
Targeting and Privacy in Mobile Advertising

Omid Rafieian∗

University of Washington

Hema Yoganarasimhan∗

University of Washington

April 10, 2019

∗We are grateful to an anonymous firm for providing the data and to the UW-Foster High Performance Computing
Lab for providing us with computing resources. We thank Avi Goldfarb, Daria Dzyabura, Clarence Lee, Simha
Mummalaneni, Sridhar Narayanan, Amin Sayedi, K. Sudhir, and Daniel Zantedeschi for detailed comments that
have improved the paper. We also thank the participants of the 2016 Invitational Choice Symposium, 2016 FTC and
Marketing Science Conference, 2016 Big Data and Marketing Analytics Conference at the University of Chicago, 2017
Ph.D. Students Workshop at the University of Washington, 2017 Adobe Data Science Symposium, SICS 2017, the
2018 MSI-Wharton Conference on New Perspectives in Analytics, 2018 UW-UBC conference, the 2019 UT Dallas
FORMS conference, and MIT and CMU marketing seminars for their feedback. Please address all correspondence to:
rafieian@uw.edu, hemay@uw.edu.

1

Abstract

Mobile in-app advertising is growing in popularity. While these ads have excellent
user-tracking properties through mobile device IDs, they have raised concerns among
privacy advocates. This has resulted in an ongoing debate on the value of different
types of targeting information, the incentives of ad-networks to engage in behavioral
targeting, and the role of regulation. To answer these questions, we propose a unified
modeling framework that consists of two components – a machine learning framework
for targeting and an analytical auction model for examining market outcomes under
counterfactual targeting regimes. We apply our framework to large-scale data from the
leading in-app ad-network of an Asian country. We find that an efficient targeting policy
based on our machine learning framework improves the average click-through rate by
66.80% over the current system. These gains mainly stem from behavioral information
compared to contextual information. Theoretical and empirical counterfactuals show
that while total surplus grows with more granular targeting, ad-network’s revenues
are non-monotonic, i.e., the most efficient targeting does not maximize ad-network
revenues. Rather, it is maximized when the ad-network does not allow advertisers
to engage in behavioral targeting. Our results suggest that ad-networks may have
incentives to preserve users’ privacy without external regulation.

Keywords: mobile advertising, machine learning, targeting, behavioral targeting, privacy, auctions,
regulation

2

1 Introduction

1.1 Mobile Advertising and Targeting

Mobile advertising has grown exponentially in the last few years. Mobile advertising now constitutes
the largest share of total digital ad spend (eMarketer, 2019). The rapid growth of mobile advertising
partly stems from an ad format unique to the mobile environment: in-app ads (ads shown inside
apps). These ads have excellent user-tracking properties, and allow ad-networks to stitch together
user data across sessions, apps, and advertisers.1 Thus one of the main attractions of in-app
advertising is their ability to facilitate behavioral targeting (Edwards, 2012).2

While the advertising industry has lauded the trackability of in-app ads, consumers and privacy
advocates have derided them citing privacy concerns. Advertisers argue that tracking allows
consumers to enjoy free apps and content, and see relevant ads, whereas users demand higher
privacy and limits on behavioral tracking and targeting (Edwards-Levy and Liebelson, 2017).
Responding to consumer concerns, regulatory bodies have started taking action. For example, the
European Union’s General Data Protection Regulation agreement requires users to opt into, rather
than opt out of, behavioral targeting (Kint, 2017).

Even as consumers, businesses, and regulators are trying to find the right balance between
consumer protection and business interests, we do not have a good understanding of the key issues at
the core of targeting and privacy. For example, to what extent does targeting improve the efficiency
of the advertising eco-system, what is the value of different types of targeting information, and
what are the incentives of different players in the advertising industry to engage in user-tracking
and behavioral targeting? The lack of empirical analyses on these issues hampers our ability to have
an informed discussion on, and to form policy, on them.

1.2 Research Agenda and Challenges

In this paper, we seek to address this gap by providing answers to the following sets of questions
related to targeting and privacy in the mobile ecosystem.

The first set of questions relate to targeting and efficiency. How can ad-networks use the data
available to them to develop targeting policies? How can we evaluate the performance of these
policies in both factual and counterfactual settings? Specifically, what are the gains in CTR from
adopting an efficient targeting policy?

1Advertisers and ad-networks have access to a unique device ID associated with the mobile device referred to as IDFA
(ID For Advertisers) in iOS devices, and AAID (Android Advertiser ID) in Android devices. This device ID is highly
persistent and remains the same unless actively re-set by the user.

2This is in contrast to browser-based mobile ads, which have poor tracking properties since third-party cookies do not
work in many browsers (e.g., Safari) and hence tend to be poorly targeted (Sands, 2015).

1

The second set of questions relate to the value of targeting information. We are particularly
interested in the relative value of contextual vs. behavioral information. The former quantifies the
context (when and where) of an impression, and the latter constitutes historic data on an individual
user’s past app usage, ad exposure, and ad response. Contextual information is privacy preserving
whereas behavioral information is based on user-tracking and therefore impinges on user-privacy.

Third, we are interested in quantifying the revenue-efficiency trade-off and platform’s incentives
to preserve user privacy. What is the empirical relationship between efficiency and platform
revenues? Do ad-networks have an incentive to allow advertisers to do targeting and thereby enable
targeted bidding? What is the optimal level of targeting from the perspective of different players?
Finally, to what extent are the ad-network’s and advertisers’ incentives aligned?

There are three main challenges that we need to overcome to satisfactorily answer these questions.
First, to develop efficient targeting policies, we need to obtain accurate click-through rate (CTR
henceforth) or match value estimates for all counterfactual ads (i.e., ads that could have been shown),
and not just the ad that was actually shown in that impression. Without sufficient randomization in
the ad allocation mechanism, no model can obtain accurate match value estimates for the entire
set of competing ads. Thus, we need a setting with sufficient randomness in the ad allocation
mechanism to develop counterfactual targeting policies. Second, to correctly quantify the value
of different pieces of targeting information, we need a model that can accurately predict whether
a targeted impression will lead to a click or not. Models with poor predictive ability will lead to
downward bias and noise in the estimates of the value of information. Third, we need an underlying
model of strategic interactions that can quantify market outcomes such as surplus and revenue
under different targeting levels offered by the ad-network. Without an economic model of market
players that puts some structure on revenues, we cannot make any statements on the ad-network’s
or advertisers’ incentives to target and/or the extent to which these incentives are aligned.

1.3 Our Approach

We present a unified and scalable modeling framework that coherently combines predictive machine
learning models with prescriptive economic models to overcome the challenges listed above. Our
framework consists of two main components. The first, a machine learning framework for targeting,
addresses the first two challenges of obtaining counterfactual match value estimates and achieving
high predictive accuracy. The second, an analytical model that incorporates competition and
characterizes the ad-network’s and advertisers’ profits under different targeting regimes. This
addresses the third challenge of linking targeting strategies to revenues.

The machine learning module consists of three parts – (a) a filtering procedure, (b) a feature
generation framework, and (c) a learning algorithm. The filtering procedure takes any impression

2

and determines the set of ads that have a non-zero probability of being shown in that impression,
i.e., counterfactual ads for which we can obtain accurate CTR estimates. Clearly, if the ad allocation
mechanism selects ads determinstically for each impression, we are only able to generate accurate
estimates for the ad that is shown in that impression. While deterministic auctions are the common
practice in this industry, we take the advantage of our unique data setting that utilizes a probabilistic
allocation mechanism, which provides sufficient randomization in the data generating process. Our
feature generation framework relies on a set of functions to generate a large number of features
that capture the contextual and behavioral information associated with an impression. Using these
functions, we generate a total of 160 features that serve as input variables into a CTR prediction
model. Finally, we use XGBoost, proposed by Chen and Guestrin (2016), a fast and scalable version
of boosted regression trees, as our learning algorithm.

In the second component of our model, we address the question of ad-network’s incentives to
allow targeting. In an influential paper, Levin and Milgrom (2010) conjecture that high levels of
targeting can soften competition between advertisers and thereby reduce ad-network’s revenues.
To examine this idea, we develop an analytical framework that incorporates a model of auction
with targeting where advertisers can place targeted bids given the targeting level they are provided
with. Our framework allows us to characterize the the ad-network’s revenue, advertisers’ surplus,
and total surplus under different targeting regimes both theoretically and empirically. While the
extent to which we can analyze this problem theoretically is limited without further assumptions on
distribution of valuations, we can use it to characterize ad-network revenues and efficiency for any
targeting level if we have access to empirical estimates for advertisers’ valuations per impression.
To do so, we need to estimate two sets of primitives – (a) advertisers’ click valuations, (b) match
valuations or CTRs. The former can be estimated from the observed bids under the current auction
used by the ad-network. For the latter, we use our machine learning framework for targeting that
gives us click probabilities for all competing ads for any impression. The product of these two then
gives us value per impression for any advertiser, thereby allowing us to empirically evaluate market
outcomes under any targeting regime.

We apply our framework to one month of data from the leading mobile advertising ad-network
from a large Asian country. The scale and scope of the data are large enough to provide realistic
substantive and counterfactual results. For our analysis, we sample over 27 million impressions for
training, validation, and testing, and use another 146 million impressions for feature generation. A
notable feature of our data is the extent of randomization of ads over impressions – ads are shown
over a large variety of impressions and impressions can be allocated to a wide variety of ads, i.e., the
targeting/match between ads and impressions is quite low. A few unique aspects of our marketplace

3

contribute to this feature, such as the use of a quasi-proportional auction and the low levels of
targeting in the current system. This randomization greatly enables our analysis, especially when it
comes to counterfactuals.

1.4 Findings and Contribution

We first discuss the results from the machine learning model for targeting. We present both factual
and counterfactual evaluations of our model. In the factual evaluation, we use goodness-of-fit
measures to evaluate how well our model can predict the observed outcome. We find that our
framework predicts the outcome on a hold-out test set with substantial accuracy: the Relative
Information Gain (RIG) is 17.95% for our model over the baseline that simply predicts the average
CTR for all impressions. We then pin down the role of different pieces of information and show that
behavioral information is more useful that contextual information in predicting CTR: the RIG for
the behavioral model (without using any contextual information) is 12.14%, while it is 5.25% for the
contextual model (without using any behavioral information). Thus, from an efficiency perspective,
behavioral targeting is more effective than contextual targeting. In the second part of our evaluation,
we consider the CTR-maximizing counterfactual assignment wherein each impression is allocated
to the ad with the highest estimated CTR in that impression. We show that this efficient targeting
policy can increase the average CTR in the ad-network by 66.80% over the current system.

We then address the question of ad-network’s incentives to allow targeting. First, we theoretically
prove that – (a) the total surplus in the system monotonically increases as the extent of targeting
increases, but (b) the ad-network’s revenues are not monotonic; it may or may not increase with
more granular targeting. As a special case, we then consider four targeting regimes that relate to
our research question – full, behavioral, contextual, and no targeting. We prove that full targeting
maximizes surplus while no targeting minimizes surplus. Behavioral and contextual targeting can
both be interpreted as partial targeting and lie in between. However, because we cannot characterize
one as more granular than another, theory does not offer us any guidance here. Thus, we need an
empirical analysis to quantify the relative magnitude of surplus and revenues under these two cases.

Our empirical analysis reveals that ad-network revenues are maximized when it restricts targeting
to the contextual level even though doing so lowers total surplus, i.e., allowing behavioral targeting
thins out the market, which in turn reduces ad-network revenues. Therefore, the ad-network may be
incentivized to adopt a privacy-preserving targeting regime, especially if it cannot extract additional
surplus from advertisers through other mechanisms. On the advertisers’ side, although a majority of
them prefer a regime where the ad-network allows behavioral targeting, not all do. An important
implication of our findings is that it may not be necessary for an external entity such as EU/FCC to
impose privacy regulations.

4

In sum, our paper makes several contributions to the literature. First, from a methodological
perspective, we propose a novel machine learning framework for targeting that is compatible with
counterfactual analysis in a competitive environment. A key contribution of our machine learning
framework is in combining existing ideas from causal inference literature (e.g., non-zero propensity
score) with recent machine learning literature to generate counterfactual estimates. Further, we
present an auction model with targeting that characterizes advertisers’ utility function for any
targeting regime and provides a direct link to the estimation of market outcome such as efficiency
and revenue. Second, from a substantive perspective, we provide a comprehensive comparison
of contextual and behavioral targeting, with and without the presence of competition. To our
knowledge, this is the first study to compare the role of behavioral and contextual targeting on
market outcomes. Third, from a managerial perspective, our results demonstrate a non-monotonic
relationship between targeting granularity and revenues. While our findings may depend on the
context of our study, our framework is generalizable and can be applied to any auction setting that
induces some randomization in the allocation of ads. Finally, from a policy perspective, we identify
the misalignment of the ad-network’s and advertisers’ incentives regarding behavioral and contextual
targeting and information disclosure. We expect our findings to be of relevance to policy-makers
interested in regulating user-tracking and behavioral targeting in the mobile advertising space.

2 Related literature
First, our paper relates to the computer science literature on CTR prediction (McMahan et al., 2013;
He et al., 2014; Chapelle et al., 2015). These papers make prescriptive suggestions on feature
generation, model selection, learning rates, and scalability. Although we build our machine learning
framework following their approaches, our work differs in two main ways. First, we develop a
filtering procedure that allows us to obtain accurate CTR estimates for both the ad shown during an
impression as well as counterfactual ads not shown in the impression. Thus, unlike the previous
papers, our framework can be used to develop and evaluate different targeting policies. Second, we
quantify the value of different types of information in the targeting of mobile in-app ads, whereas
the previous papers were mainly concerned with presenting scalable methods for predicting clicks.
Our paper also relates to the growing literature on applications of machine learning in marketing
(Toubia et al., 2007; Dzyabura and Yoganarasimhan, 2018).

Our paper also relates to the literature on ad-network’s incentives to allow targeting. Levin
and Milgrom (2010) were one of the first to conjecture the trade-off between value creation and
market thickness. They argue that too much targeting can thin markets, which in turn can soften
competition and make the ad-network worse off. This is particularly the case when there is
significant heterogeneity in the distribution of advertisers’ valuation of impressions (Celis et al.,

5

2014). Building on this insight, a growing stream of analytical papers show that there is a non-
monotonic pattern between the extent of targeting and ad-network revenues (Bergemann and Bonatti,
2011; Fu et al., 2012; Amaldoss et al., 2015; Hummel and McAfee, 2016; De Corniere and De Nijs,
2016; Sayedi, 2018). A key difference between these papers and ours is that we do not make any
distributional assumptions on the match values in our analytical formulation.

In spite of the increasing interest from the theoretical side, there has been limited empirical
work on this topic with mixed findings. In an early paper, Yao and Mela (2011) present a structural
model to estimate advertisers’ valuations and show that targeting benefits both advertisers and the
ad-network. In a similar context, however, Athey and Nekipelov (2010) present a case study of two
keywords and show that coarsening CTR predictions (worse targeting) can help a search advertising
ad-network generate more revenue. Our paper speaks to this debate by presenting a large-scale study
that establishes that too much behavioral targeting can adversely impact ad-network revenues. More
broadly, neither of these papers are able to compare the ad-network’s incentives to allow behavioral
vs. contextual targeting because: (a) they do not have sufficient randomization in the data generating
process and (b) they do not build a targeting framework that can be used to develop different
targeting policies and evaluate their efficiency. To our knowledge, our paper is the first empirical
paper to view revenue-efficiency trade-off through the lens of privacy and examine whether the
platform has natural incentives to preserve users’ privacy.

Finally, our paper relates to the literature on the interplay between privacy and targeting.
Goldfarb and Tucker (2011b) use data from a series of regime changes in advertising regulations and
show that restricting targeting reduces response rates and thereby advertisers’ revenues. Similarly,
Goldfarb and Tucker (2011a) and Tucker (2014) highlight the perils of excessive targeting as users
perceive increased targeting as a threat to their privacy. Using a structural approach, Johnson
(2013) finds that both advertisers and publishers are worse off when the ad-network introduces
stricter privacy policies that reduce targeting. Please see Goldfarb (2014) for an excellent review
of targeting in online advertising and Acquisti et al. (2016) for a detailed discussion of consumer
privacy issues. Thus, our paper is the first work to provide empirical evidence for the possibility of
self-regulation in this market.

3 Setting and Data

3.1 Setting

Our data come from the leading mobile in-app advertising network of a large Asian country, which
had over 85% market-share in the category in 2015. The ad-network works with over 10,000 apps
and 250 advertisers and it serves over 50 million ads per day (about 600 auctions per second).

6

3.1.1 Players

There are four key players in this marketplace.
Users: Individuals who use apps. They see the ads shown within the apps that they use and may
choose to click on the ads.
Advertisers: Firms that show ads through the ad-network. They design banner ads and specify
their bid as the amount they are willing to pay per click, and can include a maximum budget if they
want to. Advertisers can target their ads based on the following variables: app category, province,
connectivity type, time of the day, mobile operators, and mobile brand of the impression. The
ad-network does not support more detailed targeting (e.g., behavioral targeting) at this point in time.
Publishers: App developers who have joined the ad network. They accrue revenues based on the
clicks generated within their app. Publishers earn 70% of the cost of each click in their app (paid by
the advertiser), and the remaining 30% is the ad-network’s commission.
Ad-network or Platform: functions as the matchmaker between users, advertisers, and publishers.
It runs a real-time auction for each impression generated by the participating apps and shows the
winning ad during the impression. The platform uses a CPC pricing mechanism, and therefore
generates revenues only when clicks occur. 3

3.1.2 Auction Mechanism

The platform uses a quasi-proportional auction mechanism (Mirrokni et al., 2010). Unlike other
commonly-used auctions (e.g., second price or Vickrey), this auction uses a probabilistic allocation
rule:

πia =
baqa∑
j∈Ai bjqj

(1)

where πia is the probability that advertiser a with bid ba and quality score qa wins impression i, and
Ai denotes the set of advertisers participating in the auction for impression i. The quality score is
an aggregate measure that reflects the advertiser’s potential profitability for the platform. Currently,
the platform does not use impression-specific quality scores; rather it uses an advertiser-specific
quality score that remained constant during our observation period.

Because of the probabilistic nature of the auction, the ad that can generate the highest expected
revenue for the platform is not guaranteed to win. Rather, advertiser a’s probability of winning is
proportional to baqa.4

3An impression lasts one minute. If a user continues using the app beyond one minute, it is treated as a new impression
and the platform runs a new auction to determine the next ad to show the user.

4From a practical perspective, probabilistic auctions ensure that individual users are not exposed to the same ad
repeatedly within the same app-session (which can be irritating). In contrast, in a deterministic auction, the same
advertiser would win all the impressions unless his budget runs out.

7

3.2 Data

We have data on all the impressions and corresponding clicks (if any) in the platform for a 30-day
period from 30 September, 2015, to 30 October, 2015. For each impression, we have data on:

• Time and date: The time-stamp of the impression.

• AAID: Android Advertising ID is a user re-settable, unique, device ID that is provided by the
Android operating system.5 It is accessible to advertisers and ad networks for tracking and
targeting purposes. We use it as the user-identifier in our main analysis.

