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for optimal targeted marketing.

Keywords: Consumer Search, Preference Heterogeneity

*We thank Bart Bronnenberg and Wes Hartmann for insightful comments. We also thank seminar participants
at Frankfurt University, Santa Clara, Georgia Tech and Carnegie Mellon as well as conference participants at the
2018 Winter Marketing-Economics Summit. All errors are our own.



1 Introduction

One of the most well-known and widely studied stylized facts in quantitative marketing is strong

persistence in the product choices of consumers (Rossi and Allenby, 1993; Rossi, McCulloch, and

Allenby, 1996; Allenby and Rossi, 1999). Researchers typically interpret this persistence as evidence

that consumers have heterogeneous preferences across products.1 In this paper, we challenge the

conventional wisdom that strong persistence in choices is driven by strong preference heterogeneity.

We argue that in the presence of search frictions, even small differences in preferences across

products can translate into highly persistent choices.

The contribution of this paper is twofold. First, we illustrate how preference heterogeneity

and search frictions jointly determine persistence in consumer choices. In the presence of search

costs, consumers first search their most preferred product and are less likely to evaluate other

options. This search behavior concentrates purchase probabilities around each consumer’s preferred

product. A researcher who ignores search frictions may incorrectly infer that consumers strongly

prefer certain products, whereas in reality, slight preferences across products are amplified by the

presence of search frictions. Because prior research finds that search costs are substantial in different

product categories (De Los Santos, Hortacsu, and Wildenbeest, 2012; Seiler, 2013; Honka, 2014;

Koulayev, 2014; Giulietti, Waterson, and Wildenbeest, 2014), we conjecture this amplification effect

is an important driver of choice persistence in many settings. As a result, preference heterogeneity

in many markets may be less pronounced than previously thought.

Second, we show that accounting for the influence of search costs is quantitatively important.

To illustrate this point, we estimate a model of search with flexible preference heterogeneity using

search and purchase data from an online retailer. The estimation results reveal that ignoring search

frictions leads to a 30% upward bias in the estimated standard deviations of product intercepts.

Overestimating heterogeneity generates a seemingly large degree of product differentiation; as a

result, we underestimate own-price elasticities and overestimate the markups of firms by 25%.

Furthermore, when ignoring search, the scope for targeted marketing is overestimated because

consumers appear more heterogeneous in their preference than they actually are. As a consequence,

optimal personalized prices derived from a full-information model are more dispersed than prices

based on the search model. This difference in prices affects the expected profit from targeting:

personalized prices derived from the full-information model increase profits only by 1.1% relative

to uniform pricing, whereas prices based on the search model increase profits by 13.2%. Hence,

explicitly modeling consumer search is crucial for evaluating the degree of competition among sellers

and for the implementation of optimal targeted marketing.

To identify preference heterogeneity separately from search costs, we collect rich data on con-

sumer search and purchase behavior and develop a computationally efficient way to estimate our

search model. Because our identification strategy requires panel data on the search and purchase

decisions of consumers, we use a dataset in which some consumers search and purchase multiple

1Switching costs provide another possible explanation for choice persistence (Dubé, Hitsch, Rossi, and Vitorino,
2008; Dubé, Hitsch, and Rossi, 2009). We discuss the role of switching costs in more detail at the end of this section.
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times in the same product category. The prior literature on the estimation of preference hetero-

geneity typically uses panel data on consumer purchases (Rossi and Allenby, 1993; Allenby and

Rossi, 1999), which does not allow to explicitly study consumer search. At the same time, most of

the search literature analyzes cross-sectional data on search and purchase behavior (Honka, 2014;

Chen and Yao, 2016; Honka and Chintagunta, 2015), which does not include a panel dimension.

To the best of our knowledge, ours is the first paper that combines these two approaches and uses

panel data on search behavior to separately identify preference heterogeneity and search costs.

In terms of computational burden, the estimation of our search model is computationally intense

because we have to integrate preference heterogeneity out of the likelihood function. To reduce

this computational burden, we implement an importance-sampling estimator similar to the one

discussed in Ackerberg (2009). This approach removes the need to recompute individual likelihood

contributions for each new guess of parameters, thus making estimation significantly faster.

