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The benefits consumers get from a mobile phone depend on the software apps available to use on that

phone. These indirect network effects are especially important since apps are specific to a platform (e.g.,

iOS or Android) and are often not available on all platforms at once. We measure the cost to a platform of

having delayed entry of some apps, and study the effectiveness of cross-platform development frameworks

that allow developers to build an app on one platform and distribute on another. To do so, we develop a

model of demand for both handsets and apps that takes into account the heterogeneous indirect network

effects between apps and handsets as well as developer entry decisions. We estimate the model using a unique

dataset of mobile phone sales and app downloads. We find that delayed developer entry cost the Android

platform over $400M in phone sales in 2013 and 2014. We also find that cross-platform frameworks are

unable to steer developers towards developing on Android first unless they can generate near-native quality

iOS apps.
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1. Introduction

The value to consumers from, and therefore the demand for, a mobile phone is a function of the

software apps available to use on the phone. On the other hand, an app developer’s incentives to

develop an app to use on a specific type of phone depend on the number of users who adopt com-

patible phones. This implies that there are indirect network externalities in the adoption of mobile

phones, which has important implications for platform competition because mobile platforms are

closed and proprietary. Developers have to incur separate development costs to develop apps for

each mobile platform. Therefore, many developers initially launch their app on one platform and

delay launch on other platforms until they have a better sense of the demand for their app. This

sequential app offerings can potentially generate a negative impact on the less preferred platform

and therefore it might be in the platform’s interest to try to reduce the cost of porting an app from

one platform to another. This is especially true if apps tend to be introduced first on one platform.

Consistent with this consideration, Google has invested in frameworks like J2ObjC and Flutter to
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encourage developers to develop apps for Android while retaining the ability to port those apps to

iOS.

In this paper, we ask whether such cross-platform development frameworks can help attract

developers and mitigate the costs to the platform of delayed developer entry. To answer this

question, we develop and estimate models of consumer demand for both handsets and apps, as well

a model of developer entry decisions. We estimate the cost of delayed entry by developers on the

Android platform and simulate counterfactual app developers’ entry scenarios assuming different

quality of cross-platform development frameworks.

Our paper contributes to the literature on indirect network effects. In our setting, the network

effects are indirect because the value of, for example, an iPhone does not directly depend on the

number of other iPhone users since calls can be made to all phones not just iPhones. Instead, having

more iPhone users generates incentives for developers to develop more apps and therefore indirectly

increases the value of an iPhone. The primary impediment for empirical work in this area has been

the lack of rich granular data on both sides of the market. Many papers in the literature have

therefore had to rely on various modeling assumptions. For instance, papers on adoption of video

cassette recorders (see Ohashi (2003) and Park (2004)) modelled demand as a function of installed

base, rather than the number of movie titles available. Similarly many approaches (see Gandal

et al. (2000), Nair et al. (2004), Clements (2004), and Corts and Lederman (2009)), approximate

the utility for the complementary market as a function of total number of complementary goods

without considering which specific complementary goods are available.

To overcome these challenges, we develop and estimate a dynamic structural model of consumer

demand for handsets and apps. Two key features of our model are worth highlighting. First, the

demand for both handsets and apps is dynamic. Handsets are durable good that consumers use for

several years. We therefore follow Gowrisankaran and Rysman (2012) and Lee (2013) and model

consumers as forward looking taking into account current and future prices, features, and the

”quality” of the apps available on the relevant app store. Similarly, demand for apps is dynamic

since once an app is downloaded a consumer is less likely to download it again. Second, the demand

for handsets is a function of the quality of the available apps, which is derived directly from the

app demand model. This allows us to model, and estimate, heterogeneity in network externalities

across apps. Using the size of the complementary market can be a poor approximation when there

is significant heterogeneity in network effects. For example, Facebook and Hi5 are both social

networking apps, but the unavailability of Facebook on a mobile platform is likely to have a larger

effect on mobile sales than the unavailability of Hi5. On the developer side, we develop a model of

developer entry and use an inequality based approach developed in Pakes et al. (2015) to estimate

the porting cost across the two platforms.
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We estimate our model using a novel panel dataset of handset sales and app downloads for both

Apple’s iOS App Store and Google’s Play store. The ability to easily track app launch dates along

with daily app downloads and reviews presents a unique research opportunity to quantify indirect

network effects. Using this granular data we estimate our dynamic model of demand for handset

sales and app download decisions. We use the observed patterns of developers entry to estimate

the porting costs across the two platforms.

We find that indirect network externalities are significant in app markets, and on average, increas-

ing the number of apps by 1% leads to an increase in sales of smartphones by 1.5%. Further, we find

evidence for significant heterogeneity in externalities exerted by apps. For instance, we find that

the externality exerted by the top app is around 2700 and 5600 times that of the median app on

iOS and Google Play platform respectively. We observe that the Social Media apps like Facebook

have the highest estimated impact on both the platforms. Specifically, removing Facebook from

Apple or Android can reduce the demand of respective handsets by −5.9% and −5.6%. Using our

model we find that one month access to Facebook app is worth to be around $13 (or $9) to Apple

(or Android) users.

We find that the Android ecosystem suffers considerable losses due to delayed entry by developers.

We estimate losses in revenues from handset sales to be around $208M in 2013 and $260M in 2014

for Android. Finally, we evaluate the role that cross-platform development frameworks can play

in alleviating such losses for Android. We find that cross-platform development frameworks have

a limited effect and are unable to steer developers towards Android. We find that for Android to

effectively steer developers to develop for Android at the same time as Apple, they need a cross-

platform development framework that can generate a near-native quality app. A framework that

is unable to deliver near-native app quality will not be sufficient to convince enough developers to

change their entry decisions.

The issues we study in this paper extend beyond mobile apps and are relevant to multiple

platform markets such as those for smart TVs (such as Amazon’s Fire Stick, Roku TV), emerging

home assistance platforms (such as Amazon’s Alexa and Google Home), etc. Accordingly, the

structural model we develop in this paper has applications to empirical investigations of network

effects in those markets as well.

The rest of the paper is organized as follows. In Section 2, we review the relevant literature

and position our work within the literature on two sided markets, platform competition, and app

markets. In Section 3, we describe the dataset used for the analysis presented in this paper. In

Section 4, we lay out the problem formally, and present a dynamic model of demand for consumers

decision of handset purchase and app downloads. In Section 5, we present our identification strategy

and discuss the specific instruments used for causal identification of indirect network effects. Next,
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in Section 6, we discuss the specific steps, we take to estimate our structural model. We then

discuss the results of our structural model in Section 7. We provide prescriptions and counterfactual

analysis in Section 8. Finally, we discuss managerial implications some limitations of our work and

conclude in Section 9.

2. Related Literature

There are two streams of work highly relevant to our study. The first is the literature on network

effects (direct and indirect). The second is the emerging stream of work on adoption drivers in the

mobile app ecosystem. We discuss each stream of work in turn.

Network Effects: Early work (Shapiro and Varian (1998), Farrell and Saloner (1985) and David

(1985)) looked at direct network effects and tried to analytically model the impact of network

effects on industry formation and evolution. They investigated the social and private incentives to

achieve ”compatibility” in a single-product network. Recently, there has been interest in two-sided

platforms such as credit card networks wherein the benefit to one side (consumer/merchant) is a

function of the number of participants on the other side (merchant/consumers). Armstrong (2006),

Rochet and Tirole (2003), and Gabszewicz and Wauthy (2004) study the role of network effects on

competition between two-sided platforms.

Network effects may also be indirect wherein the value of a product is a function of the usage or

adoption of a complementary product. Classic examples are hardware/software complementaries

wherein the value of a hardware platform such as a smartphone or a gaming console is a function

of the software available on it. Economides and Salop (1992) provide a general framework to study

indirect network effects and derive equilibrium pricing under different market structures and levels

of competition. Parker and Van Alstyne (2005) explore strategic pricing behavior and product

design decisions in markets with strong indirect network effects. They show that firms may find

it profitable to discount one product in order to stimulate demand and increase the price of a

complementary product. Church et al. (2008) show that indirect network effects can also give rise

to adoption externalities. Clements (2004) examines the social and private incentives to achieve

standardization and concludes that settings with direct and indirect network effects may lead

to divergent outcomes. Hagiu (2006) compares the relative efficiency of a monopoly controlled

platform to an open platform and studies how the monopolist can use its power to internalize

indirect network externalities. In summary, multiple theoretical studies have shown that if indirect

network effects are significant, they impact pricing, competition, and market outcomes.

Not surprisingly, there is burgeoning interest in empirically validating and quantifying the extent

to which indirect network effects actually exist in product markets. Early empirical work (Shankar

and Bayus (2003), Ohashi (2003),and Park (2004)) model indirect network effects as direct networks
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effects, assuming that consumer utility for a good increases as a function consumers network size

and strength. More recent work (Gandal et al. (2000), Nair et al. (2004), Clements and Ohashi

(2005), and Corts and Lederman (2009)) formally model the indirect network effects and show

they are quite significant in platform markets. For example, Nair et al. (2004) show that in the

market for PDAs, indirect network effects explain roughly 22% of the log-odds ratio of sales with

the remaining 78% explained by price and model features. However, all these papers quantify only

the aggregate network effect and largely ignore the fact that quality of the complementary good

(usually the software) could be highly skewed. Hence, just using the count of the number of software

applications available on a hardware platform could be an inaccurate measure of overall utility

derived from the complementary goods. In the context of smartphone platforms where there are

millions of apps present in app marketplaces, some leading apps may be worth much more than

the median app. Recognizing that indirect network effects may not always be homogeneous, Lee

(2013) looks at the impact of exclusive titles on video-game industry structure. Unlike video games,

mobile apps behave much differently as they have evolving qualities and versions. This warrants us

to model changing consumer expectations over evolving app quality. To our best knowledge, this

is the only other paper to look at heterogeneous network effects and our paper is the first study to

quantify the impact of heterogeneous network effects in the market for mobile handsets and apps.

Recently many studies have looked at estimating the economic value consumers attach to free

goods and services like Facebook. For instance, Brynjolfsson et al. (2018) and Brynjolfsson et al.

(2019) measures the dollar value consumers are willing to pay for one month access to various free

goods like Facebook. However, they primarily rely on survey data for their analysis. Several studies

(like Hausman (2012)) have pointed out the limitations of such valuations surveys. For instance,

Hausman (2012) points out how respondents in valuations surveys are often not responding out

of stable or well-defined preferences and might be inventing their answers on the fly. Using a

structural model of demand and purchase decisions made by consumers, we provide an alternate

way of measuring dollar value consumers attach to free goods or services.

Further, prior literature has tried to study how converters can help entrants overcome the influ-

ence of the incumbent’s installed base by enabling cross-technology interoperability. For instance,

Choi (1996) and Sen et al. (2010) discuss the effect of converter’s efficiency levels on market struc-

ture and competition. While these studies investigate the role of converters in platform markets,

all of them are theoretical in nature. To best of our knowledge, ours is the first empirical study

that investigates the role a converter can play in two-sided marketplaces.

Our paper also relates to broad literature on demand estimation. Prior literature (for instance

Heitkötter et al. (2012), Melnikov (2013), Gowrisankaran and Rysman (2012), Conlon (2012),

Aguirregabiria and Nevo (2013)) has shown how not incorporating the dynamic nature of goods
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can lead to biased estimates of price elasticities. Handsets are durable goods that consumers hold

on to for multiple years. We follow literature on Gowrisankaran and Rysman (2012) to a dynamic

model of demand that accounts for consumers forward looking behavior.

Adoption of mobile apps: There is an emerging literature around adoption drivers of apps

and app marketplaces. Ghose and Han (2014) study the demand for apps using a static model of

demand. Li et al. (2016) quantifies the effect of buying downloads and evaluate the effect of visibility

on app diffusion. Bresnahan et al. (2014) study the platform choice of app developers. Bresnahan

et al. (2014) discusses value creation in the highly skewed app marketplaces and provides credence

to our approach for modeling app heterogeneity separately. Wang et al. (2018) discusses how the

copycat apps affect the demand for original apps. Allon et al. (2019) looks at the developer side

and explains how characteristics of platforms review system could provide diverging incentives to

app developers. While these studies investigate multiple adoption drivers, none of them investigate

or quantify the role of indirect network effects.

3. Data and Descriptive Analysis

In this section we describe our data and provide initial descriptive analysis to motivate the model

that follows.

3.1. Data

We use panel data on monthly smartphone sales and daily app downloads in the U.S from January

2013 to December 2014. The smartphone data and the apps data come from two different sources.

The smartphone sales data are from Counterpoint Research, a marketing research firm that

tracks smartphones sold in the U.S. We observe the number of smartphones sold and average price

of each handset sold every month. We combine these sales data with handset characteristics. After

dropping handsets that report either zero sales or price, we are left with data for 17 Apple and

53 Android-based handsets. In Table 1, we display the summary statistics of the characteristics

of these handsets. Overall, 40% of the sales observed in our dataset are of Apple handsets, with

the rest sales of Android devices. iPhone 5S and Samsung S4 are the highest selling Apple and

Android devices, respectively. The average price of Apple handsets is almost double the average

price of Android handsets, despite the fact that Android handsets on average have larger displays,

more RAM, more storage and a longer battery life.

