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Abstract

We introduce the Focused Concept Miner (FCM), an interpretable deep learning text mining
algorithm to (1) automatically extract interpretable high-level concepts from text data, (2) focus
the mined concepts to explain user-specified business outcomes, such as conversion (linked to
read-reviews) or crowdfunding success (linked to project descriptions), and (3) quantify the
correlational relative importance of each concept for business outcomes against one another and
to other explanatory variables. Compared to 4 interpretable and 4 prediction-focused baselines
that partially achieve FCM’s goals, FCM attains higher interpretability, as measured by a variety
of metrics (e.g., automated, human-judged), while achieving competitive predictive performance
even when compared to prediction-focused blackbox algorithms.

The relative importance of discovered concepts provides managers and researchers with easy
ways to gauge potential impact and to augment hypotheses development. We present FCM as a
complimentary technique to explore and understand unstructured textual data before applying
standard causal inference techniques.

Applications can be found in any setting with text and structured data tied to a business
outcome. We evaluate FCM’s performance on 3 datasets in e-commerce, crowdfunding, and
20-NewsGroup. Plus, 2 experiments investigate the accuracy-interpretability relationship to
provide empirical observations for interpretable machine learning literature along with the im-
pact of focusing variables on extracted concepts. The paper concludes with ideas for future
development, potential applications, and managerial implications.

Keywords: Interpretable Machine Learning, Deep Learning, Text Mining, Automatic Con-
cept Extraction, Coherence, Transparent Algorithm, Managerial Exploratory Tool, XAI.
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1 Introduction

It is becoming imperative for businesses to efficiently process and understand text data, given that
more than 90% of data is estimated to be unstructured (Gantz and Reinsel, 2011), 68% of which is
consumer generated (Mindtree, 2017). Content creators like Netflix and Amazon are collecting user
content consumption data and feedback reviews to create new shows tailored for success (Wernicke,
2015). Companies like C&A Marketing have entire teams of people who read through reviews on
Amazon and eBay to identify consumer needs and use them to create new products (Feifer, 2013).
After the decades-long surge of unstructured data, retailers and researchers are getting better at
utilizing text data to obtain actionable insights, whether it is consumer preferences extracted from
reviews or default probability gleaned from crowdfunding descriptions (Netzer et al., 2019).

Yet, despite the deluge of potentially insightful data, studies show that nearly 80% of enterprises
don’t know how to manage unstructured data (Rizkallah, 2017), and $3 trillion in value goes uncap-
tured globally in text data alone (McKinsey, 2016). We believe this is due in part to the lack of text
mining methodologies that (1) emphasize the high-level interpretability of automatically extracted
concepts (by concept, we mean a singular coherent construct), (2) extract concepts that are directly
linked to an existing Y of business importance to explain it, and (3) provide an importance weight
to mined concepts in relation to one another and in the context of other structured exploratory
variables to gauge their potential economic significance. For a text mining method to be useful for
managers, all three requirements must be met. In this paper, we introduce the Focused Concept
Miner (FCM), a novel deep learning-based text mining algorithm that (1) inherently increases in-
terpretability of mined concepts as quantified by both human judgements and a coherence metric
(Mimno et al., 2011) (a measure from topic modeling literature that measures how singular and
coherent a set of keywords is also called topic interpretability) compared to existing techniques,
(2) is focused on mining concepts guided by Y specified by the user, and (3) can provide the corre-

lational relative importance of mined concepts compared to user-specified referential X (predictor
variables). We outline the algorithm in Algorithm 1 and visualize it in Figure 1. By applying
FCM, managers should be able to quickly make sense of and extract insights from a large amount
of textual data tied to a business outcome before launching a more involved causal inference study
for prescriptive policy.

We discuss existing approaches to achieve the partial output described in Algorithm 1 in Sec-
tion 2, as well as the novel aspects of FCM. Figure 2 presents a flow chart for concept mining and
when to use FCM over other methods. We evaluate FCM’s performance on a unique dataset that
tracks individual-level review reading, searching, and purchasing behaviors on an e-commerce site.
Applying FCM to this dataset can extract the product review content read by consumers that is
correlated to higher conversion rates and illustrate how this content compares to other consumer
browsing and click behaviors, as is commonly used in the industry and research. The results and ex-

Algorithm 1 Focused Concept Miner: Algorithm Overview

Input (1) Optional Structured X (e.g., numerical, categorial) (2) Textual X (corpus) (3) Y of business
importance (numerical, categorical) linked to corpus and X

Output (1) Focus-mined concepts predictive of Y (2) Correlational relative importance of concepts against
one another and against structured X (3) predictive model

Features (1) Improved interpretability of mined concepts (2) Potential new concept finding (3) Focused
concepts based on Y (4) Joint estimation of structured X and text that is end-to-end (in one
pipeline) (5) No need for pre-defined human-tagged training data (6) Inductive inference for new
unseen data (7) Online learning via mini-batch gradient descent
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periments show that FCM does indeed provide more human-interpretable concepts, as measured by
human-judged metrics and coherence metric in comparison to similar, yet feature-lacking methods.
In addition, FCM automatically uncovered concepts from consumer-read product reviews that the
consumer behavior literature found to be important for conversion this provides an instance of ex-
ternal validity. Furthermore, FCM performs better than existing techniques in predicting conversion
using both structured X and text data. More importantly, FCM provides the relative importance of
mined concepts compared to other X, so that managers may understand the economic importance
of the extracted concepts. Lastly, we enhance the model to show at what position in the review-
reading process these mined concepts matter more in predicting consumers’ conversion decisions.
Taken together, we demonstrate how FCM can be applied to extract valuable insights from text to
inform managerial practices. We also run FCM on a crowdfunding dataset to demonstrate robust-
ness in Section 5.6 and 20-newsgroup (Appendix E). Additionally, we run series of experiments to
investigate the accuracy-interpretability relationship to provide empirical observations. Our contri-
bution is thus a new method for text exploration with a focus on demonstrating method potentials,
business use-cases, and experimental results on accuracy-interpretability relationship to add to the
interpretable machine learning literature.

In comparison to related methods, FCM excels in extracting coherent focused concepts and
predictions due to the following conceptual reasons:

1. Focused: Concept mining is guided by a user-specified Y of business importance to extract Y
relevant concepts. This seems counterintuitive since it seems to add an additional constraint.
On the flipside, text is high dimensional data and providing Y effectively reduces hypotheses
space. Focusing by Y refines the task more accurately for the algorithm.

2. Semantic Similarity Knowledge: Word representation that learns semantic relationships
is used. It also uses both local and global contextual information to focus-mine concepts.

3. Concept Diversity & Sparsity: The model forces discovered concepts to be distinct from
each other (diversity) and to be pithy (sparsity).

4. End-to-End: Focus-mined concepts and other explanatory X are jointly estimated to predict
outcome variable in an end-to-end (one pipeline optimization) fashion. This ensures that the
model shares information from the beginning to the end and is more efficient.

The end result is a deep learning-based exploratory method specifically constructed for deriving
value from textual data in business settings with managers in mind. It performs in one optimization
step what may have taken managers many steps worth of text mining and processing tasks, often
filled with ad-hoc feature engineering and unclear methods for defining and constructing coherent
and interpretable concepts. FCM demonstrates that deep learning approaches, normally associated
with a lack of interpretability and considered blackbox, could be utilized to help businesses better
understand textual data.
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Figure 1: FCM Features Visualized with Use-case Example.

We end this introduction with caveats on what FCM can and cannot do, its envisioned usage, and
a description of the use-case presented in this paper. Firstly, FCM is an exploratory and non-causal
technique that is predictive in nature1. Rather, we see FCM as a complimentary technique to explore
and understand a large amount of textual data before zeroing-in on a hypothesis-driven causal study.
New concepts extracted from FCM can inform further in-depth causal investigations. FCM could
serve as an essential tool to empirically explore and refine exploding volumes of unstructured text
data in an empirical-theoretical-empirical-theoretical (ETET)2 approach to management science, as
discussed by Ehrenberg (1994), or as a tool to recover Empirical Generalization3 in management
science, as discussed by Bass (1995). As we will demonstrate, two use cases of FCM include:

• Consumer-read Content Insights: Figuring out what content consumers care about in product
reviews before making purchases. Reviews read are the text data, product-level and consumer-level
data are the referential X , and conversion is the Y . FCM discerns what content consumers care about
and the quantifies concept correlation to conversion.

• Successful Crowdfunding Content: Exploring the type of well-funded crowdfunding project, such
as on Kickstarter or Donorchoose. Project descriptions are the text data, project details are X , and
the funding’s success is the Y . FCM can discern which projects are funded more successfully.

Section 2 introduces the interpretable machine learning literature then discusses existing relevant
text mining techniques in relation to FCM. Section 3 unfolds the model. Then, we describe the
proprietary review dataset used to demonstrate FCM in Section 4. Section 5 touches on different
aspects of the algorithm’s performance in relation to existing baseline models and other extensions.
Accuracy-interpretability experiments are presented in Section 5.5 and Section 5.6 runs FCM on
crowdfunding data while-exploring the impact of Y on mined concepts. We discuss limitations
and future ideas for FCM in Section 6 and conclude with managerial implications and several
hypothetical use-cases of FCM in management science.

1Extracted concepts and estimations were robust for +500 different runs. However, causality is beyond the scope
of this method. Instead, we discuss the challenges and potential ways to use FCM for causal inference in Section 6.

2Ehrenberg (1994) posits that management science needs an empirical-theoretical-empirical-theoretical (ETET)
approach in which a researcher would “1) Establish some empirically well-grounded theory and 2) Test the theory
more widely, deduce new conjectural theory, test that widely, and continue”.

3Bass (1995) describe Empirical Generalization as “a pattern or regularity that repeats over different circumstances
and that can be described simply by mathematical, graphic, or symbolic methods”.
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Figure 2: Flowchart for Concept Mining and When to Use FCM. See Section 2 for Literature.

2 Literature

Broadly, the task described in Algorithm 1 is applicable in many settings where text data is linked to
a business outcome. For clarity, take for example a consumer purchase (Y-var) related to consumer
behavior on the web (X-var) and the reviews the consumers read as a text input. The manager may
want to 1) predict conversion from user behavior and reviews read, 2) investigate what behavior (X-
vars) may predict conversion, and 3) delve deeper into the review text, to understand what content
may be highly correlated to conversion. FCM can be used for all of these tasks, but its focus is
primarily on the 3rd problem. Normally, deriving insights from text is tackled with a multi-step
approach involving several different techniques, as discussed in the next section. We conceptually
outline a popular supervised learning framework to extract the economic importance of text in
business data as shown in Lee et al. (2018) and Liu et al. (2019). Figures 3 show two approaches.
The first is a multi-step approach, Figure 3a, which emphasizes text insight extraction—the 3rd
problem. One would first apply concept mining algorithms such as Latent Dirichlet Allocation or
aspect mining (to be discussed in the next subsection), which aim to reduce and extract topics
from text either supervised or unsupervised. Mined concepts can then enter any classification
or regression framework as X for prediction and correlational relative importance. As discussed
next and in the results section, this framework suffers from poor interpretability, lack of focus by
the Y , and subpar prediction accuracy when compared to FCM. Next, a manager that prioritizes
high predictive performance may apply recent advances in deep learning (Figure 3b), such as long
short-term memory (LSTM) which excel at processing sequential data or convolutional neural nets
(CNN) which recover local-level feature patterns to aid prediction (for details, see Goldberg (2016)).
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However, this approach offers no insight from the text on why conversion might have happened.
For further interpretable insights, post hoc processing to open up the blackbox must be applied
such as LIME (Ribeiro et al., 2016) or SHAP (Lundberg and Lee, 2017). We defer the discussion of
this methods to Section 2.1, but Guidotti et al. (2018) offers a great survey. However, this multi-
step approach often results in fragmented local-level concepts specific to individual data point (i.e.,
specific to a document and not corpus), unlike FCM—that is, users cannot get high-level global

concepts from any post hoc explanation method on deep learning.
In Section 2.1, we discuss what it means for an algorithm to be more “interpretable” by intro-

ducing the XAI (eXplainable Artificial Intelligence) and interpretable machine learning literature.
We discuss several definitions of interpretability and choose operationalizable ones to come up with
metrics to compare FCM against existing techniques. Next, we discuss two relevant literatures that
provide competing techniques from computer science (pertaining to extracting content and concepts
from text data) and similar applications (content extraction from text) from business. We point out
the conceptual differences of FCM compared to other techniques. We defer the technical details to
Section 3 and interpretability measurement details to Section 3.7.

