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Abstract

Basic economic theory tells us to expect that an increase in de-
mand should lead to an increase in price. However, previous studies
have found the opposite trend in the prices of seasonal goods, such
as canned soup. I propose an explanation of this phenomenon: con-
sumers are more likely to purchase without search in low demand peri-
ods, reducing the gains of temporary price reductions, and decreasing
estimated price sensitivity. Purchase without search is consistent with
consumers using shopping lists to make their purchase decisions before
observing prices. I test this explanation using a novel dynamic, struc-
tural inventory model where consumers make decisions on whether to
search, which reveals price promotions, and which products to pur-
chase given their search decision.

Estimating this model using previous methods is a computational
challenge because of the expansion of the state space required to model
seasonal preferences. To overcome this challenge, I develop a cyclic-
successive approximation algorithm, which removes the computational
burden of adding cyclic variables to the state space of a dynamic
model.

I find that consumers purchase without search 71% of the time in
winter. This causes price elasticities that are more than 60% larger
in winter as they are in the summer. I find that the dominant cause
of seasonal search is seasonal price variation, rather than seasonal
consumption utility.
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1 Introduction

Basic economic theory tells us to expect that an increase in demand should

lead to an increase in price. However, previous studies have found the op-

posite trend in the prices of seasonal goods, such as canned soup, tuna, and

ice cream, where prices have been observed to decrease in periods of high

demand. This phenomenon has been termed “counter-cyclic pricing”.

In this paper, I propose that counter-cyclic pricing is partially a reaction

to seasonal changes in consumers’ propensity to make purchase decisions

without searching the category. For example, shoppers who use a shopping

list will choose both the variety and quantity of a good to purchase before

observing prices at the store. An increase in purchases without search will

increase average prices because non-searching consumers will not react to

discounts, and so holding a sale will simply decrease the price that these

consumers pay. I posit that consumers make a higher proportion of their

purchases without search in low demand periods for two reasons. First, the

average purchase size is smaller, and so the expected savings resulting from

finding a lower price are lower. Second, because the depth of discount is

smaller in low demand periods, there is less reason to search for lower prices,

which amplifies the first effect.

Several other explanations of this phenomenon have been put forward in

the literature. Counter-cyclic pricing was initially observed by Warner and

Barsky (1995) in retail stores and by Chevalier et al. (2003) in grocery stores.
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Warner and Barsky (1995) propose that counter-cyclic pricing is caused by

increased inter-store competition. Chevalier et al. (2003) find that these

pricing trends are consistent with a loss-leader strategy, where the retailer

lowers the price of goods to attract consumers to their store. In a re-analysis

of their data, Nevo and Hatzitaskos (2006) find that underlying counter-cyclic

pricing is a seasonal trend in the price sensitivity of consumers. They argue

that prices are higher during low demand periods because consumers become

less price sensitive. This paper complements their findings. Where Nevo and

Hatzitaskos (2006) discover the trend in price sensitivity, this paper identifies

an explanation of this trend.

Consumers strategically purchasing without observing prices has impor-

tant implications beyond counter-cyclic pricing. Retailers can change the

frequency of strategic consumer search by altering their price strategy. For

example, strategic consumers will respond to a reduction in price variation

by searching less frequently. Retailers benefit because strategic consumers

would then make their purchase decisions without searching more often, mak-

ing them less price sensitive, and allowing the retailer to charge higher prices.

Consumers benefit because they avoid undergoing costly search. Studying

counter-cyclic pricing allows me to demonstrate strategic consumer search,

which practioners can account for when designing promotional strategies.

First, I find in my data that the concentrated soup industry exhibits

counter-cyclic pricing. Second, I replicate the findings of Nevo and Hatzi-

taskos (2006) by showing that there is a significant seasonal trend in price
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sensitivity. Third, I find evidence that consumers sometimes purchase with-

out search by looking at how price sensitivity is affected by factors which have

been shown to impact search probability. Fourth, I find that the seasonal

trend in price sensitivity is positively correlated with the seasonal trends in

both overall volume sold and price variation. Both of these factors serve as

proxies for search likelihood if consumers are strategically searching.

A dynamic consumer inventory model is necessary to study this phe-

nomenon for two reasons: consumer stockpiling, and future expectations.

First, many seasonal products, including canned soup, are storable. Con-

sumers may take advantage of temporary price reductions by “stocking up”

for future consumption. In this case, a static model would overestimate price

sensitivity because it would misinterpret intertemporal substitution for an

overall increase in demand. Previous studies have found that static models

may overestimate price elasticities by as much as 30% Nevo and Hatzitaskos

(2006). Second, rational search behaviour will depend on future expectations

of price variation and consumption utility. Each of these expectations affect

the expected purchase size, which in turn affects the benefits of finding a

lower price. A dynamic consumer inventory model can structurally account

for these factors.

Estimating this model using standard dynamic methods is a computa-

tional challenge because of the expansion of the state space required to ac-

commodate seasonal shifts in consumption utility, price expectations, and

search probabilities. The inclusion of these trends in the model necessitates
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that I solve for expected discounted payoffs separately for each seasonal pe-

riod, which increases the size of the state space by a factor of 52, one for each

week of the year. Increasing the size of the state space increases the burden

of a value function iteration quadratically due to an increase in the number

of transition probabilities that need to be calculated, and an increase in the

number of states that must be updated. So, adding the seasonal period to the

state space increases the computational burden of a value function iteration

by a factor of 522.

To overcome this challenge, I develop the Cyclic Successive Approxima-

tion Algorithm (CSAA), which is an adjustment to the Successive Approx-

imation Algorithm (SAA) of Rust (1987), that removes the computational

burden of adding cyclic variables to the state space of a dynamic model.