This paper connects two strands of literature. Our model framework is similar to other struc-

tural models from the consumer search literature (Kim, Albuquerque, and Bronnenberg, 2010; De

Los Santos, Hortacsu, and Wildenbeest, 2012; Honka, 2014; Honka and Chintagunta, 2015; Chen

and Yao, 2016). However, these papers estimate search models using cross-sectional data and do not

focus on estimating preference heterogeneity. On the other hand, there is a long history of research

in marketing regarding estimation and identification of preference heterogeneity in markets where

consumers are perfectly informed about product characteristics (Chintagunta, Jain, and Vilcassim,

1991; Rossi and Allenby, 1993; Rossi, McCulloch, and Allenby, 1996; Allenby and Rossi, 1999). We

connect these two areas of research by re-examining the estimation of preference heterogeneity in

markets with costly search.

Our paper is also related to the broader literature on persistence in consumer choices. Prior

research suggests that choice persistence can be rationalized by the presence of preference hetero-

geneity (see papers cited above) or switching costs (Dubé, Hitsch, Rossi, and Vitorino, 2008; Dubé,

Hitsch, and Rossi, 2009). We contribute to this literature by showing that search costs may also

play a substantial role in generating choice persistence. It is important to note that the presence of

search costs does not by itself generate persistence; instead, search costs amplify the way in which

preference heterogeneity translates into persistent choices. To simplify exposition and estimation,

in this paper we abstract away from switching costs.2 Although this assumption may seem strong,

prior research suggests that switching costs play a minor role in shaping consumer choices relative

to heterogeneity in preferences (Dubé, Hitsch, and Rossi, 2010).

The rest of the paper proceeds as follows. In sections 2 and 3, we develop a search model and

analyze the impact of search costs on consumers’ purchase decisions and in turn on the estimates of

preference heterogeneity. We then adapt the basic search model for a panel data setting and discuss

identification in section 4, and describe our estimation strategy in section 5. Section 6 presents the

2The literature on the estimation of switching costs emphasizes the importance of flexible controls for preference
heterogeneity, which are usually implemented in a Bayesian framework (Dubé, Hitsch, and Rossi, 2010). Because
modeling search significantly increases the computational burden of estimation, we are not able to allow for the same
degree of flexibility with regard to preference heterogeneity.
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estimation results, whereas section 7 analyzes implications for optimal pricing. We offer concluding

remarks in section 8.

2 General Model Framework

Suppose each consumer i conducts Ti search sessions, which we index by t = 1, . . . , Ti. In each

session, she chooses exactly one product out of J available alternatives. No outside good exists,

and the utility consumer i derives from product j in period t is the sum of a consumer-specific

product intercept and a taste shock:3

uijt = ξij + εijt. (1)

We assume the consumer is imperfectly informed about product-specific utilities and must engage

in costly search to resolve uncertainty. In particular, she knows product intercepts ξij and the

distribution Fε(ε) from which the taste shocks are drawn, but must search to learn realizations of

taste shocks εijt. These taste shocks are assumed to be i.i.d. across consumers, search sessions,

and products.

Following Weitzman (1979), we assume the consumer searches sequentially and incurs a cost

ci for each searched product. Upon finishing search, she chooses one product from the searched

options. In this setting, the optimal search behavior can be characterized by a simple threshold

rule derived in Weitzman’s paper. To describe this rule, define reservation utility zij for consumer

i and product j as

∞�

zij

(uijt − zij)dF (uijt) = ci. (2)

The reservation utility zij is the level of utility at which the consumer is indifferent between search-

ing product j and receiving zij with certainty.4 In the optimum, the consumer searches products in

order of descending reservation utilities. At each step during this process, she continues searching

as long as the maximum realized utility is lower than the reservation utility of the next product

in the search sequence; otherwise, she stops searching and purchases the highest-utility product

among the searched options.

3 Preference Heterogeneity and Search Costs

This section illustrates how preference heterogeneity and search costs jointly drive consumer choices.