The app data come from App Annie, a firm that collects data from both Google Play and the

Apple app store. We observe the list of top 500 apps downloaded (across all genres) on the Apple

and Google Play U.S. store each day 2013-2014, the same two-year period for which we observe
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Table 1. Handset Characteristics

Apple Android Overall
Mean Std Mean Std Mean Std

Price ($) 559 137 305 134 365 172
Display Size (inches) 4.0 0.4 4.6 0.6 4.5 0.7
Primary Camera (Megapixels) 8.0 0 8.0 3.7 8.0 3.2
RAM (Megabytes) 985 135 1526 630 1398 600
Storage (GB) 35 26 18 17 22 22
Battery (milliamp hours mAh) 1594 336 2276 531 2114 571

Note. The summary statistics are computed across 70, 17 Apple and 53 Android, handsets

over the 24-month period. Display size refers to the diagonal length of the screen measured in

inches. Primary camera refers to resolution of the back camera measured in megapixels. RAM

is the random access memory of the handset measured in MB. Storage is the physical capacity

available in the handset, measured in GB. Battery is measured in milliamp hours mAh.

handset sales.1 This process results in 6,950 and 13,731 unique Google Play and Apple apps,

respectively.2 For each of these apps, we observe the genre, daily price and sales rank, number and

prices of its in-app purchase assortment, daily review activity, app developers’ (firm) characteristics,

and versioning activity. We convert the daily sales rank into an estimate of the daily downloads

for each app by building on methods proposed by Garg and Telang (2013). For details please see

Appendix E.

In Table 2, we display the summary statistics of the characteristics of apps in our sample. The

paid apps available on Google Play store are priced higher, on average, than Apple iOS store.

As we previously noted, the Apple Store has more apps, a fact we need to account for when

comparing averages. Indeed, the price difference is driven by the mix of apps: when we compare

prices for the same set of paid apps we find that the difference between the stores is not statistically

significant(i.e., $2.81 versus $3.09 (p-value = 0.15) on Apple vs Google Play store, respectively).

We find that customers on Android leave many more reviews (and higher ratings) than on Apple

iOS. This differences persists even when we hold the set of apps constant across the two app stores

(1331 versus 3608 monthly reviews (p-value < 0.01) and 3.89 versus 3.96 average ratings (p−value

= 0.03) on Apple vs Google Play store, respectively). This might be driven by the subtle differences

1 The data for Android apps are only from Google Play and not other app marketplaces. The same is true for Apple,
but unlike the Android ecosystem, there are no other apps stores on Apple devices. This is not a major limitation
given that Google Play has the lion’s share of the Android app market in the U.S. We focus on the top 500 apps
downloaded each day since we believe that apps downloaded less frequently are not likely to have significant impact
on handset demand.

2 One potential reason for sampling more unique apps from Apple app store compared to Google Play, could be more
developers choosing to launch their apps on Apple first. Since developers not able to profitably operate their apps
on Apple might not choose to launch on Google Play later, it could create a potential imbalance across the two app
stores.
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in their review system policy: Google Play displays apps’ reviews over entire history (i.e., across

versions) whereas Apple restarts apps’ reviews to cover only their most recent version released.

We also find that Apple developers tend to iterate over versions quicker than Android for even

the same app (2.21 versus 4.34 months (p-value < 0.01)). This could reflect the more demanding

and competitive nature of Apple marketplace. Finally, we also observe that developers on Google

Play tend to maintain bigger portfolios than Apple developers.

These subtle differences in app characteristics across the platforms can create varying levels of

quality perceptions, even among the same apps on Apple iOS and Google Play. This difference

in quality levels, even among the same apps serves as a source of variation for identifying apps’

externalities on handset demand.

Table 2. App Characteristics.

iOS Google Play Overall

Mean Std Mean Std Mean Std

Price 3.14 4.30 3.91 3.15 3.40 5.35
Downloads (Daily) 353 1425 259 1292 326 1389
# of Monthly Reviews 783 3018 2091 5799 1234 4235
Average Customer Review Rating (Quality) 3.95 0.70 4.03 0.50 3.97 0.63
Average Version Age (months) 2.20 2.90 4.50 6.01 2.98 4.36
# of Versions 12 10 13 15 13 12
Firm Size 17 32 25 47 20 38

Note. The summary statistics are computed across our entire sample of 13,731 ios and 6,950 Google

Play apps over the 2-year period. For price we only report statistics for paid mobile apps. # of Monthly

Reviews refer to the volume of customers reviews received in the focal month. # of Versions refer to

the number of versions released for each app as observed in December 2014. Average Customer Review

Rating refers to the average valence (out of 5) of customer reviews received by the app in the focal

month. Firm Size refers to the portfolio size of the apps’ developers in our sample. 59% of Apple apps

have an In-App Purchase option vs 56% for Google Play apps.

3.2. Evolution over time

We now turn to the evolution of characteristics over time, which will motivate our modeling

approach below. In Figure 3 we present the trends in handset and app prices, and app quality as

a function of age. As we can see in panel (a) retailers tend to discount handsets as they age. This

pattern is found in many durable products and is usually attributed to intertemporal price dis-

crimination: retailers set a higher price early to extract surplus from the high-valuation consumers

and then discount their prices to attract the lower-valuation consumers.3 Such pricing behavior by

3 Apple never puts explicit discounts on its handsets, until the launch of a newer version. However, the average sales
price of an Apple handset can still show a slight downward pattern due to the various promotions run by retailers.
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retailers generates incentives for customers to time their purchases and wait for future discounts.

In panel (b) we show a slightly reverse pattern in apps’ pricing: apps’ prices slightly increase as

they age. In Panel (c) we show that app quality, as measured by the app’s average rating received

in the focal month, shows an upward trend as the apps age. This indicates that as the apps mature

their quality levels (as perceived by customers) improve on average.

Figure 3. Handset and App Characteristics over Time

(a) Handset Prices (b) App Prices

(c) App Ratings

Note: The figures present the evolution of handset and smartphone prices and quality (average customer rating) as

they age. In Panel (a) we present the evolution of smartphone prices as they age. The average is calculated over the

mix of all handsets of a specific age. In panel (b) we present the evolution of apps’ prices (only paid apps) as they age.

For this purpose we only average over apps that were launched in and after January 2013. In panel (c) we present the

evolution of app quality measured by the average customer ratings they received in the focal month as they mature.

Counterpoint Research takes into account these retail promotions to calculate the average selling price of Apple
handsets.
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Figure 4. Evolution of Handset Characteristics.

Note. The figures report how the handset features for the entire mix of handsets in the market evolve over time.

The solid line denotes the average value of Apple handset characteristics over time and the dashed line indicate the

average value of Android handset characteristics over time. For the sake of convenience, each handset characteristic is

normalized to a value between 0 and 1. Time period 1 denotes January 2013 and Time period 24 denotes December

2014.

In Figure 4 we examine how handset characteristics (camera, display size, battery, ram, storage)

are evolving over time across Apple and Android. Overall, we find that the industry has been

steadily improving in each respective handset feature. As with prices, customers can also time their

purchases in anticipation of better handset characteristics. As we discuss in the next section, static

demand models, which do not account for such anticipatory consumer behavior, may lead to biased

estimates of demand elasticities.

3.3. Overlap in Apps offering

In this section, we elaborate on the decisions made by developers that have chosen to offer their

apps across both the platforms. Due to the interconnected nature of smartphone and app demand,

decisions made by developers affect consumer choices. In our sample, 2103 apps launched on both

Apple and Google Play (as observed up to two years after the period of our study, i.e., up until

Jan 2017).

In Table 5, we report entry decisions for apps with a presence on both platforms in our sample. We

find developers have strong preference for the Apple platform. For instance, the majority (64.6%)

of app developers prefer deploying an app on iOS first vs. Android. Specifically, we find that apps

are launched on the Apple App store an average 6 months before Google Play. This could affect
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Table 5. Developer Entry Decisions

Overall Statistics

Apple First 64.6%
Google Play First 12.2%
Both 23.2%

Statistics by Genre

Genre Days

Entertainment 196
Games 151
Music 305
Photo and Video 292
Social Networking 238
Utilities 103
Others 232

Note: In this table we report summary statistics for entry decisions of app developers. “Apple First” denotes the

share of app developers that chose to launch on iOS first. “Google Play First” denotes the share of app developers that

chose to launch on Google Play first. “Both” denotes the share of app developers that launched on both platforms

at the same time. We also report the difference between Android and Apple launch dates (in days) across various

genres.

the Android platform’s attractiveness to customers and could be the reason for concerted efforts4

carried out by Android to attract developers towards its platform. Across the various genres we

find the gap between Apple and Android launch is the longest for apps requiring more development

resources (for instance music, photo and video and social networking) and the least for generic

apps (like utilities).

4. Model

In this section we introduce a model that allows us to study the impact of indirect network exter-

nalities on mobile platforms. On the demand side, we model the consumer’s decision to buy a

handset and the decision to download an app form the App Store. As we saw in the previous sec-

tion, price and attributes of handsets and apps are evolving, generating incentives for consumers

to time their choices. We therefore use a dynamic model to capture consumer demand for both

handset and apps. On the supply side, we model the developers decisions to offer apps on the two

platforms.

4 See https://medium.com/jay-tillu/flutter-googles-most-ambitious-framework-e3b36ca7091f and https://

stablekernel.com/article/the-business-case-for-google-flutter/ for more discussion.

https://medium.com/jay-tillu/flutter-googles-most-ambitious-framework-e3b36ca7091f
https://stablekernel.com/article/the-business-case-for-google-flutter/
https://stablekernel.com/article/the-business-case-for-google-flutter/


Authors: Article Short Title
12

4.1. Demand for Handsets

We first consider a consumer’s handset purchase decision. Handsets are durable goods that are

bought roughly every 3 years.5 Consumers, in general, can time purchases and indeed faced with

declining prices for a given model (Figure 3) and improving attributes across models (Figure 4)

they have incentives to do so. For instance, price-sensitive consumers may wait for the price of

handsets to decline. Similarly, the less price sensitive consumers may purchase early and leave

the market, making the mix of consumers in later periods more price-sensitive. Therefore, to

consistently estimate demand elasticises we need to account for this dynamic behavior.6 In Section

6, we compare the results from a dynamic model of consumer demand to a static model and find,

how not accounting for the dynamic behavior of customers can lead to misleading estimates.

In each period t (month) the consumer decides whether to buy one of Ht handsets available at

time t or wait until next period. If consumer i purchases handset j ∈Ht at time t they get utility

ui,j,t =αx
i ~xj,t +αp,hsi log pj,t +αΓΓg(j),t(α

p,app
i ,αw

i ) +ξj,t︸ ︷︷ ︸
δi,j,t

+ε
(hs)
i,j,t (1)

where, ~xj,t refers to the observable characteristics of the handset at t, including camera resolu-

tion, display size, ram, storage, and handset fixed effects. αx
i denotes consumer i’s tastes for these

characteristics; αp,hsi captures consumer i’s (handset) price sensitivity; ξj,t captures (time vary-

ing) characteristics of handset j that are unobserved by the econometrician but are valued, and

observed, by the consumers. Unobserved characteristics, for instance could include unobserved pro-

motional activities, unobserved handset equity, or systematic demand shocks. Some components

of the unobserved characteristics are fixed over time and can be captured using dummy variables.

Therefore, we model ξj,t = ξ̄j + ∆ξj,t. The error term ∆ξj,t is the time varying component of the

unobserved attributes. The term Γg(j),t(·) captures the utility the consumer gets from the apps

(software) available at the app store g(j). This term varies between Apple and Android phones.

For now, we will assume that it is known, and in the next section discuss how we model it. Finally,

ε
(hs)
i,j,t captures random shocks that are assumed to be independently and identically distributed

according to the type I extreme value distribution.

We assume that if the consumer buys a handset they exit the market for handsets. Therefore,

ui,j,t can be viewed as the lifetime value from purchase of product j. As we noted above, on

average consumers replace their handset roughly every 3 years. We observe two years of data and

therefore, modeling repeat purchases is not a first order concern (or clearly identified using our

5 See https://www.itsworthmore.com/blog/post/years-a-new-smartphone-last.

6 See Melnikov (2013), Gowrisankaran and Rysman (2012), Conlon (2012), Aguirregabiria and Nevo (2013) for further
discussion.

https://www.itsworthmore.com/blog/post/years-a-new-smartphone-last
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data). Furthermore, such a simplification significantly reduces the complexity of the problem and

makes identification of primary effects of interest (i.e., network effects) easier. We also assume that

there is no resale of handsets.

