To contrast our results with the Post Lasso method proposed by Belloni et al. (2012),

we consider a simulation design similar to theirs (which further let us use their code).

Specifically, the data D ≡ {(yi, xi ≡ (x
(1)
i , x

(2)
i ), zi)i | i = 1,2, ..n} is generated using the

following DGP.

y= θd+ e (16)

d=H(z)Π + ν (17)e
ν

∼N(

0

0

 ,
 σe σeν
σνe σν

) (18)

z ∼NJ(0,1) (19)

where θ = 0.75 is the parameter of interest. We also let σν = 1, σe = 1 and J = 500 for

all our simulations.

For other parameters we consider various settings. We run simulations for sample size

n of 1,500 and 1,000; we consider two different values for σeν : 0.3, and 0.5. For H(·), we

assume, H(z) = [1,1, ..,1,1︸ ︷︷ ︸
s

,0,0, ..,0︸ ︷︷ ︸
J−s

]z, with s= 25 and 50. The strong sparsity assumption

is met because a small subset of the 500 candidate instruments are valid. We use Π = 5
s

which ensures that the instruments have the same impact on d independent of the value

of s.

For each setting of simulation parameters, Table (2) reports results for 2SLS with Stan-

dard, MLIVs and Belloni Lasso (Belloni et al. (2012)). To generate MLIVs, we use 3-cross

learner estimator (i.e. cross-learner with k= 3 folds) with Lasso as the ML method to esti-

mate the function H(·). By choosing Lasso as our ML method in stage 1 of 2SLS, we can

more directly compare our method with the post Lasso method for instrument selection

(Belloni et al. (2012)). For all methods we report mean bias, mean standard error and root

mean square error for each estimated parameter.

As expected, we find improvements in both bias and efficiency with increase in sample

size for all three estimators. However, across the board, MLIVs result in far lower bias

compared to both standard instruments and Post Lasso. Further, as suggested by (20) we
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see a significant increase in bias for post lasso for s= 50 compared to s= 25. In contrast,

MLIVs are not as impacted by an increase in the number of relevant instruments.

It is interesting to note that MLIV is associated with lower bias than (Belloni et al.

(2012)) even though both techniques use Lasso as the underlying ML method. This could

be, since we directly use Ĥ, for parameter estimation instead of multiple selected instru-

ments. This can be readily seen from the expression of 2SLS small-sample bias derived by

Hahn and Hausman (2005):

E[θ2SLS]− θ≈ Jσeν
nR2var(x(2))

(20)

where R2, denote the first stage R2 and J denotes the number of instruments. The

expression dictates that as long as additional instruments do not add much to first stage R2,

it is strictly better to use fewer instruments. So given we can get a good approximation of

the optimal instruments (similar R2 as Belloni et al. (2012) but we use only one instrument)

we should end up with lower bias compared to selection methods. Further, within the

literature on instrument selection, formal asymptotics have only been shown for Lasso

(Belloni et al. (2012)), but as shown our method results in asymptotically efficient estimates

for a wide range of ML and statistical methods. This allows us to use a wide range of ML

methods, which in turn can improve first stage R2 and in turn further reduce the bias.

5.2. Many Weak Instruments

We next consider the case of a linear causal model with many instruments, all of which are

weak (i.e., Belloni et al. (2012)’s sparsity assumption breaks down). As discussed before, a

lot of empirical problems are characterized by availability of many candidate instruments,

and in many of those problems it might be the case that all candidate instruments are

important. To our best knowledge, current literature offers limited guidance on how to

estimate strong instruments in such scenarios. The issue with many weak instruments is

that, when the sparsity assumption breaks down, variable selection methods like lasso or

boosting tend not to select any variable or select all variables, which leads to poor asymp-

totics. Since MLIVs allow for using any machine learning algorithm without compromising

on asymptotic theory, it provides for a potential solution to the many-weak instrument

problem. The underlying assumption that allows for identification in the case of many

weak instruments is that even though each instrument individually is weak, there may
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Table 2 Simulation (b)

True Standard

Instruments

ML

Instruments

Belloni

Lasso

Bias St. Err. RMSE Bias St. Err. RMSE Bias St. Err. RMSE

n= 1,000 s= 50 σeν = 0.5

θ 0.75 0.253 0.029 0.254 0.000 0.074 0.068 0.087 0.096 0.301

n= 1,000 s= 25 σeν = 0.5

θ 0.75 0.170 0.024 0.172 -0.003 0.034 0.031 0.022 0.032 0.031

n= 1,500 s= 50 σeν = 0.5

θ 0.75 0.199 0.026 0.200 0.001 0.047 0.053 0.042 0.068 0.269

n= 1,500 s= 25 σeν = 0.5

θ 0.75 0.122 0.021 0.123 -0.001 0.027 0.025 -0.002 0.025 0.027

n= 1,000 s= 50 σeν = 0.3

θ 0.75 0.155 0.030 0.158 0.003 0.074 0.064 0.027 0.104 0.277

n= 1,000 s= 25 σeν = 0.3

θ 0.75 0.106 0.025 0.108 -0.004 0.034 0.033 0.015 0.031 0.030

n= 1,500 s= 50 σeν = 0.3

θ 0.75 0.115 0.027 0.117 0.000 0.047 0.042 -0.004 0.070 0.250

n= 1,500 s= 25 σeν = 0.3

θ 0.75 0.071 0.022 0.073 -0.002 0.027 0.025 -0.005 0.025 0.027

exist a function H of all weak instruments which is strong. To demonstrate this, consider

the following simulation design.