In addition, it explains how ignoring search costs may bias the estimates of preference heterogeneity.

3In our empirical model in secton 4, we expand this framework by introducing a taste shock known prior to search,
and add price to the utility function.

4The reservation utility is time invariant because it depends on the distribution but not the realization of the taste
shock εijt.
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Panel A: No Search Costs

True Intercepts Purchase Probability

Product A B A B

Consumer 1 0 -1 0.76 0.24

Consumer 2 0 1 0.24 0.76

Panel B: Search Costs = 0.5

True Intercepts Search Probability Purchase Probability Inferred Intercepts

Product A B A B A B A B

Consumer 1 0 -1 1 0.12 0.91 0.09 0 -1.93

Consumer 2 0 1 0.12 1 0.09 0.91 0 1.93

Panel C: Search Costs = 1

True Intercepts Search Probability Purchase Probability Inferred Intercepts

Product A B A B A B A B

Consumer 1 0 -1 1 0.03 0.97 0.03 0 -2.77

Consumer 2 0 1 0.03 1 0.03 0.97 0 2.77

Table 1: The Impact of Search Costs on Purchase Shares: A Simple Example.

We first describe a simple example with two consumers and two products to build intuition and

then illustrate that the same results also apply to more general settings.

3.1 Simple Example

Consider a market with two consumers (1 and 2) choosing between two products (A and B). We

normalize product intercepts for product A to zero (i.e. ξ1A = ξ2A = 0) and assume consumer 1

prefers product A to product B (ξ1B = −1), whereas consumer 2 prefers product B to product A

(ξ2B = 1). Taste shocks εijt are assumed to be i.i.d. standard normal. Finally, we assume search

costs are the same for both consumers and are equal to 0.5.

Our goal is to compare the purchase behavior of consumers under two scenarios: when they

have perfect information about products, and when they engage in costly search. We start by

considering the perfect-information scenario. In this scenario, the purchase probability of product

A of consumer 1 equals

PurchProbPerfectInformation1A = Pr(0 + εiAt > −1 + εiBt) = 0.76, (3)

which corresponds to a standard probit probability. We compute purchase probabilities for the

other three consumer-product pairs in a similar way; these probabilities are reported in Panel A

of Table 1. According to computed values, each consumer purchases the product with the higher

intercept with probability 76% and buys the other product in the remaining 24% of cases.

We compare these purchase probabilities with the second scenario, in which consumers have

imperfect information and engage in costly search. Unlike in the perfect-information scenario,

now consumers actively decide whether to include different products in their consideration sets.

For example, according to the optimal search rule, consumer 1 should first search product A and

should only search product B if the realized taste shock of product A is below the reservation utility
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of product B5; hence, the probability of searching product B equals

SearchProb1B = Pr(0 + εiAt < z1B) = 0.12,

where z1B is the reservation utility from equation (2).6 If the consumer searches product B, she

then decides which product to buy based on the realized utilities of the two products. By contrast,

if she does not search product B, she never learns the realization of the shock εiBt and purchases

product A. Combining these two observations, we obtain the purchase probability for product A:

PurchProbSearch1A = Pr(0 + εiAt ≥ z1B)

+ Pr(0 + εiAt < z1B)Pr(0 + εiAt > −1 + εiBt | 0 + εiAt < z1B) = 0.91.

The first term relates to the case in which the consumer only searched product A, whereas the

second term denotes the probability of purchasing product A after having searched both products.

As before, we repeat this computation for all consumer-product pairs and report the results in

Panel B of Table 1. In this scenario with search costs, consumers purchase the product with the

higher intercepts with probability 91% and buy the product with the lower intercept only in 9% of

cases.

Comparing purchase probabilities under two scenarios reveals that search costs tend to con-

centrate purchase probabilities around products with higher intercepts. This effect becomes even

stronger with larger search costs, as is clear from Panel C of Table 1, where we report purchase

probabilities for the case in which search costs are equal to 1 instead of 0.5. Intuitively, higher

search costs make consumers less likely to search the products with lower intercepts, thus reducing

the purchase probabilities for these products.