• App ID: A unique identifier for apps that advertise through the platform.

• Ad ID: Identifier for ads shown in the platform.

• Bid: The bid that the advertiser has submitted for her ad.

• Location: This includes the province as well as the exact location of a user based on latitude
and longitude.

• Connectivity type: It refers to the user’s type of connectivity (e.g., Wi-Fi or cellular data).

• Smartphone brand: The brand of user’s smartphone (e.g., Samsung, Huawei, etc.).

• MSP: The user’s mobile-phone service provider.

• ISP: The user’s Internet service provider.

• Click indicator: This variable indicates whether the user has clicked on the ad or not.

The total data we see in this one month interval is quite large. Overall, we observe a total of
1,594,831,699 impressions and 14,373,293 clicks in this time-frame, implying a 0.90% CTR.
Notably, we have access to all variables that the ad-network has. Thus, our analysis fully mimics
the ad-network’s problem.

3.3 Data Splits and Sampling

We have a snapshot of one month of data, from September 30 to October 30. We use penultimate
two days (October 28 and 29) for training and validation, and the last day for testing (October
30). We also use the preceding history from September 30 to Oct 27 (referred to as global data)
to generate the features associated with these impressions. The splits of data are shown in Figure
1. Note that we do not fit our model on the global data because we do not have sufficient history
to generate features for these impressions. Further, constraining all the three data-sets – training,
validation, and testing – to a three-day window has advantages because recent research has shown
that data freshness plays an important role in CTR prediction, i.e., using older history for prediction

5Apple’s app store is not available in the country where our data are sourced from. Hence, all smartphones use the
Android operating system.

8

Global Data Training and Validation Test

Oct 28 Oct 30 Oct 31Sep 30

ImpressionsImpressions

Sampled
Other

Figure 1: Schema for data generation.

can lead to poor predictive performance (He et al., 2014).6

We draw a sample of 728,340 unique users (out of around 5 million) seen on October 28, 29,
and 30 to form our training, validation, and test data-sets.7 In Appendix D.4, we show that this
sample size is sufficient and that larger samples do not significantly improve model performance.

Figure 1 presents a visual depiction of the sampling procedure. Rows represent users. The
impressions by users in our sample are shown using black points. There are 17,856,610 impressions
in the training and validation data, and 9,625,835 impressions in the test data. We have an additional
146,825,916 impressions by these users in the time preceding October 28, which form global data.
These impressions will be solely used for feature generation (and not for model fitting). Note that
both our user-based sampling procedure and feature generation approach (see §B) require us to be
able to identify and track users. For this purpose, we use the AAID variable as our user identifier.

3.4 Summary Statistics

We now present some summary statistics on our training, validation, and test data, which constitutes
a total of 27, 482, 444 impressions.

Table 1 shows the summary statistics of the categorical variables in the data. For each variable,

6As a robustness check, we consider alternative data splits and verify that, by and large, the performance of the model
does not change.

7Another approach would be to randomly sample impressions in each split of the data. However, this would not give us
the complete user-history for each impression in the training, validation, and test data-sets. This in turn would lead to
significant loss of accuracy in user-level features, especially since user history is sparse. In contrast, our user-based
sampling approach gives us unbroken user-history.

9

Variable Number of Share of top categories Number of
categories 1st 2nd 3rd impressions

App 9709 37.12% 13.56% 3.05% 27,482,444
Ad 263 18.89% 6.71% 6.31% 27,482,444
Hour of the Day 24 7.39% 7.32% 6.90% 27,482,444
Province 31 25.25% 6.65% 6.51% 21,567,898
Smartphone Brand 8 46.94% 32.30% 9.53% 25,270,463
Connectivity Type 2 54.64% 45.36% 27,482,444
ISP 9 68.03% 14.02% 7.09% 10,701,303
MSP 3 48.57% 43.67% 7.76% 26,051,042

Table 1: Summary statistics for the categorical variables.

0.00

0.05

0.10

0.00 0.02 0.04 0.06
Click−through Rate

F
ra

ct
io

n
of

 C
on

te
xt

s

Figure 2: Histogram of click-through rates (CTR)
for different contexts. Context is defined as a unique
combination of an app and an hour of the day (where
and when of an impression)

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000
Length of User History

F
ra

ct
io

n
of

 S
am

pl
e

Sample
Clicks Only
Impressions

Figure 3: Empirical CDF of the length of user history
for impressions and clicks (truncated at 5000). History
is defined as the number of previous impressions from
September 30 till the current impression.

we present the number of unique values, the share of top three values that the categorical variable
can take, and the number of non-missing data. While we always have information on the app, ad,
and time-stamp of the impression, the other variables are sometimes missing. The shares are shown
after excluding the missing variables in the respective category.

We observe a total of 263 unique ads and 9709 unique apps in the data. The top three sub-
categories in each have large shares and there is a long tail of smaller apps and ads. Moreover, we
find that the top 37 ads account for over 80% of the impressions, and similarly, the top 50 apps
account for 80% of impressions.

Next, we present some descriptive analysis that examines the role of contextual and behavioral
information in predicting CTR. A context is characterized by the ‘when’ and ‘where’ of an impres-

10

sion. As such, we define a unique context as a combination of an app and a specific hour of the day.
Figure 2 shows the histogram of CTR for different contexts. As we can see, there is a significant
amount of variation in CTR across contexts, which suggests that contextual information can be
informative for predicting clicks. Next, to understand the role of behavioral information, we focus
on the length of history available for a user. Figure 3 shows the CDF of the length of history for
all the impressions and clicks. It suggests that users with longer histories are less sensitive to ads.
Most of the clicks come from users with shorter histories, while most impressions come from users
with longer histories. Thus, user-history or behavioral information also seem helpful in explaining
the clicking behavior observed in data.

4 Machine Learning Framework for Targeting
In this module, our goal is to develop a framework that can accurately estimate the gains in efficiency
or the CTR for any targeting policy. To do that, we first need to specify and train a machine learning
model that accurately predict the match between an impression and an ad, i.e., predict whether an
impression will generate a click or not, for both factual and counterfactual ads.

This section is organized as follows. We first define our problem in §4.1. Next, in §4.2, we
discuss our empirical strategy. Here, we explain the need for, and the extent of, randomization
in our data generating process, and propose a filtering approach that establishes the scope of our
framework in estimating both factual and counterfactual targeting policies. In §4.3, we present the
details of our feature generation framework. Finally, in §4.4, we discuss our estimation procedure
which consists of the learning algorithm, the loss function, and the validation method.

4.1 Problem Definition

Consider a setting with N impressions and A ads. We begin with a formal definition of a targeting
policy.

Definition 1. A targeting policy τ is defined as a mapping between impressions to ads such that
each impression is allocated one ad. For example, τ(i) = a means that targeting policy τ selects ad
a to be shown in impression i.

In order to evaluate the effectiveness of a targeting policy, we first need an accurate prediction
of CTR for each ad for a given impression in our data. That is, for each impression i and ad a, we
need to estimate Pr(yi,a = 1), where yi,a is the indicator that ad a receives a click when it is shown
in impression i. This brings us to the formal definition of match value matrix:

11

Definition 2. Let mi,a = Pr(yi,a = 1). The N × A match value matrix M is defined as:

M =

m1,1 m1,2 . . . m1,A

m2,1 m2,2 . . . m2,A

...
...

mN,1 mN,2 . . . mN,A

 , (2)

where N denotes the total number of impressions in our data and A denotes the total number of ads
competing for these impressions.

In this section, our goal is to develop a machine learning framework to estimate this match value
matrix. We can use our estimated match value matrix, M̂ , to perform the following analyses:

1. Evaluate model performance: We can evaluate the predictive performance of our model
using the observed outcome. Let τ0 denote the current targeting policy, such that:

τ0(i) = ai, (3)

where ai is the ad that is actually shown in impression i. Since we observe the actual outcomes
for yi,ai , we can evaluate how well our m̂i,ai’s estimate these outcomes.

2. Evaluate the gains from efficient targeting policy: Using the match value matrix, we can
evaluate the expected CTR of any counterfactual targeting policy τ as follows:

m̂τ =
1

N

N∑
i=1

m̂i,τ(i) (4)

In particular, we are interested in the efficient targeting policy, τ ∗, determined by our model
that allocates each impression to the ad with the highest CTR for that impression:

τ ∗(i) = argmax
a
m̂i,a (5)

In §5.2, we quantify the gains in average CTR from efficient targeting over the current system.

4.2 Empirical Strategy

We now present our empirical strategy to estimate matrix M . At a high-level, our goal is to build a
model to predict whether an impression i showing ad a will receive a click or not, based on the joint
distribution of impressions and clicks in our data. That is, we seek to estimate a function f(Xi,a)

12

such that:
mia = Pr(yi,a = 1) = f(Xi,a), (6)

where Xi,a is a set of features that are informative of whether impression i showing ad a will receive
a click. Since this problem can be interpreted as function evaluation, we turn to machine learning
algorithms that can capture complex relationships between the covariates and the outcome without
imposing strong parametric restrictions on f(·).

The estimates from our machine learning approach are accurate as long as the joint distribution
of covariates and outcome (click) in the training set is the same as that in the test set. In other words,
we require the training and test sets to have the same data generating process. While this assumption
is satisfied for the set of ads that are actually shown in the data, this may not hold for ads that are not
shown. As such, our machine learning model is only guaranteed to provide one accurate estimate
per row – for the ad that is actually shown. For the rest of ads, the estimates are accurate only if they
could have been shown in that impression, i.e., have a non-zero probability of being shown in that
impression given the data generating process. Thus, for each impression, our estimates are accurate
for the set of counterfactual ads that could have been shown in that impression. This is because, in a
sufficiently large data-set, this set of ads would have been shown on impressions similar to the focal
impression, which allows us to estimate the match value for all these impression-ad combinations.

It is worth noting that if the platform runs a deterministic auction (e.g., second price auction),
the set of ads that could have won the auction (and hence shown during an impression) is a singleton.
Similarly, the set of ads that can be shown in an impression in highly targeted environments would
be very small. Therefore, data-sets generated without any randomization in the ad allocation
mechanism will not allow researchers to push the scope of their analysis beyond the set of actual
outcomes observed in the data. Randomization in ad allocation is thus necessary if we want to
use our framework to evaluate the effectiveness of counterfactual targeting policies. In §4.2.1, we
provide a discussion on the need for and the extent of randomization in our data. Next, in §4.2.2,
we propose a filtering procedure to identify the set of ads for which our estimates are accurate.

4.2.1 Randomization and Accuracy of Estimates

We now discuss why we need randomization in the ad allocation mechanism and the extent of
randomization necessary. We then discuss the sources of randomization in our data, and present
some empirical evidence on the extent of randomization.

Why do we need randomization?

Randomization in the data generating process is not necessary to build a good predictive model of
clicks. In other words, if we do not use the model to predict in counterfactual situations that are

13

“not seen in the data”, the lack of randomization is not a problem, because the training and test sets
have the same joint distribution of covariates and clicks. Thus, randomization is not necessary if we
only want to build a model to predict the CTR of the ads shown in the data (i.e., the factual element
for each row of the matrix M), and use it to evaluate the contribution of each piece of information
in predicting the observed outcome.

However, since we are also interested in evaluating the effectiveness of counterfactual targeting
policies, we need accurate estimate all the elements of the matrix M . To get these estimates, we
need randomization in ad allocation. Intuitively, our predictions of CTRs for the competing ads for
any impression will be inaccurate if these ads would never have been shown in that impression. For
example, if an ad is only shown in App X in our data, then no model (ML or otherwise) will be able
to accurately predict the ad’s CTR in App Y. Therefore, we need to see sufficient randomness in the
allocation of ads across impressions to ensure that the joint distribution of covariates and clicks in
our counterfactuals is the same as that in training data.

To what extent do we need randomization?

While the ideal case is a fully randomized experiment, we argue that if a counterfactual ad has a
non-zero probability of being shown in an impression, then we can recover an accurate estimate
of its CTR using a large-scale training set. Naturally, estimates for small ads with a very small
probabilities of winning will be noisy. However, it is possible to overcome this issue by focusing
on the top 37 ads that constitute over 80% of our data. In §4.2.2, we describe how we filter ads to
ensure our estimates are accurate for the counterfactual ads.

What are the sources of randomization in our data generating process?

There are three main factors that contribute to the randomness in our data. First, it is the probabilistic
nature of our auction. Unlike deterministic auctions where the highest scoring bidder always wins,
in quasi-proportional auctions all bidders have a chance of winning. Therefore, ads end up being
shown over a wide range of impressions. Second, the quality score qa used in the auction for ad a is
constant for the ad across all impressions and is not regularly updated. Thus, the platform does not
do really match ads to impressions. Third, there are only few categories over which advertisers can
target their ads and the extent of targeting happening in the system is low. Table 2 shows the list of
variables over which advertisers can now target and the percentage of top advertisers that target
on each of these variables. Interestingly, more than half of the top ads do not target in any given
targeting area and even those that do target, do so minimally. Moreover, the platform does not allow
any behavioral or user-level targeting. Because of these reasons, the extent of randomization of ads
over impressions is quite high.

14

Targeting Area No. of Top Ads Targeting
App Category 13
Province 12
Connectivity Type 2
Time of the Day 9
MSP 1
Mobile Brand 1
ISP 1

Table 2: Targeting decisions of the top 37 ads.

What is the extent of randomness in our data?

We now provide some empirical evidence to illustrate the extent of randomness in our data. A
unique aspect of our ad placement mechanism is that ads are changed and replaced sequentially
within a session. After an ad has been shown for one minute within a session, it is replaced by an
ad chosen through the same auction mechanism as the previous ad. In deterministic auctions, the
same ad will be shown repeatedly since bids and CTRs are not updated within a session. However,
since our auction mechanism is probabilistic, a user can be exposed to multiple ads within the same
session even though an identical auction runs for all impressions within the session.

To illustrate this point, we calculate the number of distinct ads shown in a session prior to a
given exposure/impression number. We then plot the empirical CDF of the number of distinct ads
shown within a session at the sixth, eighth, and tenth exposures in Figure 4. As we can see, there
is substantial variation in the number of distinct ads at each exposure number. For example, at
least three of the first five ads are distinct in 80% of the sessions. This implies that the extent of
randomization in our data is quite high.

4.2.2 Filtering Procedure

While randomization helps us obtain accurate CTR estimates for a wide range of counterfactual
ads, there remains a set of ads for which our estimates will not be accurate. Recall that because
our auction mechanism is probabilistic, all ads participating in the auction for an impression i
have a non-zero probability of winning. Thus, the only ads that have a zero probability of being
shown in an impression are ones that are not available to participate in the auction for it. Our goal
is to identify and filter such ads for each impression i in our data. Let EN×A = [ei,a] denote a
filtering matrix, where each element ei,a takes value 1 if ad a has a non-zero probability of winning
impression i, and 0 otherwise. We then construct each row i of EN×A by identifying ads that were
not available to participate in the auction for impression i. Two factors influence whether an ad is
available to participate in an auction for an impression:

15

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5
Number of Distinct Ads

F
ra

ct
io

n
of

 Im
pr

es
si

on
s

Exposure Number = 6

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7
Number of Distinct Ads

F
ra

ct
io

n
of

 Im
pr

es
si

on
s

Exposure Number = 8

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9
Number of Distinct Ads

F
ra

ct
io

n
of

 Im
pr

es
si

on
s

Exposure Number = 10

Figure 4: Empirical CDF of the number of distinct ads for three exposure numbers: 6, 8, and 10, in
the training and test data.

• Targeting: Targeting by advertisers is the main reason why some ads are unavailable to compete
for certain impressions, and therefore have zero probability of being shown in them. For
example, if an ad chooses to target only mornings, then it is not considered in the auctions for
impressions in evenings. In that case, we should filter out this ad for all impressions in the
evening. While limited, targeting is nevertheless present in our setting, and mainly happens on
province, time, and app categories (see Table 2). Hence, for each impression i, we filter out all
ads that were excluded from the auction for i because of targeting.

• Campaign availability: Second, some ads may be unavailable to compete for a given impression
because their ad campaigns may not be running in the system when the impression happens.
This could happen either because the advertiser’s budget has been exhausted, or because the
advertiser has exited the market. Therefore, for each impression i, we filter out ads that were
unavailable when it happens. Empirically, we find that campaign availability is not a major
factor that leads to ad-filtering since we focus on top ads.8

We construct the EN×A matrix by filtering out ads for each impression based on the factors
discussed above. Each row in this matrix shows which ads are competing for an impression.
However, our filtering may not be accurate for observations with missing targeting variables.
Therefore, for all the analyses that use filtering, we only focus on the Filtered Sample, which
consists of the impressions in the test data for which all targeting variables are non-missing. Figure
5 shows the empirical CDF of the number of competing ads for each impression in the Filtered

8Only six ads experience budget exhaustion (at least once) in the training data, four of which are completely out for
auctions in the test data.

16

0.00

0.25

0.50

0.75

1.00

0 10 20 30
Number of Top Ad Competitors per Impression

F
ra

ct
io

n
of

 Im
pr

es
si

on
s

Figure 5: Empirical CDF of the number of competitors (from the top 37 advertisers) per impression
on the Filtered Sample.

Sample data among top 37 ads per impression. Note that almost all impressions have at least 8
ads competing for it, and the median impression has 13 competitors. This pattern, together with
the probabilistic auction mechanism, ensures that there is sufficient randomization in ads across
impressions (as shown in Figure 4).

4.3 Feature Generation Framework

As discussed in §4.2, our goal is to build a model, mia = Pr(yia = 1) = f(Xia) to accurately
predict whether an impression i will receive a click or not. As such, we first need a vector of features
Xi,a that captures the factors that affect whether the user generating impression i will click on ad a.

It is important to generate an exhaustive and informative set of features since the predictive the
accuracy of our model will largely depend on the quality of features we use. Given our research
agenda, our features should also be able to capture the contextual and behavioral information
associated with an impression over different lengths of history preceding the impression (long-term,
short-term, and session-level). To achieve these objectives, we adopt the main ideas from the
functional feature generation framework proposed by Yoganarasimhan (2019). There are three
advantages of doing so. First, her function-based approach allows us to generate a large and varied
set of features using a parsimonious set of functions. Second, it allows for a natural mapping
between feature inputs and feature classification. Third, the general class of features she suggests
have been shown to have good predictive power in this class of problems.

We now present a short overview of our feature functions and feature categorization below, and
refer interested readers to Appendix §B for a more detailed description.

17

4.3.1 Inputs for Feature Functions

To generate a set of features for each impression, we use feature functions that take some inputs at
the impression level and output a corresponding feature for that impression. Our feature functions
typically need two types of inputs:

• Impression-specific information: Each impression in our data can be uniquely characterized by
three types of information – (1) contextual information that captures the context (where and
when) of the impression, i.e., which app serves this impression and at what time (hour of day)
is the impression being shown, (2) behavioral information that denotes the identity of the user
generating this impression, and (3) ad-related information, that denotes the identity of the ad
which was shown during this impression.

• History: This input characterizes the history over which we aggregate to calculate the output of
our functions. We define three different levels that capture the long-term (approximately one
month), short-term (3 days), and ongoing session-level history. Besides, we characterize the
history in such a way that we can update the features in real-time.