Consumers have the option of not purchasing in period t, in which case they can consider

purchasing in the future. A consumer who does not purchase a new handset at time t, i.e. chooses

the outside option (denoted as j = 0), gets the one period utility

ui,0,t = ε
(hs)
i,0,t (2)

where ε
(hs)
i,0,t is assumed to be independently and identically distributed according to the type I

extreme value distribution. In principle, consumers might own an older handset. This will in part

be captured by ε
(hs)
i,0,t.

At time t, the consumer is faced with |Ht|+ 1 choices, where Ht denotes the set of handsets

available at time t. The consumer chooses the option that gives her the maximum expected value,

given her information set at t. At the time of choice, consumers know prices and attributes (includ-

ing those unobserved by us) of all products. They also observe all (current) εi,j,t. Let Ωt be the

state variable that captures all relevant information used by consumers to make their decision.

This state will include the set of handsets, their prices, attributes, and associated app store utilities

(Γg(j),t(·)), and will change over time. Consumers form expectations about the evolution of these

variables, as we discuss below, but do not know future values ~εi.

The Bellman equation for the consumer’s problem can be written as

V (Ωit, εit) = max
At∈(0,1)

{
εi0t +βE(V (Ωit+1)|Ωit), At = 0 if no purchase

maxj∈Ht{uijt}, At = 1 if buys a handset
(3)

where, V (Ωit) =
∫
V (Ωit, εit)dFε(εit) is the integrated value function.

The dimension of the state space in the above problem is very high, and therefore the problem

is impractical to solve (and take to the data). We therefore follow the literature to reduce the

dimensions of the problem in two steps.

First, following Rust (1994), we integrate the logit error ε and rewrite (3) using the integrated

value function

V (Ωt) = ln(exp (βE(V (Ωt+1)|Ωt)) + exp(ζ(Ωt))) (4)

where ζi(Ωt) = ln(
∑

j∈Ht exp δijt)) is the so-called inclusive value;7 and δijt = αx
i ~xj,t + αp,hsi pj,t +

αΓΓg(j),t(α
p,app
i ,αw

i ) + ξj,t. As in Rust (1994) we can now solve for the integrated value function,

which is only a function of Ω. In other words, by focusing on the integrated value function we

significantly reduce the dimension of the state space.

7 We omit the Euler constant as it does not affect the decision-making process.
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Furthermore, as in Hendel and Nevo (2006), Melnikov (2013), and Gowrisankaran and Rysman

(2012) we assume that

Gi(Ωt+1|Ωt) =Gi(ζi,t+1(Ωt+1)|ζi,t(Ωt)) (5)

where G() is the (exogenous) transition process of the state variables. As Hendel and Nevo (2006)

note, ζ(Ω) can be viewed as a price index. Therefore, this assumptions means that the consumer

does not need to know, or keep track, of Ωt. Nor does the consumer need to predict the future

Ωt+1. Instead the consumer just need to keep track of the lower dimension ζ(Ω).

This assumption implies that in order to predict the distribution distribution of future states

consumers only use the lower dimensional price index ζt and not the higher dimensional Ωt. This

can be taken as a statement about how the actual process in which Ωt evolves or as a behavioral

statement about how consumers form expectations. The key is that consumers only track the

current value of ζt to predict the future distribution of ζt+1 instead of the whole information set Ωt.

This reduces the dimension of the state space to a more tractable single dimension and makes the

computation of V numerically feasible. Specifically, it allows us to rewrite equation (4) as follows

V (ζ(Ωt)) = ln(exp (βE(V (ζ(Ωt+1))|ζ(Ωt))) + exp(ζ(Ωt))) (6)

We further assume an AR(1) specification for E[ζi,t+1|ζi,t] as follows

ζi,t+1 = φi1 +φi2ζi,t +µit+1 (7)

where, φi1 and φi2 are parameters, and µt+1 is identically and independently distributed with mean

0.

Using the model we can construct an expression for the probability of buying each handset. The

probability of consumer i purchasing a handset j at time t can be written as the probability of

a purchase happening at time t times the probability of purchasing handset j conditional on a

purchase happening, which is given by

shsijt =
exp(ζi,j,t)

exp (ζi,j,t) + exp(βE(V (ζi,j,t+1)|ζi,j,t)))
∗ exp (δi,j,t)

exp (ζi,j,t)
(8)

The aggregate market share of handset j in market t, which will be used in teh estimation, can

computed by integrating over the distribution of consumers

shsjt =

∫
shsijtdP∗

where dP∗ denotes the distribution of consumer preferences. As we discuss below, this market share

can be mapped to the observed market shares of handsets to estimate the model parameters.
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4.2. Demand for Apps

Once a consumer purchases a handset, depending on the operating system, they get access to either

the Apple app store or Google play store.8 In the previous section we denoted the benefits from

the relevant app store, g(j), by Γg(j)(·). We now explain how we model, and later estimate, these

benefits.

At a high level, we need to deal with two main issues. First, consumers typically download

multiple apps in a given period.9 We deal with this by treating each app download as an independent

decision.

Second, we need to deal with the fact that apps are durable products: once a consumers down-

loads an app they are not going to download it again. Ignoring this can lead to mistakes in inference.

Consider the following example. suppose there are two apps A and B. Assume that A is launched

in period t and is valued more by consumers than B, which is released in period t+ 1. In period t,

assume almost all consumers download A. Now, in period t+ 1, there will be very few consumers

left that would have not downloaded A; however, the entire market has the option to download

B. Thus it is possible to observe greater number of downloads for B than for A. If we ignore

this dynamic, and simply use the relative market shares each period to infer the value, we would

get biased estimates of customer preferences. We deal with this issue by modeling the consumer’s

dynamic decision.

We assume that consumer i, compares the perceived lifetime utility, namely, the expected utility

over all future periods, for every app l with their reservation utility (and continuation value over

future periods) of not downloading the app. If the consumer perceives the (lifetime) utility of an

app to be greater than the reservation utility, they download it, otherwise, they wait. We assume

that a consumer can download an app only once because the data only accounts for the first

download of an app by a user. The (lifetime) utility a consumer i gets by downloading an app l at

time t (day) on platform g(j) is

uappi,g(j),l,t =αw
i ~wg(j),l,t +αp,appi pg(j),l,t + ηg(j),l,t︸ ︷︷ ︸

ψi,g(j),l,t

+ε
(app)

i,g(j),l,t (9)

where, ~wj,t refers to the observable characteristics of the app at time t; αw
i denotes consumer i’s

taste towards these characteristics; αp,appi captures i’s (app) price sensitivity; ηg(j),l,t captures (time

8 Some Android manufacturers like Samsung provide their users with access to an exclusive set of apps through their
private app stores. The fixed part of these effects gets absorbed into the handset specific fixed effects. The time
varying components is captured by the unobservable handset characteristic ξj,t.

9 Consumers who choose to download apps, download on average approximately 4 apps per
month. See, for example, https://www.comscore.com/Insights/Presentations-and-Whitepapers/2017/

The-2017-US-Mobile-App-Report?cs_edgescape_cc=US)

https://www.comscore.com/Insights/Presentations-and-Whitepapers/2017/The-2017-US-Mobile-App-Report?cs_edgescape_cc=US
https://www.comscore.com/Insights/Presentations-and-Whitepapers/2017/The-2017-US-Mobile-App-Report?cs_edgescape_cc=US
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varying) characteristics of app l that are unobserved by the econometrician but are valued, and

observed, by the consumers. As in the demand model for handsets, the Unobserved characteristics,

could include unobserved promotional shocks, app fixed effects, or systemic shocks in app demand.

Some of these components will be fixed over time and therefore we model ηg(j),l,t = η̄g(j),l+∆ηappg(j),l,t.

The error term ∆ηappg(j),l,t is the time varying component of the unobserved attributes. Finally,

ε
(app)

i,g(j),l,t captures random shocks that are assumed to be independently and identically distributed

according to the type I extreme value distribution.

The observable characteristics include the app’s current version, current version’s age, current

period’s quality (rating), firm (app developer) size, in-app purchases, and time invariant attributes.

App developers continuously update their apps. Apps current version number captures this devel-

opment and is a good measure of apps maturity. To capture the decay in quality we use version

age. Similarly, to control for app’s quality we use the consumers ratings in the focal period as a

proxy for app’s current quality. Finally, the app fixed effects capture any attributes, observed and

unobserved by us, that are constant with and app over times and capture perceived quality across

apps.

If the consumer decide not to download an app at time t they get the one period utility

ui,0,t = ε
(app)
i,0,t (10)

where ε
(app)
i,0,t is assumed to be independently and identically distributed according to the type I

extreme value distribution.

We assume that consumers make the decision of to download an app independently of other apps.

So, for example, a consumer’s decision of whether and when to download Spotify is independent

from her decision on whether and when to download Facebook. As we will see, this assumption

makes the model more tractable, and allows us to deal with dynamics. However, it does not account

for substitution across apps. Unlike the handset market, where consumers exit after buying a hand-

set, allowing for both substitution and consumer dynamics in the apps market is computationally

difficult, as it involves keeping track of all consumption sets over the entire set of apps. Lee (2013)

shows that in markets with many products, the loss in predictive power of a model based on inde-

pendence assumptions is minimal for most products and almost negligible for top products. Since

we only include top apps in our analysis, and top apps (for instance Facebook, Instagram, etc)

in our context are highly differentiated, this assumption seems reasonable for our application and

should not have a significant impact on our analysis. We discuss the robustness of our results to

this assumption in Appendix D.

As noted earlier, the consumer decides each period if to download at app or wait. If they wait

they have the option to download the app in the future, which makes this a dynamic (stopping)
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problem. Let Ωapp
t be the state variables that captures all relevant information used by consumers

to make their decisions. The Bellman equation can be written as

Wi,g(j),l(Ω
app
i,l,t, εi,g(j),l,t) = max

at∈{0,1}

{
uappi,g(j),l,t, at = 0 if downloads

εi,g(j),0,t +βE[Wi(Ω
app
i,l,t+1)|Ωapp

i,l,t], at = 1 if waits
(11)

where, W (Ωapp
t ) =

∫
W (Ωapp

t , εt)dFεt(εt).

As in we did in the demand for handsets, we follow Rust (1994) and integrate out the logit error

ε, to rewrite equation (11) as

W (Ωt) = ln (exp (βE(W (Ωt+1)|Ωt)) + exp(ψ(Ωt))) (12)

where, ψt =αw
i ~wg(j),l,t+αp,appi pg(j),l,t+ηg(j),l,t. Further, as in Hendel and Nevo (2006), note we can

interpret ψ(Ω) as a price index. Next, similar to handsets, to reduce the dimension of the state

space we assume that

Fi,g(j)(ψi,t+1(Ωt+1)|Ωt)) = Fi,g(j)(ψ(Ωt+1)|ψ(Ωt)), (13)

where F () is the (exogeneous) transition process of the state variables.

As before, we assume that with regards to distribution of future states, the consumer only use

the lower dimensional price index ψt and not the higher dimensional Ωt. This can be interpreted

as a statement about how the actual process Ωt evolves or as a behavioral statement about how

consumers form expectations. The key is that consumers only use the current value of ψt to predict

the future distribution of ψt+1 instead of the whole information set Ωt and make download decisions.

This reduces the dimension of the state space to a single dimension and makes the computation of

W numerically feasible. Specifically, it allows us to rewrite equation (12) as follows

W (ψ(Ωt)) = ln(exp (βE(W (ψ(Ωt+1))|Ωt)) + exp(ψt(Ωt))) (14)

As we did for handsets, we use a AR(1) specification for E[ψi,t+1|ψi,t] as follows:

ψi,t+1 = φ
app,g(j)
i1 +φ

app,g(j)
i2 ψi,t + εt+1 (15)

where, εt+1 is identically and independently distributed with mean 0. φi1 and φi2 are the incidental

parameters.

Using the model we can write an expression for the probability of consumer i to downloaded

app l in period t, which is given by

sappijt =
exp(ψi,l,g(j),t)

exp (ψi,l,g(j),t) + exp(βE(W (ψi,l,g(j),t+1))|ψi,l,g(j),t)))
(16)
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The aggregate share of downloads of app l on platform g(j) at time t can computed by integrating

over the distribution of consumers

sappjt =

∫
sappijt dP∗

where dP∗ denotes the population distribution of consumer preferences. To estimate the parameters

of the model, we will map this probability to the observed share of app downloads in the data.

Using this model we can also derive the utility a consumer gets from having access to a certain

app store. The value is the sum of the utility from apps currently on the platform and discounted

utility of apps that will be available on the app store in the future. Formally, the utility from access

to the app store Γ(·) is given by

Γg(j),t(α
p
i ,α

w
i ) = [

∑
l∈∪τ=tτ=0Lg(j),τ

Wi,g(j),l(Ωi,t)]

︸ ︷︷ ︸
Current app utility≡∆c

i,g(j),t

+E[
τ=∞∑
τ=1

(β)τ (
∑

l∈Lg(j),t+τ

E[Wi,g(j),l(Ωi,t+τ )])|Ωi,t]︸ ︷︷ ︸
Expected future app utility≡∆

f
i,g(j),t

(17)

where, Lg(j),τ denotes the set of apps launched in period τ . Similarly, ∆f
i,g(j),t, denotes the expected

values of apps that are expected to be launched in future given the current information set Ωi,t .