The data D≡ {(yi, xi, zi)i | i= 1,2, ..n} is generated using the following data generating

process (DGP).

y= θ(0) +xθ(1) + e (21)

x= Π(0) +H(z)′Π(1) + ν (22)e
ν

∼N(

0

0

 ,
 σe σeν
σνe σν

) (23)

z ∼NJ(0,1) (24)

where (θ(0), θ(1)) = (−0.90,0.75) are the parameters of interest. We also let σν = 1, σe = 1

and J = 500 for all our simulations. The correlation structure in (23), leads to E(x · e) 6= 0

implying an endogeneity issue. For other parameters we consider various settings. We run
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simulations for sample size n of 1,000 and 1,500; we consider two different values for σeν

: 0.3, and 0.5. For H(·), we assume, H(z) = [1,1, ..,1,1︸ ︷︷ ︸
J

]z, with Π(1) = 0.05 and Π(1) = 0.03

to simulate different strengths of instruments.

For each setting of simulation parameters, Table (3) reports results for 2SLS with stan-

dard instruments (i.e. using all instruments)3, MLIVs with the linear heuristic, and MLIVs

using Gradient Descent (the more general GMM approach). For all three methods we report

mean bias, mean standard error and root mean square error for each estimated parameter.

To generate MLIVs from 500 weakly predictive variables using the linear heuristic, we use

an estimator with 3-fold sample splitting on outer loop. For each fold k, we use excluded

data Dc
k to train 6 machine learning algorithms: lasso regression, ridge regression, elastic-

net, KRLS, XGBoost and neural nets. We tune the hyperparameters of each machine

learning algorithm using 4-fold cross-validation (inner loop cross-validation) in the data Dc
k

(i.e. Dc
k is further partitioned into a training set and a validation set as described earlier).

We then choose the machine learning algorithm with the lowest cross-validation error and

use that for the instrument transformation for data Dk. In our simulations, ridge regression

outperformed all the other algorithms. For MLIVs using the more general gradient descent

approach, we use ridge regression as the ml and employ a 3-fold cross-learner. Within

each fold, we use a 80-20 (train and validation) split to tune the number of iterations for

gradient descent.

As the number of instruments is very high (J=500 with N being under 1500 in all

simulations), the first stage with standard instruments fits closely with the true values

of the endogenous variables. In this case, the IV estimator resembles the OLS estimator

(efficient but biased). Hence, the bias is very high with standard instruments. In contrast,

MLIV (both linear heuristic and GD MLIV) is able to achieve nearly the same standard

errors but considerably lower bias across all parameter settings. Next, we discuss results

for two addition settings for linear models, namely a setting with many instruments that

satisfy strong sparsity and another in which there are only a few weak IVs. MLIV continues

to perform well in these settings as well.

3 Post lasso (Belloni et al. (2012)) delivers similar results as standard instruments (as lasso did not select any instru-
ment across our simulations). Even for MLIV with Lasso we find similar results as OLS as Lasso did not select any
instrument across all our simulations.
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Table 3 Simulation (a)

True Standard

Instruments

Linear

MLIV

GD

MLIV

Bias St. Err. RMSE Bias St. Err. RMSE Bias St. Err. RMSE

n= 1,000 σeν = 0.5 Π(2) = 0.05

θ(0) -0.90 -0.042 0.030 0.052 -0.013 0.033 0.042 -0.008 0.036 0.023
θ(1) 0.75 0.135 0.022 0.136 0.027 0.040 0.047 0.019 0.064 0.079

n= 1,500 σeν = 0.5 Π(2) = 0.05

θ(0) -0.90 -0.029 0.025 0.039 0.004 0.027 0.033 0.002 0.030 0.023
θ(1) 0.75 0.114 0.019 0.114 -0.009 0.030 0.032 -0.010 0.053 0.042

n= 1,000 σeν = 0.3 Π(2) = 0.05

θ(0) -0.90 -0.025 0.031 0.041 0.001 0.035 0.033 0.004 0.037 0.026
θ(1) 0.75 0.076 0.023 0.078 -0.014 0.054 0.045 -0.009 0.061 0.049

n= 1,500 σeν = 0.3 Π(2) = 0.05

θ(0) -0.90 -0.017 0.026 0.033 0.002 0.027 0.030 0.007 0.030 0.022
θ(1) 0.75 0.071 0.020 0.071 0.007 0.032 0.027 -0.001 0.051 0.039

n= 1,000 σeν = 0.5 Π(2) = 0.03

θ(0) -0.90 -0.117 0.030 0.121 -0.032 0.055 0.032 0.034 0.050 0.051
θ(1) 0.75 0.255 0.029 0.256 -0.081 0.142 0.081 -0.027 0.123 0.103

n= 1,500 σeν = 0.5 Π(2) = 0.03

θ(0) -0.90 -0.062 0.025 0.067 -0.063 0.035 0.063 -0.022 0.035 0.040
θ(1) 0.75 0.218 0.026 0.219 -0.011 0.075 0.011 0.060 0.079 0.076

n= 1,000 σeν = 0.3 Π(2) = 0.03

θ(0) -0.90 -0.046 0.032 0.056 -0.037 0.055 0.037 -0.005 0.046 0.061
θ(1) 0.75 0.145 0.030 0.147 -0.082 0.136 0.082 0.007 0.107 0.149

n= 1,500 σeν = 0.3 Π(2) = 0.03

θ(0) -0.90 -0.038 0.026 0.047 -0.072 0.035 0.072 -0.004 0.036 0.032
θ(1) 0.75 0.135 0.027 0.135 0.004 0.075 0.004 0.009 0.084 0.060