As a consequence of the shift in purchase probabilities when search is costly, consumers’ choices

start to look more extreme. To understand this point, consider how consumers 1 and 2 change their

probability of buying product A as we increase search costs. In the perfect-information scenario,

the purchase probabilities of both consumers equal 0.76 and 0.24, but these probabilities become

0.91 and 0.09 when search costs equal 0.5, and further increase to 0.97 and 0.03 when search costs

increase to 1.0. Hence, higher search costs increase the dispersion of purchase probabilities of

product A across consumers. Because the problem is symmetric, the same happens to purchase

probabilities of product B.

This heterogeneity in purchase probabilities is driven by both preference heterogeneity and

search costs. Ignoring search costs forces us to fully attribute heterogeneity in choices to preferences,

5Because match values εij have identical distribution across products, the ranking of reservation utilities in this
model coincides with the ranking of product intercepts ξij .

6Reservation utilities do not have closed-form solutions for most distributions Fε(ε). Using a numerical approxi-
mation, we compute that z1B = −1.19. Therefore, the consumer only searches product B if the realized utility from
product A is below −1.19. Under the normality assumption, the probability of searching product B is then equal to
Φ(−1.19) = 0.12, where Φ denotes the standard normal CDF.
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thus generating an upward bias to the estimates of preference heterogeneity. To illustrate, we use

purchase probabilities from Table 1 to infer product intercepts of the two consumers assuming

perfect information. For example, when the purchase probability of consumer 1 for product B

equals 0.91, we infer the intercept ξ̂1B by solving Pr(0 + εiAt > ξ̂1B + εiBt) = 0.91.7 The intercept

of consumer 2, ξ̂2B, can be computed in a similar fashion. According to the results, the inferred

intercepts ξ̂1B and ξ̂2B are larger in absolute terms than the true product intercepts. For example,

when search costs are 0.5, we infer the intercepts to be 1.93 and -1.93 as opposed to the true

intercepts, 1 and -1. This bias is even more extreme when search costs equal 1, in which case the

inferred intercepts are 2.77 and -2.77. Overall, these results suggest that ignoring search costs leads

to an overestimation of preference heterogeneity.

3.2 General Case

The example in the previous section shows that ignoring search frictions may introduce bias in the

estimates of preference heterogeneity. In this section, we show that the direction of this bias depends

on the structure of consumers’ preferences. When products are mainly horizontally differentiated (as

they were in the example in the previous section) and consumers disagree on the pre-search rankings

of products, the failure to account for search costs leads to overestimation of heterogeneity. By

contrast, strong vertical differentiation may generate the opposite effect, leading to a downward bias

in heterogeneity estimates. To illustrate, we develop a more general example with many consumers

and products, and consider estimation of preference heterogeneity under different configurations of

preferences.

We start by analyzing how search costs change consumers’ choices in a general case with many

products. The effect of search costs on choices can be best illustrated with two extreme cases:

when search costs equal zero (ci = 0), and when they are very large (ci → ∞). With zero search

costs, purchase probabilities are simply given by the standard perfect-information formula similar

to equation (3). By contrast, increasing search costs to infinity induces consumers to search only

the product with the highest intercept. Searching other products in this case does not generate

sufficient benefits to justify paying a large search cost. In the intermediary cases (ci > 0), increasing

search costs increases the purchase share of the highest-intercept product and reduces the purchase

share of the lowest-intercept product. The effect on purchase shares of all other products is not

necessarily monotonic: the purchase probabilities of some products might first increase at low levels

of search costs and then decrease as search costs become larger.

Given this behavior of purchase probabilities, whether higher search costs induce choices for

a given product to be more heterogeneous across consumers is unclear. For instance, take the

case of vertical differentiation where all consumers agree on their preferred product but also do

not entirely dislike other products. In this case, all products gain positive market shares when

search costs are small; however, for sufficiently large search costs, all consumers buy the same

product despite having different preferences. If we ignored search frictions, we would conclude

7For this exercise, we treat the consumer–specific purchase probabilities as observable.
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that consumer preferences are homogeneous despite the fact that true preferences exhibit some

amount of heterogeneity. Thus, vertical product differentiation can lead to an underestimation of

heterogeneity when we ignore search frictions.