∆c
i,g(j),t captures the current app utility, attributed by the apps currently present on the platform.

4.3. Developers’ Porting Decisions

We now consider the developers’ decision to offer apps on the two platforms. Specifically, we model

the porting costs that affect developers ability to offer an app across both platforms.

Consider an app l operational on platform p at time t. The expected profit the app developer

expects to make by deciding to not port to platform p′ at time t is given by

Πl,t(dt ≡ {p}→ {p};θ) =E
[∑
τ>t

(βτ−tDp
l,τ )|Ωl,t

]
(18)

where Dp
l,τ denote the number of downloads of app l in time period τ on platform p ; Ωl,t is the

app developer’s information set at time t; θ denotes the model parameters; and dt ≡ {p} → {p}

denotes the decision to stay on platform p. The above expression is the net present value of total

number of downloads the developer is expecting to receive from app l and platform p. We normalize

expected profits per download to 1 and thus expected present value of app profit can be expressed

as discounted value over future stream of downloads. Average profit per user (APPU) metrics

typically involve additional accounting for revenues from in-app purchases (e.g., virtual items for

gameplay) and advertising over the course of using the app. By normalizing our estimates against

APPU, all apps are treated equally with respect to their means of monetizing users, whether by
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upfront price (free versus paid) or in-app. The consequence of our normalization is that we can not

recover the true dollar value of porting costs but only costs relative to download numbers.

Now lets consider the expected profit for a developer that elects to port an app l operational

on platform p to platform p′. We assume if a developer choose to port, it can do so by incurring

some porting cost Cl. Once the app is deployed on the other platform it gets another stream of

downloads {Dp′

t+k+1,D
p′

t+k+2, . . .} from platform p′, where k refers to the time required to port the

app to the other platform. Then, the expected normalized profits from app l, if developer chooses

to port (i.e., dt ≡ {p}→ {p, p′}) to platform p′ at time t is given by

Πl,t(dt ≡ {p}→ {p, p′};θ) =E
[ ∑
t<τ≤t+k

(βτ−tDp
l,τ )|Ωl,t

]
+

E
[ ∑
τ>t+k

(βτ−t(Dp′

l,τ +Dp
l,τ ))|Ωl,t}}

]
−Cl(θ)

(19)

Note, the stream of downloads from platform p′ starts from period t+ k+ 1. We can now use

the observed empirical patterns of developer entry to infer the economic cost to port an app to

another platform (Apple or Android). Specifically, by observing when a developer chooses to port

(or not), we can construct estimates of porting costs. If we observe a ported app on a platform at

time T , this implies that the developer would have found it profitable to port k+ 1 periods before

(recall k is the development time for porting). That is

ml,T −k−1 ,Πl,T −k−1(dT −k−1 ≡ {p}→ {p, p′};θ)−Πl,T −k−1(dT −k−1 ≡ {p}→ {p};θ)≥ 0 (20)

Similarly, for all time periods τ < T − k− 1, developer not electing to port implies the following

moment inequalities

ml,τ ,Πl,τ (dτ ≡ {p}→ {p, p′};θ)−Πl,τ (dτ ≡ {p}→ {p};θ)≤ 0 (21)

5. Estimation

In this section, we discuss estimation of the model(s) presented in the previous section using the

data described in Section 3. We estimate the different parts of the model separately.

5.1. Estimation of Demand

We estimate both demand for handsets and apps using aggregate, market-level, data using GMM.

We follow the approach used in static models, for example, by Berry et al. (1995) and Nevo (2001),

and for dynamic models by Gowrisankaran and Rysman (2012) and Melnikov (2013). The essential

idea is to estimate the model parameters by minimizing a GMM objective function that is a sample

analog of moments between the (structural) error term, which is a function of parameters, and

instruments. As we will discuss below, this allows us to deal with the endogeneity of some variables
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as well as estimate the parameters that govern the distribution of random coefficients. In this

section we discuss some key points of estimation. We provide mode details in Appendix A. We

start by explaining our choice of the error term to construct the moment conditions for GMM.

Then, we describe our instrumental variables and finally outline the computational steps involved

in estimation.

To estimate our model and construct the GMM objective function, we build on the following

moment restrictions

E
[
νhsj,t(θ

hs)|Zhs
t

]
= 0 E

[
νappg(j),l,t(θ

app)|Zapp
t

]
= 0 (22)

where Zhs
t and Zapp

t are instrumental variables, and θhs and θapp include all model parameters of

handset and app models, respectively. The econometric error terms νhs and νapp are defined using

the first difference of the unobservable attribute

νhsj,t = ξj,t− ξj,t−1, ∀j ∈Ht−1

(23)

νappg(j),l,t = ηg(j),l,t− ηg(j),l,t−1, ∀l ∈Lg(j),t−1

A few remarks are in order. First, the estimation is at the aggregate market level and therefore

the individual choice level errors ε
(hs)
i,j,t and ε

(app)

i,g(j),l,t that affect consumers’ choices of handsets and

apps are integrated out. Second, by defining the error term as a first difference, we difference

away a headset-specific constant (and an app specific constant in the demand for apps). This

significantly simplifies the GMM optimization problem, which can now be carried out by searching

only for a handful of model parameters. With the model parameters in hand, we can recover the

fixed effects. Third, we have two sets of conditional moment restrictions: one set coming from the

handset demand model and another from the apps demand model. In principle, we could stack all

the moment conditions together and estimate the parameters by minimizing one GMM objective

function. This is computationally quite intense so we estimate the apps demand model first and

then use the estimates to estimate the handset demand model. We provide more computational

details at the end of this Section and in Appendix A.

Instruments: For instruments Zhs
t and Zapp

t we use (lagged) values of observable features of

the handsets and apps, respectively. Recall that our error term is in first differences. Therefore, we

are assuming that the evolution of the error term from period t−1 to t, was unexpected when the

features were set.

Specifically, the instrument set Zhst includes, two- period lagged values of handset price, current-

and one- period lagged values of platform utility {∆c
i,g(j),t, ∆c

i,g(j),t−1}, and current period values of
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BLP-style instruments10 on handset exogenous characteristics – ram, display-size, battery, storage,

camera.

From our model, handset prices could be correlated with the shocks in handset demand (νhs)

and hence could be endogeneous. We assume that the two-lagged values of prices do not correlate

with νhs but do correlate with level difference in handset prices, and hence could help identify the

price coefficient. With regards to the platform utility, the exclusion of current- and one- period

lagged values of platform utility {∆c
i,g(j),t, ∆c

i,g(j),t−1} relies on a timing assumption, namely that

software firms cannot immediately respond to shocks in individual handsets’ sales or predict them

in advance. We test the robustness of our results against the possibility that some app developers

might be able to track individual handset sales and respond rapidly in Appendix C and do not

find evidence for the same. For instance, we find that using the two-period lagged value of current

platform utility {∆c
i,g(j),t−2} gives almost similar model estimates.

The instrument set Zappt includes, two- period lagged values of app prices, two- period lagged

value of version number and version age, two-period lagged value of app’s rating, and current

period values of BLP-style instrument on app-age.

Similar to handset prices, app prices might also be correlated with app demand shocks νapp, and

be endogeneous. We assume that the two-lagged values of app prices do not correlate with νapp but

do correlate with level difference in app prices, and hence could help identify the price coefficient.

Also, app’s versioning behavior (and thus version age and version #) and app’s current period

rating may also be correlated with sudden demand shocks. We assume that two-period lagged value

of app’s versioning related variables and two-period lagged value of app’s current period rating

does not correlate with demand shocks, but does correlate with level differences in app’s version

age and version #, and current period rating, respectively.

To test if our instruments are not weak we consider the first stage regressions in level differences

of the endogeneous variables onto their respective instrument set. We carry out the weak instrument

test as laid out in Cragg and Donald (1993). Since, for both handsets and apps, we have multiple

endogenous variables, we compute the Cragg-Donald statistic i.e., the minimum eigenvalue of the

matrix analog of F-statistic from the first stage regression. We calculate the critical value for weak

10 We follow the suggestion of Berry et al. (1995), and for each product j and its exogeneous observable characteristic
k we construct the sum of product characteristic k of other products controlled by the same firm f and of those
controlled by competing firms within the same market t.

Hj(~xkt ) =
{
{

∑
i∈Pft\{j}

xkit,
∑
i/∈Pft

xkit}
}

(24)

where Pft refers to the set of products offered by firm f at time t. For handsets a firm refers to the manufacturer of
the handset like Apple, Samsung, etc., and for apps a firm refers to the company that developed the app.
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instruments using the procedure laid out in Stock and Yogo (2002). Across all specifications we

consider, we are able to reject the hypothesis that our instruments are weak.

Our identification argument assumes that the handset and app specific demand shocks (νhst ,νappt )

are serially uncorrelated. To test the validity of this assumption, we use the estimated first differ-

ences (ν̂hst , ν̂appt ) (for more details see Wooldridge (2010)) from our estimated model and estimate

the following regression:

ν̂t = κν̂t−1 + errort (25)

Estimating the above regression, we are unable to reject the null that κ= 0 for both handset and

app models.

Computation: Now, we will briefly outline the steps we take for estimating our model param-

eters. To be able to estimate our model using moment conditions (22), we first need to compute

demand shocks νhs and νapp as a function of the data and model parameters. Broadly, we will

follow a similar procedure as used in Berry et al. (1995), with some deviations. The key insight

on which our estimation is based is that the unobservable product characteristics for handset and

apps only appear in the expression of mean lifetime utilities of handset (δj,t) and apps (ψg(j),l,t),

respectively. Thus, we will first estimate the mean lifetime utilities (δ and ψ) from observed data

as a function of model parameters. For this we will use the analytical expressions for purchase

probabilities using our model. As described in Section 4, the probability of purchase of particular

handset in given period (see equation 8) and the probability of download of an app in a given

period (see equation 36) can be written down in terms of model parameters

shsijt =
exp(δi,j,t)

exp (ζi,j,t) + exp(βE(V (ζi,j,t+1)|ζi,j,t)))

sappi,l,g(j),t =
exp(ψi,l,g(j),t)

exp (ψi,l,g(j),t) + exp(βE(W (ψi,l,g(j),t+1))|ψi,l,g(j),t)))
We can map these expressions to the observed shares and solve the resultant implicit system of

equations to solve for the mean lifetime utilities terms δ and ψ

shs·t (·) = Shs·t sapp·t (·) = Sapp·t

where Shs·t and Sapp·t are observed aggregate market shares of particular handsets and apps.

In our case, since we cannot analytically integrate over the customer distribution, we numerically

compute left hand side of the above equations i.e., the aggregate market shares s·t (see Appendix

for details). To model consumer heterogeneity, we assume that price sensitivities of consumers are

parameterized as follows: αp,li = αp,l +σlνi, for l ∈ {hs,app} and νi is drawn from standard normal
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distributions. To compute the market shares, we also need access to value functions V (δ) and

W (ψ). To compute them we first use an ordinary least square regression to estimate the incidental

parameters (φhs and φapp) using the currently guessed values of mean utilities δ and ψ. We then

compute the value functions V (δ) and W (ψ) using the imputed values of incidental parameters

using a fine grid approximation over δ and ψ. We now carry out a contraction mapping similar to

BLP to impute the values of mean utilities from the observed data

δh+1
·t = δh·t +λhs(shs·t (δh·t, φ

hs, σhs)−Shs·t )

ψh+1
·t =ψh·t +λapp(sapp·t (ψh·t, φ

app, σhs, σapp)−Sapp·t )

Note, predicted market shares for each particular app also depends on the heterogeneity param-

eters of handsets (σhs). We take a two step estimation procedure where σhs is estimated first

from the handset model. Adding tuning parameters λhs and λapp allows for faster convergence

of contraction mapping. We carry out the above iterations for each model until |δh+1
·t − δh·t| and

|ψh+1
·t −ψh·t| are less than the error tolerance threshold. After the convergence on mean utility the

incidental parameters are updated using a ordinary least square regression on the updated mean

utility. The contraction mapping iterations are again run to get updated mean utility. We stop

once we get convergence on the incidental parameters. With the mean utility in hand, we will use

the expressions in equation to compute the unobservable product characteristics as a function of

model parameters

ξjt = δ̂j,t− ~xjtθhs

ηjt = ψ̂g(j),l,t− ~xg(j),l,tθapp

Our econometeric error terms can then simply by constructed by taking the first difference of ξ and

η. Since we know all time invariant characteristics get cancelled out after taking the first difference,

we only include the time varying characteristics in ~xhsj,t and ~xappg(j),l,t. Finally, the GMM objective

function for the handset and app models can be constructed by interacting our econometeric error

terms with above specified instruments for each model respectively

arg min
θhs

(νhsj,t(θ
hs)TZhs

t )Whs(νhsj,t(θ
hs)TZhs

t )T

arg min
θapp

(νappg(j),l,t(θ
app)TZapp

t )Wapp(νappg(j),l,t(θ
app)TZapp

t )T
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where Whs and Wapp are the weighting matrices. We use (Zhs′Zhs)
−1

and (Zapp′Zapp)
−1

as our

weighting matrices respectively. The model parameters for both the handset and app models can

be estimated by search over parameters that minimize the GMM objective functions. To estimate

the model parameters pertinent to time-invariant characteristics we use a second ordinary least

square regression.