5.3. Few Exogeneous Variables or Many Weak Technical Instruments

We finally discuss the case in which we are faced with a small number of exogenous

variables, all of which are weak. To deal with such a setup, extant literature (e.g.,

Newey and Powell (2003)) in non-parametric methods recommends constructing multi-

ple basis/polynomial functions from the available exogenous data. This translates the few

instrument problem to that of many available instruments or many technical instruments

(see Chernozhukov and Hansen (2013)). However, extant literature provides limited guid-

ance on how to construct those functional approximations, and thus, the choice relies heav-

ily on econometrician’s discretion. Moreover, recent literature Deaner (2019) has shown
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that misspecification errors by the econometrician in non-parameteric settings could lead

to huge bias in estimated parameters. To demonstrate this, we consider the following sim-

ulation design. The data D ≡ {(yi, xi, zi)i | i = 1,2, . . . n} is generated using the following

data generating process (DGP).

y= θ(0) +xθ(1) + e (25)

x= Π(0) +H(z)′Π(1) + ν (26)e
ν

∼N(

0

0

 ,
 σe σeν
σνe σν

) (27)

z ∼N(0,1) (28)

where (θ(0), θ(1)) = (−0.90,0.75) are the parameters of interest. We also let Π(0) = 0.3,

Π(1) = 1, σν = 1 and σe = 1 for all our simulations. The correlation structure in (27), leads

to E(x · e) 6= 0, rendering x endogenous.

For other parameters we consider various settings. We run simulations for sample size n

of 1,500 and 1,000; we consider two different values for σeν : 0.3, and 0.5. We also carry out

simulations for two different specifications of H(z) = cos(100 · z) and H(z) = sin(100 · z).

We use polynomial functions of exogenous data z i.e. {z, z2, z3, . . . , z50}4 as instruments

to approximate cos and sin functions. For each setting of simulation parameters, Table

(4) reports results for 2SLS with Standard Instruments vs MLIVs and Fuller. To generate

MLIVs, we use a 3-cross sample splitting in outer loop. For every fold k, we use excluded

data Dc
k to train a super learner i.e an ensemble of 7 machine learning algorithms: lasso

regression, ridge regression, elastic-net, random forest, XGBoost, random forest and neural

nets. We tune the hyperparameters and relative weights of each machine learning algorithm

using 4 cross-validation in the data Dc
k. For all methods, we report mean bias, mean

standard error and root mean square error for each estimated parameter across 100 runs

of the simulation.

In all cases, we find that the bias of the estimates is lower with our proposed method

relative to standard 2SLS, Fuller, and Belloni’s approach. This is in line with how even

small misspecification errors can create huge bias (Deaner (2019)). Further, even with

4 While using standard instruments, we get collinearity issues in our simulations, and thus resort to using only upto
5th power for the simulations involving the standard 2SLS estimator.
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Table 4 Simulation (c)

True
Standard

Instruments

ML

Instruments

Fuller

Instruments
Belloni Lasso

Bias St. Err. RMSE Bias St. Err. RMSE Bias St. Err. RMSE Bias St. Err. RMSE

n= 1,000 σeν = 0.5 H(z) = cos(100 · z)

θ(1) 0.75 -0.975 1.464 3.816 -0.010 0.121 0.120 -0.766 9.390 12.926 -0.174 4.136 7.829

n= 1,500 σeν = 0.5 H(z) = cos(100 · z)

θ(1) 0.75 -1.210 1.756 4.805 -0.002 0.064 0.102 -2.983 10.807 16.042 -3.407 12.393 17.590

n= 1,000 σeν = 0.5 H(z) = sin(100 · z)

θ(1) 0.75 0.866 1.448 3.793 0.011 0.099 0.118 -1.307 9.163 12.827 -0.411 0.775 3.372

n= 1,500 σeν = 0.5 H(z) = sin(100 · z)

θ(1) 0.75 -1.384 1.759 4.802 -0.012 0.069 0.071 -2.591 11.221 16.201 0.069 3.478 8.748

n= 1,000 σeν = 0.3 H(z) = cos(100 · z)

θ(1) 0.75 -0.969 1.383 3.590 0.010 0.123 0.145 0.612 8.803 12.069 -0.543 4.323 7.527

n= 1,500 σeν = 0.3 H(z) = cos(100 · z)

θ(1) 0.75 -1.410 1.649 4.484 -0.021 0.062 0.098 -2.893 10.074 15.035 -0.475 30.738 25.418

n= 1,000 σeν = 0.3 H(z) = sin(100 · z)

θ(1) 0.75 -0.832 1.375 3.581 0.12 0.106 0.152 -1.242 8.492 11.942 -0.768 0.261 1.629

n= 1,500 σeν = 0.3 H(z) = sin(100 · z)

θ(1) 0.75 -1.312 1.658 4.509 -0.022 0.092 0.119 -2.461 10.439 15.117 0.022 3.193 8.215

increase in sample size the performance of 2SLS, Fuller and Belloni-Lasso does not improve.

In contrast, for MLIVs, we find non-trivial improvements in both bias and efficiency as the

sample size increases. These gains can arguably be attributed to more precise ”learning”

of the optimal instruments with more data. We now turn to evaluate the performance of

MLIVs with a nonlinear model.

5.4. Random-Coefficients Logit Model of Demand

Now we evaluate the use of MLIVs in a random coefficients logit model, also known as

BLP (Berry et al. (1995)). We present some introductory information on BLP, followed by

our simulation design and results. For more details we encourage readers to refer to Berry

et al. (1995) and Nevo (2001).