To reduce the dimensionality of our feature sets and boost the speed of our feature generation
framework, we group the smaller apps (below top 50) into one app-category and all the smaller ads
(below top 37) into one ad-category. Thus, our features do not distinguish the context of smaller
apps (ads) as separate from each other, though they are able to distinguish them from the top apps
(ads). Please see Appendix §B.1 for a complete formal definition of the inputs for feature functions.

4.3.2 Feature Functions

One challenge we face is that most of the information characterizing an impression-ad combination
is categorical in nature, e.g., the app showing the ad, the user seeing the ad. As a result, approaches
that include all these categorical raw inputs and their interactions as covariates are prone to the curse
of dimensionality. So we define functions that take these raw inputs as well as their interactions and
map them onto a parsimonious set of features that reflect the outcome of interest – CTR.

We present an overview of our feature functions in Table 3 along with their functionality (see
Appendix §B.2 for a detailed description of the feature functions). These functions take different
inputs based on the focal impression and return outputs that are integers or real numbers. These
inputs are basically interactions of different raw inputs. The following examples give a high-level
overview of what these functions do. Let pi, ti, ui, and ai denote the app, hour, user, and ad
associated with impression i. If the function Impressions is given pi, ui, and ai and long-term
history as inputs, it simply returns the number of times user ui has seen ad ai inside app pi from
the start of the data till the time at which impression i occurred. However, if it is only given ui and

18

Function Functionality
Impressions Number of impressions for a given set of inputs over a pre-specified history
Clicks Number of clicks for a given set of inputs over a pre-specified history
CTR Click-through rate for a given set of inputs over a pre-specified history
AdCount Number of distinct ads shown for a given set of inputs over a pre-specified history
Entropy Dispersion of ads shown for a given set of inputs over a pre-specified history
AppCount Number of distinct apps used by a given set of inputs over a pre-specified history
TimeVariability Variance in the user’s CTR at different hours of the day over a pre-specified history
AppVariability Variance in the user’s CTR across different apps over a pre-specified history

Table 3: Feature functions

short-term history, it returns number of impressions user ui has seen across all apps and ads over the
last three days. Using this logic, we give different sets of inputs to these functions and generate 98
features for each impression i. In addition, we include a few standalone features such as dummies
for each of the top ads, the user’s mobile and Internet service providers, latitude, longitude, and
connectivity type. Overall, we have a total of 160 features for each impression-ad (ia) combination.
Together, these features form the set of predictive covariates, Xia, for the impression i showing ad
a. for Please see Appendix §B.3 for the full list of features.

4.3.3 Feature Categorization

All our features capture one or more type of information – contextual, behavioral, and ad-specific.
To aid our analysis, we therefore classify features based on the type of information used to generate
them and group them into the following (partially overlapping) categories:

• Contextual features (FC): These are features that contain information on the context of the
impression – app and/or hour of the day.

• Behavioral features (FB): These are features that contain information on the behavior of the
user who generated the impression.

• Ad-specific features (FA): These are features that contain information on the ad shown during
the impression.

The three feature sets form our full set of features FF = FB ∪ FC ∪ FA. We now present a
few examples of features generated using the Clicks function to elucidate this classification. The
total clicks made by user ui across all apps, ads, and hours of the day in the past month is a purely
behavioral feature since it only contains information on the behavior of the user who generated
impression i. On the other hand, the total clicks made by user ui in the app pi over the last month is
both a behavioral and contextual feature since it contains information on both the behavior of ui
as well as the context (app pi) in which she made these clicks. Finally, the total clicks received by
ad ai over the last one month across all users, apps, and times is a purely ad-specific feature since

19

31

18

18

13

12

24

44

Behavioral Contextual

Ad−Specific

Figure 6: Venn diagram of the three feature sets, with the number of features in each region.

it only reveals information about the ad’s propensity to receive clicks. Thus a feature can contain
any combination of behavioral, contextual, or ad-specific information depending on the inputs used
to generate it. Please see Table A1 in the Appendix for a mapping between each feature and the
categories that it falls under and Figure 6 for a Venn diagram of our classification system.

4.4 Learning Algorithm: XGBoost

We now discuss the final step of our machine learning framework – the learning algorithm, which
helps us learn the function f(Xi,a). It provides a mapping between our feature set (Xi,a) and the
match value or click probability, as: f(Xi,a) = mi,a = Pr(yi,a = 1). Given that we want to
maximize the predictive accuracy of the model, we do not want to impose parametric assumptions
f(·). The problem of function evaluation is fundamentally different and harder than the standard
approach used in the marketing literature, wherein we simply evaluate parameters after assuming a
functional form. In the latter, the researcher only needs to search over the set of parameters given
functional form, whereas in the former we have to search over the space of functions. Therefore, we
turn to machine learning algorithms that are designed for this task.

Specifically, we employ the XGBoost algorithm proposed by Chen and Guestrin (2016). XG-
Boost is one of the most successful prediction algorithms developed in the last few years, and
has been widely adopted in both academia and industry.9 Broadly speaking, boosted trees can be

9Boosted trees in general, and XGBoost in particular, perform exceptionally well in tasks involving prediction of human
behavior. Examples include store sales prediction, customer behavior prediction, product categorization, ad CTR
prediction, course dropout rate prediction, etc. Indeed, almost all the KDD cup winners have used XGBoost as their

20

thought of as performing gradient descent in function space using shallow trees as the underlying
weak learners (Breiman, 1998; Friedman, 2001). While boosted trees have been around for over a
decade, Chen and Guestrin (2016)’s implementation is superior to earlier implementation because
of four reasons. First, from a methodological standpoint, it can be interpreted as performing Newton
boosting in the function space (as opposed to gradient descent), and thereby uses information from
the Hessian as well. Thus, both the quality of the leaf structure and the leaf weights learned are more
accurate in each step. Second, XGBoost uses a trick commonly used in Random Forests – column
sub-sampling,which reduces the correlation between subsequent trees. Third, XGBoost employs a
sparsity-aware split finding, which makes the algorithm run faster on sparse data. Finally, from an
implementation perspective, XGBoost is highly parallelized, which makes it fast and scalable.

We refer interested readers to Appendix §C a more detailed description of XGBoost and now
focus on two key components of our implementation.

4.4.1 Loss Function

To train any learning model, we need to specify how to penalize model fit, i.e., the difference in the
observed data yi,ai and model predictions m̂i,ai , given that ad a is shown in impression i. This is
done through a loss function, which the machine learning algorithm minimizes. Given the binary
nature of our outcome variable, we use logarithmic loss (log-loss) as our loss function. It is the
most commonly used loss function in the CTR prediction literature (Yi et al., 2013) and has some
attractive properties, e.g., a faster convergence rate compared to other loss functions such as squared
loss (Rosasco et al., 2004). The log-loss for the estimated model can be written as:

Llog loss(M̂,y) = − 1

N

N∑
i=1

(yi,ai log (m̂i,ai) + (1− yi,ai) log (1− m̂i,ai)) (7)

4.4.2 Validation

Validation is an important part of training any machine learning model. The boosting algorithm
is designed to continuously update the prediction rule (or current estimate of f(·)) to capture
more and more complex relationships/interactions between the features Xi,a, in order to predict
yi,a. Since we do not impose any assumptions on the parametric form of f(·), this will likely
lead to over-fitting, i.e., the model will evolve to fit too closely to the training data and perform
poorly out-of-sample. As a result, if we use training data for both model-specification (parameter
estimation) and model-selection (hyper-parameter estimation), we might end up picking a model
with great in-sample performance but poor out-of-sample performance. Validation helps us avoid

learning algorithm (either as a standalone model or in ensembles) since 2015.

21

this problem by using parts of the data to validate the model. This ensures that the chosen model,
f(·), will have a good out-of-sample performance. Please see Appendix §C.2 for a full description
of our validation procedure.

5 Results from the Machine Learning Targeting Models
Recall that the goal of our machine learning framework is to estimate the matrix M defined in
Equation (2). As such, our M̂ contains CTR estimates for: (1) the ads shown in the data, and (2)
counterfactual situations, i.e., ads that could have been shown. In §5.1, we focus on the actual data
and present results on the predictive performance of our framework on the observed sample. We
also document the contribution of behavioral vs. contextual information to our framework in this
section. Next, in §5.2, we focus on the counterfactual estimates in M̂ and evaluate the gains in CTR
from an efficiently targeting policy. Finally, in §5.3 we discuss robustness and scalability.

5.1 Predictive Performance of the Machine Learning Model

5.1.1 Evaluation Metric

To evaluate whether a targeting model improves our ability to predict clicks, we first need to define
a measure of predictive accuracy or an evaluation metric. In line with our loss function, we use
“Relative Information Gain” or RIG, which is defined as the percentage improvement in log-loss
over the baseline that simply predicts average CTR for all impressions. Formally:

RIG(M̂,y) =

(
1− L

log loss(M̂,y)

Llog loss(ȳ,y)

)
× 100, (8)

where ȳ is the average CTR in the sample. Average CTR is the simplest aggregate metric available
from any data, and using it as the baseline prediction tells us how well we can do without any model.
It is important to control for this baseline because if the average CTR is very high (close to 1) or
very low (close to zero, as in most e-commerce settings, including ours), a naive prediction based
on the average CTR leads to a pretty good log-loss. Normalizing the log-loss with the average CTR
reduces the sensitivity of the metric to the data distribution (He et al., 2014). Nevertheless, we need
to be careful when interpreting RIGs computed on different datasets because there is no obvious
normalization in those cases (Yi et al., 2013).

In Appendix §D.1, we present four other commonly used evaluation metrics – (1) Mean Squared
Error, (2) AUC, (3) 0/1 Loss, and (4) Confusion Matrix. We discuss the pros/cons of these metrics
and demonstrate the performance of our model on them.

22

Evaluation Metric Training and Validation Test
LogLoss for Full Model 0.041927 0.044364
LogLoss for Baseline Model 0.051425 0.054070
RIG of Full Model 18.47% 17.95%

Table 4: LogLoss and RIG (in percentage) shown for training, validation, and test data.

5.1.2 Predictive Accuracy of the Full Targeting Model

We now discuss our framework’s ability to predict the actual outcomes in the data. Table 4 shows
the gains in prediction for: (1) training and validation data, and (2) test data. The first row depicts
the log-loss for the Full model (which uses the set of all features and trains the XGBoost model).
The second row depicts the log-loss for the baseline model, which is simply the average CTR for
the dataset. The third row is the RIG of the Full model compared to the baseline.

The RIG of the Full model over the baseline is 17.95% on the test data, a substantial improvement
in CTR prediction problems (He et al., 2014). This suggests that the data collected by the ad-network
is quite valuable and that our machine learning framework has significant predictive power on
whether an impression-ad combination will receive a click.

The RIG improvement for training and validation data is 18.47%, which is somewhat higher
than 17.95% for the test data. There are two potential reasons for this. First, all statistical models
estimated on finite data have higher in-sample fit than out-of-sample fit. Indeed, this is the main
reason we use the test data to evaluate model performance. Second, the difference could simply
reflect the differences in the underlying data distributions for the two data-sets. As discussed in
§5.1.1, we cannot compare RIG across data-sets because it is co-determined by the model and data.
Thus, the difference between the RIG values across the data-sets is not necessarily informative.

5.1.3 Value of Information: Behavioral vs. Contextual Features

We now examine the impact of different types of features on the predictive accuracy of our model.
This is important for two reasons. First, data storage and processing costs vary across feature
types. For example, some user-specific behavioral features require real-time updating, whereas
pure-contextual features tend to be more stable, and can be updated less frequently. In order to
decide whether to store and update a feature or not, we need to know its incremental value in
improving targeting. Second, the privacy and policy implications of targeting depend on the features
used. For example, models that use behavioral features are less privacy-preserving than those
that use purely contextual features. Before adopting models that are weaker on privacy, we need
objective measures of whether such models actually perform better.

Recall that our features can be categorized into three broad overlapping sets – 1) Behavioral,

23

RIG over Baseline Full Top Ads and Filtered
Sample Top Apps Sample

Behavioral Model 12.14% 14.82% 14.74%
Contextual Model 5.25% 5.98% 6.77%
Full Model 17.95% 22.85% 22.45%
No. of Impressions 9,625,835 6,108,511 4,454,634
% of Test Data 100% 63.5% 46.28%

Table 5: Comparison of Behavioral and Contextual models for different samples of test data.

denoted by FB , 2) Contextual, denoted by FC , and 3) Ad-specific, denoted by FA. We now use this
categorization to define two models:

• Behavioral model: This model is trained using behavioral and ad-specific features, without
including any contextual features. Formally, the feature set used is (FB ∪ FA) \ FC .

• Contextual model: This model is trained using only contextual and ad-specific features, without
including any behavioral features. The feature set for this model is (FC ∪ FA) \ FB.

Both models include ad-specific features that are neither behavioral nor contextual, e.g., the total
impressions received by the ad shown in the impression in the past month (Feature 2 in Table A1 in
the Appendix).10 They also use the same loss function and training algorithm, and only differ on
the set of features used. Hence, it is possible for us to directly compare the RIG of one model over
another within the same data.11

The results from these two models and their comparisons with the Baseline model are presented
in Table 5. First, consider the results for the full test data (presented in the second column). The
Behavioral model has a 12.27% RIG over the baseline, which is considerably higher than 5.12%, the
RIG of the Contextual model over the baseline.12 Together, these findings suggest that behavioral
targeting is more effective compared to contextual targeting in mobile in-app advertising. While
it is possible that additional contextual information (that we do not have) can change the relative
ordering of these findings, our findings establish a base case for these comparative results.

One possible critique of the above analysis is that it does not exploit the full capacity of
contextual information since we treat all the non-top ads as advertiser category and all the non-top
apps as one app category during feature generation (see §4.3.1). To address this issue, we consider a

10We can also specify Behavioral and Contextual models that ignore ad-specific information. The qualitative results on
the relative value of behavioral and contextual information for that case are similar to those presented here.

11As discussed in §5.1.1, RIGs are not directly comparable across different data-sets. Simply put, in Table 5, comparisons
within a column are interpretable, but comparisons across a row are not.

12The Behavioral model is also closer in performance to the Full model than the Contextual model. Compared to the
Full model, the loss in performance of the Behavioral model is -6.95% and that of the Contextual model is -15.67%.

24

sub-sample of the test data which only consists of impressions that were shown in a top app and
showed a top ad and re-run all the above comparisons. This accounts for 63.5% of our test data.
The performance of our Full model on this subset of the data is even better than that on the full
sample because there is no information loss on the ads or apps. The findings on the relative value of
behavioral vs. contextual features are even stronger in this data-set, which suggests that our results
in the full sample were not driven by the lack of good contextual information.

Finally, in the last column, we show the performance of our model on the Filtered Sample
(described in §4.2.2), which is the sample that we use for conducting our counterfactual analysis.
Our qualitative findings remain the same for this sample too.

5.2 Counterfactual Analysis: Efficiency Gains from CTR-maximizing Targeting Policy

We now focus on an important counterfactual question from the platform’s perspective – If the
platform employs an efficient targeting policy, such that each impression is allocated the ad with the
highest predicted CTR in that impression, to what extent can it improve the CTR in the system?

Recall that τ0 and τ ∗ denote the current and efficient targeting policy, as defined in Equations (3)
and (5), respectively. We can then use the following equation to calculate the gains in average CTR:

ρ(τ ∗, τ0;NF) =
m̂τ∗

m̂τ0
=

1
NF

∑NF
i=1 m̂i,τ∗(i)

1
NF

∑NF
i=1 m̂i,τ0(i)

, (9)

where NF is the number of impressions in the Filtered sample. It is crucial to conduct this
couterfactual on the Filtered Sample (instead of the Full sample) for the reasons discussed in §4.2.2.

We find that an efficient targeting policy based on our machine learning model increases average
CTR by 66.80% over the current regime. This is a substantial improvement, and suggests that
targeting based on behavioral and contextual features can lead to significant efficiency gains.

Next, we examine how efficiency-gain varies by impression. Specifically, for each impression
we calculate the percentage improvement in CTR with efficient targeting as

(
m̂i,τ∗(i)
m̂i,τ0(i)

− 1
)
× 100

and examine the distribution of this metric over impressions. In Figure 7, we show the histogram of
this percentage improvement in CTR for the impressions in the Filtered Sample. We find that there
is considerable heterogeneity in CTR improvements across impressions. The peak at the left side of
the graph (at one) denotes cases where the τ0(i) = τ ∗(i), where the platform happened to randomly
selected the right ad that maximizes eCTR. Interestingly, we find that the median improvement in
CTR is about 105.35%, implying that efficient targeting policy can make over half the impressions
twice as clickable as the current system. In sum, we find that an efficient targeting policy leads to
significant gains in clicks for the platform.

25

0.00

0.05

0.10

0 100 200 300 400 500
Percentage Improvement in CTR

F
ra

ct
io

n
of

 Im
pr

es
si

on
s

Figure 7: Histogram of percentage improvement in CTR over the current system using the efficient
targeting policy

Nevertheless, a key question that remains unanswered is whether an efficient targeting policy
is also revenue maximizing for the platform. Therefore, in §6, we incorporate competition and
examine the relationship between efficiency and revenues.

5.3 Scalability and Robustness

We perform extensive checks on robustness of all aspects of our machine learning approach and its
scalability. We discuss these tests briefly here, and refer readers to Appendix §D for details.

First, in Appendix §D.1, we show that our results are robust even if we use other evaluation
metrics (AUC, MSE, 0/1 Loss, and confusion matrix). Second, in Appendix §D.2, we confirm that
XGBoost is the best learning algorithm for our prediction task by comparing its performance to
five other commonly used algorithms (Least Squares, LASSO, Logistic Regression, Classification
And Regression Tree, and Random Forests). Third, in Appendix §D.3, we run a few robustness
checks on the feature generation framework by considering alternative ways of aggregating over
history as well as app-specific dummies. Again, we find no improvement in the model’s predictive
performance under these different specifications. Fourth, in Appendix §D.4, we present some
checks to establish that our data sample is sufficient and large enough to produce reliable results.
Specifically, we find that the RIG gains start stabilizing with the sample of 100,000 users, and that
our sample of 728,340 users is more than sufficient for our purposes. Finally, in Appendix §D.5, we

26

show that our results are not sensitive to the validation procedure used to pick the tuning parameters
by comparing with other methods, e.g., hold-out validation and k-fold cross validation.

6 Analysis of Revenue-Efficiency Trade-off
In §5, we showed that the ad-network can substantially increase CTR with efficient targeting.
However, that analysis was silent on the ad-network’s incentives to target and agnostic to revenues.
In this section, we seek to answer two sets of important questions by focusing on competition and
incentives. First, to what extent is the ad-network incentivized to allow targeting and is there an
optimal level of targeting from its perspective? Second, how does the total surplus accrued by
advertisers vary with targeting levels, and is there heterogeneity in advertisers’ preferences on the
optimal level of targeting?