Reviews & 
Other data  

Concept Mining (E.g., Topic 
models, Supervised Content) 

Classification Using Concepts 
as X-vars (e.g., Neural Net, 
Linear Regression) 

Output Prediction 

(a) Multi-step Framework to Predict and Extract Insight from Text: A manager wishing to automatically
extract concepts from text may approach with this multi-step machine learning framework.

Reviews & 
Other data 

Feature Engineering + Classification  
(Deep Learning: LSTM, CNN, Recursive RNN) 

Output Prediction 

(b) Deep Learning Framework to Predict Conversion: A manager who wants high predictive performance
may apply recent advances in deep learning. However, this offers no insight from the text on why conversion might
have happened. For further interpretable insights, post hoc processing to open up the blackbox must be applied.
Guidotti et al. (2018) surveys different methods to do so. However, this approach results in fragmented concepts,
unlike FCM. Middle LSTM graphic taken from https://colah.github.io/

Figure 3: Conceptual Frameworks to Predict Outcome and Derive Insights from Text.

2.1 Interpretable Machine Learning (ML)

The success of high-performing blackbox algorithms such as deep neural networks (LeCun et al.,
2015) and boosted trees (Chen and Guestrin, 2016) is well documented. For example, top-performing
algorithms in data science competitions, such as those on Kaggle.com, are almost always one of the
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mentioned two.4 The current challenge, however, is to help humans to fully understand these
algorithms. These blackbox algorithms are too complicated for humans to fully discern why certain
predictions were made. These algorithms do not give any rationale for predictions and attempting
to figure them out is prohibitively expensive, if not impossible, due to their sheer intricacy. This
is an especially significant issue when deployed on business intelligence systems that deal with
consumer data, such as in automated credit approval and investments where auditability, liability,
privacy, and other high-stake issues are entangled. In fact, the EU implemented GDPR (General
Data Protection Regulation) as of May 2018 to protect consumers and to encourage algorithmic
transparency among firms while in that same year DARPA announced $2 billion in initiatives for
building the next generation of XAI (eXplainable Artificial Intelligence).

In most business settings or in non-trivial situations, understanding why algorithms made cer-
tain predictions is critical to prevent egregious failures, justify usage, improve efficiency, and to
ultimately use for decision making. Blackbox failures have been well documented. Angwin et al.
(2016) and Wexler (2017) report cases of algorithmic racial bias in bailout decisions (stemming from
biased training data obfuscated by the opaqueness of the algorithm), and even instances where the
algorithms incorrectly denied parole. Egele et al. (2012) report training a deep net to distinguish
regular code from malware. The system ended up picking up a signal of badly written comments in
the code rather than actual code content. Zech et al. (2018) report training a deep vision net in the
context of medical disease prediction based on x-rays. The system keyed on the meta-tagged word
“portable”—reflective of where the samples came from—instead of a valid signal for disease. Addi-
tional consequences continue to pile up as blackbox algorithms are utilized without interpretability.

In response to the need for interpretability in machine learning algorithms, several sub-streams
of research have boomed since mid-2010s (Please see Guidotti et al. (2018); Gilpin et al. (2018) for
surveys). The stream most related to our work is the XAI literature, which broadly defines (Rudin,
2019) two different algorithm families for interpretability.

Definition 1 (Explainable Machine Learning): Given a blackbox predictor B and a training
dataset D = {X,Y }, the explainable machine learning algorithm takes as an input a blackbox B
and a dataset D, and returns a transparent predictor T with requirements that 1) T replicates
the prediction of blackbox predictor B with high fidelity, and 2) T offers human-understandable
rationale for each prediction either at the instance-level or model-average level. T may be a shallow
tree, small set of rules, or linear regression with not too many explanatory variables.

Definition 2 (Interpretable Machine Learning): Interpretable machine learning algorithms
refer to inherently transparent algorithms that provide human-understandable rationale for predic-
tions yet still offer competitive performances compared to prediction-focused blackbox algorithms.

In this framework, our paper falls under the category of interpretable machine learning algo-
rithms.

While the XAI literature has grown significantly for the last five years and will continue to do so,
the definition of “interpretability” still remains an illusive, fragmented, and domain-specific notion
(Rudin, 2019; Lu et al., 2020) left to the researcher and user to define. Lipton (2016) states “Both
the motives for interpretability and the technical descriptions of interpretable models are diverse and
occasionally discordant, suggesting that interpretability refers to more than one concept.” A recent
comprehensive survey of XAI literature, Guidotti et al. (2018), concludes by stating that “One of
the most important open problems is that, until now, there is no agreement on what an explanation
is.” There have been several attempts to define this. To briefly paraphrase a few sampled works,
Doshi-Velez and Kim (2017) state “Interpretability is the degree to which a human can consistently

4According to Kaggle.com co-founder Anthony Goldbloom. https://www.linkedin.com/pulse/lessons-from-2mm-
machine-learning-models-kagglecom-data-harasymiv/
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predict the model’s result”, Miller (2018) state “Interpretability is the degree to which a human
can understand the cause of a decision”, and Dhurandhar et al. (2017) state “AI is interpretable
to the extent that the produced interpretation I is able to maximize a user’s target performance”.
Few papers also tackle desiderata for interpretability conceptually, such as unambiguity (input and
outputs are clear), selectiveness (a parsimonious explanation that does not overwhelm the user),
contrastiveness (a “had input been x, output would have been y” type of explanation), factative
(has to be highly truthful), etc. (Lipton, 2016; Doshi-Velez and Kim, 2017; Miller, 2018; Ras et al.,
2018; Murdoch et al., 2019; Lu et al., 2020).

In this paper, we incorporate insights from XAI literature, as well as interpretability in topic
modeling literature, to propose to measure the “interpretability” by 1) tapping into existing inter-
pretability measurements in topic modeling called coherence, 2) confirming the coherence measure
with human-judgement directly from mechanical turk, and 3) operationalizing the definition by
Dhurandhar et al. (2017) into our problem-specific metric and measuring it directly with human
subjects from mechanical turk. We discuss the measures in Section 3.7.

2.2 Finding Concepts in Text: Topic Modeling & Others

The algorithms of interest related to our method include any method which partially achieves the
goal outlined in Algorithm 1.

Within machine learning (ML) literature, natural language processing (NLP) is primarily con-
cerned with extracting meaningful concepts from a given text. NLP literature offers several ways
to achieve the outcome described in Algorithm 1. An initial approach might be to apply any super-
vised machine learning algorithm on Input (as defined in Algorithm 1) to treat individual words or
n-grams (collections of n contiguous words) as X to predict the Y of business interest. Using any
combination of feature selection methods (Chandrashekar and Sahin, 2014), a data scientist may
be able to extract several keywords or n-grams that could potentially explain the business outcome.
However, these methods usually provide a fragmented list of words without enough coherence to
be effective in extracting prescriptive, policy-worthy concepts. Once they have a list of salient and
informative words from these analyses, managers must drill down further to manually draw out
several coherent concepts, which is a subjective rather than objective procedure. After this, it is
still unclear how a manager may be able to gauge the economic impact of singular concepts that
can consist of several different key words.

The sub-area of sentiment analysis called aspect-based sentiment analysis may offer tools to
partially achieve the goal of Algorithm 1. This analysis is concerned with mining opinions from
text about 1) specific aspects of focal products or subjects and 2) sentiment valence of these as-
pects (Liu, 2012). Specifically, an aspect extraction sub-task can be used to reveal key concepts of
the text (please see Pontiki et al. (2016) for task descriptions and relevant papers). Briefly sum-
marized, aspect extraction in product opinion mining utilizes a series of smaller techniques and
heuristics to figure out concepts that describe product aspects. For example, most algorithms first
identify adjectives in text using part-of-speech tagging and then conduct additional filtering based
on informativeness and importance. This set of techniques lacks the features to achieve the goal
of Algorithm 1 because 1) the discovered aspects are usually very simple and specific to a product
or subject in the text, further requiring managers to manually identify more complex concepts by
combining collections of words; 2) aspect extraction cannot be supervised by Y of business im-
portance; 3) these techniques often require domain knowledge to feature engineer and extract out
aspects, which defeats the exploratory purpose of identifying new concepts in unexplored text data
as outlined in Algorithm 1; and 4) while aspect-based sentiment analysis is usually concerned with
product reviews and is thus unclear in how it extends to other texts, FCM goes beyond product
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reviews and can be applied to any text data.
One of the most relevant and influential bodies of work that focuses on automatically summariz-

ing and extracting concepts from text data is topic modeling literature. Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) is a probabilistic generative model that seeks to identify latent topics that
comprise a collection of textual data (corpus). Very briefly described, LDA assumes that a topic is
a probabilistic distribution over a finite set of vocabularies and that a document consists of several
different topics (specified by the user). Then, the method estimates a hierarchical Bayesian architec-
ture with an expectation-maximization algorithm to converge on document-topic distribution and
topic-word distribution. The end result is that a user gets a probability vector of topics for each
document (document-topic vector) and a bag-of-words with loadings to describe topics (topic-word
distribution).

While LDA is a seminal work, it cannot achieve the goal outlined in Algorithm 1 because it is
an unsupervised algorithm. Given prior domain knowledge, a user cannot guide the algorithm to
discover certain topics or provide a variable for algorithms to adjust the topics. Seeded LDA by
Jagarlamudi et al. (2012) extends the original LDA to enable users to guide the topics based on
user-inputted topic words while supervised versions of LDA (Blei and Mcauliffe, 2008; Zhu et al.,
2012) modified the original model to guide topics discovered with user-specified variables. Lastly,
Structural Topic Model (STM (Roberts et al., 2014)) can both incorporate X and be supervised.
Yet these algorithms (1) cannot provide relative importance compared to other explanatory X, (2)
do not jointly optimize with the given explanatory X and discovered topics, and, most importantly,
(3) lack learning interpretable topics or concepts, as discussed by Chang et al. (2009). In other
literature streams, several papers tackle how to increase the semantic-coherence of topic models
(see Mimno et al. (2011) for a good introduction). However, these models lack the ability to focus-
mine topics from a variable of interest, as mentioned previously. Finally, a handful of recent papers
explore deep learning-based models that combine word embedding (Mikolov et al., 2013a) and LDA
to collaboratively improve the quality of latent topics and word embedding (Xun et al., 2017),
to improve discovered topics and word embeddings via topic-specific word embeddings (Shi et al.,
2017), and to jointly learn topic and word embeddings (Moody, 2016). However, these papers are
again missing several features, such as 1) the supervision of topic discovery guided by the Y , 2) the
joint estimation of structured and unstructured data to predict the Y , 3) inductive inference that
enables prediction given a new unseen data, and 4) fall behind FCM in predictive performance as
well as interpretability. In summary, we are not aware of any methodologies that achieve the same
output as our model.

2.3 Content Extraction Via NLP in Business

Natural language processing has been applied to a variety of different textual data for business
insights and applications. Some studies are dedicated to extracting and measuring brand perception,
market trends, and marketing efforts from social media data (Netzer et al., 2012; Culotta and Cutler,
2016; Lee et al., 2018), while many are dedicated to extracting content and signals out of customer-
generated product review data (Decker and Trusov, 2010; Archak et al., 2011; Lee and Bradlow,
2011). In the context of crowdfunding platforms, Netzer et al. (2019) apply text mining to identify
signals for loan default.

Here, we mention papers concerned with methodology or the applications of automatically ex-
tracting concepts or topics from textual business data. To the best of our knowledge, most papers
in business research that seek to automatically extract concepts and topics from text data involve
some variation of LDAs. Tirunillai and Tellis (2014) apply LDA to consumer-generated review data
to extract latent dimensions of consumer satisfaction. Buschken and Allenby (2016) extend the
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traditional LDA model to restrict one topic per sentence and achieve better extraction of concept
from user-generated product reviews. Puranam et al. (2017) apply LDA in a restaurant review
setting to see the impact of health regulation on what consumers talk about and on word-of-mouth.
Liu and Toubia (2018) extends LDA and develop Hierarchically Dual Latent Dirichlet Allocation,
then apply it in a search setting to infer consumers’ content preferences based on their queries on
the fly. Toubia et al. (2018) apply positive psychology and a seeded LDA model by Jagarlamudi
et al. (2012) in a consumer entertainment consumption setting to predict movie watching behavior.

The extant approaches in the literature echoing the discussion in Section 2.2 are missing
many of the features that we propose with FCM. While LDA methodology is a very useful and
seminal work with many benefits, these models are not built to extract concepts from text data
guided by user-inputted variables nor to discern the relative importance of X in relation to mined
concepts, all of which are important in making sense and extracting actionable insights. More
importantly, as we show in Section 5.2, results from these models often yield incoherent and intruded
(diffusion of concepts) topics with unclear ways to understand and utilize discovered topics as X.