There are T markets with Jt differentiated products. Each market has It individuals who

choose between the available Jt products or the outside good. The utility a consumer i
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gets by purchasing a product j is given by :

uijt = x′jtθi + ξjt + εijt (29)

where xjt ∈ Rk refers to the vector of observable (to the econometrician) product char-

acteristics; ξjt refer to product characteristics observed by consumers and producers but

unobservable to the econometrician. θi ∈ Rk refers to consumer i’s preference for the k

observable product characteristics. The random coefficient for characteristic k for individ-

ual i can be represented as θki = θk + σkνki , where νki is random variable with mean 0 and

unit variance, so that θk represents the mean preference of consumers towards characteris-

tic k and σk denotes its standard deviation. Similar to Berry and Haile (2014), we divide

the product characteristics space into two subsets: ~xjt ≡
{
~x

(1)
jt ,~x

(2)
jt

}
, such that ~x

(1)
jt ∈Rk(1)

refer to the product characteristics for which consumers have homogeneous preferences

and ~x
(2)
jt ∈Rk(2) for which consumers have heterogeneous preferences.

We can express consumer i’s indirect utility as follows:

uijt = xjtθ+ ξjt︸ ︷︷ ︸
δjt

+
∑
k

xkjtσ
kνki︸ ︷︷ ︸

µijt

+εijt (30)

Assuming εijt follows a Type I extreme value distribution (T1EV), the market share func-

tion is as follows.

ŝjt(xj; δ,Σ) =

∫
exp(δjt +µijt(ν))

1 +
∑j=Jt

j=1 exp(δjt +µijt(ν))
dPν(ν) (31)

For empirical applications the above integral is approximated by taking monte-carlo draws

from Pν for sufficient number of individuals, such that.

ŝjt(xj; δ,Σ) =
1

ns

ns∑
i=1

exp(δjt +µijt(νi))

1 +
∑j=Jt

j=1 exp(δjt +µijt(νi))

5.4.1. Identification and Instruments Identification of demand models for differenti-

ated goods relies on moment restrictions on unobserved product characteristics introduced

in Berry et al. (1995). The authors assume that the unobserved quality ξjt is independent

of the market structure Zt ≡
{
x1t, x2t, .., xJt

}
.

E[ξjt|Zjt] = 0
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There are many economic motivations behind these restrictions (e.g., product character-

istics are costly to adjust in response to demand shocks in ξjt). However, our purpose here

is not to justify the assumption, but rather to test its empirical robustness under weak

instruments. Since, xjt is a high dimensional vector, literature has proposed certain trans-

formations of the observed product characteristics that better approximate the optimal

instruments. We will compare the performance of our instruments with a popular trans-

formation of market structure known as BLP Style instruments (Berry et al. (1995), Nevo

(2001)) given by observed characteristics of the product, and sum of the characteristics of

the rival products.5

For our simulation design, we conduct simulations similar to Gandhi and Houde (2019),

with minor differences. We consider 10 products (offered by 10 different firms) in 50 mar-

kets. The data D≡
{
{sjt,~xjt}j=Jtj=0

}t=T
t=1

is generated such that

εijt ∼ T1EV (0,1) (32)

ξjt ∼N(0,1) (33)

x∼Nk(0, Ik) (34)

We consider the case of iid random coefficients.

~ν ∼N(0, Ik) (35)

We carry out our simulations for two different settings in which we vary the number

of observable characteristics and the number of characteristics for which customers have

heterogeneous preferences. In the first setting, we assume two observable characteristics

(k= 2) with heterogeneity allowed for only one covariate. In the second setting, we assume

four observable characteristics (k = 4) and consumers have heterogeneous preferences for

all of them.. The true values of these parameters are
{
θ(1), θ(2), σ(2) ≡ (1.0,−0.5,0.5)

}
and{

θ(1), θ(2), θ(3), θ(4), σ(1), σ(2), σ(3), σ(4) ≡ (1.0,−0.5,0.5,1.0,2.0,2.0,2.0,2.0)
}

for our simula-

tion studies 1 and 2 in Table (6) respectively.

We use a neural network to parameterize the optimal instrument function H(·). One

benefit of using neural networks is that it gives access to readily available tools that allow

5 For simplicity, our simulation design assumes one product per firm so we do not consider the third BLP-style
instrument, namely the sum of characteristics of other products by the same firm.
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Figure 5 MLIVs through Neural Nets

for computing analytical derivatives, making it computationally easier to carry out GD. We

use a neural network of dimension [(k(1) +k(2)) ·J ] ×[O]× [k(2)]. The input layer takes in all

candidate instruments. With J products and (k(1) + k(2)) observed product characteristics

which are assumed to be exogenous, that leaves us with [(k(1) + k(2)) · J ] nodes in the

input layer. O denotes the number of units in the hidden layer. For the simulation below,

we set this equal to 200 but this parameter – as well as the number of layers in the

neural network – can be treated as hyperparameters that need to be estimated along with

the weights in the network (thus, the estimates below are conservative estimates of the

improvement delivered by MLIVs). The output layer denotes the number of parameters to

be estimated. The optimal instruments for the linear parameters (θ) are ~xjt, as dictated by

theory (Newey (1990)) and hence we only require instruments for the non-linear parameters

(σ) (dim= k(2)). We use gradient descent as previously discussed in each k fold to learn

the parameters ηk of the neural network. It is worth noting that BLP assumes that the

instruments in the input layer have to be combined in a specific way (sum of rival product

characteristics), whereas we estimate the instrument function H(·) more effectively using

a Neural Net.