Incentives are particularly important in this context because if the platform is incentivized to not
allow behaviorally targeted bids, then we may naturally converge to a regime with higher consumer
privacy protection. In contrast, if the platform is incentivized to allow behavioral targeting, then an
external agency (e.g., government) may have to impose privacy regulations that balance consumers’
need for privacy with the platform’s profitability motives. Similarly, if a substantial portion of
advertisers prefer a more restrictive targeting regime, then the mobile ad-industry can self-regulate.
So we seek to quantify the platform’s and advertisers’ profits under different levels of targeting.

The rest of this section proceeds as follows. In §6.1, we present a simple example to fix ideas and
highlight the platform’s efficiency-revenue trade-off. In §6.2, we present a stylized analytical model
that characterizes the total surplus and platform revenues under different targeting strategies. In §6.3,
we take this analytical model to data and present an empirical analysis of auctions with targeting.
Finally, in §6.4, we share our findings and conclude with a discussion on optimal mechanism design
and the limitations of our findings.

6.1 Revenue-Efficiency Trade-off: A Simple Example

In an important paper, Levin and Milgrom (2010) argue that micro-level targeting can thin auction
markets, which in turn can soften competition and make the platform worse off. In Figure 8, we
present a simple example to illustrate this idea. In this example, we consider a platform with two
impressions and two advertisers whose valuations for these impressions do not align: advertiser
1 has much higher valuation for impression 1 compared to impression 2, whereas the opposite is
true for advertiser 2. Assume that the platform uses second price auctions with Cost per Impression
(CPI) pricing, where the highest bidder wins the impression and pays the bid of the second-highest
bidder. We consider two regimes. In the Full Targeting regime, the platform allows advertisers to
submit targeted bids for each impression. In the No Targeting case, advertisers cannot distinguish

27

0

1

2

3

4

5

6

1 2

V
al

u
at

io
n

Impression

Full Targeting

1 & 2

Impression

No Targeting

Ad Surplus

Revenue

Ad 1

Ad 2

Figure 8: Market outcomes under full vs. no targeting. The platform sells two impressions. Ad 1 and
Ad 2 have valuations 5 and 1 for impression 1, and valuation 1 and 3 for impression 2, respectively.
When bundled together, advertisers cannot distinguish between ads, giving an aggregate value of
3 and 2 to Ad 1 and 2, respectively. The entire shaded area in each case shows the total surplus
generated. The area on the top is the share of advertisers and that in the bottom goes to the platform.
See Appendix E for a detailed analysis of this example.

between the two impressions, and therefore have to submit the same bid for both the impressions
(i.e., no targeted bidding). As shown in Figure 8, the platform cannot extract sufficient revenue if
advertisers can distinguish between impressions (full targeting). However, the platform is able to
extract more revenue by not revealing the identity of these impressions since advertisers are forced
to rely on their aggregate valuation for both impressions together in this case. This example thus
illustrates the platform’s trade-off between value creation and value appropriation, and highlights
the platform’s incentives to limit advertisers’ ability to target.

6.2 Analytical Model of Auction with Targeting

We now develop a simple analytical model that captures the trade-offs discussed above. To reflect
the idea of narrow targeting and thin markets as envisioned by Levin and Milgrom (2010), we make
two modeling choices. First, the idea of revenue loss in thin markets is due to the use of efficient
auctions that guarantee that the highest valuation bidder will win. While efficiency is satisfied in
many auction mechanisms, we focus on second-price auctions since it is the most commonly used
auction in online advertising. Moreover, it has the truth-telling property that makes our analysis
more tractable. Second, the idea of narrow targeting by advertisers requires the pricing mechanism
to be per-impression. In a cost-per-click mechanism, advertisers do not care about the match value
of impressions since they are charged per click. For these reasons, we consider a setting where the
platform uses a second-price auction mechanism with CPI pricing. Nevertheless, it is worth noting

28

that neither of these two assumptions are essential to our analysis. Later in this section, we discuss
how our results can be extended to other efficient auction mechanisms and/or cost-per-click pricing.

As before, we consider a platform that receives N impressions and serves A advertisers. Let via
denote ad a’s private valuation from impression i, and let V denote the value matrix:

V =

v1,1 v1,2 . . . v1,A

v2,1 v2,2 . . . v2,A
...

...
vN,1 vN,2 . . . vN,A

 (10)

If an advertiser a can distinguish between all the impressions, s/he will submit targeted bids for each
impression i. In a second-price auction, that is equivalent to a’s valuation for impression i, vi,a.

However, the extent to which advertisers can target depends on the level of targeting allowed
by the platform. If certain information is not disclosed, advertisers may not be able to distinguish
two impressions i and j. In such cases, a risk-neutral bidder’s valuation for both impressions is the
same and is equal to the expected value from the bundle of i and j (Sayedi, 2018). For example, if
the platform does not allow targeting at the app level, then advertisers cannot distinguish between
impressions in two different apps, and their optimal strategy would be to submit the same bids for
the impressions in both apps. Formally:

Definition 3. Let Il denote the set of impressions in bundle l. A targeting level I = {I1, I2, . . . , IL}
denotes the platform’s decision to bundle N impressions into L bundles such that advertisers
can only bid for bundles and not impressions within the bundle. As such, impressions are only
distinguishable across bundles, but not within a single bundle. That is, for bundle Ij , the advertiser
a has the valuation 1

|Ij |
∑

k∈Ij vka.

This definition characterizes all targeting levels from impression-level targeting to no targeting.
Impression-level targeting occurs when each impression is a bundle (L = N), i.e., an advertiser
can distinguish between all impressions and place targeted bids for each impression. In contrast,
no targeting denotes the case where the platform bundles all impressions into one group (L = 1)
implying that an advertiser can only have one valuation aggregated over all impressions (1

N

∑N
i=1 via

for any a). Any intermediate strategy where 1 < L < N can be interpreted as partial targeting. An
example of partial targeting is app-level targeting, where each bundle is an app and impressions are
distinguishable across apps but not within apps.

We can characterize the relative granularity of two targeting levels as follows:

29

Definition 4. Let I(1) and I(2) denote two targeting levels such that I(1) = {I(1)1 , . . . , I
(1)
L1
} and

I(2) = {I(2)1 , . . . , I
(2)
L2
}. Targeting level I(1) is at least as granular as I(2) if for any I(1)j ∈ I(1), there

exists a I(2)k ∈ I(2) such that I(1)j ⊆ I
(2)
k . In words, if two impressions i and j are distinguishable in

I(2), then they will be distinguishable in I(1).

We can use this definition to compare the granularity of two targeting levels. For example,
app-user level targeting is more granular than app level targeting. Now, the main question that the
platform faces is at what level of granularity they should disclose information and allow targeting.
Since we focus on the second-price auction, the highest-bidding ad in any impression wins that
impression, and pays second-highest bid. This auction also guarantees truth-telling property, i.e.,
for each bundle, advertisers submit their aggregate valuation for that bundle as derived in Definition
3. The following proposition determines the relationship between the granularity level of targeting
and market outcomes such as surplus and revenue:

Proposition 1. Consider two targeting levels I(1) and I(2) such that I(1) is at least as granular
as I(2). Let S(j) and R(j) denote the total surplus and platform’s revenue under targeting level
j ∈ {1, 2}. Then, for any distribution of valuations: S(1) ≥ S(2), but there is no fixed relationship
between R(1) and R(2).

Proof. See Appendix F.

As the granularity of targeting increases, the total surplus generated increases, but the platform’s
revenue can go in either direction (unless we impose strong distributional assumptions on match
values). Thus, while the matches are more efficient with more granular targeting, the platform may
not be able to appropriate these efficiency gains. It is worth emphasizing the our analysis of revenue
and surplus holds for any efficient auction, given Revenue Equivalence Theorem (Myerson, 1981;
Riley and Samuelson, 1981). Further, in Appendix §G, we show that the same qualitative findings
hold for a cost-per-click pricing mechanism.

6.3 Empirical Analysis of Auctions with Targeting

We now take this analytical model to data and examine market outcomes under different targeting
levels. The first step is to obtain estimates for all the elements in matrix V defined in Equation (10).
We can write:

vi,a = v(c)a mi,a, (11)

where v(c)a is private valuation ad a gets from a click and mi,a is the match valuations or expected
CTR of ad a if shown in impression i. While we cannot directly estimate vi,a from the data, we can
estimate both elements on the right-hand side – click and match valuations for advertisers. We first

30

discuss how we approximate advertisers’ click valuations in §6.3.1. Next, in §6.3.2, we explain
how we can use our estimated match value matrix M̂ from §4 to derive advertisers’ match values
for different targeting regimes. Finally, in §6.3.3, we discuss our startegy to estimate the expected
surplus, platform revenues, and advertisers’ surplus.

6.3.1 Estimation of Click Valuations from Observed Bids

Here, our goal is to link advertisers’ observed bids to their private click valuations. In quasi-
proportional auctions, advertisers do not bid their valuations in equilibrium (unlike second-price
auctions). Therefore, we need to first solve for the advertisers’ bidding strategy given our current
auction mechanism and then invert it to get valuations. (Mirrokni et al., 2010) establishes the
existence and uniqueness of a pure strategy Nash equilibrium for a class of quasi-proportional
auctions. Using their results, we can derive the following approximation for our case:

v̂(c)a ≈ 2b∗a, (12)

where b∗a is ad a’s observed bid. This is a direct result of Equation (5.2) in Mirrokni et al. (2010),
when there are many bidders and no one has a disproportionately high chance of winning. Later in
§H.1, we propose alternative methods to estimate valuations in a quasi-proportional auction and
show that our results are robust to these alternatives.

6.3.2 Recovering Match Values

We now discuss how we can use our estimate of matrix M from our targeting framework to recover
match values for any targeting regime.

mi,a is ad a’s match value for any impression i, if all impressions are distinguishable to her and
she is competing for that impression. This follows naturally from our arguments on the accuracy
of match value estimates in §4.2.1. However, if two impressions are not distinguishable, the
advertiser needs to use the aggregate estimate for that bundle. That is, for any targeting level
I = {I1, I2, . . . , IL}, we can write the match value of advertiser a for impression i in bundle I,
mIi,a, as follows:

m̂Ii,a =
L∑
j=1

1(i ∈ Ij)
∑

k∈Ij m̂k,aek,a∑
k∈Ij ek,a

∀ i ∈ I, (13)

where ek,a are elements of the filtering matrix that allows us to disregard inaccurate estimates and
take the average of the rest.

Here, we assume that for any targeting-level I, advertisers can infer their private match values
for the bundles at that targeting level m̂Ia . This is reasonable because if the platform allows

31

impression-level targeting, the platform would automatically share the impression-level data of
each advertiser a with that advertiser (but not other advertisers). If a has sufficient data, then a can
accurately estimate the match value vector mi,a for impression i from their own data. Similarly, if
the platform only allows targeting at level I , then advertisers would automatically have information
on which bundle an impression belongs to as well as outcomes (whether impressions in a given
bundle received clicks or not), and can therefore accurately infer their match values at the granularity
of the bundle. While this assumption always holds from a theoretical standpoint, it may not hold in
practice because advertisers need sufficient data to obtain accurate estimates of their match values.
Thus, the match value estimates of smaller advertisers and/or new advertisers can be noisy (though
they will be consistent). Later, in §H.2, we show that our findings are robust even in situations
where advertisers’ match value estimates are noisy/imperfect.

Finally, the match value estimates derived from our quasi-proportional auction are assumed to
remain the same under a second-price auction. This is reasonable because the match value simply
indicates the click probability of a user in a given context for an ad. There is no economic rationale
for users’ click behavior to be a function of the auction, especially since users often do not know
which auction is running at the back-end. Intuitively, click valuations and match valuations are
treated as structural parameters.

6.3.3 Estimation of Revenue and Surplus

Given our estimates for click and match valuations, we can obtain estimates of the elements of
the valuation matrix V as v̂i,a = v̂

(c)
a m̂i,a. Further, we can estimate advertisers’ expected value

of impression i under targeting granularity (or level) I as v̂Ii,a = v̂
(c)
a m̂Ii,a. We now discuss our

procedure to estimate revenue and surplus for any targeting level I . First, we determine the winners
of each impression as follows:

â∗i (I) = argmax
a
v̂Ii,aei,a, (14)

where â∗i (I) is the winner for impression i under targeting regime I. Note that the multiplication
by the element of the filtering matrix ei,a simply ensures that the ad is competing in the auction for
impression i and that the counterfactual match value estimates are valid, as discussed in §4.2.2.

While the winner is determined using the advertisers’ expected value of impression i under a
specific targeting regime, surplus is calculated using the actual valuation matrix because it denotes
the expected value that would be realized in the system if advertiser â∗i (I) is allocated impression i.

32

So we can write the surplus under targeting granularity I as:

ŜI =
NF∑
i=1

v̂i,â∗i (I) (15)

To estimate the platform revenues, however, we need to use advertisers’ expected values under
targeting level I, as these values guide their bidding behavior. Further, we need to incorporate the
fact that the revenue generated from impression i is the second highest bid (or valuation) for it.
Thus, the revenue under I is:

R̂I =
NF∑
i=1

max
a\â∗i (I)

v̂Ii,aei,a (16)

Finally, we can estimate advertiser a’s surplus under targeting level I as follows:

Ŵ I
a =

NF∑
i=1

(
v̂i,â∗i (I) − max

a\â∗i (I)
v̂Ii,aei,a

)
1
(
â∗i (I) = a

)
(17)

Note that the estimation is carried out on the Filtered Sample to ensure that our match value
estimates are accurate, and hence the averaging in the above equations is done over NF .

6.4 Counterfactual Results and Privacy Implications

While we can analyze market outcomes for any targeting level, we focus on the following four
targetimg regimes that have a one-to-one correspondence with our analysis in §5.1.3:

• No targeting (I(N)) – The platform allows no targeting. As such, there is only one bundle
(which constitutes all impressions) and advertisers cannot distinguish between any impressions.

• Contextual targeting (I(C)) – The platform only allows contextual targeting. Here, advertisers
can distinguish between impressions in different contexts (app and time). However, impressions
from different users in the same context is not distinguishable.

• Behavioral targeting (I(B)) – The platform allows behavioral targeting, thereby allowing adver-
tisers to distinguish between users but not contexts. Here, advertisers can submit bids targeted
at the user-level, but cannot distinguish two impressions by the same user in different contexts.

• Full targeting (I(F)) – Platform allows impression-level targeting, i.e., each impression is a
bundle and therefore distinguishable. Advertisers can submit targeted bids for each impression.

Using Proposition 1, we can show that S(F) ≥ S(N), and that S(C) and S(B) lie in between since
both Contextual and Behavioral targeting can be interpreted as imperfect targeting. However, we
cannot theoretically pin down their relative magnitudes because these two types of information are

33

Targeting Total Surplus Platform Revenue Advertisers’ Surplus
Full 9.45 8.35 1.10
Behavioral 9.18 8.35 0.84
Contextual 8.99 8.44 0.55
No targeting 8.36 8.30 0.06

Table 6: Platform revenues, advertisers’ surplus, and total surplus for different levels of targeting.
The numbers are reported in terms of the average monetary unit per impression.

orthogonal (one cannot be interpreted as more granular than the other). So we can only show that:
S(F) ≥ S(C), S(B) ≥ S(N). Further, we have no theoretical guidance on which of these targeting
regimes maximizes platform revenues. We therefore use the empirical framework described in
§6.3 to derive estimates of platform revenue, advertisers’ surplus, and total surplus under the four
targeting regimes, and empirically answer the question: “What is the optimal level of targeting that
maximizes the platform’s revenue?”. The results from this exercise are shown in Table 6.

6.4.1 Platform’s Revenue

Consistent with our theory model, our empirical results suggest that more granular targeting leads
to higher efficiency in the market: the total surplus under full targeting is 13.02% higher than the
no targeting case. Further, in line with our findings in §5.1.3, we find that the total surplus under
behavioral targeting is 2.13% higher than the contextual targeting. However, platform revenues
exhibit more of an inverted U-shaped curve. They are maximized when the platform restricts
targeting to the contextual level. When the platform allows behavioral targeting, advertisers achieve
a greater ability to target. While this increases the total surplus in the system, much of this surplus
is appropriated by advertisers and the platform’s revenue suffers.13 Thus, the platform’s incentives
are not perfectly aligned with that of advertisers. Indeed, the platform’s optimal targeting level is
privacy preserving and aligned with consumers’ preferences. We thus find support for the advertising
industry’s claim that external regulation is not necessary to reduce user-tracking/targeting, and that
the industry can self-regulate.

Our findings give rise many interesting suggestions/ideas on optimal mechanism design and
information revelation from the platform’s perspective. Limiting targeting to the contextual-level
is an obvious strategy. However, this approach also reduces the total surplus and hence caps the
platform’s revenues. Thus, the optimal path for the platform may not be to restrict targeting, but
instead to consider mechanisms that can do both – increase efficiency and extract the revenue from

13Nevertheless, our findings are weaker than those predicted by theory models, i.e., while revenues reduce with more
granular targeting, the drop is not very large. This suggests that the strong distributional assumptions on the match
values in earlier theory papers (e.g., Hummel and McAfee (2016)) may not hold in real ad auctions.

34

To \ From Full Behavioral Contextual Baseline
Full NA 23 33 35
Behavioral 14 NA 34 36
Contextual 4 3 NA 33
Baseline 2 1 4 NA

Table 7: Number of advertisers who benefit by moving from one targeting regime (column) to
another (row) (out of 37 top advertisers).

winning advertisers by shrinking the informational rent. For instance, the platform could allow
behavioral targeting, and also adopt the standard theoretical solution proposed for revenue extraction
– optimal reserve prices (Myerson, 1981; Riley and Samuelson, 1981). Ostrovsky and Schwarz
(2016) validate these theoretical findings using field experiments for search ads. However, they only
consider optimal reserve prices for broad sets of keywords and assume eCTRs to be homogeneous
across advertisers. In contrast, we have a setting where each impression is a unique product and
advertisers’ match values for an impression are heterogeneous. So, in our case, the platform has to
develop a system that can set dynamic impression-specific optimal reserve prices.

6.4.2 Advertisers’ Surplus

We begin by comparing total advertiser surplus across the four targeting regimes. As shown in Table
6, advertiser’s surplus is increasing with more granular targeting. This validates our theoretical
prediction that more granular targeting helps advertisers by allowing them to generate more accurate
estimates of their match values and place targeted bids. Under full targeting, advertisers’ surplus is
11.69% of the total surplus whereas this share drops to 0.69% when no targeting is allowed. Further,
the share of advertisers’ surplus under behavioral targeting is 8.99% which is considerably higher
than 6.13%, their share under contextual targeting. Together these findings emphasize the value of
behavioral information for advertisers.

Next, we explore whether all advertisers benefit when their ability to target is enhanced. In a
competitive environment, greater ability to target does not necessarily translate into higher profits.
Instead, it is the ability to target relative to competitors that matters. In Table 7, we show how many
advertisers benefit as we move from one targeting regime (column) to another (row).