5.2. Estimation of Developers’ Porting Costs

We carry out the estimation of porting cost parameters using methods developed in Pakes et al.

(2015). The method is similar to generalized methods of moments (Hansen (1982)) method with a

slightly different objective function. We first construct sample analogues of the moment conditions

ml,t, specified in Section 4 as a function of model parameters. To do so, we use h(·) a set of positive

exogeneous functions to aggregate moments to construct population moments for each genre g and

platform p as follows

m̂p
g =

1

n

∑
l∈Sg,p

∑
t

h(Ωt,l,p)⊗ml,t (26)

where Sg,p is the set of apps11 on platform p, with genre g and ⊗ represents the Kronecker product.

To compute the values of moments (ml,t), we need to estimate the present value of app profits i.e.,

E[Dp
l,t′ |Ωl,t, dt] for t′ > t. To simulate the demand for apps in future periods, we use the estimated

demand processes F and G. App developers know that their launch decisions only affect the levels

{δi,j,t} and not the evolution processes F and G. This allows us to simulate the downloads for

each app in the future independent of other app developers’ decisions. For our estimation, we

assume app developers take on an average 112 month13 to port an app with an already developed

back-end infrastructure. With regards to porting cost, we assume the specification for porting cost

Cl(θ) = θgp, where θ ≡ {θgp}, and g is the genre of the title l. Formally, the set estimator Θ̂ that

consistently identifies the set Θ0 is given as follows

Θ̂ = arg min
θ

||Σ̂−
1
2

ii min(0, m̂(θ))|| (27)

where, Σ̂ = V(m̂(Θ0)), i.e., the variance-covariance matrix of moment conditions. The key idea

behind the above objective function is that it penalizes all the violations in the moment inequalities.

11 For our analysis, we only include apps which demonstrate non-exclusivity during their lifetime (i.e., up till Jan
2017). Apps choosing to be exclusive do so for reasons that are not entirely pertinent to economic constraints on
porting cost. Since such constraints are not observable to us as researchers, and thus we limit our analysis to the
subset of apps which demonstrate non-exclusivity.

12 We run our analysis for values of k= 1,3, and 5 months, and find slightly different cost estimates however similar
counterfactual implications.

13 According to many business reports (see for instance Existek (2020)) the average to time to develop the front-end
of an app is around ∼ 6 weeks.
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All we know is that the moments are positive at the true parameters. So the moment inequality

estimator penalizes values of θ that lead to negative values of moment and tries to minimize the

number of violations. Note that unlike methods that utilize moment equalities, estimating model

parameters using inequalities can lead to set estimates, rather than a point estimate. Thus, if

multiple values of θ satisfy the moment inequalities (i.e., minimize the equation 27 to 0), all are

accepted, however if none satisfies, then θ that minimizes absolute value of deviation in inequalities

is admitted. We normalize the moments by the square root of variance of the moments. To compute

the variance, we carry out the estimation in two steps. In the first step, we estimate Θ0 using an

identity matrix as the normalizing factor. Using the estimated set Θ̂0, we then compute Σ̂. To

compute Σ̂, we use centroid of the identified set Θ̂0. Next, we re-estimate Θ, using the estimated

Σ̂ as the normalizing factor.

With regards to inference, literature has proposed multiple characterization and methods for

defining, and estimating confidence intervals. For our analysis, we define confidence interval as the

set that includes each element of the identified set with fixed probability (see Imbens and Manski

(2004) and Romano and Shaikh (2010))14. We detail the procedure to compute confidence interval

in Appendix A.2.

Finally, as a robustness test for moment inequalities, we run a misspecification test as described

in Ho and Pakes (2014), to test if the moment inequalities are correctly specified (see Appendix F

for details). We were unable to reject the null that our model is correctly specified.

6. Results

Demand Estimates. We first present the estimation results for handset and app demand models.

In Table 6, we present results from three different specifications of the demand for handsets. In

column (I), we present the results for a model where Γ(·) is approximated by the total number

of apps (i.e., we assume that each app contributes equally to platform utility). To estimate the

model, we use the set of instruments described in Section 5. However, instead of lagged values of

platform quality, we use current- and one- period lagged value of platform size (i.e., the number

of apps) as an IV. We find that platform size has statistically significant and positive effect on

handset demand.

In column (II), we present the results for a static model, where we assume that in each period,

consumers choose to either buy one of the available handsets or exit the market without purchasing.

They cannot choose to wait in anticipation of a better option in the future. We present more details

14 Another way literature has characterized confidence interval is, as the set that includes the identified set with a
fixed probability (see Chernozhukov et al. (2007)). However, we believe the approach of Imbens and Manski (2004)
is more in line with the traditional definition of confidence interval in that they should cover the true value of the
parameter with fixed probability.
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of the static model of handset demand in Appendix B. In the static model the effect of price on

handset demand is not statistically significant and the estimated coefficient is smaller, compared

to the estimates in columns I and III, which account for dynamics in consumer behavior. This

reinforces the point we made in Sections 3 and 4 that ignoring consumer dynamics could lead to

underestimation of demand elasticities.

Finally, in column (III), we report results for a model where we allow for both consumer dynamics

and heterogeneity across apps in the impact on platform utility. We estimate the complete model

as described in Section 4. We find that platform utility Γ(·) has a positive and significant impact

on handset demand.

To better interpret the model estimates we compute elasticities with respect to each handset

characteristic. To compute these elasticities we change the respective characteristic by 1%, and

then use the model estimates to compute the corresponding change in handset demand. We assume

consumers expect the specific characteristic to align back next period, and hence the artificial

intervention does not affect consumers expectation over future states. This procedure translates

to simulating a temporary change in handset characteristic. Another way to interpret the model

estimates would be to simulate a permanent change in handset characteristic wherein the specific

characteristic does not align back in the next period. In general, we find the permanent elasticity

numbers to be a little lower than temporary ones. For the sake of brevity we will only discuss the

temporary elasticity numbers here.

We summarize the aggregate elasticity numbers with respect to handset characteristics in Table

7. To compute the aggregate elasticities, we use the estimates from column (III) and average across

handsets. For instance, we find that the demand for a particular handset increases by 1.90% with a

1% increase in display size. With respect to RAM, we do not find a significant impact on handset

demand.

To compute the price elasticity of handset demand we averaged across all handsets and find

that a 1% price increase leads to a decline in sales of the particular handset by 2.64%. In Table

7, we report price elasticities for a few handsets. For instance, consider the own-price elasticity of

the iPhone 5, which is among the top purchased handsets. We estimate a sales will fall by 2.65%

following a 1% price increase. Similarly, for Samsung Galaxy S4, we find that its sales will drop by

2.60%, with a price increase of 1%. We do not find much heterogeneity in price sensitivities across

the consumer population, as indicated by a small but statistically significant σhs parameter.

In Table 8, we report estimates of app demand parameters, and in Table 9 we present the

aggregate elasticities with respect to app characteristics implied by these results. We find a positive

and significant effect of app age on app demand i.e., consumers drive higher lifetime utility from

apps that are mature in age. This could be driven by the fact that as apps mature, they undergo
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Table 6. Estimated Parameters (Handsets)

I II III

log(prices) -2.082∗∗∗ -0.093 -2.705∗∗∗

(0.453) (0.266) (0.722)

ram -0.575∗∗∗ -0.093 0.010
(0.134) ( 0.079) (0.124)

display-size 0.633∗∗∗ 0.401∗∗∗ 0.412∗∗∗

(0.149) (0.088) (0.138)

battery 0.001∗∗∗ 0.0004∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.000)

log(storage) 0.792∗∗∗ -0.021 0.739∗∗∗

(0.054) (0.032) (0.050)

camera 0.232∗∗∗ 0.073∗∗∗ 0.233∗∗∗

(0.018) (0.011) (0.016)

log(#apps) 1.595∗∗∗ -
(0.349)

Γ - 0.124∗∗∗ 0.257∗∗∗

(0.017) (0.031)

Handset FE X X X

σp,hs 0.003 0.090 0.008∗∗∗

(0.881) 0.238 (0.000)

N 895 895 895
GMM Obj 4.76e-4 1.171e-05 1.41e-4

Standard errors in parentheses. ∗p<0.1; ∗∗p<0.05;

∗∗∗p<0.01. For specification (I) we estimate a model where

Γ(·) is approximated by the total number of apps (i.e.,

we assume that each app contributes equally to platform

utility). For specification (II) we estimate a model that

does not account for dynamics in consumer buying behav-

ior. For specification (III) we estimate our full model, that

allows for heterogeneity in app externality and consumer

dynamics. The parameters for time-invariant characteris-

tics are estimating by projecting the estimated handset

fixed effects onto the handset time-invariant characteris-

tics using ordinary least square regression.
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Table 7. Handset Elasticities

log(price) -2.64%
display size 1.90%
battery 2.26%
log(storage) 0.73%
camera 2.08%

Price Elasticity Across Handsets

iPhone 5 -2.65%
Samsung Galaxy S4 -2.60%
LG G2 -2.63%

Note. The numbers report the percentage change in handset

sales following a temporary change in respective handset char-

acteristic by 1%. Temporary change implies that customers

belief over future evolution remains unchanged following a price

reduction.

a series of experiments and development rounds by its developers, which improve its quality and

make it more competitive in the marketplace. Further, we also find a negative and significant effect

of version age on app demand i.e., as the current version of an app gets old (i.e., the app is not

updated in time), it becomes less attractive to consumers. This indicates that customers prefer

apps by developers who regularly update their apps and engage in quality versioning. However,

we also find evidence that controlling for overall age and versioning age, apps having a relatively

low frequency of versioning are preferred. We find negative and significant effect of version-# on

app’s demand. A very high number of versioning rounds could indicate lower quality levels and

error proneness on the developer side. Hence, a preferred app developer is the one that engages

optimally in quality versioning with regular updates to cater to evolving consumer needs. Finally,

we estimate that paid Apple and Google Play apps demonstrate price elasticities of −1.51% and

−2.03% respectively. Our results are consistent with many business reports, that suggest Android

consumers are much more price-sensitive than the Apple consumers.

In Table 8b, we report how time-invariant app characteristics affect app demand (and indirectly

handset demand). We regress the estimated app fixed effects on the various time invariant app

characteristics e.g, if app has in app purchases (in-app-purchases), if the app is paid (paid), and

genre of the app. We find that social networking apps tend to attract highest demand. Also paid

apps tends to attract much lower demand (and thus, exert lower network externalities) than free

apps. Thus, platforms operators, should be vary of the platform fees charged by them from the
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Table 8. Estimated Parameters (Apps)

(a)

(I)

price -0.540∗∗∗

(0.076)

version age -0.007∗∗∗

(0.0014)

version # -0.083∗∗∗

(0.019)

ratings 6.355∗∗∗

(0.822)

age 0.002∗∗∗

(0.000)

App FE X

σp,app 0.145∗∗∗

(0.005)

N 1,801,815
GMM Obj 6.52e-11

Standard errors in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(b)

App Fixed Effects

(1)

in-app-purchases -0.129∗∗∗

(0.004)
paid -2.967∗∗∗

(0.004)
log(firmsize) 0.232∗∗∗

(0.001)
Entertainment 0.757∗∗∗

(0.016)
Games -1.848∗∗∗

(0.015)
Lifestyle 0.215∗∗∗

(0.017)
Music 0.692∗∗∗

(0.017)
Others 0.053∗∗∗

(0.015)
Photo and Video 0.586∗∗∗

(0.016)
Social Networking 1.781∗∗∗

(0.016)
Utilities 0.156∗∗∗

(0.016)
ios -0.667∗∗∗

(0.004)
Intercept -17.72∗∗∗

(0.016)

Observations 1801814.0
R2 0.381

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The estimation is carried on our entire sample of 13,731 iOS and 6,950 Google Play apps. The parameters for time-

invariant characteristics are estimating by projecting the estimated app fixed effects onto the app time-invariant

characteristics using ordinary least square regression

apps, as a higher fees could mean highly priced apps, and could reduce demand for their handsets.

Finally, apps that make consumers pay for certain functionalities through in app purchases also

attract lower demand.