This is done by updating the states in the reverse order of the corresponding

seasonal periods. I show that these algorithms converge to the true value

function at the same rate, and in each iteration the results of the two al-

gorithms will be identical for certain states. However, the cost of a CSAA

iteration is invariant to the number of seasonal periods. In this problem, the

technique reduces the theoretical burden of solving the value function by a

factor of 522, and in practice reduces the computational time required by a

factor of 52.

This paper fits a dynamic consumer inventory model, following Erdem

et al. (2003), and Hendel and Nevo (2006). By assuming consumers do not

observe prices in each period, I follow the price consideration model of Ching
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et al. (2009), and the dynamic implementation of this model presented in

Seiler (2013). However, in those models, consumers must observe prices

before making a purchase. In allowing consumers to selectively ignore price

information, I follow the econometric framework of Mehta et al. (2003), and

the descriptive evidence of Ray et al. (2012).

In my model, consumers respond to an increase in price variation by

searching more frequently. Mela et al. (1998) show that, over time, consumers

change their shopping strategies in response to high levels of price variation

through stockpiling. Consumers can choose whether to search, which allows

them to react to prices, or to purchase without search, in which case they are

not price sensitive. In this respect, the estimated model can be considered a

structural, dynamic implementation of Bucklin and Lattin (1991).

The rest of the paper is organized as follows: in Section 2, I describe

the data set and report summary statistics; in Section 3, I present descrip-

tive evidence that is consistent with the existence of counter-cyclic pricing

and seasonal trends in purchase without search; in Section 4, I detail the

dynamic, structural inventory model of the concentrated soup industry that

allows consumers to purchase without search; in Section 5, I outline the

estimation procedure; in Section 6, I introduce the cyclic successive approx-

imation algorithm, which reduces the computational burden of estimating

dynamic models with cyclic state variables, to make the computational bur-

den manageable; in Section 7, I present the results of the estimation; and in

Section 8, I conclude.
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2 Data

This project used the panel data in the “IRI Marketing Data Set” (Bron-

nenberg, Kruger, and Mela 2008). Panel data on consumers in Eau Claire,

Wisconsin and Pittsfield, Massachusetts is reported for 30 categories over the

seven years between January 1st 2001 to December 31st 2006.

I focus on the purchases of concentrated soup to study counter-cyclic

pricing trends for four reasons. First, the concentrated soup category clearly

exhibits strong seasonality, with purchase volume rising dramatically in the

winter. Second, the category exhibits counter-cyclic pricing trends. Third,

in the data I analyze, concentrated soup is monopolistic, with Campbell’s

having more than a 97% market share. This simplifies the pricing problem

the retailer and manufacturer face. Fourth, concentrated soup is purchased

almost exclusively in 10.75 oz. cans, which are typically consumed in one

sitting. This limits consumer inventories to a discrete number of cans, which

simplifies the construction of the dynamic model.

The dataset initially has 6,535 panelists. I focus the analysis on pan-

elists in that make at least one concentrated soup purchases at a single store

in Pittsfield, Massachusetts, which reduces the sample to 1,441 panelists. I

focus on the purchases made at a single store to ensure that the price distri-

bution is constructed accurately. Accurately estimating price distribution is

important because consumers partially base their search decision on the price

distribution. However, I use all purchase data when constructing consumer
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inventories to ensure that my sample limitation does not bias the estimated

inventories.

The panel is unbalanced: participants participate for an average of 1.91

years. The data was collected in two ways: For 89% of panelists, purchases

were recorded electronically when the panelist used a loyalty card at check

out. In addition to using the loyalty card, 2% of panelists scanned their own

purchases using a “key”. 9% of panelists switched from using a key to using

a loyalty card over the course of the sample.

Concentrated soup is sold in 29 varieties in the panel data. The market

shares of each variety are presented in Table 1. To ensure each variety I

analyze has an adequate sample size, I collect the 21 least popular varieties

into a residual category, termed “Missing”, which represents 4% of observed

sales.

I identify the prices of each flavor in each week by looking at the cost and

units purchased by panelists. The week-to-week price of each flavor changes

in 24% of weeks. Flavors tend not to go on sale at the same time: in more

than 50% of weeks, 3 or fewer flavors are discounted. The non-promoted

price for soup only changes 4 times over the 7 years of observed data.

3 Model Free Evidence

In this section, I provide descriptive evidence which suggests that counter-

cyclic pricing is caused by seasonality in purchase without search. This serves
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Variety Market Share Average Price Average Discount

Cream Of Mushroom 0.25 1.13 0.12
Cream Of Chicken 0.20 1.18 0.19

Chicken Noodle 0.13 1.11 0.16
Mega Noodle 0.10 1.16 0.10

Chicken Goldfish 0.09 1.15 0.11
Cream Of Celery 0.07 1.22 0.09

Missing 0.04 1.15 0.11
Tomato 0.04 0.99 0.44

Tomato Goldfish 0.02 1.08 0.11

Table 1: Flavor Summary Statistics

to motivate the construction of the dynamic model, while highlighting which

trends in the data allow me to identify various features of the model.

3.1 Seasonality and Counter Cyclic Pricing

Counter-cyclic pricing denotes the simultaneous presence of three patterns

in the category sales data: seasonal demand trends, seasonal pricing trends,

and a negative correlation between these two trends. One might expect soup

to be consumed more often during cold weather, or to help soothe a sore

throat, both of which are more common in the winter months. This trend

is typified by the sales data presented in Figure 1, where the demand for

soup is highest during the winter and lowest during the summer. To test

whether this trend is statistically significant, I regressed average weekly sales

onto a 4-degree polynomial based on the time of year (Table 2, Column 1).

The trend is found to be statistically significant, and explains 27.0% of the

variation in soup sales, compared to the 6.7% that is explained exclusively
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by price fluctuations (Table 2, Column 2).