In general, more advertisers benefit when the platform allows more granular targeting, especially
when it allows behavioral targeting. Moving from behavioral, contextual, and no targeting to full
targeting benefits 23, 33, and 35 advertisers respectively (first row of Table 7). However, more
granular targeting is not uniformly better for all advertisers. The first column of Table 7 depicts
situations where advertisers go from the most granular to less granular targeting levels. Interestingly,
it is populated with positive numbers, which suggests that some advertisers actually benefit from

35

less granular targeting. For example, there are 14 advertisers who prefer behavioral targeting to full
targeting. Similarly, while the majority of advertisers prefer behavioral targeting, there is a small
portion of advertisers (3) who prefer contextual targeting. We present a simple example to highlight
the intuition behind this – a nutrition supplement ad that advertises on a fitness app can get all the
slots in that app at a low cost because other advertisers would place low bids when only app-level
targeting is allowed. However, this ad would be worse off if only behavioral targeting is allowed,
because the competition for users in this app becomes more intense and this ad will no longer be
able to extract a large informational rent.

In sum, our findings offer some evidence that advertisers are likely to be differentially affected
by privacy regulation on user-tracking and behavioral targeting. Further research on the sources of
heterogeneity in advertisers’ incentives can help regulators craft the appropriate privacy policies.

6.5 Robustness Checks

We run a series of robustness checks on two the main components of our estimation – click valuations
and match valuations. We describe these tests briefly here. Please see Appendix §H for details.

First, in Appendix §H.1, we consider alternative approaches to estimate click valuations from
observed bids and show the robustness of our results. Second, in Appendix §H.2.1, we show the
robustness of our results when we add identically distributed noise to all the match value estimates
(to reflect the cases where advertisers realize a noisy version of match value estimates from our ML
framework). Finally, in §H.2.2, we consider the cases in which the distribution of noise added to
match values are different such that larger advertisers have less noisy estimates. We show that our
results are robust to these situations.

6.6 Limitations

While we have tried to make our analysis as exhaustive and complete as possible, our counterfactual
results should nevertheless be interpreted cautiously with the necessary caveats. First, we assume
that advertisers’ enhanced ability to target is only reflected in their targeted bidding. In reality
however, there might be value creation through other decision variables as well. For example,
advertisers can change the design and creatives of their ads and increase their match values, since
they can customize their design for a narrower target. This is beyond the scope of our counterfactual
analysis since we do not have data on ad identities and banners.14 Second, we assume that the set of

14In our setting, we find believe this is unlikely to contribute much to the value creation because of two reasons. First,
in the current regime, we do not observe such actions by advertisers, despite the fact that they are already allowed to
run different campaigns on the current targeting areas. This suggests that costs of such actions probably outweigh
their benefits. Second, it is worth noting that this is an in-app advertising setting and most ads are apps themselves.
As such, ads are mostly informative in nature, and manipulations such as design change may not be very effective.

36

ads competing for an impression will not change under different targeting regimes. This implies
that there is no entry of new ads or exit of existing ads for an impression. While this assumption
may not be realistic, it is unlikely to change the qualitative findings of this paper.15 Third, when
estimating revenues and surpluses under different targeting regimes, we use the same distribution
of features as seen in the current data. However, the joint distribution of features observed in
the data may change under a different targeting strategy because the impressions shown to users
and their click behavior is a function of targeting. Thus, the platform’s surplus and the machine
learning targeting models can both co-evolve in the long run equilibrium. As such, we do not take
a strong stance on the optimal level of targeting in long-run equilibrium. Rather, our goal is to
provide some empirical evidence in support of the idea that the platform has some incentives to
limit behaviorally targeted ads. Moreover, while we run extensive robustness check to ensure the
validity of our counterfactual results, these findings nevertheless should be treated as a limited or
short-run counterfactuals, which offer some proof of existence for the possibility of self-regulation
in this market in light of revenue-efficiency trade-off. In the long-run, many other environmental
factors could change, which are outside of the scope of our analysis.

7 Conclusions
Mobile in-app advertising is growing in popularity. In-app ads have unique tracking properties:
they allow advertisers and ad-networks to access the device ID of users’ mobile devices, and
thereby enable high quality behavioral targeting. While this has made them appealing to advertisers,
consumers privacy advocates are concerned about their invasiveness. Therefore, marketers and
policy-makers are interested in understanding the relative effectiveness of behavioral targeting
compared to contextual targeting (which is privacy-preserving, the incentives of ad-networks to
engage in behavioral targeting, and the role of regulation in preserving privacy.

We propose a unified framework that consists of two components – a machine learning frame-
work for targeting and an analytical framework for targeting counterfactuals when considering the
competition in the market. We apply our framework to data from the leading in-app ad-network
of an Asian country. Our machine learning model achieves a RIG of 17.95% over the baseline
when we evaluate it on test data. This translates to a 66.80% increase in the average CTR over the

15There can be two types of changes in the set of ads under a new targeting regime – (1) some ads that are competing for
impression i in the current regime will exit the competition, and (2) some ads that are not competing for impression
i will enter the competition. The former can only strengthen our findings as it will thin out the market to a greater
extent. The latter can be an issue if an ad which is not participating in the auction for i chooses to enter the market. If
such an ad ends up in the top two highest valuations it can change our revenue/surplus estimation. To address this
issue, we re-derived all the empirical results for the revenue-efficiency analysis shown in Table 6 for the case of full
entry (i.e., all 37 ads are competing for all impressions). We found that the substantive results remain the same in this
case. Thus, even under the most unfavorable assumption on entry, the qualitative results remain unchanged.

37

current system if we were to deploy an efficient targeting policy based on our machine learning
framework. These gains mainly stem from behavioral information and the value of contextual
information is relatively small. Next, we build an analytical model of targeting and theoretically
prove that although total surplus grows with more granular targeting between the ad-network and
advertisers, the ad-network’s revenues are non-monotonic in the granularity of targeting. We then
take our analytical model to data and conduct a series of targeting counterfactuals and show that
the platform prefers to not allow behavioral targeting. There is also some heterogeneity among
advertisers’ on their preferred level of targeting. Our findings suggest the ad-network may have
natural incentive to naturally preserve users’ privacy.

Our paper makes several contributions to the literature. From a methodological standpoint,
we propose a unified framework for targeting that exploits the randomization in the allocation
of ads to generate accurate counterfactual estimates under various targeting regimes. From a
substantive perspective, our paper provides new insights on contextual and behavioral targeting. To
our knowledge, this is the first paper to study both revenue and efficiency under these two types
of targeting. Finally, from a policy point-of-view, we examine the incentives to target for the two
major parties in the advertising eco-system: the platform and advertisers. We expect our model and
findings to speak to the debate on privacy regulations in the advertising industry.

38

References
A. Acquisti, C. Taylor, and L. Wagman. The Economics of Privacy. Journal of Economic Literature, 54(2):

442–92, 2016.
W. Amaldoss, K. Jerath, and A. Sayedi. Keyword Management Costs and “Broad Match” in Sponsored

Search Advertising. Marketing Science, 35(2):259–274, 2015.
S. Athey and D. Nekipelov. A structural model of sponsored search advertising auctions. In Sixth Ad Auctions

Workshop, volume 15, 2010.
D. Bergemann and A. Bonatti. Targeting in Advertising Markets: Implications for Offline Versus Online

Media. The RAND Journal of Economics, 42(3):417–443, 2011.
L. Breiman. Arcing Classifier. The Annals of Statistics, 26(3):801–849, 1998.
L. E. Celis, G. Lewis, M. Mobius, and H. Nazerzadeh. Buy-It-Now or Take-a-Chance: Price Discrimination

Through Randomized Auctions. Management Science, 60(12):2927–2948, 2014.
O. Chapelle, E. Manavoglu, and R. Rosales. Simple and Scalable Response Prediction for Display Advertising.

ACM Transactions on Intelligent Systems and Technology (TIST), 5(4):61, 2015.
T. Chen and C. Guestrin. Xgboost: A Scalable Tree Boosting System. In Proceedings of the 22Nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 785–794. ACM,
2016.

A. De Corniere and R. De Nijs. Online Advertising and Privacy. The RAND Journal of Economics, 47(1):
48–72, 2016.

D. Dzyabura and H. Yoganarasimhan. Machine Learning and Marketing. In Handbook of Marketing Analytics.
Edward Elgar Publishing, 2018.

J. Edwards. Apple Has Quietly Started Tracking iPhone Users Again, And It’s Tricky To Opt Out, 2012. URL
http://www.businessinsider.com/ifa-apples-iphone-tracking-in-ios-6-2012-10.

A. Edwards-Levy and D. Liebelson. Even Trump Voters Hate This Bill He Just Signed, 2017. URL
http://www.huffingtonpost.com/entry/trump-online-privacy-poll us 58e295e7e4b0f4a923b0d94a.

eMarketer. Digital Ad Spending 2019 , 2019. URL https://content-na1.emarketer.com/us-digital-ad-spending-2019.
J. H. Friedman. Greedy Function Approximation: A Gradient Boosting Machine. Annals of Statistics, pages

1189–1232, 2001.
H. Fu, P. Jordan, M. Mahdian, U. Nadav, I. Talgam-Cohen, and S. Vassilvitskii. Ad Auctions with Data. In

Computer Communications Workshops (INFOCOM WKSHPS), 2012 IEEE Conference on, pages 184–189.
IEEE, 2012.

A. Goldfarb. What is Different About Online Advertising? Review of Industrial Organization, 44(2):115–129,
2014.

A. Goldfarb and C. Tucker. Advertising Bans and the Substitutability of Online and Offline Advertising.
Journal of Marketing Research, 48(2):207–227, 2011a.

A. Goldfarb and C. Tucker. Online Display Advertising: Targeting and Obtrusiveness. Marketing Science, 30
(3):389–404, 2011b.

X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Herbrich, S. Bowers, et al. Practical Lessons
from Predicting Clicks on Ads at Facebook. In Proceedings of the Eighth International Workshop on Data
Mining for Online Advertising, pages 1–9. ACM, 2014.

P. Hummel and R. P. McAfee. When Does Improved Targeting Increase Revenue? ACM Transactions on
Economics and Computation (TEAC), 5(1):4, 2016.

G. A. Johnson. The Impact of Privacy Policy on the Auction Market for Online Display Advertising. 2013.
J. Kint. Opinion: Europe’s Strict New Privacy Rules Are Scary but Right, 2017. URL
http://adage.com/article/digitalnext/europe-s-strict-privacy-rules-terrifying-apple/309155/.

39

J. Levin and P. Milgrom. Online Advertising: Heterogeneity and Conflation in Market Design. The American
Economic Review, 100(2):603–607, 2010.

H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady, L. Nie, T. Phillips, E. Davydov,
D. Golovin, et al. Ad Click Prediction: A View from the Trenches. In Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1222–1230. ACM,
2013.

V. Mirrokni, S. Muthukrishnan, and U. Nadav. Quasi-Proportional Mechanisms: Prior-Free Revenue
Maximization. In Latin American Symposium on Theoretical Informatics, pages 565–576. Springer, 2010.

R. B. Myerson. Optimal Auction Design. Mathematics of Operations Research, 6(1):58–73, 1981.
M. Ostrovsky and M. Schwarz. Reserve Prices in Internet Advertising Auctions: A Field Experiment.

Working Paper, 2016.
J. G. Riley and W. F. Samuelson. Optimal Auctions. The American Economic Review, 71(3):381–392, 1981.
L. Rosasco, E. De Vito, A. Caponnetto, M. Piana, and A. Verri. Are loss functions all the same? Neural

Computation, 16(5):1063–1076, 2004.
M. Sands. How The Cookies Crumble In A Mobile-First World, 2015. URL
https://martechtoday.com/cookies-crumble-mobile-first-world-154114.

A. Sayedi. Real-Time Bidding in Online Display Advertising. Marketing Science, 2018.
O. Toubia, T. Evgeniou, and J. Hauser. Optimization-based and Machine-learning Methods for Conjoint

Analysis: Estimation and Question Design. In A. Gustafsso, A. Herrmann, and F. Huber, editors, Conjoint
Measurement: Methods and Applications, pages 231–258. Springer, 4 edition, 2007.

C. E. Tucker. Social Networks, Personalized Advertising, and Privacy Controls. Journal of Marketing
Research, 51(5):546–562, 2014.

S. Yao and C. F. Mela. A Dynamic Model of Sponsored Search Advertising. Marketing Science, 30(3):
447–468, 2011.

J. Yi, Y. Chen, J. Li, S. Sett, and T. W. Yan. Predictive Model Performance: Offline and Online Evaluations.
In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 1294–1302. ACM, 2013.

H. Yoganarasimhan. Search Personalization Using Machine Learning. Forthcoming, Management Science,
2019.

40

Appendices
A Summary Statistics

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Top Ads

F
ra

ct
io

n
of

 Im
pr

es
si

on
s

(a) Ads

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Top Apps

F
ra

ct
io

n
of

 Im
pr

es
si

on
s

(b) Apps

Figure 9: Cumulative fraction of impressions associated with the top 100 ads and top 100 apps.

B Feature Generation Framework
We need a set of informative features that can help accurately predict the probability of click for a
given impression. Given our research agenda, our features should be able to capture the contextual
and behavioral information associated with an impression over different lengths of history preceding
the impression (long-term, short-term, and session-level). Therefore, we adopt the main ideas from
the functional feature generation framework proposed by Yoganarasimhan (2019). In §B.1, we
describe the inputs to the feature functions, in §B.2, we describe the functions, and finally in §B.3,
we present the full table of features and their classification.

B.1 Inputs for Feature Functions

Each impression i in our training, validation, and test data can be uniquely characterized by the
following four variables:

• the ad ai which was shown in the impression, where ai ∈ A = {a(1), a(2), . . . , a(37), a(s)}. The
elements a(1), a(2), . . . , a(37) refer to the identities of the top 37 ads, whereas all the smaller ads
are grouped into one category, which is denoted by as a(s). A denotes the set of all ads.

• the app pi within which it occurred, where pi ∈ P = {p(1), p(2), . . . , p(50), p(s)}. p(1) through
p(50) refer to the top 50 apps, and p(s) refers to the category of all smaller apps (which we do not
track individually).

• the hour of the day during which the impression occurred (denoted by ti). ti can take 24 possible
values ranging from 1 through 24 and the set of these values is: T = {1, 2, . . . , 24}.
• the user ui who generated the impression, where ui ∈ U = {u(1), . . . , u(728,340)}. U is thus the

full sample of users in the training, validation, and test data.

We also have an indicator for whether the impression was clicked or not (denoted by yi). In addition,
we have a history of impressions and clicks observed in the system prior to this impression.

To generate a set of features for a given impression i, we use feature functions that take some
inputs at the impression level and output a corresponding feature for that impression. Our feature
functions are typically of the form F (θia, θip, θit, θiu; ηib, ηie) (though some functions may have
fewer inputs). We now define each of these inputs:

1. Ad related information: The first input θia captures the ad related information for impression
i. It can take two possible values: θia ∈ Θia = {{ai}, A}. If θia = {ai}, then the feature is
specific to the ad shown in the impression. Instead, if θia = A, then it means that the feature
is not ad-specific and is aggregated over all possible ads.

2. Contextual information: The second and third inputs θip and θit capture the context (where
and when) for impression i.

(a) θip ∈ Θip = {{pi}, P} can take two possible values. If θip = {pi}, then the feature is
specific to the app where the impression was shown. Instead, if θip = P , the feature is
aggregated over all apps.

(b) θit ∈ Θit = {{ti}, T} characterizes the time-related information for impression i. If
θit = {ti}, then the feature is specific to the hour during which the impression occurred.
Instead, if θit = T , the feature is aggregated over all hours of the day.

3. Behavioral information: The fourth input, θiu ∈ Θiu = {{ui}, U}, captures the behavioral
information for impression i. If θiu = {ui}, the feature is specific to user ui who generated
the impression. Instead, if θiu = U , the feature is aggregated over all users.

4. History: The last two inputs, ηib and ηie, capture the history over which the function is
aggregated. ηib denotes the beginning or starting point of the history and ηie denotes the
end-point of the history.

i

(a) ηib ∈ Hib = {l, s, oi} can take three possible values which we discuss below:

• ηib = l denotes long-term history, i.e., the starting point of the history is September
30, 2015, the date from which data are available.

• ηib = s denotes short-term history, i.e., only data on or after October 25, 2015, are
considered.

• ηib = oi denotes ongoing session-level history, i.e., the history starts from the
beginning of the session within which the impression occurs.16 This history is the
most accessible in the user’s short-term memory. Note that by definition, ηib = oi

implies that the function is calculated at the user level.

(b) ηie ∈ Hie = {g, ri} can take two possible values which we define them as follows:

• ηie = g implies that the feature is calculated over the global data, i.e., data after
October 27, 2015, are not considered. These features are calculated without using
any impression from the training, validation and test data-sets.

• ηie = ri refers to real-time aggregation, i.e., the feature is calculated over all the
information up till the focal impression i.

In Figure 10, we present a picture with five example users to illustrate different types of
history.

B.2 Feature Functions

We now use the nomenclature described above to define the following functions.

1. Impressions(θia, θip, θit, θiu; ηib, ηie): This function counts the number of impressions with
the characteristics given as inputs over the specified history.

Impressions(θia, θip, θit, θiu; ηib, ηie) =
∑

j∈[ηib,ηie]

1(aj ∈ θia)1(pj ∈ θip)1(tj ∈ θit)1(uj ∈ θiu),

(A.18)
where j denotes an impression whose time-stamp lies between the starting point of the history
ηib and end point of the history ηie.

For example, Impressions({ai}, {pi}, {ti}, {ui}; l, ri) returns the number of times ad ai is
shown to user ui while using app ai at the hour of day ti in the time period starting September

16A session ends when there is a five-minute interruption in a user’s exposure to the ads. So if the time difference
between two consecutive impressions shown to a user-app combination is more than five minutes, we assume that the
two impressions belong to different sessions.

ii

ηie = gηib = sηib = l

Oct 28Oct 25Sep 30

u1

u2

u3

u4

u5

Focal
ηib = oi

ηie = ri

Others

Figure 10: Depiction of history for five example users.The N refers to the focal impression i
for which the features are being generated. + denotes the last impression just before the focal
impression, and × refers to the first impression in the session in which the focal impression occurs.

30, 2015, and ending with the last impression before i. Instead, if we are interested in the
number of times that user ui has seen ad ai over all apps and all hours of the days from
October 25, 2015, (ηib = s) till the end of the global data (ηie = g), then we would have:

Impressions({ai}, P, T, {ui}; s, g) =
∑
j∈[s,g]

1(aj ∈ {ai})1(pj ∈ P)1(tj ∈ T)1(uj ∈ {ui})

=
∑
j∈[s,g]

1(aj ∈ {ai})1(uj ∈ {ui})

Intuitively, the Impressions function captures the effects of repeated ad exposure on user
behavior, and ad exposure has been shown to yield higher ad effectiveness in the recent
literature (Sahni, 2015; Johnson et al., 2016). In some cases, it may also capture some
unobserved ad-specific effects, e.g., an advertiser may not have enough impressions simply
because he does not have a large budget.

2. Clicks(θia, θip, θit, θiu; ηib, ηie): This function counts the number of clicks with the character-
istics given as inputs over the history specified. It is similar to the Impressions function, but

iii

the difference is that Clicks only counts the impressions that led to a click.

Clicks(θia, θip, θit, θiu; ηib, ηie) =
∑

j∈[ηib,ηie]

1(aj ∈ θia)1(pj ∈ θip)1(tj ∈ θit)1(uj ∈ θiu)1(yj = 1)

(A.19)
Clicks is a good indicator of both ad and app performance. Moreover, at the user-level, the
number of clicks captures an individual user’s propensity to click, as well as her propensity to
click within a specific ad and/or app. Thus, this is a very informative metric.