We carry out 2 fold cross-learner such that each fold has 25 markets each. We use 8

markets as validation set to determine the number of GD iterations and stop once the
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Table 6 Simulation (b)

True BLP

Instruments

ML

Instruments

Bias St. Err. Bias St. Err.

θ(1) 1.00 0.055 0.01 0.04 0.004
θ(2) -0.50 0.195 0.035 0.02 0.005
σ(2) 0.50 0.560 0.740 0.18 0.050

θ(1) 1.00 -0.371 0.090 -0.008 0.011
θ(2) -0.50 -0.029 0.027 -0.053 0.006
θ(3) 0.50 0.041 0.035 0.044 0.004
θ(4) 1.00 -0.180 0.107 -0.026 0.006
σ(1) 2.00 -1.280 1.892 -0.129 0.109
σ(2) 2.00 -0.015 0.855 0.004 0.167
σ(3) 2.00 0.745 1.495 0.282 0.076
σ(4) 2.00 -0.785 1.632 -0.152 0.098

variance of the estimator (validation error) starts increasing in the validation set. Table (6)

reports average bias and average standard error for estimated parameters. We report results

for BLP instruments and MLIVs. We find that consistently across both specifications

MLIVs lead to much lower standard errors and bias on the heterogeneity parameters,

compared to the BLP instruments, which are unable to identify heterogeneity parameters

(σ). Further, we also observe significant reduction in bias for linear parameters with the

use of MLIVs.

6. The Colonial Origins of Comparative Development

We finally consider an application of our method to a real-world dataset. We consider

Acemoglu, Johnson and Robinson(2001) - henceforth AJR(2001), where the authors study

whether differences in economic development across countries can be explained by differ-

ences in the quality of their institutions (rule of law, property rights, etc). However, it is

possible that economic development leads to good institutions or that other unobservables

drive both institutional structure and economic development, leading to an endogeneity

issue in estimating the impact of institutions on economic performance. To address this

endogeneity issue, authors use the mortality rates expected by the first European settlers

in the colonies as an instrument for the quality of institutions. The argument is that the

settler mortality rates affected their colonization strategies which, in turn, affected their
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path of institutional development that culminated in today’s institutions. The AJR paper

serves as an excellent example to test our cross learner algorithm because it has come

under criticism recently due to the weakness of instruments across the various specifications

(Chernozhukov and Hansen (2008)). Another reason to consider applying our approach to

the AJR data is that their sample size is relatively small (n= 64), allowing us to investigate

whether the cross learner algorithm is beneficial with small datasets.

Authors report the 2SLS estimates from the following reduced form regression.

log(yi) = µ+αRi +X ′iγ+ εi (36)

where yi is the income per capita in country i, Ri is the protection against expropriation

(measure of institution quality) and Xi is a vector of other covariates. To address the

endogeneity issue the authors use the following first stage.

Ri = ζ + θZi +X ′iδ+ νi (37)

where Zi is logarithm of the settler mortality rate in 1,000 mean strength.

We replicate the model specifications, from Table (7) of AJR(2001), which came under

criticism due to weak instruments. To contrast their results with ours, we learn the MLIVs

H(·) by estimating a slightly different first stage.

Ri = ζ + θĤi(Zi) +X ′iδ+ νi (38)

For learning the MLIVs we employ a 3-fold sample splitting procedure. We employ

multiple machine learning methods and select the winning ML estimator (random forest)

based on cross-validation error.

We find that across all specifications, MLIVs seem much stronger than AJR instruments,

as measured by the F value (see Stock and Yogo (2002)). A higher F value, generally

indicates stronger instruments. Higher power of MLIVs leads to lower standard errors

across the board. AJR instruments are not able to identify the constant term, which could

potentially be due to weak instruments. On the other hand, MLIVs are able to identify the

constant term across all specifications. Further, the estimates of the impact of institution

quality on per capita income generated using MLIVs are lower than corresponding AJR

estimates.
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Table 7 AJR(2001) Table 4

AJR Instruments

Base Sample Base Sample Base Sample

without

Neo-Europes

Base Sample

without

Neo-Europes

Base Sample Base Sample

(1) (2) (3) (4) (5) (6)

Average protection against

expropriation risk 1985-1995 0.944∗∗∗ 0.995∗∗∗ 1.281∗∗∗ 1.211∗∗∗ 0.982∗∗∗ 1.107∗∗

(0.156) (0.221) (0.358) (0.354) (0.299) (0.463)

Latitude -0.647 0.938 -1.178

(1.335) (1.463) (1.755)

Continent Dummies X X

Constant 1.909∗ 1.691 -0.141 0.144 2.032 1.440

(1.026) (1.293) (2.265) (2.183) (2.011) (2.839)

F 22.946 13.09 8.646 7.826 6.233 3.456

ML Instruments

Average protection against

expropriation risk 1985-1995 0.725∗∗∗ 0.683∗∗∗ 0.850∗∗∗ 0.776∗∗∗ 0.770∗∗∗ 0.787∗∗∗

(0.118) (0.143) (0.220) (0.213) (0.175) (0.215)

Latitude 0.668 1.445 -0.249

(0.937) (0.996) (1.013)

Continent Dummies X X

Constant 3.336∗∗∗ 3.488∗∗∗ 2.572∗ 2.803∗∗ 3.448∗∗∗ 3.384∗∗∗

(0.775) (0.842) (1.393) (1.316) (1.184) (1.330)

F 28.681 18.856 11.575 10.670 12.285 8.724

N 64 64 60 60 64 64

Standard errors in parentheses.

p-values in brackets.