Controlling for price variation is required to accurately estimate under-

lying seasonal demand. Seasonal pricing trends may amplify or cause the

observed seasonal demand trends because increased demand is a natural

consequence of reduced prices. The seasonality in demand persists when

I control for price fluctuations (Table 2, Column 3). Comparing Column 2

and Column 3 in table 2 highlights the dangers of omitting seasonality from

the analysis of this category. The estimated price coefficient is almost halved

when I include seasonal trends in the underlying demand for concentrated

soup, which suggests that the omission of seasonal trends could lead to biased

estimates of price elasticities.

Seasonal pricing trends in the category can be seen in Figure 2, which

plots the average discount in each soup flavor over the course of the year.

In contrast to quantity demanded, the average discount is lowest during the

summer months and highest during the winter months.

3.2 Seasonality in Estimated Price Sensitivity

Nevo and Hatzitaskos (2006) found that counter-cyclic pricing is induced by

a simultaneous trend in consumer price sensitivity. They observe a reduction

in price sensitivity in low demand periods. They argue that counter-cyclic

pricing is a retailer’s reaction to this seasonal change in price sensitivity.

That is, because consumers are less price sensitive in low demand periods,

retailers charge higher prices.
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Table 2: Descriptive Regression Results

Average Weekly Units Sold

(1) (2) (3)

Week In Year - Linear 3.411∗∗ 3.174∗∗

(1.392) (1.372)

Week In Year - Quadratic −0.479∗∗∗ −0.448∗∗∗

(0.105) (0.104)

Week In Year - Cubic 0.017∗∗∗ 0.016∗∗∗

(0.003) (0.003)

Week In Year - Quartic −0.0002∗∗∗ −0.0002∗∗∗

(0.00003) (0.00003)

Average Price −38.277∗∗∗ −23.856∗∗∗

(7.546) (6.759)

Constant 25.097∗∗∗ 71.318∗∗∗ 53.032∗∗∗

(5.438) (8.934) (9.555)

R2 0.270 0.067 0.295
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I find evidence of this trend in the IRI data by using a logit model to

predict consumers’ flavor decisions over the course of the year. Hendel and

Nevo (2006) show that if a shopper’s consumption does not depend on the

flavor purchased then the flavor decision in a dynamic inventory model sim-

plifies to a logit model. I can use this model to identify flavor preferences

and estimate price sensitivity over the course of the year.

Suppose that the utility gained for purchasing a product of flavor ft is

given by:

(αstpft + ηf + εft)

where αst is the price sensitivity in seasonal period st, pvt is the price of flavor

v at time t, ηv is the flavor dummy, and εvt is an IID shock with a type-1 ex-

treme value distribution. Then, assuming consumers are utility maximizing

and comparing the log-market shares of each flavor in each period, we have

log(sv1t)− log(sv2t) = αst(pv1t − pv2t) + (ηv1 − ηv2).

I approximate the seasonal price coefficient αst with a 3 degree polynomial

based on time of year. Consistent with Nevo and Hatzitaskos (2006), I

find seasonal trends in price sensitivity are statistically significant (Figure

4)(Table 3, Column 2).
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3.3 Purchase Without Search

Purchase without search cannot be directly identified because I do not ob-

serve whether shoppers search in any given period. However, there are two

ways to check for purchase without search in the scanner data. First, Seiler

(2013) finds that shoppers are more likely to search when they make large

shopping trips. This is because searching the category takes time, and on

average shoppers making large trips have more time to spend at the gro-

cery store. If shoppers sometimes purchase without searching the category,

and those who do cannot react to price promotions, then there would be a

correlation between price sensitivity and the overall size of the shopping trip.

To test this, I classify a shopping trip as a “big trip” if it is larger than

each consumers’ median shopping trip across all other categories. By inter-

acting prices with this dummy variable, I find that consumers are signifi-

cantly more price sensitive on big shopping trips, suggesting that consumers

are sometimes purchasing without checking prices (Table 3, Regression 3).

Second, consumers are more likely to purchase a large quantity of soup

when they’ve found a good discount. If they found a good discount, then

they must have checked prices. This leads to a correlation between search

likelihood and quantity purchased. Since search likelihood is correlated with

both effective price sensitivity, and quantity purchased, if consumers some-

times purchase without search there should be a relationship betweeen quan-

tity purchased and effective price sensitivity. This correlation is observed in

Table 3, Regression 4.

13



Difference in Log Market Shares

(1) (2) (3) (4)

Price Sensitivity - Constant −1.024∗∗∗ −1.219∗∗∗ −0.600 −0.914∗∗∗

(0.060) (0.264) (0.390) (0.240)

Price Sensitivity - Linear 0.082∗ 0.087∗∗ 0.120∗∗∗

(0.044) (0.043) (0.041)

Price Sensitivity - Quadratic −0.003∗ −0.005∗∗∗ −0.006∗∗∗

(0.002) (0.002) (0.002)

Price Sensitivity - Cubic 0.00004∗ 0.0001∗∗∗ 0.0001∗∗∗

(0.00002) (0.00002) (0.00002)

Price * Big Shopping Trip −0.664∗∗∗

(0.304)

Price * Multiple Cans −0.893∗∗∗

(0.108)

*Flavor Dummies Not Shown

Table 3: Reduced Form Regresson Results
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Ideally, I could demonstrate the importance of purchase without search

by estimating a correlation between price sensitivity and search probabil-

ity. I cannot do this directly because I do not observe whether a consumer

searches in each period. However, if consumers are strategically searching,

then they are more likely to observe prices when there are larger incentives

to do so. Consumers would then be more likely to search when they have

a high demand for soup, because the expected savings from finding a lower

price are higher. Consumers would also be more likely to search when there is

high price variation, because they want to take advantage of the larger sales.

Hence, both underlying demand and price variation can serve as proxies for

search probability if consumers are strategically searching.