3. CTR(θia, θip, θit, θiu; ηib, ηie): This function calculates the click-through rate (CTR) for a
given set of inputs and history, i.e., the ratio of clicks to impressions. If
Impressions(θia, θip, θit, θiu; ηib, ηie) > 0, then:

CTR(θia, θip, θit, θiu; ηib, ηie) =
Clicks(θia, θip, θit, θiu; ηib, ηie)

Impressions(θia, θip, θit, θiu; ηib, ηie)
, (A.20)

else if Impressions(θia, θip, θit, θiu; ηib, ηie) = 0, CTR(θia, θip, θit, θiu; ηib, ηie) = 0. The CTR

function is a combination of Impressions and Clicks. It captures the click-propensity at the
user, ad, app, and time-levels as well their interactions.17

4. AdCount(θip, θiu; ηib, ηie): This function returns the number of distinct ads shown for a given
set of inputs.

AdCount(θip, θiu; ηib, ηie) =
∑
a∈AF

1(Impressions({a}, θip, T, θiu; ηib, ηie) > 0), (A.21)

We use the full set of ads seen in our data (denoted by AF) and not just the top 37 ads in
this function.18 This ensures that we are capturing the full extent of variety in ads seen by
users. Features derived using this function capture the variety in ads for a given set of inputs.
Past literature has argued that users are more likely to engage with ads when they are see
a higher variety of ads (Redden, 2007). An example of a feature based on this function
is AdCount({pi}, U ; l, ri), which counts the number of unique ads that were shown in app
pi across all users in the time period starting September 30 2015 and ending with the last

17In principle, we do not need to CTR over and above Clicks and Impressions if our learning model can automatically
generate new features based on non-linear combinations of basic features. Machine learning models like Boosted
Trees do this naturally and it is one of their big advantages. However, other methods like OLS and Logistic regressions
cannot do automatic feature combination and selection. So we include this feature to help improve the performance of
these simpler models. This ensures that we are not handicapping them too much in our model comparisons.

18We observe 263 unique ads in our data. Thus, the range of AdCount in our data goes from 0 to 263.

iv

impression before i.

5. Entropy(θip, θiu; ηib, ηie): This function captures the entropy or dispersion in the ads seen by
a user. We use Simpson (1949)’s measure of diversity as our entropy metric.

Entropy(θip, θiu; ηib, ηie) =
1∑

a∈AF Impressions({a}, θip, T, θiu; ηib, ηie)2
(A.22)

Entropy contains information over and above just the count of the number of unique ads
seen in the past since it captures the extent to which ads were dispersed across impressions.
Consider two users who have both seen five impressions in the past, but with the following
difference – (a) the first user has seen five distinct ads, or (b) the second has seen same ad
five times. Naturally, the dispersion of ads is higher in case (a) than in case (b). The Entropy

function reflects this dispersion – in case (a) the entropy is 1
12+12+12+12+12

= 0.2, whereas in
case (b) it is 1

52
= 0.04. Thus, entropy is higher when ads are more dispersed.

The literature on eye-tracking has shown that individuals’ attention during advertisements
reduces as ad-repetition increases (Pieters et al., 1999). We therefore expect the dispersion
of previous ads to influence a user’s attention span in our setting. Since attention is a
prerequisite to clicking, we expect entropy-based measures to have explanatory power in our
click prediction model.

6. AppCount(θia, θiu; ηib, ηie): This function calculates the number of distinct apps in which a
given ad is shown to a specific user. Similar to AdCount, it can be defined as follows:

AppCount(θia, θiu; ηib, ηie) =
∑
p∈P

1(Impressions(θia, {p}, T, θiu; ηib, ηie) > 0), (A.23)

where P is the set of apps, as defined in §4.3.1.19 Previous studies have documented the
spillover effects in multichannel online advertising (Li and Kannan, 2014). We therefore
expect click probabilities to vary if a user saw an ad in just one app vs. saw it in many apps.
We also expect the click behavior of users to vary based on the number of apps they use.
AppCount-based features help us capture these differences.

7. TimeVariability(θiu; ηib, ηie): This function measures the variance in a user’s CTR over

19P has 51 elements, the top 1–50 apps and the 51st element being the group of all smaller apps. In principle, we could
use all the apps observed in the data and not just the Top 50 apps (like we did in the case of AdCount). However, we
found that doing so does not really improve model performance. So we stick with this simpler definition.

v

different hours of the day. We can define this function as follows:

TimeVariability(θiu; ηib, ηie) = Vart[CTR(A,P, {t}, θiu; ηib, ηie)] (A.24)

Features based on this function capture variations in the temporal patterns in a user’s clicking
behavior, and we expect this information to help predict clicks.

8. AppVariability(θiu; ηib, ηie): This function measures the variance in a user’s CTR across
different apps and is analogous to TimeVariability. This function is defined as follows:

AppVariability(θiu; ηib, ηie) = Varp[CTR(A, {p}, T, θiu; ηib, ηie)] (A.25)

Note that both TimeVariability and AppVariability are defined at the user level.

We use the functions defined above to generate 98 features for each impression. In addition, we
include a few standalone features such as a dummy for each of the top ads, the mobile and Internet
service providers, latitude, longitude, and connectivity type as described below:

9. Bid(ai): The bid submitted for ad ai shown in impression i.

10. Latitude(ui): The latitude of user ui when impression i occurs.

11. Longitude(ui): The longitude of user ui when impression i occurs.

12. WiFi(ui): Denotes whether the user is connected via Wi-Fi or mobile data plan during
impression i. It can take two possible values, {0, 1}.

13. Brand(ui): Denotes the brand of the smartphone that user ui is using. We observe eight
smartphone brands in our data and therefore capture each brand using a dummy variable. So
the range for this function is {0, 1}8.

14. MSP (ui): Denotes the Mobile Service Provider used by user ui during impression i. We
observe four MSPs in our data. So the range for this function is {0, 1}4.

15. ISP (ui): Denotes the Internet service providers (ISP) of user ui. We observe nine unique
ISPs in our data. So the range of this function is {0, 1}9.

16. AdDummy(ai): Generates dummy variables for each of the top ads in the data. Although
we expect our main features to capture many of the ad-fixed effects, we include ad dummies
to capture any residual ad-fixed effects, e.g., banner design. The range of this function is
{0, 1}38, since there are 37 top ads and a 38th category comprising all the smaller ads.

vi

B.3 Table of Features

In Table A1, we now present our full list of 160 features derived from the feature-functions
described above as well as their classification as behavioral, contextual, and/or ad-specific based on
the categorization scheme described in §4.3.3.

Table A1: List of Features for impression i.

No. Feature Name
Feature Classification Contextual Features

Behavioral Contextual Ad-specific App-specific Time-specific

1 Impressions (A,P, T, ui; l, ri) X

2 Impressions (ai, P, T, U ; l, g) X

3 Impressions (A, pi, T, U ; l, g) X X

4 Impressions (A,P, ti, U ; l, g) X X

5 Impressions (ai, P, T, ui; l, ri) X X

6 Impressions (A, pi, T, ui; l, ri) X X X

7 Impressions (A,P, ti, ui; l, ri) X X X

8 Impressions (ai, pi, T, U ; l, g) X X X

9 Impressions (ai, P, ti, U ; l, g) X X X

10 Impressions (A, pi, ti, U ; l, g) X X X

11 Impressions (ai, pi, T, ui; l, ri) X X X X

12 Impressions (ai, pi, ti, U ; l, g) X X X X

13 Impressions (A,P, T, ui; s, ri) X

14 Impressions (ai, P, T, U ; s, g) X

15 Impressions (A, pi, T, U ; s, g) X X

16 Impressions (A,P, ti, U ; s, g) X X

17 Impressions (ai, P, T, ui; s, ri) X X

18 Impressions (A, pi, T, ui; s, ri) X X X

19 Impressions (A,P, ti, ui; s, ri) X X X

20 Impressions (ai, pi, T, U ; s, g) X X X

21 Impressions (ai, P, ti, U ; s, g) X X X

22 Impressions (A, pi, ti, U ; s, g) X X X

23 Impressions (ai, pi, T, ui; s, ri) X X X X

24 Impressions (ai, pi, ti, U ; s, g) X X X X

25 Impressions (A,P, T, ui; oi, ri) X

26 Impressions (ai, P, T, ui; oi, ri) X X

27 Clicks (A,P, T, ui; l, ri) X

28 Clicks (ai, P, T, U ; l, g) X

29 Clicks (A, pi, T, U ; l, g) X X

30 Clicks (A,P, ti, U ; l, g) X X

Continued on next page

vii

Table A1 – continued from previous page

No. Feature Name
Feature Classification Contextual Features

Behavioral Contextual Ad-specific App-specific Time-specific

31 Clicks (ai, P, T, ui; l, ri) X X

32 Clicks (A, pi, T, ui; l, ri) X X X

33 Clicks (A,P, ti, ui; l, ri) X X X

34 Clicks (ai, pi, T, U ; l, g) X X X

35 Clicks (ai, P, ti, U ; l, g) X X X

36 Clicks (A, pi, ti, U ; l, g) X X X

37 Clicks (ai, pi, T, ui; l, ri) X X X X

38 Clicks (ai, pi, ti, U ; l, g) X X X X

39 Clicks (A,P, T, ui; s, ri) X

40 Clicks (ai, P, T, U ; s, g) X

41 Clicks (A, pi, T, U ; s, g) X X

42 Clicks (A,P, ti, U ; s, g) X X

43 Clicks (ai, P, T, ui; s, ri) X X

44 Clicks (A, pi, T, ui; s, ri) X X X

45 Clicks (A,P, ti, ui; s, ri) X X X

46 Clicks (ai, pi, T, U ; s, g) X X X

47 Clicks (ai, P, ti, U ; s, g) X X X

48 Clicks (A, pi, ti, U ; s, g) X X X

49 Clicks (ai, pi, T, ui; s, ri) X X X X

50 Clicks (ai, pi, ti, U ; s, g) X X X X

51 CTR (A,P, T, ui; l, ri) X

52 CTR (ai, P, T, U ; l, g) X

53 CTR (A, pi, T, U ; l, g) X X

54 CTR (A,P, ti, U ; l, g) X X

55 CTR (ai, P, T, ui; l, ri) X X

56 CTR (A, pi, T, ui; l, ri) X X X

57 CTR (A,P, ti, ui; l, ri) X X X

58 CTR (ai, pi, T, U ; l, g) X X X

59 CTR (ai, P, ti, U ; l, g) X X X

60 CTR (A, pi, ti, U ; l, g) X X X

61 CTR (ai, pi, T, ui; l, ri) X X X X

62 CTR (ai, pi, ti, U ; l, g) X X X X

63 CTR (A,P, T, ui; s, ri) X

64 CTR (ai, P, T, U ; s, g) X

65 CTR (A, pi, T, U ; s, g) X X

66 CTR (A,P, ti, U ; s, g) X X

67 CTR (ai, P, T, ui; s, ri) X X

Continued on next page

viii

Table A1 – continued from previous page

No. Feature Name
Feature Classification Contextual Features

Behavioral Contextual Ad-specific App-specific Time-specific

68 CTR (A, pi, T, ui; s, ri) X X X

69 CTR (A,P, ti, ui; s, ri) X X X

70 CTR (ai, pi, T, U ; s, g) X X X

71 CTR (ai, P, ti, U ; s, g) X X X

72 CTR (A, pi, ti, U ; s, g) X X X

73 CTR (ai, pi, T, ui; s, ri) X X X X

74 CTR (ai, pi, ti, U ; s, g) X X X X

75 AdCount (A, ui; l, g) X X

76 AdCount (pi, U ; l, g) X X X

77 AdCount (pi, ui; l, g) X X X X

78 AdCount (A, ui; s, g) X X

79 AdCount (pi, U ; s, g) X X X

80 AdCount (pi, ui; s, g) X X X X

81 AdCount (A, ui; oi, ri) X X

82 AppCount (A, ui; l, g) X X X

83 AppCount (ai, U ; l, g) X X X

84 AppCount (ai, ui; l, g) X X X X

85 AppCount (A, ui; s, g) X X X

86 AppCount (ai, U ; s, g) X X X

87 AppCount (ai, ui; s, g) X X X X

88 Entropy (A, ui; l, g) X X

89 Entropy (pi, U ; l, g) X X X

90 Entropy (pi, ui; l, g) X X X X

91 Entropy (A, ui; s, g) X X

92 Entropy (pi, U ; s, g) X X X

93 Entropy (pi, ui; s, g) X X X X

94 Entropy (A, ui; oi, ri) X X

95 TimeVariability (ui; l, g) X X X

96 TimeVariability (ui; s, g) X X X

97 AppVariability (ui; l, g) X X X

98 AppVariability (ui; s, g) X X X

99 Latitude (ui) X

100 Longitude (ui) X

101 WiFi (ui) X

102-109 Brand (ui) X

110-113 Operator (ui) X

114-122 ISP (ui) X

Continued on next page

ix

Table A1 – continued from previous page

No. Feature Name
Feature Classification Contextual Features

Behavioral Contextual Ad-specific App-specific Time-specific

123-160 AdDummy (ai) X

C XGBoost: Overview and Implementation

C.1 Overview of XGBoost

We start by considering a generic tree ensemble method as follows: let yi and xi denote the click
indicator and the vector of features for impression i such that yi ∈ {0, 1} and xi ∈ Rk, where k is
the number of features. Then, a tree ensemble method is defined as follows:

ŷi = φ(xi) =
J∑
j=1

τj(xi) =
J∑
j=1

w
(j)
qj(xi), (A.26)

where qj : Rk → {1, 2, . . . , Lj} and w(j) ∈ RLj constitute the jth regression tree τj with Lj leaves.
Here qj maps an impression to the leaf index and w(j) represents the weight on leaves. Hence,
w

(j)
qj(xi) indicates the weight on the leaf that xi belongs to. The tree ensemble method uses J additive

functions to predict the output. In order to estimate the set of functions, Chen and Guestrin (2016)
minimize the following regularized objective:

L(φ) =
∑
i

l(ŷi, yi) + γ
∑
j

Lj +
1

2
λ
∑
j

∥∥w(j)
∥∥2 , (A.27)

where γ and λ are the regularization parameters to penalize the model complexity, and l is a
differentiable convex loss function (in our case, we use log loss as defined in § 5.1.1). Here, in
contrast to MART, XGBoost penalizes not just tree depth but leaf weights as well.

Since the regularized objective in Equation (A.27) cannot be minimized using traditional
optimization methods in Euclidean space, we employ Newton boosting in function space to train
the model in an additive manner. Formally, if we define ŷ(j)i as the prediction of the ith impression
at the jth iteration, we will add τj to minimize the following objective:

L(φ) =
∑
i

l
(
ŷ
(j−1)
i + τj(xi), yi

)
+ γLj +

1

2
λ
∥∥w(j)

∥∥2 (A.28)

In each iteration, we greedily add the tree that most improves our model according to the objective

x

function in Equation (A.27). Since the model uses a greedy algorithm to find the best split at each
iteration, it is impossible to search over all tree structures. Thus, we restrict the set of trees by
specifying the maximum depth of a tree. To optimize this objective function, Friedman et al. (2000)
propose a second-order approximation:

L(φ) '
∑
i

[
l(ŷ

(j−1)
i , yi) + Giτj(xi) +

1

2
Hiτ

2
j (xi)

]
+ γLj +

1

2
λ
∥∥w(j)

∥∥2 , (A.29)

where Gi = ∂
ŷ
(j−1)
i

l(ŷ
(j−1)
i , yi) and Hi = ∂2

ŷ
(j−1)
i

l(ŷ
(j−1)
i , yi) are first and second order gradient

statistics on the loss function. This approximation is used to derive the optimal tree at the step.
To implement this optimization routine, the researcher needs to provide a set of hyper-parameters.

These include the regularization parameters γ and λ defined in Equation (A.27). Further, XGBoost
uses two additional parameters to prevent over-fitting. The first is called shrinkage parameter (ν)
introduced by Friedman (2002), which functions like learning rate in stochastic optimization. The
second is the column sub-sampling parameter (χs), which is used to pick the fraction of features
supplied to a tree and ranges from 0 to 1. In addition, we also need to specify parameters that
structure the optimization problem and control the exit conditions for the algorithm. The first is
dmax, the maximum depth of trees. As mentioned earlier, this ensures that the model searches over
a finite set of trees. Second, we set the number of maximum number of iterations. Finally, the last
parameter defines the early stopping rule, κ ∈ Z+, which stops the algorithm if the loss does not
change in κ consecutive iterations. This parameter also helps prevent over-fitting.

Note all that these parameters cannot be inferred from the training data alone and should be
set based on a scientific validation procedure. In the next section, §C.2, we provide a step by step
explanation and the final values used for these hyper-parameters in our analysis.

C.2 Validation

The goal of validation is to pick the optimal tuning parameters. They cannot be inferred from the
training data alone because they are hyper-parameters. The validation procedure uses two separate
data-sets – training and validation data (from October 28 and 29, as shown in Figure 1) to pin down
the hyper-parameters. It is worth noting that at this stage, the test data is kept separate and is brought
out only at the end after the model has been finalized to evaluate the final model performance.

As discussed in §4.4, XGBoost uses five hyper-parameters that need tuning. Let W =

{γ, λ, ν, dmax, χs} denote the set of hyper-parameters, where γ and λ are the regularization parame-
ters, ν is the shrinkage parameter or learning rate, dmax is maximum depth of trees, and χs is the
column sub-sampling parameter, which refers to the percentage of features randomly selected in

xi

each round. For each of these parameters, we consider the following sets of values:

• γ ∈ {7, 9, 11}
• λ ∈ {0, 1, 2}
• ν ∈ {0.05, 0.1, 0.5, 1}
• dmax ∈ {5, 6, 7}
• χs ∈ {0.5, 0.75}

Overall, W contains 216 elements. We now describe the validation and testing procedure in
detail.

• Step 1: For each element of W , train the model on the first two-thirds of the training and
validation data and evaluate the model’s performance on the remaining one-third. This is the
typical hold-out procedure (Hastie et al., 2001). Boosted trees typically over-fit when they are
stopped at some point. So when training the model, we use the early stopping rule to avoid this
problem (Zhang et al., 2005).

• Step 2: Choose the set of hyper-parameters that gives the best model performance on the
validation set (as measured by RIG in our case). Denote this asW∗.
• Step 3: UsingW∗, train the final model on the full training and validation data, and here too we

use the early stopping rule.

• Step 4: Evaluate the final model’s performance on the test data.

Based on the above procedure, we derive the set of optimal hyper-parameters for our empirical
setting asW∗ = {γ = 9, λ = 1, ν = 0.1, dmax = 6, χs = 0.5}. Further, when training on the full
training and validation data (Step 3), we do not see any improvement in model fit after 276 steps, so
at this iteration number (following the early stopping rule).