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Interestingly, for specification (3),(4),(5) and (6) where the AJR instrument falls below

the commonly used F value threshold of 10, we see a significant increase in estimated effect

of institutional structure, by as much as 36%. In contrast, MLIVs have higher F value.

Further, for all other controls and robustness tests, we find MLIVs estimates to be much

more consistent across specifications, compared to estimates using AJR instruments.

7. Discussion and Conclusions

In this paper, we propose that the problem of constructing instrumental variables from

observational data can be cast as a machine learning problem. Simulations as well as

an application to data from prior research demonstrate that our proposed algorithm is
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a promising tool for researchers working on observational data. The approach can help

address the problem of weak instruments, which is often the main concern, in practice,

with the use of instrumental variables. There are some trade-offs with our approach. Since,

our method entails nested levels of sample splitting, it might be computationally expen-

sive to construct MLIVs for big datasets. However, we believe given the advancements in

distributed computing it is not a big concern, as computations in each data fold can be

parallelized. Further, our learning method might not approach the semi-parametric effi-

ciency bound for many non-linear models, nonetheless, it can algorithmically construct

strong instruments for most of them without requiring additional assumptions about the

optimal instrument structure and it delivers good results in practice.

We note that the MLIV approach is focused on improving the relevance of instruments

but does not explicitly address the exclusion restriction. MLIV assumes that the candidate

instruments satisfy strong exogeneity, an assumption that is central to the broader optimal

instruments literature because it enables the use of transformations, H(z), as instruments.
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Appendices
A. Technical and Implementation Details

Lemma 6. (Exclusion Restriction): Suppose η̂i be the estimated hyperparameters for

some function H corresponding to data Di. Then exclusion restrictions hold if η̂i was

estimated using data Dc
i ⊆D \Di.

E
[
ξi ·H(zi; η̂i)

]
= 0 (39)

Using law of iterated expectations and assumption (2), we have:

E
[
ξi ·H(zi; η̂i)

]
=E

[
E
[
ξi ·H(zi; η̂i)|zi,Dc

i

]]
=E

[
H(zi; η̂i) ·E

[
ξi|zi,Dc

i

]]
= 0,

(40)

which completes the proof

Lemma 1. If assumption 1 is satisfied and for every k = 1,2 . . . ,K E[b(w,θ, η̂k)] <∞,

where b(wi, θ, η̂k) = ξ(xi, θ)
4(h(zi, η

∗)−h(zi, η̂k))
2 and θ ∈Θ such that Θ is compact; Then,

f̂(θ)
p→E[f(wi, θ, η

∗)]

where,

f̂(θ) =
1

n

K∑
k=1

∑
i∈Ik

f(wi, θ, η̂k)

We first show that f̂(θ)
p→ 1

n

∑i=n
i=1 f(wi, θ, η

∗) where f̂(θ) = 1
n

∑K
k=1

∑
i∈Ik f(wi, θ, η̂k).

Let

Γ̂ik , f(wi, θ, η̂k)− f(wi, θ, η
∗)

We first show that E
[
| 1
n

∑
i∈Ik Γ̂ik|

∣∣∣Dc
k

]
p→ 0. Consider the following,

E
[
| 1
n

∑
i∈Ik

Γ̂ik|
∣∣∣Dc

k

]
≤ 1

n

∑
i∈Ik

E
[
|Γ̂ik|

∣∣∣Dc
k

]
≤
∫ ∣∣∣f(w,θ, η∗)− f(w,θ, η̂k)

∣∣∣dP0(w)

≤
[∫ ∣∣∣f(w,θ, η∗)− f(w,θ, η̂k)

∣∣∣2dP0(w)
] 1

2
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≤
[∫

ξ(x, θ)2(h(z, η∗)−h(z, η̂k))
2dP0(w)

] 1
2

≤
[∫

ξ(x, θ)4(h(z, η∗)−h(z, η̂k))
2dP0(w)

∫
(h(z, η∗)−h(z, η̂k))

2dP0(w)
] 1

4

=Op(1)op(1)

Thus it follows from conditional markov inequality

1

n

∑
i∈Ik

Γ̂ik
p→ 0

Hence, we have,

1

n

k=K∑
k=1

∑
i∈Ik

Γ̂ik
p→ 0

Thus we have, f̂(θ)
p→ 1

n

∑i=n
i=1 f(wi, θ, η

∗) Using law of large numbers we also know that,

1

n

i=n∑
i=1

f(wi, θ, η
∗)

p→E[f(wi, θ, η
∗)]

Thus, using triangle inequality we have,

f̂(θ)
p→E[f(wi, θ, η

∗)]

This completes the proof

Lemma 2. If the instruments are estimated in a mean square consistent manner for

each k= 1,2 . . .K i.e
∫ [

h(zi, η0)−h(zi, η̂k)
]2

dP0(w)
p→ 0 then for each k= 1,2 . . .K;∫ [

f(w,θ0, η0)− f(w,θ0, η̂k)
]2

dP0(w)
p→ 0 (10)

Using cauchy-schwarz inqequality and equation 1, we have:∫ [
f(w,θ0, η0)− f(w,θ0, η̂k)

]2

dP0(w) =

∫
ξ(xi, θ0)

2
[
h(zi, η0)−h(zi, η̂k)

]2

dP0(w)

≤

∫
ξ(xi, θ0)

2
[
h(zi, η0)−h(zi, η̂k)

]2

dP0(w)

≤

[∫
ξ(xi, θ0)

4
[
h(zi, η0)−h(zi, η̂k)

]2

dP0(w)
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h(zi, η0)−h(zi, η̂k)
]2

dP0(w)

] 1
2

p→Op(1)op(1)

which completes the proof

Lemma 3. If assumption 2 is satisfied then estimation of η̂ does not have any asymptotic

effect on the moment conditions for a K fold MLIV estimator i.e

√
nf̂(θ0) =

1√
n

n∑
i=1

f(xi, zi, θ0, η0) + op(1) (11)

where f̂ is given as

f̂(θ0) =
1

n

K∑
k=1

∑
i∈Ik

f(xi, zi, θ0, η̂k) (12)

ηk is the estimator for the kth fold estimated using data excluding the kth fold (i.e., Dc
k).