I find that the estimated seasonality in price sensitivity (Table 3, Column

2) is highly correlated with the reduced form estimate of underlying demand

from Table 2, Column 3 (cor = −.796, p < 0.0001), and with average weekly

discount (cor = .25, p < 0.0001). If purchase volume and price variation

are accurate proxies for search probability, then this suggests that there is

a relationship between the seasonal trends in search probability and price

sensitivity.

4 Model

I model purchases in the concentrated soup industry using a dynamic, struc-

tural, inventory model. The model is dynamic because shoppers make their
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decisions while being cognizant of future price expectations, consumption

utilities, and the implications of their decisions on their future inventories.

In each week, consumers make decisions in three sequential stages: search,

purchase, and consumption. In the search stage, consumers decide whether

to search the category before making their purchase decision. If a shopper

searches, they incur a search cost, but observe the prices of all varieties. If a

consumer does not search, they instead make their purchase decision on the

assumption that there are no price promotions. When making this decision,

consumers take into account the distribution of prices, and the amount of

soup they want to purchase.

In the purchase stage, consumers simultaneously decide on the variety

and number of cans to purchase. The prices they use to make this decision

depend on their search decision. When making this decision, consumers take

into account the amount of soup in their inventory, and how much they want

to consume soup in this seasonal period.

Finally, in the consumption stage, consumers choose the number of cans of

soup to consume while taking into account the effect on their future inventory.

Consumption utility varies by time of year because soup is a seasonal good.

At the end of this stage, consumers incur a storage cost based on the number

of cans of soup in their inventories. Consumers can only store up to imax cans

of soup, and will increase their consumption to ensure that their inventories

are below imax.

I outline the model in the following three steps. First, I define the utility
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that a consumer receives in each stage. Second, I define the expected dis-

counted payoffs and Bellman equation for the problem, which are used to

calculate the likelihood. Third, I formally define the choice that a consumer

makes in each stage, solve for the probability of any particular choice, and

calculate the expected discounted payoffs the consumer receives during the

current substage, any remaining substages, and all subsequent periods.

4.1 Flow Utility

The utility a consumer receives in the search stage in period t is specified as

us(rt; ηt) = 1(rt = 1)(−ρ+ ηt) (1)

where rt is an indicator that equals 1 if the consumer searches, ρ is the search

cost, ηt has an IID type-1 extreme value distribution with standard deviation

ση. If consumers choose to search, then they incur the search cost ρ.

The utility a consumer receives in the purchase stage depends on their

search decision. If the consumer searches, then they observe prices and re-

ceive utility

up(qt, ft; rt = 1, pt, εt) = αpfttqt + ηft + εftqtt. (2)

where qt is the number of cans of soup purchased, ft is the flavor of soup

purchased, pt is a vector of prices, εt is a vector of IID shocks to the purchase
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utility, pftt is the price of flavor ft at time t, ηft is a flavor fixed effect, and

εftqtt is an IID shock to the utility of purchasing qt cans of flavor ft that has

a type-1 extreme value distribution. I assume that consumers only purchase

one flavor in each period.

If the consumer does not search, they make their purchase decision on

the assumption that there are no price discounts. In this case, the utility

they receive is

up(qt, ft; rt = 0, pt, εt) = αp̂fttqt + ηft + εftqtt

where p̂ftt is the undiscounted price of flavor ft in period t. I assume that

consumers only purchase one flavor in each period.

In each period, a consumer gains the following utility from consumption

uc(ct, qt; vt, st, it) = ct × k(st) + vctt (3)

where ct is the quantity of soup consumed, vt is a vector of IID shocks to

consumption, st is the current seasonal period, it is the starting inventory

in period t and k(st) is the seasonally varying returns to consumption. The

random shocks vctt ensures the model can accommodate varying levels of

consumption, and allows for a simple computation of consumption probabil-

ities. Consumers cannot consume more than cmax in any period. Seasonal

variation in consumption is modelled through variations in k(st) throughout

the year.
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Note that consumption utility only depends on the number of cans con-

sumed, and not the flavor of those cans. Instead, flavor preferences are

modelled in the purchase decision with a fixed effect. This assumption, ini-

tially in Hendel and Nevo (2006), will allow me to separate the flavor decision

from dynamic considerations because the flavor decision now only affects the

static utility in the purchase stage. This reduces the size of the state space

because I only need to track the total number of cans of soup in inventory,

rather than the number of cans of each flavor.

4.2 State Variables and Value Functions

The seasonal period is a cyclic state variable which updates deterministically

as follows:

st+1 = st + 1 if st < |S|

= 1 if st = S

where |S| is the total number of seasonal periods. This deterministic

updating allows me to apply the cyclic successive approximation algorithm,

developed in Section 6, which removes the computational burden of adding

this variable to the state space.

Inventory levels are increased through purchase, and decreased through

consumption:

it+1 = it + xt − ct
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Any combination of purchase and consumption decisions that would result

in consumers having an inventory larger than imax or smaller than 0 are

forbidden.

Because consumers are forward looking, they consider how their decisions

impact their expected discount future utility. Formally, consumers seek to

maximize their expected discounted utility in each period. Let Ωt be a vector

of all of the transient state variables Ωt = (ηt, pt, εt, vt), and let at be the

vector of the actions a consumer can take at = (rt, ft, qt, ct). I define the

total utility that a consumer receives in period t as u(at, st, it,Ωt). Note that

consumers do not observe all the state variables simultaneously; they are

revealed as the consumer progresses through the three stages. Consumers

make their decisions to maximize their total expected discounted payoff

V (st, it,Ωt) = max
{at,at+1,...}

∞∑
t=τ

δτ−tE(u(aτ , sτ , iτ ,Ωτ )|st, it,Ωt) (4)

where δ is the discount factor. This can be conveniently expressed in the

following Bellman equation:

V (st, it,Ωt) = max
at

u(at, st, it,Ωt) + δE(V (st+1, it+1,Ωt+1)|st, it,Ωt) (5)

I define the value function as the expected discounted payoff, given starting

persistant states st and it

V (st, it) = E(max
at

u(aτ , sτ , iτ ,Ωτ ) + δE(V (st+1, it+1,Ωt+1)|st, it,Ωt)) (6)
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This integrated Bellman equation will allow me to solve for the value function,

which is required to estimate the model. I now formally state the consumer

decisions and values in each stage.