On the other hand, some papers report success with multi-stage supervised machine learning
approaches in which pre-defined key content is first defined and tagged by humans and then used
to train NLP algorithms to scale to larger unseen data. In this stream, Lee et al. (2018) utilize
a traditional NLP approach to study what content (pre-defined and human-tagged content in in-
formative and brand-personality advertising) companies should post on social media to increase
user-engagement (like, comment, share, and click). Timoshenko and Hauser (2018) utilize a deep
learning NLP approach to extractively reduce user review data and identify content (pre-defined
and human-tagged on informativeness) related to consumer needs. Liu et al. (2019) utilize a deep
learning NLP approach to investigate what content (pre-defined and human-tagged content in di-
mensions of product price and quality) in user reviews influence consumer conversion.5 These papers
require 1) ex-ante knowledge of what content to examine and 2) human-tagged labels on text data
to answer particular business questions. In contrast, FCM needs neither and identifies concepts
automatically. This is essential when managers do not have strong ex-ante knowledge and want to
discover concepts in text highly correlated to a specified Y for exploratory purposes.

3 Model

This section formalizes the notion of a focused concept in a neural network model and estimation
details.

3.1 Definition of Focused Concept

We begin by defining focused concept. Broadly, a concept is an idea or a construct. Our model is
designed to optimize the coherence of the uncovered concepts by associating with each concept a
collection of semantically similar keywords that describe the central idea of the concept; for exam-
ple, a concept associated with the words “beautiful, large, lovely” is essentially one that embodies
“aesthetics”. Intuitively, individual words form the most basic concept – an atomic concept. Several
words together form a more complex concept. The key idea is that concept and word, abstractly
speaking, can live in the same space. This particular idea has been successfully utilized to quantify

5They also propose a second convolutional neural net-based approach called the “full deep learning model”. The
goal of this model is purely prediction, and while a post-hoc salient n-gram study was used to visualize what n-grams
may have influenced the CNN model prediction, this does not 1) extract coherent concepts guided by a Y-var and 2)
cannot provide the relative importance of concept correlation to a Y-var.
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Dimensions
D Number of documents
T Number of concepts
V Vocabulary size
E Embedding size
k Window size
m Number of negative samples

Learned Parameters
Ew Word embedding matrix (V⇥E)
Et Concept embedding matrix (T⇥E)
W Document-concept weights (D⇥T )
✓ Concept-classification weights (1⇥T )

CAN Concept Allocator Network

Intermediate Elements
d Document index
b
d

Bag-of-words document vector
w, c Pivot, context word indices
v
w

, v
c

Pivot, context word embeddings
C
k

(w) Set of context word indices
N

m

(w) Set of negative samples
Loss Weights

� Dirichlet sparsity strengths
⌘ Diversity regularizer strength
⇢ Classification loss strength

Table 1: Notation

complex concepts such as gender and ethnic stereotypes (Garg et al., 2018) and cultural conno-
tations (Kozlowski et al., 2018) directly from text data using a technique called Word2Vec, which
comprise the first layer of FCM and will be elaborated next. FCM builds on this proof-of-concept
via a carefully constructed novel architecture, loss function, and regularization terms, to ensure that
extracted concepts are both focused by the outcomes in the data, and diverse in the sense that no
two concepts have a significant overlap (i.e., the concepts are segregated). The proposed model can
be trained on any large corpus of documents and their associated outcomes, and the concepts can
be recovered from the model parameters.

Relating to the underlying mathematics of the model, concept is defined as:

Concept a vector in a semantic-similarity-aware vector space. Similar vectors in this space have
similar role and meaning in natural language. A concept can be represented by a word or
collection of words local to each other.

Focused-Concept a representative vector for a collection of words, where the words in the collec-
tion have similar semantics and high correlation to Y. Simply, a concept highly correlated to
Y.

Connection to topics in topic modeling literature is simple. Topics are defined as distribution over
words and a topic consists of words that co-occur frequently in documents. In connection to topics:

Concept Topic + additional constraint that all words describing this topic are semantically similar.

In the rest of this section, we describe the model by introducing each of its components and their
motivation, and finally tie them all together and discuss various forms of data that the model may
be trained on. Our notation is summarized in Table 1.

3.2 Embedding Words, Documents, and Concepts

Embedding words. We begin by modeling the distribution of words in each document. We rely
on the distributional hypothesis in linguistics (Rubenstein and Goodenough, 1965; Sahlgren, 2008),
which states that words used together in similar contexts tend to have similar meanings.6 Recent

6In the words of linguist John Rupert Firth: “You shall know a word by the company it keeps.”
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models based on this hypothesis have demonstrated state-of-the-art performance on various natural
language processing tasks (Mikolov et al., 2013a,b; Pennington et al., 2014). We follow the example
of word2vec (Mikolov et al., 2013a), which encodes the distributional hypothesis as a neural network
to find vector representations of words such that semantic-spatial relationships are preserved—that
is, “similar” words lie nearby in the embedding space. For clarity, we adopt the model derivation
and notation from Goldberg and Levy (2014).

To this end, we represent each word w by a real-valued vector v
w

of length E, called its embedding.
If we denote the vocabulary of all words in our corpus of documents by V , the embeddings are stored
as rows in a matrix Ew of dimension |V|⇥E. We denote by C

k

(w) the set of context words around
the pivot word w within a symmetric k window size. The pivot word w is the center word used to
predict the surrounding context words c 2 C

k

(w). We define the likelihood of a corpus of documents
in terms of their words and contexts. Given a corpus (a document d, or collection of documents),
its likelihood is defined as:

Y

d2corpus

Y

w2document d

Y

c2C
k

(w)

p(c|w;Ew) (1)

This is essentially a mathematical formulation of the distributional hypothesis in linguistics: the
probability of a document is defined in terms of the conditional probability of each context word c
given its corresponding pivot word w. Given a context word c and its pivot word w, we would like
to capture the fact that words occurring in the same context often should have similar embeddings.
Hence, we parameterize the conditional probability p(c|w;Ew) as follows:

P (c|w;Ew) =

evc·vwP
c

02V evc0 ·vw
(2)

where v
c

and v
w

are the embeddings of c and w. Our goal is to learn the embeddings Ew that
maximize the likelihood of the observed data in eq.(1).

However, computing the conditional probability term in eq. (2) involves a computationally ex-
pensive summation in the denominator over all possible words in the vocabulary, of which there may
be hundreds of thousands. Hence, we approximate this objective via skip-gram negative sampling

(Mikolov et al., 2013b).
Let D be the set of all observed pivot-context word pairs in the corpus, and D0 be the set of all

pivot-context pairs that do not occur in the corpus. For a given a pivot-context word pair (w, c), let
P ((w, c) 2 D|Ew) be the probability that this pair occurs in the corpus, and let P ((w, c) /2 D|Ew) =

1 � P ((w, c) 2 D|Ew) be the probability that the pair does not occur in the training corpus. We
would like to find Ew such that the likelihood of the observed pivot-context pairs is maximized,
while the likelihood of the unobserved pivot-context pairs is minimized. This is captured by the
following objective:

max

Ew

Y

(w,c)2D

P ((w, c) 2 D|Ew)
Y

(w,c)2D0

P ((w, c) /2 D|E
w

) (3)

We can parameterize the probability P ((w, c) 2 D|Ew) using the logistic-sigmoid function
�(x) = (1 + exp(�x))�1 that scales its argument to lie in (0, 1):

P ((w, c) 2 D|E
w

) = �(v
w

· v
c

) =

1

1 + e�v

c

·v
w

(4)

Plugging eq. (4) into eq. (3) and taking logarithms leads to the following objective:
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max

Ew

log(
Y

(w,c)2D

P ((w, c) 2 D|E
w

)

Y

(w,c)2D0

P ((w, c) /2 D|Ew))

= max

Ew

X

(w,c)2D

log(P ((w, c) 2 D|Ew)) +
X

(w,c)2D0

log(P ((w, c) /2 D|Ew))

= max

Ew

X

(w,c)2D

log
1

1 + e�v

c

·v
w

+

X

(w,c)2D0

log(1� 1

1 + e�v

c

·v
w

)

= max

Ew

X

(w,c)2D

log
1

1 + e�v

c

·v
w

+

X

(w,c)2D0

log
1

1 + evc·vw

= max

Ew

X

(w,c)2D

log(�(v
c

· v
w

)) +

X

(w,c)2D0

log(�(�v
c

· v
w

)) (5)

The computationally expensive summation over all possible (w, c) 2 D0 in the second term can
be approximated by summing over m negatively-sampled pivot-context pairs D

m

. The sampling is
performed as follows for every (w, c) 2 D: sample (w, c01), (w, c

0
2), . . . , (w, c

0
m

) such that (w, c0
i

) /2 D
and each c0

i

is drawn with probability proportional to its frequency7 in the corpus, P (c0
i

) = n(c0
i

)/N
where n(w) is the frequency of word w in the corpus and N is the number of words in the corpus.

Converting the maximization to a minimization problem yields the first component of the loss

function

8 that our method seeks to minimize:

Lneg = �
X

(w,c)2D

log(�(v
c

· v
w

)) �
X

(w,c)2D0

log(�(�v
c

· v
w

)) (6)

where � is the logistic sigmoid function �(x) = (1 + exp(�x))�1 as defined earlier, m is the
number of negative samples and k is the window-size. Taking a closer look at this loss function, we
observe that the first summation operates over all pivot-context pairs in the corpus to ensure that
words occurring often in the same context have similar embeddings. The second term operates over
each pivot-context pair that does not occur in the corpus, to encourage them to have dissimilar

embeddings.
Embedding documents and concepts. We now describe an extension of the model to capture

“concepts” (collections of coherent words relating to easily interpretable ideas) by combining ideas
from Mikolov et al. (2013a) and Moody (2016). We assume the existence of a fixed number of
concepts T , and assume that the words of each document are drawn from a distribution over these
T concepts. We store the unnormalized form of this distribution (the “concept weights” for each
document) in matrix W of dimension D ⇥ T , where D is the number of documents in the corpus.
Each concept is represented by its own embedding of length E, stored in a matrix Et of dimension
T ⇥ E; note that the concept embeddings lie in the same space as the word embeddings, which is
crucial for each concept to be interpreted by a collection of keywords. Given the concept embeddings
Et and concept weights W, the embedding of a document v

d

can be derived as a weighted linear
combination of its concept embeddings, in line with our earlier assumption. We first transform the

7Note that Mikolov et al. (2013b) use the frequency exponentiated to 3/4 which provided superior empirical
performance.

8An alternative method to obtain word embeddings is via factorization of the shifted pairwise mutual information
(PMI) matrix Levy and Goldberg (2014). However, formulating the objective this way eliminates the flexibility to
extend the model to incorporate several objectives such as concepts, supervision, and diversity, to be discussed later
in this section.
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document-concept weights W[d] to a probability distribution p
d

, and then use this to weight each
of the concept embeddings:

p
d

[i] =

eW[d][i]

P
T

j=1 e
W[d][j]

8i = 1, . . . , T (7)

v
d

=

TX

i=1

p
d

[i] ⇥Et[i] = p
d

⇥Et (8)

We now need a way to link concepts and words in order to jointly learn their embeddings in the
same space, using the loss function given in eq. (6). We do this by linking words with concepts
via the documents they occur in. Specifically, we define a “document-specific” word embedding v

dw

that represents the word w as it appears in the context of document d. For example, the word “ball”
in an article about tennis could have a different meaning (and hence, a different embedding) than
that in an article about soccer. We define this document-specific word embedding as a translation

of the original word embedding v
w

by the document embedding v
d

:

v
dw

= v
d

+ v
w

While any general function v
dw

= f(v
d

, v
w

) could have been used to define a document-specific
word embedding, simple translation ensures that the loss function remains differentiable and efficient
to compute, which are necessary for efficient minimization. The skip-gram negative sampling loss
in eq.(6) can now be modified as:

Lneg = �
X

(w,c)2D

log(�(v
c

· v
dw

)) �
X

(w,c)2D0

log(�(�v
c

· v
dw

)) (9)

where d 2 1, . . . , D is the index of the document containing w and c. Minimizing this loss now
enables us to learn both v

w

and v
d

(and hence, Et) from the training corpus.
Predicting concepts for unseen documents. The concept weight matrix W defined thus far

enables learning the concept weights for documents in the available corpus. In some scenarios, we
foresee a trained FCM model being used to predict the concepts for unseen documents, which were
previously unavailable in the corpus. Hence, we now propose an alternative to the fixed concept
weight matrix W to predict concepts for unseen documents. A document d in its raw form can
be represented as a bag-of-words vector b

d

2 RV , containing its word-counts or TF-IDF scores (for
example). We introduce a new FCM component, the Concept Allocator Network (CAN), that
takes as input a bag-of-words vector b

d

and generates its concept probability distribution p
d

. CAN
is a fully-connected multilayer neural network with H hidden layers, each of size h and tanh non-
linear activations between its hidden-layers. A softmax activation after its final layer transforms
its output to be valid probability distribution. Formally, CAN is defined in terms of the input
layer matrix M(0) 2 RV⇥h, hidden layer matrices M(1) . . .M(h�1) ⇢ Rh⇥h, and output layer matrix
M(h) 2 Rh⇥T . Each matrix is also associated with a bias vector, m(0), . . . ,m(h�1) ⇢ Rh and
m(h) 2 RT . The process of mapping a bag-of-words vector b

d

to its concept probabilities p
d

is given
by the following:

x(0) = tanh(b
d

M(0)
+m(0)

) (10)
x(j) = tanh(x(j�1)M(j)

+m(j)
) for⇠j = 1, . . . , h� 1 (11)

pd = softmax(x(h�1)M(h)
+m(h)

) (12)
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where the softmax function transforms its vector-valued input into a probability distribution:

softmax(x)[i] =
ex[i]

P
T

j=1 e
x[j]

8i = 1, . . . , T

Thus, CAN replaces the concept weight matrix W to generate the concept probabilities p
d

from the document’s bag-of-words vector b
d

. Like W, CAN is jointly trained with the other FCM
parameters. The hidden-layer size and number of hidden layers in CAN are hyperparameters that
we tune via cross-validation.