We now turn to the questions of the impact of platform size (or number of apps) on handset

demand. For this, we again look at columns I and III in Table 6. Averaging across both platforms,

increasing the number of apps by 1% increases the sales of a particular platform on an average by
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Table 9. App Elasticities

price -1.41%
log(firmsize) 0.23%
version age -0.15%
version # -0.55%
age 0.79%

Note. The numbers report the per-

centage change in app downloads

following a temporary reduction in

respective app characteristic by 1%.

Temporary price reduction implies

that customers belief over future evo-

lution remains unchanged following a

price reduction. We only report num-

bers for app characteristics that have

continuous values.

1.5%. In column (III), we account for heterogeneity in app externalities and estimate the complete

model detailed in Section 4. We estimate that 1% increase in platform utilities increases the sales

of a particular platform by 1.3%. We also find evidence for significant heterogeneity in externalities

apps exert. For instance, we find that the externality exerted by the top app is around 2700 and

5600 times that of the median app on iOS and Google Play platform respectively.

Finally, we look at the impact of top apps on handset demand. Understanding the impact of

apps on handset demand could prove crucial to platform operators. 15 In Table 10, we display the

apps on Apple and Android platform that have the largest estimated impact on their platform

sales. These numbers are computed by removing each app from the available set of apps on the

platform. We assume our intervention does not affect consumers belief (Ĝ) over the evolution of

handset qualities and hold it constant. We observe that the Social Media apps like Facebook have

the highest estimated impact on both the platforms. Removing Facebook from Apple or Android

can reduce the demand of respective handsets by −5.9% and −5.6%. We also observe that apps

owned by Apple’s competitor Google like Youtube (−3.5%) have a significantly high impact on

Apple’s handset sales.

15 For instance, many countries have recently considered putting sanctions on certain
apps. United States banned WeChat (see https://www.usatoday.com/story/tech/2020/08/07/

what-is-wechat-why-trump-wants-ban-tencent/3319217001/ for United States users and the ban extended to
Google and Apple app stores offering the app.

https://www.usatoday.com/story/tech/2020/08/07/what-is-wechat-why-trump-wants-ban-tencent/3319217001/
https://www.usatoday.com/story/tech/2020/08/07/what-is-wechat-why-trump-wants-ban-tencent/3319217001/
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Table 10. Apps with largest estimated impact and value

(Apple) Value($)

Apple Facebook -5.940 13.04
Instagram -5.195 11.40
Youtube -3.436 7.54

Facebook-Messenger -3.012 6.61

(Android) Value ($)

Google Play Facebook -5.626 8.58
Facebook-Messenger -4.840 7.38

Instagram -3.250 4.95
Snapchat -1.630 2.48

Note. The table reports the top four apps with highest estimated impact

on both Apple and Google Play. The numbers indicate the percentage

drop in handset sales following the removal of the app from platform.

The reports are estimated by simulating a permanent removal of apps

from either platform. The second column shows the estimated impact

on the competing platform. The second column report the dollar value

as perceived by customers on Apple and Android for one month of app

availability.

Our model allows us to factor in the two sided nature of the market and measure the dollar

values that consumers attach to free apps (or goods) like Facebook or Instagram. Prior literature

has struggled to measure the economic value of free goods or services like Facebook and has mainly

relied on customer surveys (for instance Brynjolfsson et al. (2019)) to measure their dollar value.

However, our model allows us to infer these values from purchase decisions made by consumers. In

Table 10, we report the dollar value for one month access to top apps perceived by both Apple and

Android customers.16 Using our model we find that one month access to Facebook app is worth to

be around $13 (or $9) to Apple (or Android) users. These numbers are a little lower than $48 for

one month access as reported by Brynjolfsson et al. (2019) using survey data. This is in line with

existing literature on survey methods, that has found that consumers to tend to overstate their

value for products in surveys (Hausman 2012).

Porting Cost Estimates In Table 11, we show our estimated porting cost to Android and iOS

respectively. The estimated costs are normalized to number of downloads. Note, that instead of

point estimates, we recover set estimates of developers’ porting costs. On an average we find that

16 One limitation of our analysis is that customers can still access apps through other channels, for example their
computers. However, since the majority of traffic, especially to social media websites comes through apps, we can still
get very reasonable estimates of their value to consumers. For instance 80% of users access Facebook only through
mobile and Instagram was “app only” during the time of our study.
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Table 11. Estimated Porting Costs

Port to Android Port to Apple

Entertainment (16875,17175) 6733
[16375,20375] [5233,11233]

Games (18150,18850) 15095
[16250,23250] [12095,19595]

Music (18750,19580) 18805
[17250,23250] [13805,23305]

Photo and Video (31950,34450) 19550
[27250,36750] [18550, 23550]

Social Networking (25350,27750) 28369
[21250,30750] [23369,32869]

Utilities 13957 6907
[13957, 14457] [5907, 11407]

Others 16874 12230
[13857, 21375] [7230, 17230]

Note. We report in round brackets, the identified set of costs to

port an app to Android or Apple across the various genres. The

estimated costs are normalized to the number of downloads. The

95% confidence intervals are reported in square brackets.

development costs for Android are much higher than for Apple iOS. This is in line with existing

literature (e.g. He et al. (2018)), that points out how dealing with multiple prevailing operating

system versions of Android, increases development costs for developers. Further, many business

reports (for instance see Car (2015)) have also indicated how Android programming requires more

written code for same functionality than Apple and can add to development costs. We estimate

porting cost to Android to be on an average 33% higher17. Our estimates are in the same ranges

as reported by many media reports (for instance see Car (2015)). We also find that on an average

“Photo and Video” and “Social Networking” apps incur much higher porting costs consistently

across both iOS and Android. This is probably due to additional complexity that comes with devel-

oping “Photo and Video” and “Social Networking” apps. Both “Photo and Video” and “Social

Networking” apps, involve dealing with camera applications. Since, developing optimized cam-

era applications, might involve explicitly accounting for various camera hardware available across

17 We use the center of the identified set for comparison purposes.
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Android and Apple handsets, it might add additional cost to developer effort. Further, social media

apps have an additional component of handling social networks, which could add to developers

cost.

7. Implications

Our empirical results demonstrate substantial heterogeneity in the impact of apps on handset

demand. In this section, we discuss (i) how (much) do the preferences of app developers towards

platforms affect the platform’s attractiveness to consumers, and (ii) could cross-platform develop-

ment frameworks work as an effective lever for Android to steer developers towards it?

7.1. Effect of Developers’ Delayed Entry

Many businesses do not find it profitable to launch apps for both iOS and Android at once,

so they start with one platform. For instance, the Android version of Airbnb was launched 14

months after the iOS version. Similarly, Clubhouse is only available on iOS at the time of this

writing. This is partly due to resource constraints and partly because businesses often begin with

an experimental version to gauge customers’ preferences and tend to use only one platform for this

initial experimentation.

In our sample, 2103 apps launched on both Apple and Google Play (up to the period two years

after the end of the data we use for estimation, i.e., up to Jan 2017). However, the vast majority of

app developers launch on Apple first. To understand the economic impact of developers’ preference

for Apple iOS over the Android platform, we estimate how much more sales Android handsets

could have generated (over the period of our study) if apps that launched on Apple first were

instead launched on Android at the same time. We then compare the counterfactual demand to the

actual realized demand of Android handsets in 2013-2014 to ascertain the losses due to developer’s

sequential entry.

To simulate the counterfactual demand of Android handsets, we artificially add new apps to

the Android platform as they arrive on Apple platform and compute the corresponding demand.

One caveat in artificially adding apps to the Android platform is ascertaining the quality levels of

new apps to be added. For this purpose, we non-parametrically estimate the Google Play quality

(ψtplay) at any time t, as a function of iOS quality (ψtios), genre and time. Using this we simulate

the quality of an app if it was released at earlier time on Android.

We estimate that Android suffers significant losses due to developers preferring Apple for their

initial launch. Specifically, we estimate revenue losses from handset sales to be around $208M in

2013 and $260M in 2014.
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7.2. Role of App Development Frameworks

To make the Android platform more attractive to developers, and to counter the effect of devel-

opers’ preference for iOS, Android operators have started investing in developing cross-platform

development frameworks (Heitkötter et al. (2012), El-Kassas et al. (2017)). Cross-platform frame-

works enable developers to develop an app once but deploy simultaneously on both Android and

Apple. Generally, developers develop native apps for one platform and the framework automat-

ically generates apps compatible on other platforms at no additional effort. However, the app

generated for the other platform is generally of lower quality (see Mercado et al. (2016)) than if it

had been developed natively. Even though many cross-platform frameworks have come up, their

impact is not well understood. For instance, it is not well established whether such frameworks

can change developers’ behavior and to what extent this depends on the efficiency level of the

framework. Having a high quality framework might persuade developers to build on Android first

and thereby give Android early access to apps whose entry to Android might otherwise be delayed.

However, it will also give developers preferring Android early access to the Apple platform. Hence

cross-platform frameworks might lead to less differentiated platforms and more intense competition

between handsets. This might have adverse consequences for Android demand. By modeling the

interconnected nature of customer and developer preferences demand, we can quantify the role

these frameworks could play in alleviating loss of demand for Android.

We consider a scenario in which a cross-platform framework allows developers who develop native

apps on Android to port their app to iOS but at a slightly lower quality (we let δ denote the

level of quality dilution). The Android platform benefits, as it now does not have to suffer the

consequences of delayed entry.

To estimate the impact of a cross-platform framework, we allow developers that chose to launch

first on Apple to either develop a native app for Android and δ-diluted quality app on iOS, or

to continue developing for iOS first and launch on Android at a later date (as observed in our

data). We simulate the developers’ decisions by comparing their expected profits in the two cases.

Developers that launched their app on Android first also get access to the apple platform at the

same time as Android although at a lower quality level until they develop a native iOS app.18 In

Figure (12), we highlight developers’ decisions as a function of the quality of the cross-platform

development framework δ. If the framework can generate a native-quality app on iOS (i.e., δ= 1), all

Apple-First developers switch to developing for Android first and use the framework for developing

a native app for iOS. However, we find even with a high-quality framework, most developers prefer

to develop for iOS first. For e.g., only ∼ 37% of the Apple-First developers choose to switch at

18 In our simulation, we replace the suboptimal quality app on Apple with a native quality, as and when observed in
data.
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Figure 12. Estimated Impact on Developers Decision.

Note. The plot shows the percentage of apps originally launched on apple first that switched to using the cross-

platform framework as a function of cross-platform framework’s efficiency level. The median value of cost’s identified

set (for each genre) was used to simulate developers’ decisions.

δ = 0.8. This suggests that for the android platform to attract developers, a near-optimal quality

framework is required. Further, this also explains, why even with the prevalence of many such

development suites, developers still prefer to develop native apps for iOS first.

Next, we quantify how changes in developer behavior affect consumer handset demand. Figure

(13) quantifies how the quality of the cross-platform framework affects the percentage of lost sales

that can be recovered by Android. As discussed earlier, since most developers tend not to switch

their behavior, unless the framework is near-optimal quality, cross-platform frameworks are unable

to alleviate much of the loss in sales. For instance, even at 80% efficient framework, only a little

under 40% of the lost sales are recovered. Hence, investing in cross-platform frameworks might not

deliver anticipated results unless the framework can help create near-native-like apps.

8. Concluding Remarks

In this paper, we investigate the implications of indirect network effects and delayed developer

entry on mobile markets. We develop a dynamic model of demand for handsets and apps and use a

unique panel dataset of handset sales and app downloads to estimate the model. We find significant

heterogeneity in externalities exerted by apps on handset sales. The model helps us quantify the

very significant (negative) impact of delayed developer entry on Android. Finally, we find that

cross-platform frameworks offered by Android are unlikely to steer developers towards developing

on Android first unless they can generate near-native quality iOS apps.
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Figure 13. Estimated Sales Recovered.

Note. The percentage of lost sales recovered as a function of cross-platform framework’s efficiency levels.

Our findings have many implications for platform operators and policymakers. For platform

operators, our findings show how important it is for platforms to detect trending apps that are

exclusively available on competing platforms and to court those developers so as to minimize entry

delays. This could explain why Microsoft decided to insource19 development of the Facebook app

for its mobile platform back in the day.

Our modeling approach and specific findings are potentially also relevant to several issues that

surround competition between app platforms. For example, our results demonstrate that there is

significant heterogeneity in the externalities various apps exert on handset sales and therefore in

their value to the platform ecosystem. Furthermore, our estimates of porting cost highlight the

contrasting difference in porting costs across the two platforms.

Finally, we also want to point limitations of our analysis. In our model, we do not allow for substi-

tution across apps and compromise it to account for consumer dynamics. However, we demonstrate

that in our case, a dynamic model demand could lead to much better out-of-sample predictive

performance than a model that only accounts for substitution. Incorporating both substitution

and dynamics requires keeping track of all possible consumption sets over a large number of prod-

ucts, and hence is not computationally tractable. We believe, methods to tractably solve such

combinatorially hard problems could be an interesting direction to work on in the future.