4.3 Decision at the Consumption Stage

To solve the model, I work backwards through the stages in each period.

To make the consumption decision, consumers take the purchase and search

decisions as given, and then optimize the sum of their consumption utility,

inventory costs, and expected future values:

max
c∈{max(0,imax−it−qt),it+qt)}

ct × k(st) + vct + δE(V (st+1, it + qt − ct)|st, it).

Note that consumers must end the period with an inventory of at least imax.

If after the purchase stage they have more than imax cans of soup, then they

will at least consume enough to bring their final inventory down to imax.

Because vct has an IID type-1 extreme value distribution, this leads to

the following consumption probabilities:

P (ct|xt, st, it) =
ect×k(st)+δE(V (st+1,it+qt−ct)|st,it)∑min(cmax,it+qt)

c′=max(0,imax−i−x) e
c′×k(st)+δE(V (st+1,it+qt−c′)|st,it)

To solve for the decision in the purchase stage, I need to combine values

of the consumption stage, and the expected discounted payoffs in all future
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periods, which I define as Vc(st, it, qt):

Vc(st, it, qt) = log

 min(cmax,it+qt)∑
c′=max(0,imax−it−qt)

ec
′×k(st)+δE(V (st+1,it+qt−c′)|st,it)

 .

4.4 Decision at the Purchase Stage

During the purchase stage, consumers choose the quantity and flavor of con-

centrated soup to purchase by optimizing the sum of their purchase utility

and their expected discounted utility in the search stage and in future peri-

ods. If the consumer searches, then they observe prices, and so their decision

solves:

arg max
qt,ft

αpfttqt + ηft + εftqtt + Vc(st, it, qt). (7)

If the consumer does not search, then they use the non-discounted price p̂fqt:

arg max
qt,ft

αp̂fqtqt + ηft + εftqtt + Vc(st, it, qt). (8)

The flavor decision only affects the purchase utility, and is independent of the

payoffs in future periods. Calculating the probability of picking each flavor:

P (ft|qt, pt, rt = 1, st, it) =
exp(αpfttqt + ηft)∑

f ′∈F
exp(αpf ′tqt + ηf ′t)

P (ft|qt, pt, rt = 0, st, it) =
exp(αp̂fqtqt + ηft)∑

f ′∈F
exp(αp̂fqtqt + ηf ′t)
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where F is the full set of flavors. Integrating over the flavor decision reduces

the decision in the purchase stage to a quantity decision. In the case where

consumers search:

arg max
qt

log

(∑
f ′∈F

e
αpf ′t

qt+ηf ′t

)
+ Vc(st, it, qt) + εqtt,

and in the case where consumers do not search:

arg max
qt

log

(∑
f ′∈F

e
αp̂fqtqt+ηf ′t

)
+ Vc(st, it, qt) + εqtt

where εqtt has an IID type-1 extreme value distribution. Integrating over

εqtt, I can calculate the probability of the consumer choosing any purchase

size as:

P (qt|rt = 1, pt, st, it) =
e
log

( ∑
f∈F

e
αpft

q+ηf

)
+Vc(st,it,qt)

imax+cmax−it∑
q′=0

e
log

( ∑
f∈F

e
αpfq′tq

′+ηf

)
+Vc(st,it,q′)

.

In the case where the consumer searches, the decision is made according to

the undiscounted price, p̂fqt

P (qt|rt = 0, st, it) =
elog(

∑
f∈F e

αp̂fqtq+ηf+ξq)+Vc(st,it,qt)

imax+cmax−it∑
q′=0

e
log

(∑
f∈F e

αp̂fqtq
′+ηf+ξq′

)
+Vc(st,it,q′)

.
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To solve for the decision in the search stage, I need to combine values of the

purchase stage, consumption stage, and the expected discounted payoffs in

all future periods, which I define as Vp(st, it, qt):

Vp(st, it, rt = 1) = Ept

(
log

(
imax+cmax−it∑

q′=0

e
log

(∑
f∈F e

αpftt
q′+ηf

)
+Vc(st,it,q′)

))

Vp(st, it, rt = 0) = log

(
imax+cmax−it∑

q′=0

e
log
(∑

f∈F e
αp̂fqtq

′+ηf
)
+Vc(st,it,q′)

)

4.5 Decision at the Search State

When making the search decision, consumers compare the expected dis-

counted value of searching with the expected discounted value of making

their purchase decision without search. Because the search decision is made

before prices are observed, the expectation is taken over prices to calculate

the expected benefit of search. The search decision is then

max
rt∈{0,1}

l(rt = 1)(Vp(st, it, rt = 1)− ρ+ ηt) + l(rt = 0)Vp(st, it, rt = 0)

which leads to the following search probability:

P (rt = 1|s, it) =
e
Vp(st,it,rt=1)−ρ

ση

e
Vp(st,it,rt=1)−ρ

ση + e
Vp(st,it,rt=0)

ση

.
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This gives the overall expected value for the search stage, the purchase stage,

and the consumption stage Vs(st, it):

V (st, it) = ση × Ep(log(e
Vp(st,it,rt=1)−ρ

ση + e
Vp(st,it,rt=0)

ση )).

After calculating the value function V (st, it) using the Bellman equation 6,

I use V (st, it) to solve for Vp(st, it, qt), and Vc(st, it, qt). With these values in

hand, I calculate the joint probability

P (rt, ft, qt, ct|st, it) = P (rt|st, it)P (ft|rt, st, it)P (qt|ft, rt, st, it)P (ct|qt, st, it).