Consider now the case of horizontal differentiation where not all consumers agree on the ordering

of products, as in our earlier example. Increasing search costs concentrates purchase probabilities

of each consumer around her most preferred product, similar to the vertical case. However, dif-

ferent consumers have different preferred products, so the presence of search costs makes choices

of consumers more diverse. If we ignored search frictions, we would find substantial heterogeneity

in preferences even when true heterogeneity is minimal. Therefore, ignoring search costs in the

horizontal case can lead to an overestimation of preference heterogeneity.

To further explore the horizontal-differentiation case, consider the following simulation exercise

for a market with three products.8 We simulate a large number of consumers and draw a unique

set of product intercepts for each of them. Specifically, for two products, we draw independent

intercepts from the standard normal distribution, whereas the intercept of the third product is

normalized to zero. Because the means of intercepts for all three products are the same, the

differentiation of products is purely horizontal. For each consumer, we simulate search behavior for

a large number of search sessions and compute consumer-specific purchase probabilities. In the left

graph in Figure 1, we plot the distribution of resulting purchase probabilities across consumers for

one of the products.9 The solid line shows the distribution of purchase probabilities in the perfect-

information case. Increasing search costs from 0 to 0.2 shifts the probability mass toward the

extremes (dashed line). Specifically, the presence of search costs increases the mass of consumers

with low and high purchase probabilities and decreases the mass of consumers with intermediate

purchase probabilities. As we increase search costs, this pattern becomes more pronounced (dotted

line). Further increasing search costs eventually generates extreme purchase behavior: consumers

either buy the product with certainty (if it is their most preferred product) or never buy it. In this

case, the purchase probability distribution consists of two mass points at zero and 1.

Next, we infer product intercepts assuming perfect information. The right-hand graph in Figure

1 shows the estimated density of inferred intercepts for different levels of search costs for one of

the products. The solid line depicts the benchmark case with zero search costs; in this case, the

distribution of inferred intercepts coincides with the true distribution. As search costs increase,

the density of estimated intercepts shifts from the middle toward the extremes. Interestingly,

introducing search costs has the strongest impact on the values close to the mean and affects

inferred intercepts in such a way that the distribution becomes bi-modal. Thus, in this example of

horizontal differentiation, ignoring search costs, leads to overestimation of preference heterogeneity.

In summary, when products are horizontally differentiated, incorrectly assuming perfect infor-

mation generates an upward bias in heterogeneity estimates. When products are vertically differ-

8Simulations with more than three products generate similar qualitative results. To simplify exposition, in this
section, we describe the simulation exercise with three products.

9Because we chose identical distributions of intercepts, purchase probabilities are distributed identically for all
three products.
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Figure 1: Distribution of Purchase Probabilities and Estimated Product Intercepts for
Different Values of Search Costs.

entiated, however, ignoring search costs may lead to the opposite effect by generating a downward

bias. In Appendix A, we provide more details for the case of vertically differentiated products.

We note the horizontal-differentiation case is more common than one might think. Consider,

for example, an extended utility function that includes price. The preference ordering of products

then depends on the utility consumers derive from each product net of the disutility from paying

the price. In the common situation where higher quality products are sold at higher prices, the

degree of horizontal relative to vertical differentiation net of price will be larger than one would

infer from the distribution of product intercepts alone. Therefore, even markets with a clear utility

ordering of products may exhibit predominantly horizontal differentiation once we account for price

differences.

3.3 Other Sources of Choice Persistence

In the examples above, we assumed error draws εijt are uncorrelated over time, that is, across

search sessions. Although this assumption is common in many perfect-information demand models,

it may feel less tenable here because the information consumers are looking for during search may

be persistent over time. If so, then observing match values in the current period may also inform

consumers about the distribution of future match values. A consumer who receives a high-match-

value draw for a particular product will be more likely to search and purchase that product in

the following sessions, whereas receiving a low-match-value draw will dissuade consumers from

searching this product in the future. As a result, correlation in match values generates additional

persistence: consumers repeatedly search and purchase the same set of products over time, relying

on the information they collected in previous sessions.