Encouraging concept sparsity. In reality, we expect each document to embody only a few
concepts, with the others being barely present or completely absent. This sparsity of the document-
concept distribution is also easier to interpret and inspired by LDA. To enforce sparsity on the
document-concept distribution, we append the product of the document-concept probabilities p

d

to
the loss function, transformed logarithmically to prevent numerical underflow (since the product of
many probabilities will be a very small floating point number). This leads to the following “Dirichlet
loss” term weighted by hyper-parameter �, which approximately penalizes the document-concept
distributions for having too many non-zero probability values:

L
dir

= �log(
DY

d=1

TY

k=1

p
d

[k]) = �
DX

d=1

TX

k=1

log(p
d

[k]) (13)

Note that, while penalizing the L0 norm kp
d

k0 8d = 1, . . . , D would enforce sparsity exactly,
it is non-differentiable, leading to issues when minimizing the loss function using gradient descent.
Penalizing the product of the probabilities (or the summation of the log-probabilities) as above
serves to approximate the sparsity objective while remaining differentiable and efficient to compute.

Encouraging concept diversity. The model described so far tends to learn concepts that are
highly overlapping, especially when a few concepts are significantly more prevalent in the corpus
than others. To better capture less prominent but potentially important concepts, we introduce a
novel extension that we term the “diversity regularizer” on the model. This regularizer encourages
every pair of concept embeddings Et[i],Et[j] to be dissimilar in terms of their dot-product. This is
formulated as the following extension to the loss function:

Ldiv =⌘

TX

i=1

TX

j=i+1

log �(Et[i] ·Et[j]) (14)

where ⌘ is a hyper-parameter that controls the strength of the prior, and the log� log-sigmoid
transformation ensures that this term and its gradient lie on the same scale as the other terms in
the loss function.

3.3 Focusing Concepts on Target Outcomes

In practice, the concepts embodied by documents may fall into several different descriptive modes.
For example, the set of concepts “furniture”, “technology”, and “kitchen” describe the category of
product being sold, whereas the set of concepts “aesthetics”, “functionality”, and “reliability” describe
characteristics of the product being sold; both these descriptive modes may exist simultaneously in
the corpus, and our goal is to uncover the one that best explains the given outcome associated with
each document.

Hence, we introduce a loss component that “focuses” the concepts toward explaining these out-
comes. We assume that the target outcomes are binary, y

d

2 {0, 1}8d = 1, . . . , D, though extensions
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to real-valued outcomes are straightforward. We introduce a parameter vector ✓ 2 RT that assigns
an explanation-weight to each concept, that is shared across all documents. Given the explanation
weights ✓ and the document-concept distribution p

d

, define ŷ
d

for a document d as a weighted
combination of its concept probabilities:

ŷ
d

= ✓ · p
d

(15)

Given the observed outcome y
d

, we would like ŷ
d

to be large if y = 1 and small if y = 0. This
requirement is captured by the following cross-entropy loss term that we append to the overall loss
function weighted by hyper-parameter ⇢:

Lclf = ⇢(y
d

log �( ˆy
d

) + (1� y
d

) log(1� �( ˆy
d

)))

Note that we could also add any user-specified X in Equation 15. This 1) increases prediction
power and 2) allows managers to compare the correlational relative importance of mined concepts
to key-referential X. We discuss this extension in Section 5.4 and in particular Equation 17.

3.4 Model Summary

In each training iteration, the input for the model is the pivot word w, the set of context words from
the size-k window C

k

(w), the index d of the document and the outcome y. The complete model
incorporates all the losses defined in the previous sections, leading to the following loss function for
each input iteration:

L(w,C
k

(w), d, y) = Lneg(w,C
k

(w)) + Ldir(d) + Ldiv + Lclf(d, y)

To prevent longer documents (those with more words) from contributing disproportionately
more to the loss, we also scale it by the length l

d

2 (0, 1) of each document which is inversely
proportional:

Lcorpus =
X

d,y2Corpus

X

w2doc d

L(w,C
k

(w), d, y)⇥ 1

l
d

The model architecture is visualized in Figure 4. This diagram describes the raw input to the
model, how the input constitutes the matrices to be estimated by the FCM, further processing by
the model using the matrices, and final output that enters the loss function to be minimized. This
diagram describes how the data flows through the neural network model.

We construct train, validation, and test sets using 70%, 15%, and 15% of the full data, respec-
tively. To improve generalizability, we regularize W and ✓ with their L2 norm, perform dropout on
E and gradient clipping to prevent exploding gradients. We initialize our algorithm with pre-trained
word2vec word-vectors, trained in an unsupervised fashion on a corpus of 100 billion words from
Google News. We train the model using mini-batch stochastic gradient descent with a batch-size of
10,240 on an Nvidia Titan X Pascal with 12GB of GPU memory. The estimation roughly took 2
hours on this hardware specification to get to 200 epochs.
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Figure 4: FCM Model Architecture

3.5 Describing Concepts

Given the trained model, one way to describe concepts mined is to 1) get concept embedding vectors
and 2) find the closest word vectors for each concept vectors. We take this approach and use the
dot product distance. Other generative models such as recurrent neural networks could be utilized
to generate sentence-level description of concepts, but this is beyond the scope of this paper.

3.6 Measure of Predictive Performance

To measure the performance of different models, we use a receiver operating characteristics (ROC)
curve, which compares the true positive rate (TPR) against the false positive rate (FPR) at differ-
ent discrimination thresholds. The Area Under the ROC curve is called AUC, which captures the
probability that a model ranks a randomly chosen positive sample higher than a randomly chosen
negative sample. In general, a classifier with higher AUC tends to have better predictive perfor-
mance. For example, a random guess classifier yields an AUC of 0.5, while a perfect model yields
an AUC of 1. Additionally, we show simple accuracy, precision, recall, and F1 score.9

3.7 Measure of Interpretability

To measure the interpretability of model output, we define and use three different metrics as dis-
cussed in Section 2.1

1. Coherence: This is a measure as defined by Mimno et al. (2011) from the topic modeling
literature. This measure computes the sum of a pairwise score function on the top n words
w1, w2.., wn

used to describe each topic:

Coherence =
X

i<j

log

D(w
i

, w
j

) + 1

D(w
i

)

(16)

where D(w
i

) is the count of documents containing the word w
i

, and D(w
i

, w
j

) is the count
of documents containing both words w

i

and w
j

. Simply put, the coherence metric measures
9Measures are defined as accuracy (the total % correctly classified), precision (out of predicted positives, how many

are actually positive), recall (out of actual positives, how many are predicted as positives), and F1 = 2⇤Precision⇤Recall

Precision+Recall

(the harmonic average of precision and recall)(Jurafsky, 2000).
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how well-focused the group of top topic key words are in describing a singular concept. A
higher topic coherence means that the key words within one topic dimension are more coherent
with each other in concept. Note that while the measure of coherence originates from topic
modeling literature, it is directly applicable to any set of keywords—it simply measures how
coherent a set of keywords is in describing a singular concept. The topic modeling literature
first came up with ways to detect “interpretability” by human judgement through mechanical
turk (Chang et al., 2009), then the “coherence” construct was validated with domain expert
taggers who “annotated [topics] as ’good’ if they contained words that could be grouped
together as a single coherent concept” (Mimno et al., 2011). Next, automated measures were
constructed that seem to perform as well as or better than humans (Mimno et al., 2011;
Newman et al., 2010; Lau et al., 2014). For example, metrics based on word co-occurrences
and mutual information based on an external corpus such as Wikipedia are more representative
of how humans would evaluate a topic as interpretable (Newman et al., 2010). From the XAI
literature perspective, this measure of interpretability fits the desiderata of unambiguity (Ras
et al., 2018) and selectivity of explanation (Lipton, 2016; Miller, 2018).

2. 1st Human-judged - Number of Distinct Concepts Found: Using Amazon Mechanical
Turk, we directly obtain the number of distinct concepts found in algorithm outputs. Each
topic or concept would be more useful and interpretable if it describes fewer distinct concepts.
This parallels the coherence measure but is more direct.

3. 2nd Human-judged - Usefulness of Algorithm Output for the Particular Target
Task: We use the definition of interpretability from Dhurandhar et al. (2017)—which states
“AI is interpretable to the extent that the produced interpretation I is able to maximize a user’s
target performance”—and operationalize it in our case. As the next section elaborates, the
data context is the consumer purchase journey and reviews read. Thus, the target goal here is
making a purchase decision. Therefore, if we apply the definition of Dhurandhar et al. (2017),
the algorithm output that extracts concepts from reviews that are more helpful for making
a purchase decision should be considered more interpretable. We ask Amazon Mechanical
Turkers to provide the usefulness of algorithm outputs for making a purchase decision.

4 Demonstration of FCM on a Novel Data

To demonstrate the efficacy of FCM, we apply it to a proprietary novel dataset from a top consumer
review platform. We explain the data here.

4.1 Raw Data

Our data comes from an online retailer in the United Kingdom through a top review platform
company. They track 243,000 consumers10 over the course of two months in February and March
of 2015 in the electronics and home & garden categories. There are 41 different subcategories, as
shown in Appendix A. The data tracks consumer page views, review-reading behavior, clicks, and
transactions. That is, the data includes the typical clickstream and conversion data plus consumers’
review-reading behaviors, which is essential for FCM application. The data also records (1) when a

10The users are assigned an anonymous unique identifier, which enables us to effectively analyze customer browsing
habits and transaction activity at the individual level. The user identifier persists in the third-party network cookie
and lasts for up to 18 months. Even if a user has cleared their cookies or is browsing on another device, we can still
identify them through an encrypted IP address.
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user clicks on review pages, (2) whether each review has appeared on a user’s browser, and (3) for
how long the content was viewed on the user’s browser, measured accurately down to milliseconds.
With these data, we assume that if a review appeared on a user’s browser, the user has read the
review.

4.2 Processed Data for FCM

From the perspective of a user shopping procedure, we can imagine a “decision-making journey”
that characterizes how a user purchases or abandons a particular product. In such a journey, a
user will first visit the product page to read the description, then read reviews of the product,
and finally decide whether to buy the product or not. Accordingly, our dataset is at the “decision-
making journey” or at the UserID-ProductID level. A data sample contains (1) the product review
texts read by the user, (2) the explanatory variables shown to matter in predicting the purchase
conversion in business literature (e.g., product price and review star ratings), and (3) a binary label
indicating conversion. Next, we discuss selection criteria and data construction.

Selection Criteria & Data Frame Construction

We first define the scope of UserID-ProductID pairs (“journey”). These pairs are used to identify
the journeys and serve as the primary key for our constructed data frame. We keep all existing
UserID-ProductID pairs in the raw dataset, except we remove users who do not read any reviews
and products that have no viewed reviews, since FCM requires meaningful text linked to business
outcome variables.