Note that our validation procedure addresses two potential complications with our data and
problem setting. First, our data and features have a time component. Thus, if we are not careful in
how we split the validation and training data-sets, we can end up in situations where we use the
future to predict the past (e.g., train on data from period t and validate on data from t − 1). To
avoid this problem, the splits should be chosen based on time. Our validation procedure does this
by using the first two-thirds of the validation+training data for training and the latter one-third for
validation. However, doing so gives rise to a second problem – by choosing the most recent data
for validation (instead of training), we forgo the information in the most recent impressions. In
CTR prediction, it is important not to waste the most recent impressions while fitting the model
because these impressions are more likely to be predictive of the future (McMahan et al., 2013).
To address this, in Step 3, after choosing the optimal hyper-parameters, we train a final model on
the full training and validation data. This model is then used as the final model for results and

xii

counterfactuals.

D Appendix for Robustness Checks

D.1 Other Evaluation Metrics

We consider three alternative evaluation metrics.

• Area Under the Curve (AUC): It calculates the area under the ROC curve, which is a graphical
depiction of true positive rate (TPR) as a function of false positive rate (FPR). This metric is
often used in classification problems, but is less appropriate for prediction tasks such as ours
because of two reasons. First, it is insensitive to the transformation of the predicted probabilities
that preserve their rank. Thus, a poorly fitted model might have higher AUC than a well-fitted
model (Hosmer Jr et al., 2013). Second, it puts the same weight on false positive rate (FPR) and
false negative rate (FNR). However, in CTR prediction, the penalty of FNR is usually higher
than FPR (Yi et al., 2013).

• 0/1 Loss: This is a simple metric used to evaluate correctness in classification tasks. It is simply
the percentage of incorrectly classified impressions. As with AUC, it is not very useful when
accuracy of the prediction matters since it is not good at evaluating the predictive accuracy of
rare events (e.g., clicks). For example, in our case, the loss is lower than 1% loss even if we
blindly predict that none of the impressions will lead to click.

• Mean Squared Error (MSE): This is one of the most widely used metrics for measuring the
goodness of fit. It is similar to LogLoss, which we use to calculate RIG. Both LogLoss and
SquareLoss are often used for probability estimation and boosting in the machine learning
literature. Let di be the Euclidean distance between the predicted value and actual outcome for
impression i. This can be interpreted as the misprediction for the corresponding impression.
SquareLoss and LogLoss for this impression will then be d2i and − log (1− di) respectively.
Since both functions are convex with respect to di, they penalize larger mispredictions more
than smaller ones. However, a big difference is that SquareLoss is finite, whereas LogLoss
is not. In fact, LogLoss evaluates di = 1 as infinitely bad. In our problem, this translates to
either predicting 1 for non-clicks or predicting 0 for clicks. Therefore, the model optimized by
LogLoss will not predict 0 or 1. Given that we do not know how users interact with the app
at the moment, it is quite unrealistic to predict 1 for an impression, especially because each
impression only lasts a short time. Thus, we choose LogLoss as our main metric, which is also
the most common choice in the literature on CTR prediction (Yi et al., 2013).

• Confusion Matrix: We also present the Confusion Matrix for our main models. Like AUC and
0/1 Loss, Confusion Matrix is mostly used in classification problems. However, this gives us an

xiii

Data Evaluation Metric Behavioral Contextual Full
Full Sample AUC 0.7910 0.7014 0.8230
Top Ads/Apps AUC 0.8082 0.7192 0.8410
Filtered Sample AUC 0.8073 0.7410 0.8410
Full Sample 0/1 Improvement (%) 0.63% 0.00% 4.74%
Top Ads/Apps 0/1 Improvement (%) 1.07% 0.00% 8.23%
Filtered Sample 0/1 Improvement (%) 1.34% 0.00% 8.47%
Full Sample MSE Improvement (%) 3.41% 0.55% 8.59%
Top Ads/Apps MSE Improvement (%) 4.86% 0.67% 13.33%
Filtered Sample MSE Improvement (%) 4.89% 0.67% 12.93%
Full Sample True Positives (#) 905 0 5934
Full Sample True Negatives (#) 9533282 9533605 9531972
Full Sample False Positives (#) 323 0 1633
Full Sample False Negatives (#) 91325 92230 86296
Top Ads/Apps True Positives (#) 757 0 5621
Top Ads/Apps True Negatives (#) 6057514 6057744 6056235
Top Ads/Apps False Positives (#) 230 0 1509
Top Ads/Apps False Negatives (#) 50010 50767 45146
Filtered Sample True Positives (#) 517 0 2928
Filtered Sample True Negatives (#) 4424624 4424738 4424343
Filtered Sample False Positives (#) 114 0 395
Filtered Sample False Negatives (#) 29379 29896 26968
Full Sample RIG 12.14% 5.25% 17.95%
Top Ads/Apps RIG 14.82% 5.98% 22.85%
Filtered Sample RIG 14.74% 6.77% 22.45%

Table A2: Model performance for the two samples (full and top ads/apps) when evaluated on the
alternative metrics.

intuitive metric to evaluate the performance of our model.

We now take the optimized models presented in §5 and evaluate their performance on these
alternative metrics. The results from this exercise are presented in Table A2. Overall, all our
substantive results remain the same when we use alternative evaluation metrics.

D.2 Other Learning Methods

We now compare the performance of XGBoost with other five other learning algorithms and present
the results in Table A3. Note that XGBoost outperforms all of them.

For each learning model, we describe the hyper-parameters associated with it and our approach
to optimizing these hyper-parameters. Note that in all the cases, we use the same high-level
validation procedure described in §C.2.

• Least squares does not use any hyper-parameters and hence does not require validation. In
this case, we simply train the model on the full training and validation data to infer the model
parameters, and report the model’s performance on the test data.

xiv

Method RIG over Baseline
Least Squares 7.72%
LASSO 7.92%
Logistic Regression 11.17%
Regression Tree 15.03%
Random Forest 15.75%
XGBoost 17.95%

Table A3: RIG of different learning methods for the test data.

• For LASSO, the validation procedure is straightforward. The only hyper-parameter to set is the
L1 regularization parameter, λ. We search over 100 values of λ and pick the one which gives us
the best performance on the validation set (λ = 6.3× 10−4). We then use this parameter and
train the model on the entire training and validation set and test the performance on the test set.

• For CART, we use the package rpart in R, which implements a single tree proposed by (Breiman
et al., 1984). We use recursive partitioning algorithm with a complexity parameter (ctree)
as the only hyper-parameter that we need to select through validation. The main role of
this parameter is to avoid over-fitting and save computing time by pruning splits that are
not worthwhile. As such, any split that does not improve the fit by a factor of complexity
parameter is not attempted. We search for the optimal complexity parameter over the grid ctree ∈
{0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001}, and based on the validation
procedure, we derive the optimal complexity parameter as 5−5. That is, the model adds another
additional split only when the R-squared increments by at least 5−5.

• For Random Forest, we use the package sklearn in Python. There are three hyper-parameters
in this case – (1) ntree, the number of trees over which we build our ensemble forest, (2) χs,
the column sub-sampling parameter, which indicates the percentage of features that should be
randomly considered in each round when looking for the best split, and (3) nmin, the minimum
number of samples required to split an internal node. We search for the optimal set of hyper-
parameters over the following grid:

• ntree ∈ {100, 500, 1000}
• χs ∈ {0.33, 0.5, 0.75}
• nmin ∈ {100, 500, 1000}

Based on our validation procedure, we find the optimal set of hyper-parameters to be: {ntree =

1000, χs = 0.33, nmin = 500}.

xv

D.3 Robustness Checks on Feature Generation

We also ran the following robustness checks on the feature generation framework.

• We start by considering different ways of aggregating over the history. One possibility is to
use ηie = ri for all the features, i.e., update all the features in real-time. We find no difference
in terms of the prediction accuracy when we adopt this approach, though it increases the
computational costs significantly. Therefore, we stick to our current approach where we use a
combination of global and real-time features.

• Next, we examine the model’s performance under an alternative definition of long- and short-
term history for features that are updated in real-time. The idea is to fix the length of history,
instead of fixing ηib for each impression. In other words, instead of aggregating over [l, ri] and
[s, ri] where l and s are fixed, we aggregate over [li, ri] and [si, ri] where li and si are no more
fixed, but the length of [li, ri] and [si, ri] are fixed. For example, li for impression i on October
28 is the same time on September 30, while li for impression i on October 30 is the same time
on October 2. Under this new approach, we find a slight decrease in the performance: the RIG

drops to 17.69% improvement over the baseline.

• We also consider a model with dummy variables for the top apps in our feature set (similar to
what we now do for top ads). Again, we find no discernible differences in the results without
app dummies: the RIG is 17.97% over the baseline. This may be due to the fact that our feature
generation framework captures the fixed effects of apps well.

Overall, we find that our feature set works well and any additional features or more complex feature
generation mechanisms do not provide any significant benefits in RIG.

D.4 Sampling and Data Adequacy

We conduct our analyses using a relatively large sample consisting of 727,354 users in the train,
validation, and test data-sets. This corresponds to 17,856,610 impressions in the training and
validation data, and 9,625,835 impressions in the test data. We now examine the adequacy the rate
the adequacy of our sample by calculating the RIG for different (lower) sample sizes. That is, we
quantify how much our model gains by using more data, and at what point the marginal value of
additional data is minimal.

To calculate the RIG for a given sample size of Nu, we do the following: 1) We take ten random
samples of Nu users, and generate two data sets – the training data and the test data. 2) For each
sample, we train the model using the training data and then test the model’s performance on the
test data.20 3) We then calculate the mean and standard deviation of the RIG for each sample. We

20We use the hyper-parameters obtained from the validation exercise that we performed in the main model for training.

xvi

User Sample Size (Nu) N train N test
RIG over Baseline CTR

Coefficient Std. error
1,000 24,500 13,274 13.76% 3.17%
5,000 124,521 66,820 14.25% 1.76%
10,000 249,749 139,123 15.26% 1.48%
20,000 486,007 266,497 16.14% 0.40%
50,000 1,220,394 663,569 16.84% 0.28%

100,000 2,436,037 1,332,894 17.27% 0.23%
200,000 4,875,586 2,654,110 17.58% 0.20%
400,000 9,749,402 5,327,471 17.84% 0.18%
600,000 14,699,589 7,928,275 17.91% 0.15%

Table A4: RIG for different sample sizes. N train and N test are respectively the average size of train
and test data after sampling users.

perform this exercise for nine sample sizes starting withNu = 1000 and going up tillNu = 600, 000.
The results from this exercise are shown in Table A4. We also report the average sample size of
train and test data respectively as N train and N test.

In principle, we can perform the above exercise for each sample size with only one sample
instead of ten. However, such an approach is likely to be error-prone, especially at smaller sample
sizes, since there is heterogeneity among users and each sample is random. So we may randomly
find a smaller sample to have a higher RIG than a larger sample in one particular instance. To avoid
making incorrect inferences due to the particularities of one specific sample and to minimize the
noise in our results, we employ the bootstrap procedure described above.

Table A4 suggests that after about 100,000 users, increasing the sample size improves the
prediction only slightly. However, increasing sample sizes also increase the training time and
computational costs. Given the cost-benefit trade-off, our sample of 727,354 users is more than
sufficient for our purposes.

D.5 Other Validation Techniques

The validation procedure outlined in Appendix §C.2 is the first-best validation procedure in data-rich
situations such as ours. Nevertheless, we examine two other commonly used techniques:

• Hold-out validation – very similar to our current approach, except that at Step 3, instead of
training the final model on the combination of training and validation data, we simply use the
best model (using the optimalW∗) trained based on the training data (from Step 2) as the final

This is likely to help the performance of the models trained on smaller samples because if we were to tune the
model using smaller data, the estimated hyper-parameters are likely to be worse. Thus, the gains reported here more
favorable than what we would obtain if we also validated/tuned the model using the smaller data samples.

xvii

model. Thus, we do not use the validation data to train the final model. This can lead to some
information loss (especially from the recent impressions). We find that the model performance
on the test set drops when we use hold-out validation: our RIG is 17.21% which is lower than
that of our validation procedure.

• k-fold cross-validation – we find no improvement in the performance of the model selected by
5-fold cross-validation (RIG is 17.33%). Please see Footnote 7 in (Yoganarasimhan, 2019) and
(Hastie et al., 2001) for a detailed discussion on the pros and cons of k-fold cross validation.

E Detailed Analysis of the Example Presented in Figure 8
In an important paper, Levin and Milgrom (2010) argue that sharing too much targeting information
with advertisers can thin auction markets which in turn would soften competition and make the
platform worse. We now present a simple example to highlight this idea. Consider a platform with
two advertisers (a(1) and a(2)) competing for the impressions of two users (u(1) and u(2)). Assume
that the platform uses second price auctions with Cost per Impression (CPI) pricing, where the
highest bidder wins the impression and pays the bid of the second-highest bidder. These auctions
have the useful property of truthful bidding (Vickrey, 1961). Let the advertisers be symmetric
in their valuation of a click (normalized to 1 hereafter). Further, let the match values between
advertisers and users be as shown in Equation (A.30). Match values can be interpreted as the eCTR
of an impression for the advertiser-user pair. Notice that advertiser a(1) has a better match with user
u(1) and advertiser a(2) with user u(2).

u(1) u(2) ū

a(1) 0.5 0.1 0.3

eCTR = −→
a(2) 0.1 0.3 0.2

(A.30)

We can formally show that, for a given targeting strategy, both CPI and Cost per Click (CPC
mechanisms generate the same revenues for the platform and advertisers. So we focus on the CPI
case throughout the text and refer readers to Appendix G for the CPC example and analysis.

Consider the advertiser’s bidding strategy and outcomes under two regimes – 1) No data
disclosure by the platform, and 2) Full disclosure of match values by the platform. The results from
these two regimes are laid out in Table A5 and discussed below:

• No data disclosure – Here advertisers only know their aggregate match value for both users. So
a(1) and a(2)’s expected match values for the two users are 0.3 and 0.2. In a second price auction,
advertisers bid their expected valuations. So a(1) wins both impressions and pays the next

xviii

No Data Disclosure Full Data Disclosure
(or No Targeting) (or Perfect Targeting)

For both impressions:
Bids:
Advertiser a(1): b(1)1 = b

(1)
2 = 0.3

Advertiser a(2): b(2)1 = b
(2)
2 = 0.2

Outcome:
Advertiser a(1) wins both impressions and pays 0.2 per
impression

Platform’s expected revenue:
R = 2× 0.2 = 0.4

Advertiser’s expected surplus:
W (1) = 2× (0.3− 0.2) = 0.2
W (2) = 0

Total expected surplus:
S = 0.6

For User u(1)’s impression:
Bids:
Advertiser a(1): b(1)1 = 0.5, Advertiser a(2): b(2)1 = 0.1
Outcome:
Advertiser a(1) wins u(1)’s impression and pays 0.1

For User u(2)’s impression:
Bids:
Advertiser a(1): b(1)2 = 0.1, Advertiser a(2): b(2)2 = 0.3
Outcome:
Advertiser a(2) wins u(2)’s impression and pays 0.1

Platform’s expected revenue:
R = 0.1 + 0.1 = 0.2

Advertiser’s expected surplus:
W (1) = 0.5− 0.1 = 0.4
W (2) = 0.3− 0.1 = 0.2

Total expected surplus:
S = 0.8

Table A5: Example depicting two regimes: 1) No data disclosure and 2) Full disclosure.

highest bid, b(2)1 = b
(2)
2 = 0.2, for each impression. Therefore, platform’s revenue is R = 0.4,

advertisers’ surplus is W (1) = 0.2 and W (2) = 0, and the total surplus is S = 0.6.

• Full data disclosure – Since advertisers now have information on their match for each impression,
they submit targeted bids that reflect their valuations as shown in Table A5. Therefore, the
advertiser who values the impression more wins it. However, because of the asymmetry in
advertisers’ valuation over impressions, the competition over each impression is softer. This
ensures higher advertiser revenues, with W (1) = 0.4 and W (2) = 0.2. However, the platform’s
revenue is now lower, at R = 0.2. Thus, even though ads are matched more efficiently and the
total surplus generated is higher, the platform extracts less revenue.

This example illustrates the platform’s trade-off between value creation and value appropriation,
and highlights the platform’s incentives to withhold targeting information from advertisers.

F Proof of Proposition 1
We first prove the proposition for the general case of two sets of bundles I(1) and I(2), where I(1)

is at least as granular as I(2). Under a given targeting level, risk-neutral advertisers’ valuation for

xix

an impression in a bundle is their aggregate valuation for that bundle, as they cannot distinguish
between different impressions within a bundle. Thus, all impressions within a bundle have the same
expected valuation for an advertiser. As such, for any i ∈ Ij , incentive compatibility constraint in
the second-price auction induce advertiser a to places the bid bia = 1

|Ij |
∑

k∈Ij vka.

According to Definition 4, for any I(2)k ∈ I(2), there exist I(1)j1
, . . . , I

(1)
jl

such that
⋃l
s=1 I

(1)
js

=

I
(2)
k . We can write:

max
a

∑
i∈I(2)k

via ≤
l∑

s=1

max
a

∑
i∈I(1)js

via (A.31)

where the LHS is the surplus generated from the impressions in bundle I(2)k for targeting level
I(2), and RHS is the surplus generated from the same impressions for targeting level I(1). Since
inequality (A.31) holds for any I(2)k ∈ I(2), we can show that S(1) ≥ S(2), i.e., the surplus is
increasing with more granular targeting.

However, platform revenues can go either way. If the second-highest valuation is exactly
the same as the highest valuation for all impressions, the revenue and surplus are identical, i.e.,
R(1) ≥ R(2). On the other hand, consider a case where, for any given impression, one advertiser
has a high valuation and the rest of advertisers have the same (lower) valuation. In this case, the
second-highest valuation is the minimum valuation for each impression. Thus, we can write (A.31)
with min function instead of max and change the sign of inequality. This gives us R(1) ≤ R(2).
Therefore, the platform revenues can be non-monotonic with more granular targeting.

Finally, it is worth noting that this result can be applied to any efficient auction in light of
revenue-equivalence theorem.

G Analysis of Cost-per-Click Payment Mechanism
We now present an analysis of targeting under the Cost-per-Click (CPC) mechanism, where an
advertiser’s bid indicates the maximum price he is willing to pay per click. In this case, having
a more accurate estimation of match values for impressions does not change advertisers’ bidding
behavior because they do not pay per impression. Theoretically, if advertisers have infinite budget,
they should bid their valuation for click, even if they know they have higher CTR for some
impressions.