In Appendix B, we show that allowing for correlated error terms in our model does not eliminate

the amplification effect of search costs discussed above. Intuitively, in this extended model, persis-

tence is driven both by time-invariant components (preferences and search costs) and by correlation
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of error draws across search sessions. With sufficient data, we can use consumer-specific purchase

shares to identify the time-invariant component, whereas any excess persistence in purchases be-

tween consecutive time periods should be attributed to correlated match values. We argued in the

examples above that the time-invariant component should not be attributed entirely to preferences.

The same logic still holds in the model with correlated errors: by fully attributing the time-invariant

component to preferences, we will overestimate heterogeneity of consumers’ preferences.

The same argument applies to other sources of state dependence including switching costs. With

sufficient data, we can isolate the role of switching costs, a specific type of dependence between

time periods, from the time-invariant component. The time-invariant component in turn should be

explained by some combination of preference heterogeneity and search costs.

4 Empirical Model and Identification

To further illustrate that ignoring search costs leads to biased heterogeneity estimates, we now

consider an empirical example. To this end, we first extend the sequential search model from

section 2, making it suitable to estimation with panel data. The extended model includes an

additional taste shock revealed prior to search and adds price to the utility function. We then

derive restrictions that observed choices impose on model parameters and realizations of taste

shocks and provide an informal discussion of identification.

4.1 Panel Data Framework

As before, suppose each consumer i conducts Ti search sessions, which we index by t = 1, . . . , Ti. In

each section, she chooses exactly one product out of J available alternatives. The utility consumer

i derives from purchasing a product j in search session t equals

uijt = δijt + εijt = (ξij − αipijt + µijt) + εijt. (4)

In this expression, ξij is a time-invariant intercept capturing consumer i’s preferences for product

j; pijt denotes the price of product j in session t of consumer i;10 αi denotes the price coefficient;

and µijt and εijt are idiosyncratic taste shocks, both distributed normally and iid with zero mean

and variance σ2ε and σ2µ. Prior to searching, a consumer knows the realizations of δijt and the

distribution of εijt but has to search in order to learn the realization of εijt.
11 As before, the

consumer pays a fixed cost ci every time she searches a new product. The model does not include

an outside option.

The key difference relative to the framework in section 2 is the pre-search taste shock µijt.

Absent this taste shock, an individual consumer in this model would always search products in the

10Consumers who purchase on the same day face identical prices. Price is indexed with an i subscript because t
denotes a search session rather than calendar time.

11This assumption implies consumers observe prices before searching. The assumption is natural in our application,
because users of the online store start the session by browsing a list of products that shows product names, photos,
and prices. Hence, in our application, prices are known before the consumer starts the search process.
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same order in all search sessions. Such a model would be rejected by the data, as we do observe

individual consumers changing the order of search. The introduction of the shock µijt resolves

this issue by adding a source of randomness in pre-search utilities. One can interpret the taste

shock µijt as an unobserved information shock that changes the consumer’s propensity to search

different products. Such a shock may include recommendations from friends or other product

information acquired before the start of the search session. By contrast, the post-search taste

shock εijt represents any information retrieved from the product page itself, such as information

from customer reviews and detailed product descriptions.

To simplify estimation, we assume shocks µijt and εijt are independent across search sessions.

This assumption effectively precludes consumers from learning over time and implies that new

information is available in each search session. One can think of our model as capturing the

behavior of frequent website users, who have already gone through a phase of initial exploration

and learning during early interactions with the platform. Our model captures the “steady-state”

behavior of these users after they have resolved the uncertainty about time-invariant characteristics

of products. Hence, they only face uncertainty with regards to product characteristics that are

changing over time, which is captured by the post-search shocks εijt. We also note that the key

pattern we want to explore, namely, the amplification of preference heterogeneity due to search

frictions, is unaffected by possible correlation in match values as we demonstrated in section 3.3.