The next step is to process the review texts. On the website, reviews are presented in groups of
five. Consumers can read more reviews by clicking on the review page numbers. For each journey,
we collect all the reviews that the consumer has read, sort them by browsing time, and concatenate
them into a single document. This constitutes the text data of interest. As 88% of the journeys
have less than 10 reviews read, we take the final 10 reviews read by consumers before they purchase
or abandon.

Lastly, as the total conversion rate is 1.37%, there are many more journeys that ended in abandon
(negative label) than conversion (positive label). Considering that the imbalance might negatively
affect the performance of the trained FCM, we under-sample the negative pairs to reduce the class
imbalance, achieving an abandon-to-purchase ratio of roughly 77:23. Finally, our constructed data
frame is left with 58, 229 journeys of 30, 218 unique consumers and 6, 612 unique products. Of these
journeys, 13, 094 yield user purchases.

Table 2 presents the summary statistics of the explanatory variables at product, user, or journey
levels.

19

Electronic copy available at: https://ssrn.com/abstract=3484617



Variable Variable-
Level

Definition Count

Product ID Product Total number of products 6612

User ID User Total number of unique users who have read

reviews

30218

Content ID Product Total number of reviews 87593

Variable Variable-
Level

Definition Mean Std Dev Min Max

Price Product Price of the product 63.28 84.41 0.24 1049

Rating Average Product Average rating of reviews available for the

product

4.28 0.49 1 5

Prod Total # Page

views

Product Total number of page views for a particular

product

141.79 178.02 2 3280

Prod Total # Reviews Product Total number of reviews available for the product 66.37 117.27 1 1463

User Total Wallet size User Total dollar value of transaction made by a user 104.68 171.76 0 3968.79

User Total # of

Reviews Read

User Total Number of Reviews read by a user 48.73 75.22 1 2675

User-Prod Page views Journey Total number of page views for a particular

user-product pair

3.25 2.64 1 100

User-Prod # of

Reviews Read

Journey Total number of reviews read in a journey 10.90 13.85 1 376

Table 2: Variable Summary Statistics

5 Results

The predictive performance of FCM in comparison to existing methods is presented first. Then, we
discuss the main goal of FCM to extract coherent and human interpretable concepts, first through
a coherence metric and then through human-judged metrics. To gauge the economic impact of
mined concepts, we then present FCM’s ability to compare the correlational relative importance of
mined concepts to other structured explanatory variables. A series of experiments to investigate
the accuracy-interpretability relationship based on different hyperparameters are presented. Lastly,
results on an additional dataset, Donorschoose, are presented along with the impact of Y focusing
on extracted concepts.

5.1 Predictive Performance

For predictive performance measurement, data is split into 70% training, 15% validation, and 15%

test sets. The FCM takes the explanatory variables and the read-reviews as inputs to predict a
probability between 0 and 1 indicating how likely it is that the user will purchase or abandon the
product. We set the number of concepts to recover at 5, which we chose via a perplexity measure
on running a separate vanilla LDA model. The adaptive moment estimation (Adam) optimizer was
used for training the model with a learning rate of 0.001 and weight decay of 0.01. To prevent
overfitting and gradient explosion, we set the dropout rate at 0.25 and clipped the gradients into
the range [�5.0, 5.0]. The model is trained on up to 500 different parameter configurations and our
model gives stable results across these sets. For brevity, all results hereafter are produced by the
model trained under the configuration � = 10, ⇢ = 1000, ⌘ = 1000.
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The predictive performance is measured on 15% of the test sample using the accuracy, precision,
recall, F1-score, and ROC AUC, as discussed in Section 3.6 in Table 3. Figure 5 shows the ROC
curve. We compare FCM’s predictive performance against two set of baseline models interpretable
models vs. uninterpretable prediction-focused models. For all models, unless stated otherwise, we
include all X and text information. For brevity, we provide a brief description of the model with
the citation for readers interested in more details.

Interpretable Models

• LDA + LR: Plain LDA + logistic regression classifier.
• SLDA: Supervised LDA proposed by Blei and Mcauliffe (2008); Zhu et al. (2012) (model does

not allow other X).
• SeedLDA + LR: Seeded LDA proposed by Jagarlamudi et al. (2012) + logistic regression

classifier. We seed the topics based on dimensions of price and quality as defined in the
literature and discussed in Table 4 to maximize its performance.

• Structural Topic Model: Structural Topic Model proposed by Roberts et al. (2014). In-
corporates both X and natively handles Y .

Uninterpretable or Prediction-Focused Models

• BOW+LR: Bag-of-words approach + logistic regression classifier.
• Sentiment: Review-level sentiment-labelled classification.
• CNN with GLoVe: Deep Learning models excel at prediction tasks. Convolutional Neural

Net (CNN) was chosen since it was empirically shown to be superior to LSTM and Recursive
Neural Net for this particular dataset (Liu et al., 2019). We also utilize GLoVe word embedding
(Pennington et al., 2014) as the first layer.

• XGB: eXtreme Gradient Boosting (Chen and Guestrin, 2016) is a boosted tree model often
known to achieve the best predictive performance in a wide variety of ML competitions off-
the-shelf. Please see Footnote 4.

Figure 5 presents the ROC curves and the AUC values for the FCM (blue), 4 interpretable baselines
(red), and 4 prediction-focused baselines (black). Table 3 provides accuracy, precision, recall, F1,
and AUC. First note that all interpretable models (red) significantly fall behind FCM (blue). While
there are two uninterpretable algorithms (black) that surpass FCM, the difference is rather small
at less than 0.03 in AUC. Two uninterpretable algorithms perform worse than FCM.

Going into specific algorithms, as noted in Footnote 4, the top two performing algorithms are,
unsurprisingly, deep learning and XGB. CNN with GLoVe embedding achieves the highest AUC at
0.9186 with XGB performing nearly the same at 0.9184. FCM follows closely at 0.8885. Given that
we could also boost (reduce bias) and bootstrap aggregate (reduce variance) FCM predictions, albeit
at a higher computational cost, FCM performance is very much competitive with the cutting-edge
prediction-focused methods. Contrastingly, FCM performs significantly better than the traditional
bag-of-words approach (0.7773) and the basic sentiment analysis (0.6093).

Among the interpretable competitors, the best performing algorithm is the seeded LDA (0.8087).
Our seed words were driven from existing theory in consumer purchase behavior as will be elaborated
in Section 5.2 and Table 4. As these are topics that are known and proven in the literature to
influence consumer purchase decisions, it is unsurprising that this carefully domain-knowledge driven
attributes will have high predictive performance over naive bag-of-words approach. However, seeded
LDA still falls short of FCM, suggesting that FCM extracts residual signals above and beyond
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Coherence Accuracy Precision Recall F1 score AUC
FCM -1.86 0.8228 0.8346 0.8475 0.8410 0.8885

Interpretable Model Competitors
LDA + LR -2.25 0.5653 0.5624 0.9630 0.7101 0.6086

SLDA -2.17 0.5857 0.6163 0.6641 0.6393 0.6041
Seeded LDA+LR -1.95 0.7490 0.7945 0.7365 0.7644 0.8087

STM -5.13 0.5872 0.5977 0.7745 0.6747 0.6015
Uninterpretable Model Competitors

BOW+LR N/A 0.7212 0.7231 0.8033 0.7611 0.7773
Sentiment N/A 0.5804 0.5896 0.7925 0.6762 0.6093

CNN with GloVe N/A 0.8421 0.8307 0.8973 0.8627 0.9186
XGB N/A 0.8475 0.8525 0.8757 0.8639 0.9184

Table 3: Prediction Performance Against Competing Methods

theory-driven concepts. Seeded LDA approach can be useful when managers are equipped with
domain-knowledge but not feasible for exploratory concept extraction. Other interpretable models
such as vanilla LDA (0.6086), supervised LDA (0.6041), and Structural Topic Models (0.6015), all
perform worse than FCM even with good effort of parameter tuning. Appendix E presents FCM’s
predictive performance against baselines for a well-known benchmark dataset called 20-Newsgroup,
which show FCM excels even over XGB in some cases.

FCM excels in predictive performance over most baselines while staying competitive with the
top uninterpretable prediction-focused algorithms. Next we discuss the main goal performance of
FCM: interpretable and coherent concept extraction for managerial insight.

Figure 5: Receiver Operating Characteristics Curve of FCM vs. Baselines

5.2 Concept Extraction: Interpretability Comparison Based on Coherence

This section discusses the main ability of FCM to extract concepts that may be insightful and
useful for prescriptive business policy. As described in the Model section, FCM is not limited to
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just generating topic-describing words as LDA or LDA variants are. However, we can generate words
to describe the concepts, much like LDA, as described in Section 3.5. We do this here to compare the
interpretability of FCM-extracted concepts to those from LDA. Then we use the measure coherence
described in Equation 16.

Figure 6 shows five topics (topic N decided by perplexity measure) recovered by plain LDA as
the baseline. Out of 50 runs, we present the LDA result with the highest coherence of �2.25. Two
experts then manually inspect the topics recovered and color-code similar conceptual words for ease
of interpretation. Upon inspecting the LDA-recovered topic, we note the following observations.
First, within a given topic, many different concepts appear. For example, Topic 1 has concepts
related to product names (orange), features (dark red), and aesthetics (green). All other topics
suffer the same diffused conceptual intrusion. Second, the recovered topics are not well separated.
Many words related to singular concepts such as aesthetic (green), product name (orange), or
features (dark red), appear in most if not all of the five topics. Presented with such outputs, it is
unclear how managers may then utilize recovered topics as X for further study and insight.

Table 7 displays the concept-describing words for each concept extracted by FCM. We present
five concepts (keeping the same number of concepts as LDA) with a word cloud. Compared to
the topics found by the standard LDA, which are shown in Table 6, the FCM’s concepts are more
semantically coherent within each dimension. Concepts are both well focused within as well as
separated from one another. Borrowing from the topic modeling literature, we apply the same
measure of coherence in equation 16 and obtain an average coherence of �1.86, which is greater
(higher coherence) than the �2.25 obtained by LDA. Among the five concepts, the aesthetics concept
represented by words such as “nice little big clean look design” achieved the highest coherence of
�1.384. Even for the concept of serviceability with the lowest coherence score of �2.197, the
words are semantically coherent. We compare the ranges of average 5-topic coherence of 50 distinct
estimations (varying starting points and initialization) of LDA vs. FCM. The LDA range lies in
(-3.5, -2.25) while the FCM range lies in (-1.92, -1.68). The coherence ranges do not overlap and
are statistically significantly different, suggesting that FCM excels in extracting many coherent and
singular (and thus more human-interpretable) concepts from review texts.

In fact, the concepts recovered by FCM closely coincide with the dimensions of product price
and quality that are shown in the literature to influence consumer purchase. Garvin (Garvin, 1984,
1987) compiled and introduced a set of quality and price dimensions aimed at helping organizations
think about product, as shown in Table 4. On multiple FCM runs, we were able to automatically
extract all concepts compiled by Garvin. This serves as an evidence of the external validity of FCM.

Table 3 provides the coherence of 4 other interpretable baselines. FCM is superior to all of them.
Only seeded LDA was not statistically significantly different from FCM’s concept coherence. For
actual examples of reviews along with computed concept and case study, please see Appendix C.

Figure 6: Topics Extracted by LDA: Best coherence out of 50 runs. Average topic coherence is -2.25. We
manually color-coded similar concepts for easy visualization.
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Figure 7: Concepts Extracted by FCM: Concept representative words are found to compare to LDA. Average
Concept Coherence is -1.86.

Dimension Description

Aesthetics The review talks about how a product looks, feels, sounds, tastes, or smells.

Conformance The review compares the performance of the product with per-existing standards or set expectations.

Durability The review describes the experience with durability or product malfunctions or failing to work as per the

customer’s satisfaction.

Feature & Performance The review talks about presence or absence of product features.

Brand The review talks about indirect measures of the quality of the product like the reputation of the brand.

Price The review contains content regarding the price of the product.

Serviceability The speed, courtesy, competence, and ease of repair in case of any defects with the product.

Table 4: Literature-defined Key Dimensions of Price and Quality

5.3 Concept Extraction: Interpretability Comparison Based on Human-Judgement

Two human-judged measures of interpretability (as discussed in Section 3.7) are obtained from two
distinct survey instruments (Appendix B). In both surveys, we show the outputs from both FCM
and LDA to Amazon Mechanical Turkers.

For the first human-judged measure, we ask turkers how many distinct concepts they see in
algorithm outputs at the topic or concept level. A smaller number signifies that concept or topic is
more focused and concentrated in meaning, as well as less ambiguous, and thus more interpretable.