Each of these terms can be calculated using the previous equations.

5 Estimation

5.1 Identification

I provide an informal discussion of the identification of the parameters of

the model. The flavor dummies ηft are identified by comparing the sales of

different flavors when they have the same price, as discussed in the next sec-

tion. The seasonal consumption preferences k(st) are identified by observing

how the quantity of canned soup purchased varies throughout the year. The

search parameters ρ and ση are identified by how trends in seasonal price sen-

sitivity are correlated to changes in consumption and price variation. The
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overall price sensitivity α is identified by the average level of price sensitivity.

6 Cyclic Successive Approximation Algorithm

The addition of seasonal periods to the state space drastically increases the

computational burden of solving for the value function, as the cost of a

value function iteration grows quadratically with the size of the state space.

The addition of 52 seasonal periods increases the overall burden by a factor

of 2702. In real terms, this could bring the time taken to solve the value

function from one minute to over a day and a half. During estimation, the

value function must be solved many times, and so this additional computation

cost might make this problem too burdensome to solve.

To overcome this cost, I develop the Cyclic Successive Approximation Al-

gorithm (CSAA), which is a variant of the Successive Approximation Algo-

rithm (SAA) of Rust (1987). The cyclic successive approximation algorithm

eliminates the computational burden of adding cyclic variables to the state

space when solving for the value function in any dynamic model. I show

that these algorithms converge to the true value function at the same rate,

and in each iteration the results of the two algorithms will be identical for

certain states. Furthermore, the CSAA is simple to implement: states are

updated in the same way as in the SAA, just in a different order.

The additional computational burden of evaluating value function iter-

ation with a larger state space comes from two sources. Suppose the state
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space increases by a factor of Ns. First, the number of states one can tran-

sition to increases by a factor of Ns. For each destination state, a transition

probability must be calculated. Second, the number of states that the value

function must be solved for increases by a factor of Ns.

In the CSAA, I remove both of these increases in cost when adding a

cyclic variable to the state space. First, I note that the transitions of cyclic

state variables are deterministic, and so only a fraction of the transition

probabilities need to be calculated. This is simple to show and has likely

been incorporated in other implementations. Second, I show that one only

needs to update a fraction of the state space in each iteration. The result is

that the cost of a value function iteration does not grow with the state space.

The closest method to the CSAA is the cyclic-inversion algorithm of

Paarsch and Rust (2009). They show that, when solving for the value func-

tion using policy function iterations, the matrix inversion can be decomposed

so that the total computational cost of a policy function iteration grows lin-

early in the number of cyclical periods, rather than cubically. The CSAA

has three advantages over the cyclic-inversion algorithm. First, the CSAA

removes the burden of adding cyclic variables to the state space, while in the

cyclic-inversion algorithm, additional seasonal state variables increase the

computational burden linearly. Second, the CSAA applies to value function

iterations rather than policy function iterations. Value function iterations

have been found to be more efficient when the state space is large (Santos

and Rust (2004)), which is when reducing the computational burden is most
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important. Third, the CSAA is arguably easier to implement as it is a

small deviation from the standard methodology. On the other hand, because

the cyclic-inversion algorithm uses policy function iterations, it will likely

converge faster when discount rates approach 1.

In the SAA, a starting guess for the value function is chosen. Using

the Bellman equation, value function iterations are used to update all states

of the dynamic model. This process is repeated until the value function

converges. In the CSAA, the process is the same, except that in each iteration

only the states associated with a single seasonal period are updated. The

seasonal period that is updated is the one that precedes the seasonal period

that was updated in the previous iteration. That is, if there are |S| seasonal

periods, S = {1, . . . , |S|}, and in the previous iteration the values in seasonal

period s was updated, then, if s > 1, the current iteration updates the values

in seasonal period s− 1. If s = 1, then seasonal period S is updated.

I formally define the CSAA algorithm below. Suppose there is a rational,

forward-looking consumer making decisions based on their current state. Let

S be a vector of seasonal state variables which are arranged in chronological

order ranging from 1 to |S| . Let I be a vector of the remaining state

variables. Let A be a vector of actions available to the agent in each period.

Let u(a, s, i) be the utility gained from taking action at in state (s, i). Let δ

be the agents discount factor. Let V (s, i) be the value function, which is the

expected discounted payoff to the agent given that the agent starts in state
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(s, i). I can use the value function to write the Bellman equation:

V (st, it) = E(max
at
u(at, {st, it})+δ

∑
s′∈S,i′∈I

P (st+1 = s′, it+1 = i′|at, st, it)V (st+1, it+1))

(9)

Integrating over the action chosen at,

V (st, it) =
∑
a′∈A

P (at = a′)E

(
u(a′, {st, it}) + δ

∑
s′∈S,i′∈I

P (st+1 = s′, it+1 = i|a′, st, it)V (s′, i′)|at = a′

)
.

Because the seasonal period updates deterministically, st+1 is known, so the

above expression can be simplified:

V (st, it) =
∑
a′∈A

P (at = a′)E

(
u(a′, st, it) + δ

∑
i′∈I

P (it+1 = i|a′, st, it)V (st+1, i
′)|at = a′

)
. (10)

where st+1 = (st mod |S|) + 1. This simplification reduces the number

of P (st+1 = s′, it+1 = i|a′, st, it), the state transitions probabilities, from

|S| × |I|, to |I|. The “mod” operation ensures that the seasonal period

updates cyclically, and is defined as st mod |S| = st−
⌊
st
|S|

⌋
× |S|. To clarify,

this operator takes the following values:

(st mod |S|) + 1 = st + 1 if 0 < st < |S|

(st mod |S|) + 1 = 1 if st = |S|

Let V be an |S|×|I|matrix of values, where the element in row st and column
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it corresponds to the value of being in state {st, it}. Let Vs,i represent row

s and column i of matrix V . Let Tθ(V ) be the standard Bellman operator

on this matrix representation of the value functions, which outputs a V such

that, for each row s and column i,

T (V )st,it =
∑
a′∈A

P (at = a′)E

(
u(a′, st, it) + δ

∑
i′∈I

P (it+1 = i′|a′, st, it)Vst+1,i′|at = a′

)
.