Finally, the assumption of uncorrelated errors is partly driven by data constraints: the relatively

short panel dimension of our data precludes us from estimating the correlation in error terms.

4.2 Restrictions Imposed by Observed Choices

The search model above imposes a set of restrictions on the model’s parameters and utility shocks.

These restrictions are generally associated with three different parts of the observed choices: order of

search, decisions to continue or stop searching, and purchase decisions. Below, we derive restrictions

of these three types. To simplify exposition, our derivations in this section suppress indices i and t.

Order of search

In the optimal search rule, the consumer searches products in order of decreasing reservation utilities

(see section 2). Because the shocks εj are distributed identically across products, both reservation

utilities zj and pre-search utilities δj are ordered in the same way. Therefore, the probability of

observing a particular search order is identical to the probability that the ranking of pre-search

utilities δj is consistent with that order.

To formally state this result, we first introduce additional notation. Let = = {1, . . . , J} denote

the set of available products, and let S ⊆ = be the set of searched products. Next, let M be the

number of products in this set, so |S| = M ; and assume the function π : {1, . . . ,M} → = describes

the observed order of search, so that π1 represents the product searched first, π2 is the product
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searched second, and so on.12

When the consumer searches in order π, the ranking of pre-search utilities must be consistent

with this order:

δπ1 ≥ δπ2 ≥ · · · ≥ δπM ≥ δk for ∀k /∈ S. (5)

Because we only observe search order for products that were actually searched, the data do not

impose any restrictions on the ranking of utilities δk for unsearched products. We only know

that the pre-search utility of the product searched last, δπM , exceeds the pre-search utilities of all

unsearched products. A more compact way to write inequalities in (5) is

δπm ≥ max
l∈Sm

δl for m = 1, . . . ,M,

where Sm = =\ {πk : k ≤ m} represents the set of products left unsearched after searching options

π1, . . . , πm. These inequalities specify the restrictions imposed on parameters and realizations of

taste shocks by the observed order of search π.

Continuation and stopping decisions

The consumer continues searching if and only if the maximum realized utility among searched

products is lower than the maximum reservation utility among unsearched options. If the consumer

decides to search product πm , it must be that the maximum realized utility among searched

products π1, . . . , πm−1 is lower than the reservation utility of product πm, namely, zπm . This

relationship must hold for all searched products except the first one, as our model does not include

an outside option, and the consumer always searches at least one product:

max{uπ1 , . . . , uπm−1} ≤ zπm for m = 2, . . . ,M. (6)

If the consumer decides to stop after searching product M , the maximum realized utility of searched

products must exceed the reservation utilities of all unsearched products13:

max{uπ1 , . . . , uπM } ≥ max
k/∈S

zk (7)

The inequalities in (6) and (7) capture the restrictions the observed continuation and stopping

decisions impose on the parameters and realizations of taste shocks.

Purchase decision

Upon finishing the search, the consumer purchases the product with the highest realized utility

among the searched options. Therefore, if the consumer searches products S and buys a certain

12Throughout the paper, we use πk as a shorthand notation for π(k).
13The consumer will also stop searching if she has exhausted all search opportunities. In this case, the stopping

inequality is irrelevant.
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product y ∈ S, then realized utilities must satisfy:

uy ≥ max
x∈S

ux. (8)

4.3 Identification

This section provides an informal discussion of identification and shows how one can use panel data

to jointly identify preference parameters and search costs. We consider nonparametric identification

of heterogeneity by assuming each consumer has a unique set of preference parameters and showing

how panel data can identify these individual-level parameters. Our argument effectively assumes

the data include an infinitely large number of search sessions per consumer, allowing us to observe

the joint distribution of search and purchase decisions for each consumer.

In a panel dataset, we can clearly distinguish two types of moments in the data: those that

identify search costs and those that identify preference parameters. In our model, the order of

search depends only on preference parameters, suggesting we can identify preferences of a given

consumer by analyzing her typical order of search. Once preferences are identified, we can use data

on continuation and stopping decisions to recover search costs. Below, we discuss this identification

argument in more detail. We assume for simplicity that price does not enter the utility function,

and focus on the identification of product intercepts and search costs.