For the second measure, turkers are told to imagine a hypothetical situation in which they are
shopping online and making a purchase decision. We show them the outputs of FCM and LDA and
state that these are topic keywords about the reviews. Next, we ask them to rate on a Likert-like
scale how useful these reviews would be in making a purchase decision.

For each survey, we asked 100 turkers who have previously completed at least 100 tasks with
98% or greater accuracy. We embedded a couple of attention questions and also filtered the results
to prevent bots. The ordering of questions and topic presentations were randomized.

Figure 8a shows that turkers on average found 2.83 distinct concepts in each FCM concept
and 4.23 distinct concepts in each LDA topic. The T-test of difference in mean was statistically
significant at the p-value = 8.19⇥ 10

�8. This suggests that FCM is able to produce concepts that
are less ambiguous and more focused compared to LDA, and thus more interpretable.
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Figure 8b shows the result of the second survey. The X-axis shows the value of the Likert scale
where 1 means algorithm’s output was “extremely not useful” for making a purchase decision while
7 means “extremely useful”. We first note that both distributions are bimodal, suggesting some
concepts and topics were useful while others were not. Second, FCM on average scored 4.439, while
LDA scored 3.855, suggesting that FCM outputs were more helpful. T-test of difference in mean was
statistically significant at the p-value = 1.472 ⇥ 10

�5. Taken together, human judgement metrics
find FCM more interpretable compared to LDA outputs.
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5.4 Correlational Relative Importance of Mined Concepts vs. Referential X to
Gauge Economic Significance

Concepts Coef Explanatory

variables

Coef

Aesthetics 0.107 Price -0.003

Conformance -0.076 Avg Rating

(Standardized)

0.288

Features 0.058 User-Page Views -0.005

Value 0.054

Serviceability -0.083

Table 5: Estimated Coefficients

For better utilization of the extracted concepts for business decisions and insight, FCM provides a
way to compare the correlational relative importance of mined concepts against the user-inputted
X. As demonstrated in this section, the idea is to supply FCM with relatively well-understood
X of interest along with texts to compare the correlational impact on the Y outcome. For model
parsimony, we choose the top three reference-worthy explanatory variables of high theoretical im-
portance by information gain to compare to mined concepts: price, average star rating, and user
page views. Results run with more explanatory variables perform similarly. We note that (1) FCM
can still be applied on text-only data without any other X, (2) the relative importance provided
does not have any causal claims, as they are predictive in nature, and lastly, (3) out of 500 different
runs of FCM, the recovered concepts and estimated coefficients are rather stable.

In the last layer, recall that FCM predicts the conversion (Equation 15) of a journey with the
mined document-concept distribution, p

d

. We modify this prediction layer to include user-specified
X. We rename p

d

as DocConceptD for clarity and add the explanatory variables ExpV ar with a
sigmoid (generalized logistic) function:

ˆConversion = �(✓0 +
X

i

✓
i

DocConceptD
i

+

X

j

✓
j

ExpV ar
j

) (17)

where DocConceptD is a probability vector of different concepts that sums up to 1. For this
exposition, we have named our concepts as discussed in the last section and in Figure 7. For
example, if a document gets a distribution of (0.2, 0.2, 0.2, 0.2, 0.2) over 5 concepts, this means
that all 5 concepts are equally represented in this document (product review). This indicates that
the coefficients speak to the impact of concept volume present in the review documents. As in
generalized linear models, the trained weights, ✓, characterize how much the predicted conversion
will respond to the change of explanatory variables. For clarification, although the sigmoid layer
of FCM follows the formula of a generalized linear regression, we are not aware of any work that
could provide the confidence interval of a deep learning-based model. Thus, we do not provide the
confidence interval.

Table 5 shows the trained coefficients of explanatory variables and concept weights including
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aesthetics, conformance, features, value, and serviceability. We standardized the average rating
for easier interpretation. The results pass the sanity check: a negative coefficient for price and a
high positive coefficient on average ratings. Aesthetic concepts had the highest positive correlation
with conversion while the serviceability and return-related concepts had the lowest. For a better
interpretation of mined concepts, we will now calculate and present the marginal effects.

Interpretable Correlational Association

Concepts Marg

effects

(%)

Explanatory

variables

Marg

effects

(%)

Aesthetics 0.201 Price -0.022

Conformance -0.266 Avg Rating

(Standard-

ized)

0.336

Features 0.226 User-Page

Views

-0.041

Value 0.040

Serviceability -0.279

Table 6: Correlational Association of Review Concepts and Explanatory Variables

While the last sigmoid layer can provide an odds-ratio interpretation, just as in logistic regression,
we calculated the correlational association of the variables on the percentage change of predicted
conversion rate for brevity and clarity. To do this, for each journey and for each variable, we
calculate the probability of conversion both as is and after adjusting the variable, then average the
effects. First, we use the full FCM model to calculate the predicted conversion rate ˆConversion.
Then, we increase the variable by an interpretable amount we define and compute the new predicted
conversion rate ˆConversion

0, holding everything else fixed. The difference of the two conversion
rates � =

ˆConversion
0 � ˆConversion will be interpreted as the correlational association of the

variable. We apply a similar method to mined concepts. However, keeping in mind that the
concept distribution sums up to one within a document, we compute the correlation of a concept
dimension by increasing its distribution by 10% (percentage point) and decreasing others by 2.5%.
That is, we ask what happens to a predicted conversion rate if a consumer reads 10% more of a
given concept within a journey.

The correlation are presented in Table 6 along with visualization. The increase in the review
rating by one SD (0.49 star) is associated with the predicted conversion rate increase of 0.336%.
Given that the average conversion rate is 1.37%, this is equivalent to an increase of approximately
25% in the predicted average conversion rate. In comparison, different concepts mined change the
predicted conversion rate by �0.279%~0.226% , which equates to the range of a 20% decrease to
a 16% increase on the predicted average conversion rate. Comparing the referential X (average
product rating) to concepts mined by FCM, we see that the impact of a 10% increase in concept
volume in consumer-read reviews amounts to approximately 12%~83% of the effects (in absolute
values) equivalent to increase in the average rating by one SD. The relative importance weight
in conjunction with correlation calculations serves to provide mangers with a sense of economic
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importance of automatically mined concepts in comparison to familiar key referential X such as
review ratings.

Our model suggest correlationally that reviews containing a higher volume of aesthetics, features,
and price (value) might boost the conversion rate. On average, if the proportion of a document’s
aesthetical information increases by 10%, the predicted conversion rate increase by 0.201%. On the
other hand, the concepts of conformance and serviceability are negatively correlated to consumer
purchases. Upon investigating several examples, this is likely because users usually mention nega-
tive aspects when conformance (e.g., mismatch in product size) and serviceability (e.g., mentions
returning or experience of returns) concepts are mentioned. We further investigate if certain con-
cepts matter more if presented on different review pages. That is, does the order in which certain
review concepts are shown to customers correlate with more or less conversion? We present this in
Appendix D.

Given the FCM results, an e-commerce manager may next launch a more focused causal study to
investigate how to prioritize certain concepts and information in customer reviews such as includ-
ing text that better highlights features and aesthetics, to increase conversion rate. Alternatively,
a longer term objective may be to focus on particular set of products to discern aspects of the
category that consumers care about most for new product development. This is outside the scope
of this paper.

5.5 Experimentation on Interpretability-Accuracy Relationship

This section is dedicated to exploring how interpretability and accuracy are correlated in FCM. In
the topic modeling literature, Chang et al. (2009) show that the model fit (perplexity) is negatively
correlated to interpretability (coherence). In the context of object classification in computer vision
via convolutional neural networks, Bau et al. (2017) report experimental findings using many neural
network models and datasets that indicate the interpretability of a model can be decreased without
changing its discrimination ability. The authors concluded that the interpretability of a model is
not required for high accuracy. Extending this work, Zhang et al. (2017) develop an interpretable
convolution neural network and in the process show that there is a trade-off between interpretability
and classification accuracy.

Specifically, as FCM’s objective function consists of different components, we can directly see
how increasing certain weight on the objective function changes the accuracy vs. coherence. For
example, we explore how increasing ⇢ influences accuracy and coherence. Increasing ⇢ should also
increase the accuracy but it is not clear if it will have the same impact on coherence. In particular,
we examine ⇢ (classification weight), ⌘ (concept diversity weight), and � (Dirichlet sparsity weight).
We run experiments and plot the results in Figure 9. The first plot shows the impact on AUC as
we vary ⇢, ⌘, � and the second plot shows the impact on coherence. For each parameter, we vary
the parameter from 10

�2 to 10

3 in 20 equally spaced points while repeating each point three times,
giving us a total of 60 points per parameter. While one parameter is varied, the other two are fixed.
The results are then smoothed with a LOESS (locally estimated scatterplot smoothing) plot.

For AUC (predictive power), ⇢ has an expected trend. As ⇢ increases, AUC increases. On the
other hand, � shows the opposite pattern. As we force sparsity of concept, the predictive accuracy
decreases—a clear loss in signal. Interestingly, ⌘, concept diversity, does not seem to influence the
AUC. From the geometric point of view, in the concept vector space, there may be clusters of several
different concepts. Increasing ⌘ does not seem to decrease predictive information, since it forces
each concept to cover different regions in the concept space, as opposed to increasing sparsity, which
does decrease predictive signals.

For coherence (interpretability), neither � or ⇢ seem to have a clear trend. Both have a slight
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upward trend, but the range is not so large nor the pattens so clear. However, in comparison, ⌘ seems
to have a clear upward pattern. As we increase the concept diversity, coherence and interpretability
increases.

Taken together, we document several interesting findings: 1) The interpretability-accuracy trade-
off correlation depends on different parameters of the model. 2) Increasing ⇢ increases AUC as
intended, but only slightly increases interpretability. 3) Increasing concept sparsity, �, decreases
AUC but doesn’t influence interpretability. and 4) Increasing concept diversity, ⌘, does not influence
AUC while increasing interpretability. Taken together, the experiments suggest that the accuracy
and interpretability is a separate dimension, and that one does not necessarily increase or decrease
based on the other. This section echoes findings from (Bau et al., 2017) in computer vision setting
with convolutional neural networks.

We speculate on the slight increase of coherence as ⇢ increases. It is unclear why guiding the
concept discovery with classification loss increases coherency (albeit only slightly). One idea is that
this is because the text does have useful signals that are correlated to (or even cause) outcome
prediction. In this case of conversion, the coherent concepts such as aesthetics and conformance are
what may be driving the purchase decisions (the Y ). Thus, the concepts embedded in the reviews
and the reasons why consumers make decisions are aligned and interpretable.
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Figure 9: Variation in ROC-AUC and Coherence for different hyperparameter settings. Hyperpa-
rameters were varied for each while the other two were fixed.

5.6 Results on Different Dataset For Robustness - DonorsChoose.org

We apply FCM on another dataset. We only focus on the main task of concept extraction and
comparison. The open data is from DonorsChoose.org, a nonprofit crowdsourcing site that allows
individuals to donate directly to public school classroom projects. This dataset spans over 6.2
million donations and 1.2 million fundraising projects from 2002 to 2016 at the project level. Since
the project page usually provides little structured information to the individual donors other than
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Concept-Describing Words Concept Title Coef

1 camera history photography animal world trip experience picture video life Photography &

Outdoor Learning

0.0311

2 art material child supply color easel chair time pencil center Art Supplies 0.0868

3 music play drum instrument equipment song sensory fitness physical

keyboard

Music & Physical

Education

0.0188

4 book read reading novel text library reader level love language Reading & Literature 0.0597

5 technology math computer ipad lab project able science allow laptop Tech Equipment -0.0689

Table 7: Concepts Extracted by FCM for the DonorsChoose Dataset

the full text of teacher-written essays, we believe that the textual data should yield a significant
signal in predicting the fulfillment of the donation goal—predicting and giving insight into what
sort of crowdfunding project for education is successfully funded.

Based on the fundraising status of each donation project (whether the total donation hits the goal
before the expiration date), we label the projects as either a success (positive) or failure (negative);
we then construct training data consisting of 10,000 positives and 10,000 negatives by randomly
selecting projects. Each row contains 1) the project essay text and 2) the binary project status as
the label. We also control for the project funding amount. As with our main results, we set five
concepts to be discovered. Extracted concept-describing words and estimated relative importance
coefficients are found in Table 7.

Again, the concepts are semantically highly coherent and well separated from one another. We
manually name each concept with descriptive titles for convenience, and find that the extracted
concepts consist of essentially five different curriculum types. The estimated coefficients imply that
art supply-related (0.0868) or literature-related (0.0597) concepts are more likely to be success-
fully funded. FCM also suggests that technology-equipment funding requests are less likely to be
successful.