Consider ζ̂ik , f(xi, zi, θ0, η̂i)− f(xi, zi, θ0, η0)∀i∈ Il
Further by construction of MLIV recipe and independence of data samples. E

[
ζ̂ik|Dc

k

]
= 0.

Also, due to independence of samples within the fold E
[
ζ̂ikζ̂jk|Dc

k

]
= 0 ∀i, j ∈ Ik. First we

show that E[( 1√
n

∑
i∈Ik ζ̂ik)

2|Dc
k]

p→ 0. Consider the following

E[(
1√
n

∑
i∈Ik

ζ̂ik)
2|Dc

k] =
1

n

[∑
i∈Ik

E[(ζ̂ik)
2|Dc

k] +
∑
i 6=j

E[(ζ̂ikζ̂jk)|Dc
k]
]

=
1

n

[∑
i∈Ik

E[(ζ̂ik)
2|Dc

k]
]

=
1

K

[∫ [
f(w,θ0, η0)− f(w,θ0, η̂k)

]2

dP0(w)
]

Thus from assumption 2 we have E[( 1√
n

∑
i∈Ik ζ̂ik)

2|Dc
k]

p→ 0. Using the conditional markov

inequality it follows

1√
n

∑
i∈Ik

ζ̂ik
p→ 0

Thus,

1√
n

k=K∑
k=1

∑
i∈Ik

ζ̂ik
p→ 0

This completes the proof
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Lemma 4. If the instruments are estimated in a mean square consistent manner for

each k= 1,2 . . .K i.e
∫ [

h(zi, η0)−h(zi, η̂k)
]2

dP0(w)
p→ 0 and E

[(
∂ξi(θ0)
∂θj

)2
]
<∞ then for

each k= 1,2 . . .K; ∫ ∣∣∣∂f(w,θ0, η0)i
∂θj

− f(w,θ0, η̂k)i
∂θj

∣∣∣dP0(w)
p→ 0 (13)

Using cauchy-schwarz inqequality and equation 1, we have:∫
|∂f(w,θ0, η0)i

∂θj
− f(w,θ0, η̂k)i

∂θj
|dP0(w) =

∫ ∣∣∣∂ξ(xs, θ0)

∂θj

∣∣∣∣∣∣[h(zs, η0)−h(zs, η̂k)]i

∣∣∣dP0(w)

≤
[∫ ∣∣∣∂ξ(xs, θ0)

∂θj

∣∣∣2dP0(w)

∫ [
h(zs, η0)−h(zs, η̂k)

]2

i
dP0(w)

] 1
2

p→Op(1)op(1)

This completes the proof

Lemma 5. If assumption 3 is satisfied and for any θ̄
p→ θ, f̂ is differentiable at θ̄ with

probability approaching one, then Ĝ(θ̄)
p→G. where Ĝ(θ̄) = ∂f̂(θ̄)

∂θ
and G= E

[
∂f(wi,θ,η0)

∂θ
|θ =

θ0

]
.

Let f̂(θ) , 1
n

∑K
k=1

∑
i∈Ik f(wi, θ, η̂k). Let Ĝ(θ) , ∂f̂(θ)

∂θ
when it exists. G̃k ,

1
n

∑
i∈Ik

∂f(wi,θ0,η0)
∂θ

and let Ḡk , 1
n

∑
i∈Ik

∂f(wi,θ0,η̂k)
∂θ

. By law of large numbers:

k=K∑
k=1

G̃k
p→E[

∂f(wi, θ0, η0)

∂θ
]

k=K∑
k=1

G̃k
p→G

Also using triangle inequality we know,

E[|Ḡij
k − G̃

ij
k |D

c
k]≤

∫ ∣∣∣∣∂f(w,θ0, η0)i
∂θj

− f(w,θ0, η̂k)i
∂θj

∣∣∣∣dP0(w)
p→ 0 (41)

Then by using conditional markov inequality

P [|Ḡij
k − G̃

ij
k |> ε|D

c
k]≤E[|Ḡij

k − G̃
ij
k |D

c
k]/ε

P [|Ḡij
k − G̃

ij
k |> ε|D

c
k]≤ op(1)
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Thus it directly follows,

Ḡij
k − G̃

ij
k

p→ 0

Using the triangle inequality, we get

|
k=K∑
k=1

Ḡk−G|= |
k=K∑
k=1

Ḡk−
k=K∑
k=1

G̃k +
k=K∑
k=1

G̃k−G|

|
k=K∑
k=1

G̃k−G| ≤ |
k=K∑
k=1

Ḡk−
k=K∑
k=1

G̃k|+ |
k=K∑
k=1

G̃k−G|

|
k=K∑
k=1

Ḡk−G| ≤
k=K∑
k=1

|G̃k− Ḡk|+ |
k=K∑
k=1

G̃k−G|

|
k=K∑
k=1

Ḡk−G| ≤ op(1) + op(1)

Thus,
k=K∑
k=1

Ḡk
p→G (42)