However, the ad-network has an incentive to make more efficient matches in order to generate
more clicks since clicks are their main source of revenue. For example, if there is an advertiser
with a very high bid but very low CTR, the ad-network cannot make money by selling the slot
to this advertisers. Let via and mia respectively denote the valuation for click and the match
value for advertiser a for impression i. The maximum revenue that platform could get is then

xx

No Targeting Perfect Targeting
For both impressions:
Bids:
Advertiser 1: b11 = b21 = 1
Advertiser 2: b12 = b22 = 1
Match values:
Advertiser 1: m11 = m21 = 0.3
Advertiser 2: m12 = m22 = 0.2
Outcomes:
Advertiser 1 wins both impressions and pays
0.2×1
0.3 = 0.66 per click

Platform’s expected revenue:
R = 0.66× (0.5 + 0.1) = 0.4

Advertiser’s expected surplus:
W1 = (1− 0.66)× (0.5 + 0.1) = 0.2
W2 = 0

Total expected surplus:
S = 0.6

For User 1’s impression:
Bids:
Advertiser 1: b11 = 1, Advertiser 2: b12 = 1
Match values:
Advertiser 1: m11 = 0.5, Advertiser 2: m12 = 0.1
Outcome:
Advertiser 1 wins User 1’s impression and pays
1×0.1
0.5 = 0.2 per click

For User 2’s impression:
Bids:
Advertiser 1: b11 = 1, Advertiser 2: b12 = 1
Match values:
Advertiser 1: m11 = 0.1, Advertiser 2: m12 = 0.3
Outcome:
Advertiser 2 wins User 2’s impression and pays
1×0.1
0.3 = 0.33 per click

Platform’s expected revenue:
R = 0.2× 0.5 + 0.33× 0.3 = 0.2

Advertiser’s expected surplus:
W1 = (1− 0.2)× 0.5 = 0.4
W2 = (1− 0.33)× 0.3 = 0.2

Total expected surplus:
S = 0.8

Table A6: Example depicting no targeting and perfect targeting under CPC pricing mechanism.

maxa viamia. Thus, defining bia as advertiser a’s bid on impression i, the platform should sell the
ad slot to argmaxa biamia and charge her the minimum bid with which she still wins. It generates
the expected revenue of the second-highest biamia. (In fact, this is how Google’s sponsored search
auctions work.)

Table A6 shows how the example in §6.1 generalizes to the CPC case. Although CPC and CPI
have different properties, we can easily prove that their revenue is the same under different levels of
targeting. This stems from the fact that under second-price auction, bidders bid their valuation. Thus,
the platform’s expected revenue from impression i under both mechanisms is the second highest
viamia, as long as the match-values (or targeting strategies) are the same under both mechanisms.
Conceptually, there exists a one-to-one mapping between CPC and CPI mechanisms if and only if
there is a one-to-one mapping between the targeting level and resulting match-value matrix. In the
CPI mechanism, mia enters the advertisers’ bidding strategy, i.e., the targeting decision is made

xxi

by the advertisers. The ad-network’s decision consists of whether to share targeting information
with advertisers or not. In contrast, under the CPC mechanism, the ad-network directly decides the
extent of targeting to engage in and the advertisers always bid their valuation.

Our empirical results suggest that under the CPI mechanism, ad-networks may have incentive
to limit behavioral targeting. In the CPC context, this translates to the following result: the ad-
network has an incentive to not use behavioral information for targeting, as compared to contextual
information. In both cases, the platform has an incentive to protect users’ privacy by ensuring
that behavioral information is not used for targeting purposes. In sum, the empirical estimates of
platform’s revenue, advertisers’ revenues, and the implications for user-privacy are similar in both
settings.

H Robustness Checks for Analysis of Revenue-Efficiency Trade-off

H.1 Alternative Methods for Estimation of Click Valuations

Here we discuss alternative methods to estimate click valuations from the data. For the main model,
we use a simple method that approximates the click valuation as twice the submitted bid. This
comes from the following relationship established in Mirrokni et al. (2010):

v̂(c)a = b∗a +
b∗a

1− πa
, (A.32)

where πa is the probability of winning for ad a in the auction. Since this probability is very small for
advertisers, we neglect that in our approximation. Further, in our problems, ads are charged using a
next-price mechanism like that of Google’s sponsored search auctions. In this case, the amount that
ads are charged per click is not their bid, but rather the amount that guarantees their rank among
the bidders. For example, if there are three bidders with bids 1, 2, and 3, and quality scores 0.1,
0.2, and 0.3, the scores will be 0.1, 0.4, and 0.9 respectively. Now, if the second-ranked bidder
gets a click, she will pay the price that would have guaranteed her rank. That is, she only needs to
pay 1×0.1

0.2
= 0.5, as it guarantees her score to be higher than the third-ranked bidder. Together, not

incorporating either πa in (A.32) or the cost function would make our estimates biased. To address
this issue, we consider alternative methods to estimate click valuations as presented below:

1. Alternative Method 1 (AM1): We only incorporate the proportions as specified in (A.32).
We use a simple approach to estimate proportions as follows:

π̂a =

∑NF
i=1 1(ai = a)∑NF

i=1 ei,a
(A.33)

xxii

This is the total number of impressions showing ad a divided by the total number of impres-
sions ad a participated in their auction. This is a consistent estimator for the proportion of
impressions ad a would get, given her bid. Thus, in this method, we can estimate valuations
as follows:

v̂(AM1)
a = b∗a +

b∗a
1− π̂a

, (A.34)

2. Alternative Method 2 (AM2): Not only do we incorporate proportions, we also incorporate
the cost function. It is easy to show that if the cost function ca(ba) is differentiable and concave,
the game is socially concave and there exists a unique pure strategy Nash equilibrium (Rosen,
1965; Mirrokni et al., 2010). We can write the following relationship for the equilibrium bid:

v̂(c)a = ca(b
∗
a) +

b∗ac
′
a(b
∗
a)

1− πa
, (A.35)

where c′a is the first derivative of the cost function. In this method, we assume a linear form
for function cost function such that ca(ba) = γaba. Our estimate for click valuations will then
be:

v̂(AM2)
a = ĉa(b

∗
a) +

ĉa(b
∗
a)

1− π̂a
, (A.36)

where we can estimate ĉa(b∗a) by taking the average cost-per-click of ad a.

3. Alternative Method 3 (AM3): In this method, we follow (A.35) but we use a quadratic form
for the cost function such that ca(ba) = γaba + γb2a, where the coefficient for ba is ad specific
but the one for b2a is the same for all ads. The main reason is identification since advertisers
do not change their bids. So the curvature is captured by the data of all ads. With a quadratic
form for the cost function, we can re-write (A.35) as follows:

v̂(c)a = ca(b
∗
a) +

b∗a(γa + 2γb∗a)

1− πa
= ca(b

∗
a) +

b∗aca(b
∗
a)

1− πa
+

γb∗a
1− πa

(A.37)

Now, to estimate γ, we need to estimate the following model:

CPCi = γ̂aba + γ̂b2a + ε̂, (A.38)

where CPCi is the actual cost-per-click for impression i. We then plug these estimates and in
(A.35). Our estimates in this case will be:

v̂(AM3)
a = ĉa(b

∗
a) +

ĉa(b
∗
a)

1− π̂a
+

γ̂b∗a
1− π̂a

, (A.39)

xxiii

where ĉa(b∗a) and π̂a can be estimated using the approach in AM2.

4. Alternative Method 4 (AM4): In this method, we incorporate the fact that there is a reserve
price r0 for all impressions that requires advertisers to bid higher than this amount. In
presence of reserve price, equilibrium bids may not satisfy first-order condition, as they are
right-censored. That is, there could have been bids lower than r0 with no reserve price. For
reserve bidders, we know that the participation constraint v(c)a ≥ r0 is satisfied. On the other
hand, we know that b∗a ≤ r0 which implies that v(c)a ≤ r0(1 + 1

1−πa). Thus, for reserve bidders,
we have vca ∈ [r0, r0(1 + 1

1−πa)]. As such, if such valuations come from a uniform distribution
in this range, our estimates will be:

v̂(AM4)
a =

r0(1 + 1
2(1−πa)) if a is a reserve bidder

v̂
(AM3)
a otherwise

, (A.40)

where the estimated click valuations for a reserve bidder a is the mean of uniform distribution
U(r0, r0(1 + 1

1−πa)).

5. Alternative Method 5 (AM5): In this method, we follow all the steps in AM4, but draw a
value from distribution U(r0, r0(1 + 1

1−πa)) for any ad a who bids the reserve price. As such,
our estimates will be:

v̂(AM4)
a =

x ∼ U(r0, r0(1 + 1
1−πa)) if a is a reserve bidder

v̂
(AM3)
a otherwise

(A.41)

We first illustrate the empirical CDF of all these alternative methods as well as the main method
used in the paper. As shown in Figure 11, estimated value distributions are not very different. This
is mostly due to the fact that there are many bidders and no one has disproportionately high chance
of winning, which in turn, makes the approximation method used in (12) valid.

Next, we use all the alternative methods to obtain click valuation estimates and then estimate
the market outcomes – total surplus, platform revenues, and advertisers’ surplus. The results are
shown in Table A7. While our estimates are quantitatively different from those presented in Table 6,
our main qualitative results remain the same: while total surplus has a monotonic relationship with
the granularity of targeting, platform revenues are maximized when the platform limits the targeting
level to the contextual targeting.

xxiv

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500 2000 2500
Amount

F
ra

ct
io

n
of

 A
ds

Group
AM1
AM2

AM3
AM4

AM5
Main

Figure 11: Empirical CDF of estimated value distributions using alternative methods

H.2 Adding Noise to Match Valuations

As discussed in §6.3.2, our assumption that advertisers can obtain match values estimated in our
machine learning framework may not be realistic. As such, we consider various scenarios here to
reflect cases in which advertisers can only obtain a noisy version of our estimates.

H.2.1 Identically Distributed Noise Across Ads

First, we consider the case that an identically distributed noise is added to any element in the match
value matrix. We operationalize this noise as follows:

m̂
(ν)
i,a = m̂i,aεi,a, (A.42)

where εi,a ∼ U(1 − ν, 1 + ν). As such, advertisers obtain estimates ν × 100 percent lower or
higher than the estimate from our ML framework. For any noise distribution, we make the entire
matrix and follow the procedure presented in §6.3.3 to estimate the average surplus, revenue, and
advertisers’ surplus. The results are shown in Table A8. We find that noise-adding can increase the

xxv

Targeting Total Surplus Platform Revenue Advertisers’ Surplus

A. Alternative Method 1 (AM1)
No Targeting 8.54 8.36 0.18
Contextual Targeting 9.09 8.49 0.60
Behavioral Targeting 9.32 8.47 0.85
Full Targeting 9.60 8.48 1.12

B. Alternative Method 2 (AM2)
No Targeting 7.96 7.93 0.03
Contextual Targeting 8.62 8.09 0.53
Behavioral Targeting 8.83 8.05 0.78
Full Targeting 9.09 8.05 1.04

C. Alternative Method 3 (AM3)
No Targeting 7.91 7.89 0.02
Contextual Targeting 8.61 8.07 0.53
Behavioral Targeting 9.81 8.04 0.77
Full Targeting 9.08 8.04 1.04

D. Alternative Method 4 (AM4)
No Targeting 8.02 7.91 0.11
Contextual Targeting 8.61 8.08 0.53
Behavioral Targeting 8.82 8.03 0.79
Full Targeting 9.08 8.03 1.05

E. Alternative Method 5 (AM5)
No Targeting 8.02 7.91 0.11
Contextual Targeting 8.61 8.08 0.53
Behavioral Targeting 8.82 8.03 0.79
Full Targeting 9.08 8.04 1.04

Table A7: Platform revenues, advertisers’ surplus, and total surplus for different levels of targeting
using different methods to estimate click valuations. The numbers are reported in terms of the
average monetary unit per impression.

revenue under full targeting by distorting efficiency. This is in line with Athey and Nekipelov (2010)
who find that the platform’s optimal decision is to use imperfect CTR estimates in a cost-per-click
setting. Interestingly, we find that full and contextual targeting yield almost the same results when
ν = 0.3. Thus, we can interpret contextual targeting as a noise-adding strategy.

H.2.2 Differentially Distributed Noise Across Ads

Here we consider a more realistic case wherein ads with more impressions (more data) have better
estimates (less noisy). Similar to the case with identical noise, we we operationalize the differential
noise as follows for any ad a:

m̂
(νa)
i,a = m̂i,aεi,a, (A.43)

xxvi

Targeting Noise (ν) Total Surplus Platform Revenue Advertisers’ Surplus
No Targeting 0.05 8.36 8.30 0.06
Contextual Targeting 0.05 8.99 8.44 0.55
Behavioral Targeting 0.05 9.18 8.35 0.82
Full Targeting 0.05 9.43 8.35 1.08
No Targeting 0.1 8.36 8.30 0.06
Contextual Targeting 0.1 8.99 8.44 0.55
Behavioral Targeting 0.1 9.17 8.36 0.82
Full Targeting 0.1 9.37 8.35 1.02
No Targeting 0.15 8.36 8.30 0.06
Contextual Targeting 0.15 8.99 8.44 0.55
Behavioral Targeting 0.15 9.16 8.36 0.80
Full Targeting 0.15 9.29 8.35 0.93
No Targeting 0.2 8.36 8.30 0.06
Contextual Targeting 0.2 8.99 8.44 0.55
Behavioral Targeting 0.2 9.14 8.36 0.78
Full Targeting 0.2 9.20 8.37 0.82
No Targeting 0.25 8.36 8.30 0.06
Contextual Targeting 0.25 8.99 8.44 0.55
Behavioral Targeting 0.25 9.13 8.37 0.76
Full Targeting 0.25 9.10 8.41 0.70
No Targeting 0.3 8.36 8.30 0.06
Contextual Targeting 0.3 8.99 8.44 0.54
Behavioral Targeting 0.3 9.12 8.38 0.74
Full Targeting 0.3 9.01 8.47 0.54

Table A8: Platform revenues, advertisers’ surplus, and total surplus for different levels of targeting
when adding an identically distributed noise to match values. The numbers are reported in terms of
the average monetary unit per impression.

where εi,a ∼ U(1− νa, 1 + νa). As such, the noise is different for each ad. Since the error rate is
proportional to the square root of number of observations, we write:

νa =
ν√
Na

,

where Na is the number of impressions ad a has in our Filtered sample. Now, for any ν, we can
make the entire match value matrix and estimate the market outcomes. The results are shown in
Table A9. Again, we find that the platform benefits when advertisers have imperfect estimates of
their match valuations. Comparing the results in Table A8 and A9, we find that the total surplus
declines faster with a differentially distributed noise: when the platform’s revenue is the same
under full and contextual targeting, the total surplus is higher under contextual targeting. Given the
absence of privacy costs under contextual targeting, our results in both tables indicate that platforms
benefit most when allowing only contextual targeting.

xxvii

Targeting Noise (ν) Total Surplus Platform Revenue Advertisers’ Surplus
No Targeting 10 8.36 8.30 0.06
Contextual Targeting 10 8.99 8.44 0.55
Behavioral Targeting 10 9.18 8.35 0.82
Full Targeting 10 9.42 8.34 1.08
No Targeting 20 8.36 8.30 0.06
Contextual Targeting 20 8.99 8.44 0.55
Behavioral Targeting 20 9.17 8.35 0.82
Full Targeting 20 9.35 8.32 1.03
No Targeting 30 8.36 8.30 0.06
Contextual Targeting 30 8.99 8.44 0.55
Behavioral Targeting 30 9.16 8.35 0.80
Full Targeting 30 9.24 8.31 0.93
No Targeting 40 8.36 8.30 0.06
Contextual Targeting 40 8.99 8.44 0.55
Behavioral Targeting 40 9.14 8.35 0.79
Full Targeting 40 9.12 8.32 0.80
No Targeting 50 8.36 8.30 0.06
Contextual Targeting 50 8.99 8.44 0.55
Behavioral Targeting 50 9.12 8.35 0.77
Full Targeting 50 8.99 8.35 0.65
No Targeting 60 8.36 8.30 0.06
Contextual Targeting 60 8.99 8.44 0.55
Behavioral Targeting 60 9.10 8.35 0.75
Full Targeting 60 8.93 8.36 0.57
No Targeting 70 8.36 8.30 0.06
Contextual Targeting 70 8.99 8.43 0.56
Behavioral Targeting 70 9.09 8.34 0.75
Full Targeting 70 8.86 8.39 0.47
No Targeting 80 8.36 8.30 0.06
Contextual Targeting 80 8.99 8.43 0.55
Behavioral Targeting 80 9.07 8.34 0.73
Full Targeting 80 8.80 8.44 0.36

Table A9: Platform revenues, advertisers’ surplus, and total surplus for different levels of targeting
when adding an differentially distributed noise to match values. The numbers are reported in terms
of the average monetary unit per impression.

References
S. Athey and D. Nekipelov. A structural model of sponsored search advertising auctions. In Sixth Ad Auctions

Workshop, volume 15, 2010.

L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and Regression Trees. CRC press,

1984.

T. Chen and C. Guestrin. Xgboost: A Scalable Tree Boosting System. In Proceedings of the 22Nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 785–794. ACM,

2016.

xxviii

J. Friedman, T. Hastie, R. Tibshirani, et al. Additive Logistic Regression: A Statistical View of Boosting

(with Discussion and a Rejoinder by the Authors). The Annals of Statistics, 28(2):337–407, 2000.

J. H. Friedman. Stochastic Gradient Boosting. Computational Statistics & Data Analysis, 38(4):367–378,

2002.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. NY Springer, 2001.

D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant. Applied Logistic Regression, volume 398. John Wiley

& Sons, 2013.

G. A. Johnson, R. A. Lewis, and D. Reiley. Location, Location, Location: Repetition and Proximity Increase

Advertising Effectiveness. Available at SSRN 2268215, 2016.

J. Levin and P. Milgrom. Online Advertising: Heterogeneity and Conflation in Market Design. The American

Economic Review, 100(2):603–607, 2010.

H. Li and P. Kannan. Attributing Conversions in a Multichannel Online Marketing Environment: An

Empirical Model and a Field Experiment. Journal of Marketing Research, 51(1):40–56, 2014.

H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady, L. Nie, T. Phillips, E. Davydov,

D. Golovin, et al. Ad Click Prediction: A View from the Trenches. In Proceedings of the 19th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1222–1230. ACM,

2013.

V. Mirrokni, S. Muthukrishnan, and U. Nadav. Quasi-Proportional Mechanisms: Prior-Free Revenue

Maximization. In Latin American Symposium on Theoretical Informatics, pages 565–576. Springer, 2010.

R. Pieters, E. Rosbergen, and M. Wedel. Visual Attention to Repeated Print Advertising: A Test of Scanpath

Theory. Journal of Marketing Research, pages 424–438, 1999.

J. P. Redden. Reducing Satiation: The Role of Categorization Level. Journal of Consumer Research, 34(5):

624–634, 2007.

J. B. Rosen. Existence and uniqueness of equilibrium points for concave n-person games. Econometrica:

Journal of the Econometric Society, pages 520–534, 1965.

N. S. Sahni. Effect of temporal spacing between advertising exposures: Evidence from online field experi-

ments. Quantitative Marketing and Economics, 13(3):203–247, 2015.

E. H. Simpson. Measurement of Diversity. Nature, 1949.

W. Vickrey. Counterspeculation, Auctions, and Competitive Sealed Tenders. The Journal of finance, 16(1):

8–37, 1961.

J. Yi, Y. Chen, J. Li, S. Sett, and T. W. Yan. Predictive Model Performance: Offline and Online Evaluations.

In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 1294–1302. ACM, 2013.

H. Yoganarasimhan. Search Personalization Using Machine Learning. Forthcoming, Management Science,

2019.

T. Zhang, B. Yu, et al. Boosting with Early Stopping: Convergence and Consistency. The Annals of Statistics,

33(4):1538–1579, 2005.