5.7 The Role of Y-Focusing - Examples from DonorsChoose.org

This section investigates the impact of Y -focusing on FCM output i.e., what concepts are extracted
if a different Y is selected to guide the concept discovery? For this, DonorsChoose data is used again
due to the availability of a different Y .

Y-Variable: NotFunded

Concept-Describing Words Concept Title Coef

1 teach time new allow day tool board lesson special Special Teaching Tool -0.0402

2 child create project material provide come like activity education Project Materials 0.0441

3 music play math science kit experience stem language opportunity Music & STEM -0.0224

4 book read reading text novel level library reader love english Reading & Literature -0.0275

5 technology skill ipad computer program able grade tablet app access Tech Equipment 0.0461

Table 8: DonorsChoose Result Guided by Y-variable NotFunded.

One way to obtain a different Y is to simply flip the Y from Section 5.6 to predict NotFunded.
An FCM run on this data will extract out concepts that are highly correlated to the project being
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unsuccessfully funded. Intuition suggests that FCM will extract concepts that are repeated and
perhaps will also yield new concepts. Table 8 presents the results. Comparing the results for the
original (Table 7), we find that concepts “Tech Equipment” and “Reading & Literature” are extracted
yet again, with coefficients’ directions flipped from the original dataset results. This shows FCM’s
consistency in both concept extraction and correlational coefficient estimation.

However, FCM also recovers slightly modified concepts or even new concepts not originally found
in Table 7. Compare Concept 3 in both tables. It was originally “Music & Physical Education” and
positive for successful funding. Now it is changed slightly into “Music & STEM” with a negative
value for NotFunded. While the directions tell consistent result, extracted concepts are slightly
modified. Concept 1 is a new concept seeking to fund some sort of special teaching tool that will
enable the teachers. The coefficient is negative, suggesting that it is likely to get funded. Concept
2 refers to student project material requests and is positive, suggesting a lower chance of getting
successfully funded.

Y-Variable: Exciting

Concept-Describing Words Concept Title Coef

1 life opportunity experience world garden society culture grow hope Experiential Learning -0.0842

2 camera ipad technology video class projector able use tablet allow Tech Equipment 0.0588

3 drum math calculator science music hand instrument game play teach Music & STEM -0.0972

4 art ball provide new material child writing like supply Art Supplies 0.0049

5 book read reading center love time remember level listen player Reading & Literature 0.1177

Table 9: DonorsChoose Result Guided by Y-variable Exciting.

The 2014 KDD (Knowledge Discovery and Data mining) Conference hosted a joint open data science
competition with Kaggle.com (https://www.kaggle.com/c/kdd-cup-2014-predicting-excitement-at-
donors-choose/data) using DonorsChoose data. The competition created a customized binary Y
linked to each funding request called Exciting as defined and deemed important by DonorsChoose.
Exciting goes beyond our DonorsChoose Y used in Section 5.6 in that the project must 1) be fully
funded (original Y used), 2) have at least one teacher-acquired donor, and 3) have a higher than
average percentage of donors leaving an original message, in addition to other stipulations. For more
details, please refer to the Kaggle link. In summary, Exciting is a domain-expert defined Y that
is sufficiently different (correlation between successfully funded and Exciting is 0.1484 – note that
there are many successfully funded projects that are not Exciting) from a simple Y that indicates
whether the project was successfully funded or not.

Table 9 shows the results. Two concepts, 4 (“Art Supplies”) and 5 (Reading & Literature), are
recovered once again and the directions match the original result. Concept 2 (“Tech Equipment”) is
recovered once again but this time with reversed direction. While the tech equipment was negatively
correlated with an unsuccessfully funded project in the original set up, it is positive for the Exciting
project. Concept 3 (“Music & STEM”) is slightly modified from “Music & Physical Education” with
reversed direction. Lastly, a new concept related to “Experiential Learning” is discovered to be
negatively correlated to Exciting.

Summary

Even on the same data, FCM recovers both repeated and new concepts depending on the Y used
to focus the concept. This enables creative use of FCM. For example, if a manager had return data
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connected to review-reading and conversion data, FCM can recover what review content may be
instrumental in reducing product returns.

6 Limitations and Future Extensions

We share several short idea overviews for extending the basic FCM models and post-processing
FCM outputs for future papers. The scope of difficulties range from feasible to very uncertain.
Specifically, four extension ideas are shared in order of increasing difficulty: Automatic Naming of
Concepts, Adding Valence to Concepts, Zooming into Concepts, and finally FCM and Causality.

Automatic Naming of Concepts In demonstrating FCM with review data, we have manually
interpreted and titled each concept that FCM extracted. Titling concepts can be further automated
post-FCM for a faster and more “objective” presentation of the results. One method involves
adopting existing techniques from topic modeling literature (e.g., Lau et al. (2011)), which reduces
down to generating label candidate sets by tapping into external text—such as Wikipedia—or
the corpus itself and ranking the label set by its similarity to topics. However, given that FCM
architecture includes semantic-spatial relationship-aware word embedding at its basis, geometric
methods within the concept (and word) Hilbert space may be more appropriate and powerful.

Adding Valence to Concepts The current FCM only deals with the volume of concepts present
in text. Valence (positive or negative sentiment) could be added to enhance the model and inter-
pretation. Within the model pipeline, before the last softmax layer, the document-concept vector
could be further processed. However, it is unclear how to modify the end-to-end architecture to
inject valence of the document-concept vector without the need for training datasets or breaking
the end-to-end framework.

Zooming into Concepts Model architecture could be extended to be hierarchical in concept rep-
resentation relations. Given the hierarchical nature of discovered concepts, the model could also in-
clude a lever to zoom in or out on concept hierarchy for different levels of abstraction. One potential
way might be to tap into existing semantic networks and knowledge graph databases that are aware
of concept hierarchy, such as ConceptNet (http://conceptnet.io/) or WordNet (https://wordnet.princeton.edu/).

FCM and Causality While FCM is envisioned and presented as an exploratory tool (and not

causal) with many caveats, some users may still want to extend it for causal uses. Using deep
learning for causal inference is still a nascent field with only a handful of papers (e.g., Hartford
et al. (2016), Louizos et al. 2017, Kallus 2018, etc.) and is theoretically undeveloped due to the
fact that there are no theoretical asymptotic results on generic deep learning models, which makes
it difficult to draw robust inferences.

To speculatively suggest, as the last layer of the FCM architecture resembles classical logistic
regression, perhaps it can be extended to inject characteristics of extant causal models. We are
unsure where to begin, however. For now, a quick and robust way to utilize FCM is to simply use
it as a representation learning algorithm (Bengio et al., 2013) to extract non-trivial representation
of input text data by lobotomizing the FCM and using the inner-layer data representations. This
could be anything from simple document-concept vectors to a complicated nonlinear combination
of document-elements. Given that document-concept vectors are the most interpretable, we suggest
starting with these vectors as X inputs to other traditional causal techniques.
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7 Conclusions and Managerial Implications

We introduced a new deep learning-based text mining method, the Focused Concept Miner (FCM),
to explore, organize, and extract information from large-scale textual data guided by any Y of
business importance. Upon applying the algorithm to a unique, comprehensive dataset that tracks
individual-level review reading, searching, and purchasing behaviors, we were able to extract con-
tent from product reviews that consumers consider before making purchases. The mined concepts
overlapped heavily with dimensions of price and quality that existing management theories claim
matter for consumer purchase behavior. FCM achieves competitive prediction performance and
higher interpretability in comparison to existing techniques and additionally provides relative im-
portance measures for structured X and focus-mined concepts, which in turn provides managers
with an easy way to understand and derive value from textual data. We introduced the interpretable
machine learning literature and use-case of one such algorithm, FCM, for management applications.
FCM also excels in real-time nimble processing of fast incoming text data to provide interpretable
feedback since 1) inductive prediction does not require additional training, 2) retraining with incom-
ing data is easy with mini-batch stochastic gradient descent, and 3) Focusing by Y offers different
angles to extract insights effortlessly.

We envision FCM as an exploratory tool to make sense of the severely untapped textual data in
the business world, and as a jumping off point for further policy implementation or causal studies.
The review-reading data we focused on illustrated the potentials of FCM, and we now discuss
several other possible applications. An immediate application for review content presentation on
an e-commerce site can be brainstormed based on the FCM output. For example, if the specified
Y was return rate instead of conversion, the FCM output could extract the concepts that may
be instrumental in preventing returns,11 and may inform review presentation design to decrease
returns. Another immediate application arises naturally due to 1) nimble ability of FCM to focus-
mine concept in “one click”, 2) one-the-fly prediction of incoming data via inductive prediction,
and 3) dynamic model update capability of the model based on incoming data owing to mini-
batch stochastic gradient descent algorithm. Specifically, FCM can be used to dynamically monitor
consumer feedback and complaints (i.e., dynamic resonance marketing tool (Clemons et al., 2006))
on social media and websites as shown in Netzer et al. (2012) and Culotta and Cutler (2016).
Managers can benefit from a dashboard of daily or weekly summarization of consumer chatters
using FCM in place and even quickly see different aspects by focusing with appropriate Y s. On the
product design side, producers of a relatively new category of products could quickly collect review
data and grasp the consumers’ wants and needs by using zoomed-in review data. FCM will recover
the concepts that consumers talk about and provide the relative importance of recovered concepts
linked to any business variable of importance, such as willingness to recommend and whether a
consumer actually makes the purchase. This could provide a more exploratory insight before a costly
focus-study group. For example, in the wearable fashion and smart product categories (e.g., health
trackers, smart clothing, connected luggage), which are relatively new, running FCM on reviews
could provide rank order (relative importance) of product quality dimensions that consumers care
about. Perhaps aesthetics is more important than features in product category X, which may well be
reversed for product category Y. As a last example, if a manager restricts a review dataset to be of a
specific product category (e.g., digital cameras), FCM could be modified to extract product-specific
feature concepts and relative importance, which could inform product design. This application
would be a quicker but much less accurate alternative to the method described by Timoshenko and
Hauser (2018).

11To speculate, perhaps it could be about clothing fit information, information regarding experience attributes,
etc.
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We chose the review-reading data due to the familiarity of the concepts in reviews. However,
FCM can also be applied to more esoteric text data (e.g., medical text data, technical text data
with jargon.), as the algorithm is oblivious to levels of textual technicality. In this case, managers
may potentially find new concepts that they were not aware of. Recovered concepts must then be
discussed with domain experts to inform further actions.

In the context of Ehrenberg’s approach to management science (ETET), there are two broad
use-cases for machine learning algorithms for managers and business researchers: 1) scale hypothe-
ses testing, 2) discovering hypotheses from empirical data. Extant papers already utilize ML to
scale theory testing (see end of Section 2.3). Additionally, ML can serve as a navigator to point out
interesting patterns that could potentially generate worthwhile hypotheses to be causally explored
in more depth. Using ML to augment hypotheses generation is ripe for serious consideration. In-
terpretable Machine Learning algorithms such as FCM can be utilized to explore structured and
unstructured data alike in order to augment hypotheses building. Ultimately, however, FCM is as
good as the user. For example, in our data, the reviewers online are self-selected and heterogeneous.
FCM captures insight from the text as is, albeit while controlling for any variables that are sup-
plied to the model. Only researchers who practice sound logic through domain knowledge can be
good judges of what is spurious and what is worth further investigation. We hope managers and
researchers can use FCM creatively with any combination of text, structured, and business outcome
variables to glean insights, build out new hypotheses, and prepare theory-driven causal analyses.
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Appendix A - Product Categories in Data

Figure 10: Word Cloud of Product Categories
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Appendix B - Survey Instrument Used to Measure Interpretability

Survey 1 
Given a set of words, please identify the number of distinct high-level concepts or topics described by these set of 
words.  
For example, if the set of words are as follows,  
Example Set: Game, Team, Year, Play, Good, Player, Win, Season, Fan, Hockey, Baseball 
This example set of words describe one concept or topic "Sports" and # of concept is 1 
 
Here are few more examples  

• ai algorithm machine automation robot self-driving [the topic is about artificial intelligence - # of concept =1 ] 
• canon dslr mirrorless 48pixel fullframe fuji lens film tripod [the topic is about DSLR camera  - # of concept =1 ] 
• gate earbuds fence speaker pasta tomato keyboard [# of concepts = 3, "Gate Fence", 

"Earbuds Speaker Keyboard", "pasta tomato"]  
• good iron printer buy bin mattress great price board fridge [# of concepts=5, "board iron", "good great buy price", 

"printer bin", "mattress", "fridge"] 
• globe photos frank mass bear mountain cell group area york [# of concepts = 7, "Bear mountain", "cell group 

area", all other words go by themselves]  
========================================================================================== 
Given that you have understood the examples above, please take a look at the following set of words and identify the 
number of distinct high-level concepts in each set.  
Topic 1: phone iron lamp find replace feature steam old simple 
Topic 2: kettle clean microwave quick size toaster design heat brilliant quickly 
Topic 3: use love nice look size clean small design little space 
Topic 4: quality money price cheap poor fine instruction overall ok 
Topic 5: assemble sturdy room curtain space size hold bin perfect design 
Topic 6: job bit item fit perfect easily expect come long feel 
Topic 7: excellent time need purchase recommend happy pleased definitely far worth 
Topic 8: sound picture old brilliant battery son feature problem smart fantastic 
Topic 9: bed comfortable cover lovely pillow duvet floor mattress feel thin 
Topic 10: work problem return replace lovely room day 
 
Survey 2  
We are interested in studying how useful certain product reviews are for making a purchase decision on an e-
commerce site. Imagine that you are shopping for a particular product on Amazon.com. You are already decided on a 
product to purchase and are comparing several different options. To make a better decision, you decide to read 
customer generated reviews for more information regarding all different aspects of products.  
  