19 See https://blogs.windows.com/devices/2013/03/22/facebook-apps-on-your-nokia-lumia/

https://blogs.windows.com/devices/2013/03/22/facebook-apps-on-your-nokia-lumia/
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Appendices
A. Estimation Details
A.1. Estimation of Demand Model

As described in Section 5, we use generalized method of moments to estimate our demand model for

both handsets and apps. We construct the GMM objective function using equations (22) and (23).

We use a nested estimation procedure, which simplifies the estimation somewhat. We use a a nested

estimation procedure because we need customer heterogeneity parameters of handsets to estimate

apps demand parameters. This is because, the distribution of consumers that can download apps

is dependent on the type of customers who buy the handset. The steps of our estimation procedure

are as follows.

1. Initialization Phase: In this stage, we get an initial estimate of customer heterogeneity

(σp,hs) over handset prices. For initialization purpose, we will not take into account the plat-

form utility Γ. The mean of the platform utility is captured by the handset fixed effects ξ̄j,

and the deviations from mean are captured by the unobserved handset utility term ∆ξj,t. To

estimate the handset specific parameters, we minimize the following GMM objective function

arg min
θhs

(νhsj,t(θ
hs)TZhs

t )Whs(νhsj,t(θ
hs)TZhs

t )T

where νhsj,t(θ) = ξj,t− ξj,t−1. We use the instruments as detailed in Section 5, except the lagged

values of platform utility (Γ). Next, to estimate ξj,t, we consider the following set of equations.

Consider δjt as the mean lifetime utilities of handset for consumers with mean parameter

values αp,hs. By definition of mean lifetime utilities (see equation (1)) we have

δj,t(θ) =αxxj,t +αp,hs log(p)j,t + ξj,t

ξj,t− ξj,t−1 = δj,t(θ)− δj,t−1(θ)−αx(xj,t−xj,t−1)−

αp,hs(log(p)j,t− log(p)j,t−1)

Thus, we have

νhsj,t(θ) = δj,t(θ)− δj,t−1(θ)−αx(xj,t−xj,t−1)−

αp,hs(log(p)j,t− log(p)j,t−1)

As one can note, the handset demand shocks are a function of handset mean parameters,

handset observed time-varying characteristics and handset mean lifetime utility δjt.

Customer Heterogeneity : To simulate customer heterogeneity, we assume that customer price
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taste parameters, at the start of our study are distributed as independent normal random

variables (i.e., αp
i −αp ∼N(0,Σ)),

Σ =

[
σhs 0
0 σapp

]
(28)

Thus,

αp,hs
i =αp,hs + νhsi σp,hs and αp,app

i =αp,app + νappi σapp
20 (29)

Also, note that δi,j,t can also be written as follows

δi,j,t = δj,t + (αp,hs
i −αp,hs)(log(p)j,t) (30)

Also as discussed in Section 4, the logit inclusive value ζi,j,t and mean lifetime utility for

handset, δi,j,t are sufficient statistics for determining if a consumer of type i will purchase a

handset j at time t or not. The probability of consumer type i, to buy handset j in period t

is given by

ŝi,j,t(δi,j,t, ζi,j,t) =
exp(ζi,j,t)

exp (ζi,j,t) + exp(βE(V (ζi,j,t+1)|ζi,j,t)))
∗ exp (δi,j,t)

exp (ζi,j,t)
(31)

However, in our data we only observe aggregate shares for each handset. Thus, we numerically

approximate the normally distributed customers as a finite distribution of consumer type i so

that each type has a corresponding weight wit. This also allows us to update the distribution

of customers when they exit after making a purchase by adjusting the weights.

ŝj,t(δi,j,t, ζi,j,t) =
∑
i

whsit ŝi,j,t(δi,j,t, ζi,j,t)∑
i

whsi0 = 1

whsit+1 =whsit (1−
∑
j∈Ht

sijt)

For the initial consumer distribution, the weights sum upto 1. Ideally one can use initially

weights to be 1
nI

, where I is the number of individuals to be simulated. However, we use the

points (i.e., (wi, νi)) generated through gauss hermite quadrature rule to get better approx-

imation of the consumer distribution and simulate customer type i. Note, that to estimate

market shares we also need access to the term E(V (ζi,j,t+1)|ζi,j,t)). To estimate the expected

value of the value function, we will first estimate the incidental parameters φi1 and φi2 using

a first stage regression based on current guess of ζ

ζi,t+1 = φi1 +φi2ζi,t +µit+1 (32)

20 Since few paid apps were launched before our period of study, αp,app and σapp could potentially vary across them.
However, for numerical tractability we impose αl

app ≈ αapp, and σlapp ≈ σapp ∀l.
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We then compute the value functions V (ζ) using the imputed values of incidental parameters

We use a fine grid approximation over ζ and use value iteration to estimate the value function

V . Next, similar to Berry et al. (1995), we use contraction mapping to estimate ~δ given σp,hs

from the observed market shares Shs·t .

δh+1
·t = δh·t +λhs(shs·t (δh·t, φ

hs, σhs)−Shs·t )

Adding tuning parameters λhs allows for faster convergence of contraction mapping. We

carry out the above iterations until |δh+1
·t − δh·t| are less than the error tolerance threshold.

After the convergence on mean utility, ζ is updated using the values of δ. Then, the incidental

parameters are updated using ordinary least square regression in equation 32. The contraction

mapping iterations are again run to get updated mean utility. We stop once we get conver-

gence on the incidental parameters (φi1 and φi2). With the mean utility in hand, we will use

the expressions in equation below to compute the unobservable product characteristics as a

function of model parameters

ξjt = δ̂j,t− ~xjtθhs

Our econometeric error terms can then simply by constructed by taking the first difference

of ξ. Since we know all time invariant characteristics get cancelled out after taking the first

difference, we only include the time varying characteristics in ~xhsj,t. Finally, the GMM objective

function for the handset and app models can be constructed by interacting our econometeric

error terms with above specified instruments for each model respectively

arg min
θhs

(νhsj,t(θ
hs)TZhs

t )Whs(νhsj,t(θ
hs)TZhs

t )T (33)

where Whs is the weighting matrix. We use (Zhs′Zhs)−1 as our weighting matrix. The model

parameters for handset model can then be estimated by search over parameters that minimize

the GMM objective functions. To estimate the model parameters pertinent to time-invariant

characteristics we use a second ordinary least square regression with handset level fixed effects

as the dependent variable and time-invariant characteristics as the independent variables.

Finally, we update the σhs parameter, and re-estimate our model. We continue iterating until

we find the parameter σhs that minimizes the GMM objective criterion.

2. App Demand: In this phase once we have estimated customer heterogeneity parameters for

handset parameters, we move to estimate model parameters for apps. Similar to the handset

side, we use generalized method of moments for estimating model parameters on the app side.



Authors: Article Short Title
44

We know νappg(j),l,t(θ) = ηappg(j),l,t(θ)− η
app
g(j),l,t−1(θ). Thus, to estimate νappg(j),l,t(θ), we have

νappg(j),l,t(θ) =ψg(j),l,t(θ)−ψg(j),l,t−1(θ)−αw(wg(j),l,t−wg(j),l,t−1)−αp,app(pg(j),l,t− pg(j),l,t−1)

(34)

where ψg(j),l,t(θ) denotes the mean lifetime utilities consumers get from downloading or pur-

chasing app l on platform g(j) at time t. Next, we describe how we accommodate for customer

heterogeneity in the app’s demand estimation. As described earlier, the initial distribution of

customers taste parameters is

αp,app
i =αp,app + νappi σapp

Also, we know

ψi,g(j),l,t =ψg(j),l,t + (αp,app
i −αp,app)(pg(j),l,t) (35)

Similar to the handset demand, the mean lifetime utility of an app l as perceived by consumer

of type i, ψi,l,g(j),t is a sufficient statistic for determining if a consumer i on platform g(j) will

purchase/download app in period t or not. The share of consumer type i, who will download

app l, in period t is given by

ŝi,l,g(j),t(ψi,l,g(j),t) =
exp(ψi,l,g(j),t)

exp (ψi,l,g(j),t) + exp(βE(W (ψi,l,g(j),t+1))|ψi,l,g(j),t)))
(36)

As before, for every app we only observe aggregate shares. Since, we had approximated the

customer distribution using a finite distribution over weights wi and consumer heterogeneity

parameter νi, we can write the total share of consumers that download an app l in period t

by:

ŝl,g(j),t(ψi,l,g(j),t) =
∑
i

w
l,g(j)
it ŝi,l,g(j),t(ψi,l,g(j),t)∑

i

w
l,g(j)
i0 = 1

w
l,g(j)
it+1 =w

l,g(j)
it (1− sig(j)lt + qit)

where qit denotes the share of new consumers of type i, who gain access to the platform

g(j). The value of qit is used from the handset estimation step (or initialization step). The

initial weight parameters w
l,g(j)
i0 , are all set to be the same across all apps. However, the future

weights and thus the distribution of consumer types can evolve independently for each app

across the two platforms. To compute the market shares, we also need access to value functions
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W (ψ). Similar to the handset side, we will first estimate the incidental parameters φ
app,g(j)
i1

and φ
app,g(j)
i2 using a first stage regression based on current guess of ψ

ψi,t+1 = φ
app,g(j)
i1 +φ

app,g(j)
i2 ψi,t + εt+1 (37)

We compute the value functions W (ψ) using the imputed values of incidental parameters.

To compute the value function, we use a fine grid approximation over ψ and carry out value

iteration to estimate W. We next carry out a contraction mapping similar to impute the values

of mean utilities from the observed data

ψh+1
·t =ψh·t +λapp(sapp·t (ψh·t, φ

app, σhs, σapp)−Sapp·t )

We add tuning parameter λapp for faster convergence of contraction mapping. We carry

out the above iterations until |ψh+1
·t − ψh·t| is less than the error tolerance threshold. After

the convergence on mean utility the incidental parameters are updated using a ordinary least

square regression on the updated mean utility. The contraction mapping iterations are again

run to get updated mean utility. We stop once we get convergence on the incidental parameters

of apps. With the mean utility in hand, we will use the expressions in equation to compute

the unobservable product characteristics as a function of model parameters

ηjt = ψ̂g(j),l,t− ~xg(j),l,tθapp

Econometeric error term for the apps model can then simply by constructed by taking the

first difference of η. Since we know all time invariant characteristics get cancelled out after

taking the first difference, we only include the time varying characteristics in ~xappg(j),l,t. Finally,

the GMM objective function for the model can be constructed by interacting our econometeric

error terms with the specified instruments

arg min
θapp

(νappg(j),l,t(θ
app)TZapp

t )Wapp(νappg(j),l,t(θ
app)TZapp

t )T

where Wapp is the weighting matrix. We use (Zapp′Zapp)−1 as our weighting matrix. The

model parameters is estimated by search over parameters that minimize the GMM objective

function. To estimate the model parameters pertinent to time-invariant characteristics we

use a second ordinary least square regression. Finally, we update the σapp parameter, and

re-estimate our model. We continue iterating until we find the parameter σapp that minimizes

the GMM objective criterion.
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3. Handset Demand After estimating the app demand model, we get an estimate for Γ̂i. Next,

we carry out estimation of handset demand parameters in a similar fashion to the initialization

phase, with a slight modification.

νhsj,t(θ) = δj,t(θ)− δj,t−1(θ)−αx(xj,t−xj,t−1)−

αΓ(Γ̂g(j),t(·)− Γ̂g(j),t−1(·))−αp,hs(log pj,t− log pj,t−1)

Also, the lifetime utility for customer i is given by

δi,j,t = δj,t + (αp,hs
i −αp,hs)(log pj,t) +αΓ(Γ̂g(j),t(α

p,app
i )− Γ̂g(j),t(α

p,app)) (38)

We repeat steps 1 and 2, until convergence on model parameters.

A.2. Estimation of Moment Inequalities

We follow a procedure as detailed in Pakes (2012) and Ho and Pakes (2014). Consider the estimator

as described in equation (27) i.e.,

Θ̂ = arg min
θ

||Σ̂−
1
2

ii min(0, m̂(θ))|| (39)

Since, our moments our independent across the various genres (see Section 4.3), we solve the above

optimization problem independentally across the various genres and platforms (for notational ease,

we have dropped the platform subscript), i.e.,

Θ̂g = arg min
θ

||gΣ̂−
1
2

ii min(0, m̂g(θ))|| (40)

The first step entails estimating the variance covariance matrix to normalize the moments. As

it is apparent the sample variance covariance matrix (gΣ̂) is a function of Θg. Thus, we adopt the

standard two step estimation procedure, just like the estimation of weighting matrix in GMM.

In the first step, we estimate Θg
0 using an identity matrix as the normalizing factor. Using the

estimated set Θ̂g
0, we then compute gΣ̂. To compute gΣ̂, we use centroid of the identified set Θ̂g

0.