This Bellman operator applies the Bellman equation in equation 10 to the

values V . This equation is a contraction mapping, and so the repeated

application of equation 7 will yield a sequence of V that approaches the true

values.

Let U f be an operator on V defined as

U f (V )st,it =
∑
a′∈A

P (at = a′)E

u(a′, st, it) + δ
∑
it+1∈I

P (it+1 = i|a′, st, it+1)Vst+1,it+1|at = a′

 if s = f

= Vs,iotherwise

This operator is identical to T (V )s,i for the states where s = f . In other

cases, the operator simply returns the input state. Note that, because U f

only operates on 1
|S| of the state space, each application of T is |S| times

more costly than an application of U f .

The SAA algorithm is defined as

1. Make an initial guess at the value function V 0
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2. Update the current guess V k by applying the operator V k+1=T (V k)

3. Repeat step 2 until desired convergence

The CSAA algorithm is defined as

1. Make an initial guess at the value function Ṽ 0

2. Update the current guess Ṽ k by applying the operator Ṽ k+1=U (|S|−k mod |S|)+1(Ṽ k)

3. Repeat step 2 until desired convergence

Given the same starting guess, the guesses of the value function in each

algorithm will be identical in certain states after k iterations of SAA and

CSAA,. Specifically, the guesses of the values will be identical in the states

most recently updated in the CSAA, which are states where the seasonal

period is equal to (S − k mod S) + 1.

Theorem 6.1. Let V k be the guess of the value function in the kth iteration

of the SAA algorithm, and let Ṽ k be the guess of the value function in the

kth iteration of the CSAA algorithm. Then, if V 0
0,it = Ṽ 0

0,it for all it ∈ I and

k ∈ N :

V k

(|S|−k mod |S|)+1,it
= Ṽ k

(|S|−kmod |S|)+1,it

Proof. By induction. Suppose V 0
0,it = Ṽ 0

0,it∀it ∈ I. I first prove the induction

hypothesis is true for k = 1, that is, that Ṽ
1

s,it = V 1
s,itfors = (|S|−1mod |S|)+
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1 = |S|.

Ṽ
1

|S|,it = U
(|S|−1 mod S)+1
θ (Ṽ 0)1,it

=
∑
a′∈A

P (at = a′)E

u(a′, |S|, it) + δ
∑
it+1∈I

P (it+1 = i|a′, |S|, it+1)Ṽ
0
1,it+1
|at = a′


=

∑
a′∈A

P (at = a′)E

u(a′, |S|, it) + δ
∑
it+1∈I

P (it+1 = i|a′, |S|, it+1)V
0
1,it+1
|at = a′


because the initial guesses are the same and so Ṽ 0

1,it+1
= V 0

1,it+1

= T (V 0)|S|,it

= V 1
|S|−1,it as desired.

Now suppose that the induction hypothesis is true for iteration k, that

is, Ṽ k

(|S|−k mod |S|)+1,it
= V k

(|S|−kmod |S|)+1,it
. I now show that this implies

the induction hypothesis is true for k + 1, that is, Ṽ k+1

(|S|−k−1mod |S|)+1,it
=

V k+1

(|S|−k−1 mod |S|)+1,it
. For simplicity, let sj = (|S| − k − 1 mod |S|) + 1, and

sj+1 = (|S| − k mod |S|) + 1.

32



Ṽ k+1
sj ,i

= U
sj
θ (Ṽ k)sj ,i

=
∑
a′∈A

P (at = a′)E

u(a′, sj, it) + δ
∑
it+1∈I

P (it+1 = i|a′, sj, it+1)Ṽ
k
sj+1,it+1

|at = a′


because the operator updates seasonal period sj

=
∑
a′∈A

P (at = a′)E

u(a′, sj, it) + δ
∑
it+1∈I

P (it+1 = i|a′, sj, it+1)V
k
sj+1,it+1

|at = a′


by the induction hypothesisṼsj+1,it = V k

sj+1,it

= T (V k)sj ,it

= V k+1
sj+1,i

As desired.

Corollary 6.2. Let V k
s,i be the guess of the value function for states {s, i}

in the kth iteration of SAA algorithm, and let Ṽ k
s,i be the guess of the value

function for states {s, i} in the kth iteration of CSAA algorithm. If V 0
1,i =

Ṽ 0
1,i∀it ∈ {0, . . . , I}, then V

n|S|
1,it

= Ṽ
n|S|
1,it
∀it ∈ I, n ∈ N.

Proof. This follows directly from theorem 1 with k = n.

Corollary 6.3. Given V1,i for all it ∈ I, we can compute Vst,i for each st by

applying CSAA iterations S − 1 times.

Proof. If V1,i∀i is known, then V (|S|, it)∀i can be calculated using equation
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10:

V (|S|, it) =
∑
a′∈A

P (at = a′)E

(
u(a′, |S|, it) + δ

∑
i′∈I

P (it+1 = i|a′, 1, i′)V (1, i′)|at = a′

)
= U |S|(V )|S|,it

which gives all of the V (|S|, it) with one CSAA iteration. The remaining V

can be calculated by repeating this process.

By Corollary 2, SAA and CSAA have the same values in seasonal pe-

riod 1 after n|S| iterations for all n ∈ N. Suppose there is some N such

that after N |S| SAA iterations the value function has converged. Because

both algorithms implement the same Bellman equation, they have the same

asymptotic convergence rate.