For hypothetical 10 reviews, we provide few topic keywords about the review. Please first look at all 10 topic description 
of product reviews. Please rate them on a scale from "Extremely useful" to "Extremely NOT useful" on whether you 
would choose to read the reviews to make a purchase decision.  
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Appendix C-Review Examples for Case Study and Visualization

We present review examples for case study and visualization. The last sigmoid layer (�(.)) of FCM
enables us to measure the impact of documents on the business outcome; in other words, how the
predicted conversion rate changes after the consumer reads a particular document (series of reviews).
To do this, we first calculate the predicted conversion rate ˆ

Conversion using the true document-
concept distribution DocConceptD. Then, holding explanatory variables the same, we compare the
predicted conversion rate using the average document-concept distribution DocConceptD, which is
calculated by averaging the document-concept across all the available documents in the training
set. The difference in these two predicted conversions can be interpreted as the impact of reviews
on the consumer’s decision to purchase, as represented in Equation 18.
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) (18)

The differences in the two predicted conversion rates are calculated across all documents in the
dataset.

Table 10 shows six reviews along with the product information, predicted conversion difference,
and concept distribution assessed by FCM. For diversity of examples, we randomly choose two
reviews with the most positive predicted conversion difference (i.e., the most likely to have increased
conversion), the two most negative, and the two most neutral. For each phrase that matches a
dimension of concept, we manually apply a tag that indicates the corresponding concept right after
it. Comparing the tagged reviews and the estimated concept distribution shows that the concept
distributions assessed by FCM are generally well aligned with the actual semantics of the reviews.

The predicted conversion difference captures the correlation between the textual data and the
conversion beyond other explanatory variables. For example, without utilizing the textual data, the
FCM would have predicted that the “Single Door Display Cabinet” would have a low conversion
probability. However, with text, FCM predicts a high conversion rate. In fact, it predicts a 99.34%
higher probability compared to the review-blind model. The increase in conversion probability
seems to stem from reviews that discuss features at length.

However, the textual value becomes less obvious when a review embodies a compound of several
high-volume concepts. From a review of a Hoover vacuum cleaner, FCM reports that reading
reviews might have no impact on conversion. Although the review discusses the product’s features
in detail, (which, by our model, is likely to stimulate the conversion), it also mentions the concepts
for serviceability, such as “return” or “refund”, which offsets the stimulus of feature-related concepts.
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Product Title Review with Manually Tagged Concepts Predicted

Conversion

Difference

Assessed Concept

Distribution

Single

Glass Door

Display

Cabinet -

Black

Useful

storage

I needed a replacement for an old corner unit which used to house small

momentoes we collect from our travels, both in the UK and abroad.This

little unit is perfect. It has7 glass shelves and of course the floor of the

cabinet to display items <FEATURE>. I needed something with more

shelving rather than a unit with 3 larger spaced shelves.Fits nicely

<CONFORMANCE> in the same corner and has a light in the top.My

husband put it together fairly easily <FEATURE>, with my son helping

when putting glass in place <CONFORMANCE>. Atlhough good value, it

is lightweight and the glass is fairly thin<AESTHETICS>. Comes with

fixing strap to hold against the wall <FEATURE> if required.Quick

delivery.

99.34% Aesthetics: 10.27%
Conformance: 34.01%
Features: 35.18%
Value: 10.27%

Serviceability: 10.27%

Hoover

Turbo

Power

Bagless

Upright

Vacuum

Cleaner

replacement

hoover

Easy to assemble <FEATURE> and light weight<AESTHETIC>. The

extension <FEATURE> hose for the stairs is a great. That’s the good

points. The suction <FEATURE> is not that great, especially if you have

pet hair to remove. Difficult to see <AESTHETIC> through the cylinder to

see if it needs emptying. On the 3rd time I used it the belt snapped. I

returned it to Argos and got a full refund <SERVICEABILITY>.

~ 0 Aesthetics: 10.18%
Conformance: 6.13%
Features: 43.76%
Value: 18.88%

Serviceability: 21.04%

Challenge

Xtreme 70

Piece

Titanium

Drill

Driver Set

good

variety but

breaks

quickly

We bought the drill driver set to utilize <FEATURE> some of the parts for

building <FEATURE> flat pack furniture as well as outdoor decking

<FEATURE> . The variety and amount of bits is great

<CONFORMANCE> but unfortunately the pieces break

<SERVICEABILITY> very quickly and easily. The screwdriver heads wear

out <AESTHETICS> rapidly and the drill bits break even when drilling

into soft woods.

~ 0 Aesthetics: 12.95%
Conformance:12.95%
Features: 48.19%
Value: 12.95%

Serviceability: 12.95%

2m Heavy-

weight

PVC

Curtain

Track -

White

Has a

drawback

I bought this to hang curtains with 2 sets of linings fitted (thermal and

blackout) when these linings are fitted <CONFORMANCE> you have to

use the top row of the tape on the curtains to hang them. This makes the

curtain sit low <AESTHETICS> on the rail and causes

<SERVICEABILITY> a gap between the curtain and rail which allows

light in. I got round this by using a moulded skirting board fitted to the rail

a bit like a pelmet, it works for me. They rail itself is really easy

<FEATURE> to adjust to the correct size and to fit .

-79.48% Aesthetics: 20.92%
Conformance: 28.17%
Features: 24.46%
Value: 10.92%

Serviceability: 15.53%

Eve 3

Light

Ceiling

Fitting -

Clear

lovely light

but...

I bought 2 eve lights for my narrow hall and was pleased

<CONFORMANCE> with them so much I bought another 2 for my living

room. However, I am so disappointed <SERVICEABILITY> that although

the sun ray effects on the ceiling is lovely <AESTHETIC> -the rest of the

ceiling is very dark(room size 12ftx15ft) They also cast <FEATURES>

massive gloomy shadows on the walls which are driving me mad and I am

going to replace <SERVICEABILITY> them. In themselves - the lights are

lovely and a bargain <VALUE> but they are only good enough for narrow

spaces like landings and halls.

-75.25% Aesthetics: 12.21%
Conformance:29.50%
Features: 17.99%
Value: 17.67%

Serviceability: 22.63%

Table 10: Example Reviews and Concept Tagged by FCM.
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Appendix D - Concept-Positional Importance

We further investigate if certain concepts matter more if presented on different review pages. That
is, does the order in which certain review concepts are shown to customers correlate with more or
less conversion? We enhanced our prediction model by breaking a journey-level concept distribution
into two position-level concept distributions. Here, the position of a review is defined as the page
in which the review is presented. Recall that the reviews are presented in groups of five and only
the final (latest) 10 reviews are considered. Thus, there are two positions for the reviews: the first
group of five reviews on the first page and the second group of five reviews on the second page.

We further estimate the coefficients of five concept dimensions at two different positions. As
shown in Figure 11, the coefficients give the relative importance of concepts at each position. The
results show that the importance of all concepts decreases in absolute value. This means that the
reviews the consumer read earlier (or on the first page) are more influential than those read later
(or on the second page). Among the five concepts, the coefficient drops in features and value are
especially significant. From the perspective of business owners, it might be a good strategy to
display more reviews concentrated on features and value earlier to extract as much conversion as
possible, rather than displaying reviews concentrated in conformance and serviceability, which may
be so critical that it does not matter where they are presented.

Figure 11: Positional Importance of Concepts.
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Appendix E - 20-Newsgroup Data Performance

To demonstrate the predictive performance of FCM on a publicly available dataset, we train and
evaluate FCM on the 20newsgroups dataset. The 20newsgroups dataset consists of 20 collections
of documents, each of which contains 1,000 emails from a single newsgroup. Each newsgroup is
associated with some topic (such as science, politics, computer graphics, etc.), which is also used as
the label for all the documents within the newsgroup. The newsgroups may be broadly categorized as
in Table 11. We evaluate FCM on the binary classification task of distinguishing between emails from
a pair of different newsgroups. Instead of evaluating on every pair of newsgroups (which is a total
of 190 pairs), we select a single newsgroup from each of the 5 broad categories in Table 11 (selected
newsgroups emphasized in italics), and evaluate on all 10 pairs derived from the selected newsgroups.
For comparision, we use the XGBoost classifier. We tuned the XGBoost hyperparameters to perform
the best on the test data, setting the maximum depth to 1 and eta to 0.1 for 1000 training iterations.
For both FCM and the XGBoost, we report area-under-the-curve classification metrics (ROC-AUC
and average-precision) as well as thresholded classification metrics (precision, recall, F1-score and
accuracy) in Tables 12 and 13. We find that FCM performs on-par with or better than XGBoost
for a majority of the newsgroup pairs on all metrics.
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Subject Newsgroups

Computers (Comp) comp.graphics, comp.os.ms-windows.misc, comp.sys.ibm.pc.hardware
comp.sys.mac.hardware, comp.windows.x

Recreation (Rec) rec.autos, rec.motorcycles, rec.sport.baseball, rec.sport.hockey
Science (Sci) sci.med, sci.crypt, sci.electronics, sci.space
Politics (Pol) talk.politics.mideast, talk.politics.guns, talk.politics.misc
Religion (Rel) talk.religion.misc, alt.atheism, soc.religion.christian

Table 11: Newsgroups in the 20newsgroups dataset grouped by category. Selected representative
dataset is in italics.

ROC-AUC F1-Score Average Precision

Dataset FCM XGB FCM XGB FCM XGB

Comp + Rec 0.966 0.915 0.903 0.810 0.952 0.922
Comp + Sci 0.965 0.937 0.891 0.852 0.961 0.937
Comp + Pol 0.991 0.948 0.956 0.838 0.989 0.946
Comp + Rel 0.972 0.891 0.904 0.780 0.959 0.899
Rec + Sci 0.944 0.866 0.878 0.796 0.945 0.853
Rec + Pol 0.983 0.944 0.932 0.868 0.982 0.933
Rec + Rel 0.952 0.908 0.841 0.809 0.941 0.913
Sci + Pol 0.978 0.932 0.925 0.819 0.975 0.934
Sci + Rel 0.841 0.958 0.684 0.878 0.809 0.961
Pol + Rel 0.942 0.970 0.833 0.892 0.920 0.973

Table 12: (Classification Metrics) Area under the ROC curve (AUC), average precision (AP) and
F1-score (F1) for each dataset and method. 1.000 is the best score for all metrics. Best method for
each dataset is in bold.

Accuracy Precision Recall

Dataset FCM XGB FCM XGB FCM XGB

Comp + Rec 0.903 0.826 0.885 0.886 0.922 0.746
Comp + Sci 0.892 0.856 0.892 0.885 0.890 0.822
Comp + Pol 0.957 0.849 0.956 0.892 0.956 0.790
Comp + Rel 0.927 0.800 0.926 0.865 0.883 0.711
Rec + Sci 0.876 0.787 0.879 0.770 0.877 0.825
Rec + Pol 0.932 0.865 0.936 0.839 0.928 0.899
Rec + Rel 0.878 0.820 0.881 0.869 0.804 0.756
Sci + Pol 0.927 0.832 0.933 0.864 0.997 0.779
Sci + Rel 0.800 0.884 0.893 0.916 0.918 0.844
Pol + Rel 0.869 0.895 0.845 0.936 0.821 0.851

Table 13: (Classification Metrics) Accuracy, precision and recall for each dataset and method with
the prediction threshold fixed at 0.5. The threshold is not tuned for any metric. 1.000 is the best
score for all metrics. Best method for each dataset and metric is in bold.
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