Also, we know for any θ̄
p→ θ0 and using triangle inequality we get

∣∣∣∣∣∣Ĝ(θ̄)ij −
k=K∑
k=1

Ḡij
k

∣∣∣∣∣∣≤ 1

n

i=n∑
i=1

∣∣∣∣∣∣∂f(wi, θ̄, η̂k)i
∂θj

− f(wi, θ0, η̂k)i
∂θj

∣∣∣∣∣∣
≤ 1

n

i=n∑
i=1

u(wi)||θ̄− θ0||ξ

=Op(1)op(1)
p→ 0

Thus, we have for any θ̄
p→ θ0

Ĝ(θ̄)
p→
k=K∑
k=1

Ḡk (43)

Finally, using triangle inequality

∣∣∣∣∣∣Ĝ(θ̄)−G
∣∣∣∣∣∣= ∣∣∣∣∣∣Ĝ(θ̄)−

k=K∑
k=1

Ḡk +

k=K∑
k=1

Ḡk−G
∣∣∣∣∣∣

≤
∣∣∣∣∣∣Ĝ(θ̄)−

k=K∑
k=1

Ḡk

∣∣∣∣∣∣+ ∣∣∣∣∣∣ k=K∑
k=1

Ḡk−G
∣∣∣∣∣∣
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≤
∣∣∣∣∣∣Ĝ(θ̄)−

k=K∑
k=1

Ḡk

∣∣∣∣∣∣+ ∣∣∣∣∣∣ k=K∑
k=1

Ḡk−G
∣∣∣∣∣∣

≤ op(1) + op(1)

Thus, Ĝ(θ̄)
p→G

This completes the proof

Theorem 3. If assumption 3 and 2 are satisfied and G′WG is nonsingular then Ŝ
p→ S

and V̂
p→ V0

Let f̂i , f(wi, θ̂, η̂k) and fi , f(wi, θ0, η0). We first show that 1
n

∑i=n
i=1 ||f̂i − fi||2

p→
0. Then we use that to show Ω̂

p→ Ω and complete the proof. Consider f̂i − fi =

f(wi, θ̂, η̂k)− f(wi, θ0, η̂k)︸ ︷︷ ︸
Âi

+f(wi, θ0, η̂k)− f(wi, θ0, η0)︸ ︷︷ ︸
B̂i

. Thus, it is suffice to show that

1
n

∑i=n
i=1 ||Âi||2

p→ 0, and 1
n

∑i=n
i=1 ||B̂i||2

p→ 0

1

n

i=n∑
i=1

||f̂i− fi||2 =
1

n

i=n∑
i=1

||Âi + B̂i||2

≤ 2

n

i=n∑
i=1

||Âi||2 +
2

n

i=n∑
i=1

||B̂i||2

We first show 1
n

∑i=n
i=1 ||Âi||2

p→ 0. Note, this is the same as showing 1
n

∑
i∈Ik ||Âi||2

p→ 0.

Using the mean value expansion it follows that

1

n

∑
i∈Ik

∣∣∣∣∣∣f(wi, θ̂, η̂k)− f(wi, θ0, η̂k)
∣∣∣∣∣∣2 =

1

n

∑
i∈Ik

∣∣∣∣∣∣∂f(wi, θ̄, η̂k)

∂θ
(θ̂− θ0)

∣∣∣∣∣∣2
≤ 1

n
(
∑
i∈Ik

d(wi)
2)
∣∣∣∣∣∣(θ̂− θ0)

∣∣∣∣∣∣2
≤Op(1)op(1)

Next, we show that 1
n

∑i=n
i=1 ||B̂i||2

p→ 0. Note, this is the same as showing 1
n

∑
i∈Ik ||B̂i||2

p→ 0.

Consider E
[

1
n

∑
i∈Ik ||B̂i||2

∣∣∣Dc
k

]
and if K� n, we have

E
[ 1

n

∑
i∈Ik

||B̂i||2
∣∣∣Dc

k

]
≤

∫ [
f(w,θ0, η0)− f(w,θ0, η̂k)

]2

dP0(w)

p→ 0
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Next using conditional markov inequality we have

1

n

∑
i∈Ik

||B̂i||2
p→ 0

Thus, we have

1

n

k=K∑
k=1

∑
i∈Ik

||B̂i||2
p→ 0

We finally, show that Ω̂
p→Ω, where Ω = EP0[fif

′
i ] and Ω̂ = 1

n

∑i=n
i=1 f̂if̂

′
i . By law of large

numbers we know that 1
n

∑i=n
i=1 fif

′
i

p→EP0[fif
′
i ]. Next, consider

∣∣∣∣∣∣ 1
n

i=n∑
i=1

f̂if̂
′

i −
1

n

i=n∑
i=1

fif
′

i

∣∣∣∣∣∣2 ≤ 1

n

i=n∑
i=1

∣∣∣∣∣∣f̂if̂ ′i − fif ′i ∣∣∣∣∣∣2
≤ 1

n

i=n∑
i=1

∣∣∣∣∣∣f̂ ′i − fi∣∣∣∣∣∣2 +
2

n

i=n∑
i=1

∣∣∣∣∣∣fi∣∣∣∣∣∣∣∣∣∣∣∣f̂ ′i − fi∣∣∣∣∣∣
≤ op(1) + 2(

1

n

i=n∑
i=1

∣∣∣∣∣∣fi∣∣∣∣∣∣2) 1
2 (

1

n

i=n∑
i=1

∣∣∣∣∣∣f̂ ′i − fi∣∣∣∣∣∣2) 1
2

≤ op(1) + 2(Op(1))
1
2 (op(1))

1
2

Thus Ω̂
p→Ω.

This completes the proof
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