Next, we re-estimate Θg, using the estimated gΣ̂ as the normalizing factor.

For set of exogenous functions h(·)∈R2
+, we use the following specification:

h(Ωp,l,t) =

{
I(t= Tl− k) ∗ |N(0,1)|,
I(t < Tl− k) ∗ |N(0,1)|,

(41)

where Tl− k refers to the time when app developer decides to port.

Next, we describe how we estimate the 95% confidence intervals for our set estimator.

1. We start by defining a grid of potential values of porting costs for each genre and platform. We

assume a coarse grid uniformly spaced points such that Θp ∈ [−30000,50000]. We use uniform

spacing of 100 for our grid.
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2. For each θp ∈ Θp, take 100 random draws from a normal distribution with mean zero and

variance-covariance matrix V(Σ̂(θp)
− 1

2 m̂g(θp)). For each random draw, say m̃(θp), we compute

the euclidean norm of its negative part (i.e., compute ||m̃(θp)−||).
3. Compute the 95th quantile of this empirical distribution and let this critical value of our test

be c(θp).

4. Now, from the original sample, we compute the actual value of ||Σ̂(θp)
− 1

2 m̂g(θp)||.
5. If it is less than c(θp), then we accept the value θp in the 95% confidence interval, otherwise

we reject it.

B. Static Model of Handset Demand

In this Section, we briefly outline the static model of handset demand we used as comparison with

our main model in Section 4 of main text. We model the lifetime utility a consumer i gets by

buying a handset j at time t as

uijt = x′jtβi + ξjt +αi log pjt︸ ︷︷ ︸
δijt

+εijt, (42)

where ~xj,t refers to the observable characteristics of the handset at time t; αx
i denotes consumer i’s

taste towards these characteristics; αp,hs captures consumer’s coefficient for price of handset; Finally

we have the term ξj,t, that captures the time specific variations from the unobserved mean lifetime

utility of app l, which are unobservable to the econometrician but are valued by the consumers;

As before, to allow for heterogeneous preferences among consumers we let

αi = α+σhsνi νi ∼ Pν(ν), (43)

where Pν is a standard normal. Σ allows for each component of νi to have a different variance.

Also let θ= (β,α,σ,Σ) be a vector containing all the model parameters. Each consumer at time t,

chooses to buy/download an app that gives her the maximum lifetime utility. With this assumption

the conditional probability that consumer i chooses product j in market t takes the following form:

sijt(~δt, θ) =
exp(δjt + log pjtΣνi)

1 +
∑k=J

k=1 exp (δkt + log pktΣνi)
, (44)

such that,

δjt = xjtβ+α log pjt + ξjt, (45)

where Ng refers to the number of apps in genre g. The unconditional choice or aggregate market

share of product j at time t is given by:

sjt(δt;θ) =

∫
sijt(·)φ(ν)dν, (46)
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We numerically approximate the above integral by taking Monte-Carlo draws from Pν for suffi-

cient number of individuals, such that

ŝjt(xj; δ,σ,Σ)≈ 1

ns

ns∑
i=1

exp (δjt + log pjtΣνi)

1 +
∑k=J

k=1 exp (δkt + log pktΣνi)
, (47)

To complete the demand estimation, we first compute observed market shares

sjt = qjt/Mt (48)

where qjt denotes downloads of app j in time period t, and Mt denotes the market size. For our

estimation, we use a market size of 30M. We then equate the observed market shares sjt to the

market share imputed in equation (55) such that

sjt = ŝjt(x·t, p·t, δ·t;σ). (49)

To estimate our model, we use generalized method of moments, similar to our main model. To

construct the moment conditions for GMM, we use the unobserved error term ξjt − ξjt−1, and

interact it with a set of instruments Zjt. We use the same set of instruments as our main as

described in Section 5.

C. Validity of Instruments

We used a timing assumption to argue for the exclusion of our instrument for the platform utility.

The exclusion of our instrument relied on the fact developers might not be able to instantly respond

to demand shocks in specific handset sales and hence both current period and one-period lagged

value of platform utility can be used as valid instruments. However, it could be speculated that

certain developers are able to better track the sales and are quick to respond to shocks in sales of

handsets. Thus, to test the robustness of our results, we carry out a ‘difference-in-Sargan’21 test

with just one-period lagged value of the platform utility (in specification IV). We are unable to

reject the hypothesis that current value of platform utility is excluded from the instrument set. We

report our results in Table 14. We also estimate our model with just two-period lagged value of

the platform utility in specification V. Our results for both specifications are very similar to those

we find in our main analysis.

21 For more details see Roodman (2007)
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Table 14. Estimated Parameters (Handsets)

Model IV Model V

log(prices) -2.322∗∗ -2.546∗∗∗

(1.034) (0.719)
ram 0.1457 0.173

(0.115) (0.117)
display-size 0.451∗∗∗ 0.415∗∗∗

(0.129) (0.131)
battery 0.001∗∗∗ 0.001∗∗∗

(0.000) (0.000)
log(storage) 0.489∗∗∗ 0.572∗∗∗

(0.047) (0.047)
camera 0.214∗∗∗ 0.219∗∗∗

(0.015) (0.016)
Γ 0.292∗∗ 0.296∗∗∗

(0.141) (0.030)
Handset FE X X

σp,hs 0.008∗∗∗ 0.009∗∗∗

(0.002) (0.002)

N 895 895
GMM Obj 1.17e-4 1.15e-4

Standard errors in parentheses.

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The parameters for time-invariant characteristics are estimating

by projecting the estimated handset fixed effects onto the handset

time-invariant characteristics using ordinary least square regres-

sion.

D. Independence of Apps

As discussed in Section 4, one limitation of our model of demand for apps is – we do not account

for substitution across apps. However, as we earlier mentioned extant literature has found that

in many products markets, when products are highly differentiated, comprising substitution for

dynamics can lead to much better predictive performance. Since, static model allow for the same

user base making choice across the entire app portfolio, they inadvertently attribute much higher

utility to new apps. To validate this, we estimate a static model of demand in a spirit similar to

Berry et al. (1995) and Ghose et al. (2012).

To compare the out-of-sample prediction performance of both the models, we first randomly

sample 1500 apps from both Apple App Store and Google Play. We make sure all apps existed in

the first two quarters of 2013 (i.e., January 2013 – June 2013), and also in the last two quarters

of 2014 (i.e., July 2014 – December 2014). Next, we estimate both a static model and a dynamic

model on the first half of the data i.e., only using the data from the first two quarters of 2013.
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Table 15. Out-of-Sample MSE for Static vs Dynamic Model of Apps

iOS Google-Play

Static 1066842.3 5636.1
Dynamic 714.5 1369.0

Note. The Table compares the out-of-sample prediction performance of a static model of app demand, that accounts

for substitution across apps and a dynamic model of demand that compromises substitution to account for consumer

dynamics. We first randomly sample 1500 apps from both Apple App Store and Google Play. We make sure all apps

existed in the first two quarters of 2013 (i.e., January 2013 – June 2013), and also in the last two quarters of 2014

(i.e., July 2014 – December 2014). Next, we estimate both a static model and a dynamic model on the first half of

the data i.e., only using the data from the first two quarters of 2013. Next, using these estimates we make predictions

on the latter half of the data i.e., last two quarters of 2014.

Next, using these estimates we make predictions on the latter half of the data i.e., last two quarters

of 2014. In Table 15, we report the mean squared error of both the methods on the second half

of the data. We find, that our dynamic model of demand provides much lower MSE, and hence,

better predictions than a static model.

For completeness, we briefly outline the static model of demand for apps. We advise the readers

to refer to Berry et al. (1995) for further details. We model the lifetime utility a consumer i gets

by downloading an app j at time t from platform g(j) as

uijt = x′jtβi + ηjt +αipjt︸ ︷︷ ︸
ψijt

+εijt, (50)

where ~xj,t refers to the observable characteristics of the app at time t; αx
i denotes consumer i’s

taste towards these characteristics; αp,app captures consumer’s coefficient for price of app; Finally

we have the term ηj,t, that captures the time specific variations from the unobserved mean lifetime

utility of app l, which are unobservable to the econometrician but are valued by the consumers;

As before, to allow for heterogeneous preferences among consumers we let

αi = α+σhsνi νi ∼ Pν(ν), (51)

where Pν is a standard normal. Σ allows for each component of νi to have a different variance.

Also let θ= (β,α,σ,Σ) be a vector containing all the model parameters. Each consumer at time t,

chooses to buy/download an app that gives her the maximum lifetime utility. With this assumption

the conditional probability that consumer i chooses product j in market t takes the following form:

sijt(~δt, θ) =
exp(δjt + log pjtΣνi)

1 +
∑k=J

k=1 exp (δkt + log pktΣνi)
, (52)
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such that,

δjt = xjtβ+αpjt + ξjt, (53)

where Ng refers to the number of apps in genre g. The unconditional choice or aggregate market

share of product j at time t is given by:

sjt(δt;θ) =

∫
sijt(·)φ(ν)dν, (54)

We numerically approximate the above integral by taking Monte-Carlo draws from Pν for suffi-

cient number of individuals, such that

ŝjt(xj; δ,σ,Σ)≈ 1

ns

ns∑
i=1

exp (δjt + log pjtΣνi)

1 +
∑k=J

k=1 exp (δkt + log pktΣνi)
, (55)

To complete the demand estimation, we first compute observed market shares

sjt = qjt/Mt (56)

where qjt denotes downloads of app j in time period t, and Mt denotes the market size. For our

estimation, we use a market size of 30M. We then equate the observed market shares sjt to the

market share imputed in equation (55) such that

sjt = ŝjt(x·t, p·t, δ·t;σ). (57)

To estimate our model, we use generalized method of moments, similar to our main model. To

construct the moment conditions for GMM, we use the unobserved error term ηjt − ηjt−1, and

interact it with a set of instruments Zjt. We use the same set of instruments as our main as

described in Section 5.

E. Estimating App Downloads

We build on methods introduced by Garg and Telang (2013), to estimate app sales from app

download rank data. Our data source contains daily download ranks across −63 and −56 app

categories for iOS and Google Play respectively. However, we have multiple missing entries in the

overall sales rank. This is mostly due to products having very low downloads and thus very high

overall download rank. To address the missing download rank issue, we use rank in other categories

to impute the overall sales rank.

Dc1 =Dc2 (58)

To estimate missing ranks in overall rank for apps, we use subcategory rankings and project them

onto the overall rank. This procedure leaves us still with 3% and 4% missing ranks in iOS and
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Table 16. Handset Characteristics Description.

Data Description

Display Size
The screen size varies from model to model and is the
diagonal length of screen measured in inches.

Primary Camera
Smartphones have built in digital cameras, and we measure it through
their resolution in Megapixels

RAM RAM is the random access memory of the handsets and is measured in MB.
Storage This is physical storage available in the phones, measured in GB.
Battery Battery is measured in milliamp hours mAh.

Table 17. App Genre Descriptives

iOS Google Play

Games 42% 63%
Entertainment 7% 4%
Education 4% 2%
Lifestyle 5% 2%
Music 4% 3%
Photo and Video 8% 3%
Social Networking 4% 3%
Utilities 6% 7%
Others 19% 13%

Note. The genre statistics are calculated across

our entire sample of 13,731 iOS and 6,950

Google Play apps, respectively.

Google Play respectively. We use linear interpolation to impute the missing rank data. Next, we use

the pareto distribution to estimate app downloads as a function of download rank. To calibrate the

parameters for the pareto distribution we source download data for 300 iOS and 300 Google Play

apps from a market research firm that tracks app downloads in the united states. For a detailed

discussion, we advise readers to refer to Garg and Telang (2013).

F. Test of Model Misspecification

Ho and Pakes (2014) describe a procedure to test if the moment inequalities are correctly specified.

We follow a similar procedure as theirs. Given, we estimate non-empty confidence interval sets we

can not reject the null that the model is misspecified.
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Table 18. Smartphones with Highest Observed Market Share

(Market Share)

Apple Apple iPhone 5S 0.13
Apple iPhone 5C 0.08
Apple iPhone 5 0.06
Apple iPhone 6 0.05

Android Samsung Galaxy S4 0.10
Samsung Galaxy S5 0.05

Samsung Galaxy Note 3 0.04
Samsung Galaxy S3 0.04

Note. The table reports the top smartphones with highest

observed market shares for the period of our study.
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Figure 19. Handset Characteristics Evolution (Nonstandardized)

(a) Camera (Megapixels) (b) Display Size

(c) Battery (mAh) (d) RAM

(e) Storage (log(GB))

Note. The figures report how the handset features for the entire mix of handsets in the market evolve over time.

The solid line denotes the average value of handset characteristics over time and the dashed line indicate the

minimum and maximum value of handset characteristics over time. Time period 1 denotes January 2013 and Time

period 24 denotes December 2014.
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