When adding a state variable that takes on |S| values to the dynamic

problem, the computational burden of updating a state increases by a fac-

tor of |S|2 because the number of transition probabilities and the number

of states to update each increase by a factor of |S|. The CSAA iteration

eliminates both of these increases in computational burden, while arriving at

the same result as the SAA algorithm.

By the simplification between equation 9 and equation 10, I reduced the

number of transition of probabilities that need to be calculated by a factor

of |S|. Furthermore, the CSAA only updates |I| states in each iteration.

In total, applying the SAA requires the calculation of |S| × |I| transition

probabilities to update |S| × |I| states, resulting in a total burden of |S|2 ×
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|I|2. The CSAA requires the calculation of |I| transition probabilities to

update |I| states, resulting in a total computational burden of |I|2, and so

the computational burden does not grow with the number of cyclic periods.

This algorithm can apply to any cyclic variable. Conventional cyclic

variables include the hours of the day, the months or seasons of the year,

or the phases of the business cycle. In some cases, the state space can be

transformed to make part of the state space cyclic. For example, consider a

dynamic model of a firm that sells a product with quality qt, and qt can only

increase or decrease by 1 unit in each year. In this case, I can restructure

the state space around variables gt and ht such that:

gt = qt mod 2

ht = 2×
⌊qt

2

⌋

Then, qt = ht + gt. In this case g is a cyclic variable that alternates between

0 and 1. The CSAA can then be applied, reducing the burden of solving the

model by a factor of 4. Such a model with 3 firms would have the overall

burden reduced by a factor of 64.

I test the effectiveness of this algorithm by solving for the value function

with both the SAA and the CSAA in 100 randomly generated parameteri-

zations in the presented dynamic model with 52 cyclic periods. I seed both

algorithms with the same starting guess of 0 in all states. In both cases, I

implement the savings associated with limiting the transition probabilities as
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this has likely been part of previous implementations. As such, I expect the

CSAA to outperform the SAA by a factor of 52. I find that the CSAA, on

average, outperforms the SAA by a factor of 43.34; this discrepency is likely

due to a fixed cost in setting up each algorithm. Regardless, the CSAA pro-

vides a substantial savings, and allows cyclic variables to be added to the

state space at no cost.

7 Results

The resulting parameter estimates are available in Table 7. The sign of each

parameter makes intuitive sense: the price coefficient is negative, the search

cost is positive, while consumption utility peaks in winter and is at its at

lowest in summer.

Ssearch probability varies substatially over the course of the year. I esti-

mate that consumers only search 71% of the time in summer (Figure 5). In

dollar terms, the average search costs 39 cents.

This seasonality in search leads to seasonality in the price elasticity, which

varies from -1.36 in the summer to -2.18 in the winter (Figure 6). These imply

that the firm would set lower prices in the winter.

To find out whether the seasonal variation in search is caused by seasonal-

ity in consumption utility or price variation, I recalculated search probability

while removing all seasonal variation in each of these terms (Figure 7). I find

that the majority of the yearly variation in search costs is due to seasonal
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price expectations, though seasonal consumption utility plays an important

role.

Finally, to demonstrate how search probabilities change with search in-

centives, I increased the promotional depth by 25% and recalculated search

probabilities (Figure 8). As expected, I find that search probability increases

with promotional depth.

Dynamic Results

Consumption Spline 1 −0.0321
(0.1202)

Consumption Spline 2 −0.4959∗∗∗

(0.1751)

Consumption Spline 3 −0.2165∗a∗

(0.1343)

Consumption Constant 6.0435
(5.3479)

Price Coefficient −0.8803∗∗∗

(0.1386)

Search Cost 0.3415∗∗∗

(0.6967)

log(Search Variation) −3.1595∗∗∗

(0.6071)

log(Consumption Variation) −2.8847∗

(1.165)

Table 4: Dynamic Variables
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Cream of Chicken −0.1118∗∗∗

(0.0421)

Chicken Noodle 0.1038∗∗∗

(0.0549)

Mega Noodle −0.7567∗∗∗

(0.0558)

Chicken Goldfish −0.3308∗∗∗

(0.0540)

Cream of Celery −0.7741∗∗∗

(0.0562)

“Missing” −0.5848∗∗∗

(0.0600)

Tomato −0.7623∗∗∗

(0.1003)

Tomato Goldfish −1.4226∗∗∗

(0.0888)

Table 5: Flavor Dummy Variables
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8 Conclusions

In summary, I find that seasonal purchase without search can explain counter

cyclic pricing with an explanation that is plausible and fits the data well. I

find that price changes are significantly correlated with seasonal trends in

price elasticity. One limitation of this paper is that it does not directly

compare the impact of purchase without search with the impact of other ex-

planations of counter cyclic pricing, such as loss leader pricing, and consumer

heterogeneity. Counter cyclic pricing could be working in tandem with these

other effects, and future work might compare their magnitude.

I find that seasonal trends in consumption utility are important to mod-

elling the concentrated soup industry. Other researchers might consider

adding seasonal variables to their dynamic models because seasonal varia-

tion might be important to their problem, and seasonal variables can be

added to the state space with no additional computational burden using the

CSAA. Finally, I show that consumers may not observe prices before mak-

ing their purchase decision. Informing consumers of price promotions might

increase sales, but at the cost of increasing the effective price sensitivity.
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Figure 1: Seasonality in Demand
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Figure 2: Seasonality in Pricing
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Figure 3: Price Sensitivity Proxy By Consumer Type
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Figure 4: Price Sensitivity By Time Of Year
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Figure 5: Estimated Search Probability
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Figure 6: Estimated Price Elasticity
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Figure 7: Counterfactual Search Probability - Determinants of Search
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Figure 8: Counterfactual Search Probability - Promotional Depth
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