Preference Parameters

In our model, the consumer first searches the product with the highest pre-search utility. Hence,

the probability that product k is searched first equals

Pr(π1 = k) = Pr(δk ≥ δj∀j) = Pr(ξk + µk ≥ ξj + µj ∀j) for ∀k. (9)

Under the assumption of normally distributed taste shocks, these expressions are standard probit

probabilities.14 We can invert the system of equations in (9) to express the product intercepts

ξk as a function of search probabilities Pr(π1 = k), as in Hotz and Miller (1993). Therefore, the

knowledge of search probabilities Pr(π1 = k) is sufficient to identify consumer-specific preference

parameters.

The identities of other searched products provide additional information about preference pa-

rameters. Based on the inequalities in (5), the consumer chooses to search products in order π with

probability

Pr(π) = Pr(δπ1 ≥ δπ2 ≥ · · · ≥ δπM ≥ δk for ∀k /∈ S)

= Pr(ξπ1 + µπ1 ≥ ξπ2 + µπ2 ≥ · · · ≥ ξπM + µπM ≥ ξk + µk for ∀k /∈ S). (10)

14The data on first searches in our setting provide information similar to panel data on purchases in a perfect-
information model.
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This expression suggests that products that, on average, are searched early during the search process

should have relatively high product intercepts. Similarly, the intercepts should be low for products

that are searched at the end of the search session or not searched at all. Thus, using information

about the complete order of search π, not just about products that are searched first, helps to

identify preference parameters.

Importantly, the order of search is unaffected by search costs and only depends on the part of

utility known prior to search. Hence, the distribution of search orders in (10) identifies preferences

separately from search costs.

So far, we have ignored the price coefficient and discussed identification of product intercepts;

however, identification of the price coefficient is straightforward. Namely, the extent to which prod-

ucts are searched earlier or later as a function of their price identifies price sensitivity α as long as

price variation is exogenous with respect to taste shocks. We maintain this exogeneity assumption

in our empirical application. Because the model includes time-invariant product intercepts, iden-

tification of the price coefficient comes from price changes for the same product over time. Hence,

our main identifying assumption is that the timing of price changes is uncorrelated with temporary

preference shocks.

Search Costs

After recovering preferences, we can use the average duration of search sessions to identify search

costs. In particular, the expected number of searched products conditional on preferences ξ,

E (M |ξ), decreases in search costs:

∂E (M |ξ)
∂c

< 0.

To gain intuition, note that reservation utilities of products are decreasing in search costs. With

higher reservation utilities, the consumer is less likely to continue searching in each step of the

search process, so the expected search duration decreases. This monotonic relationship suggests

that we can use the expected duration of the search session to identify search costs.

This identification argument relies on the knowledge of product intercepts ξ. If product inter-

cepts are unknown, low duration of search can be rationalized both by high search costs and by

large dispersion of product intercepts across products. Therefore, conditioning on ξ is crucial for

identifying search costs from the expected length of search sessions.

The Role of Choice Data

So far, we have shown that information on the order of search and on stopping decisions is sufficient

to recover search costs, product intercepts, and the price coefficient. Hence, the choice data are not

required for identification of model parameters. Below, we briefly outline an informal argument

as to why consumers’ choices provide little information, after conditioning on the observed search

sequence. A formal treatment of this argument is beyond the scope of this paper.
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Consider a market with four products – A, B, C, and D – and suppose a consumer searches in

order A, B, and C but does not search D. We can analyze what happens to the purchase probabilities

if search costs increase, holding the search sequence constant. Because search costs are now higher,

the consumer only finds it optimal to search up to product C if the error realizations εA and εB

are lower. At the same time, the consumer is more tempted to stop searching at C, so we infer

that the error realization εC for product C is also lower. All in all, the error realizations and hence

utility realizations of all three products in the search sequence are now lower, making it unclear

how increasing search costs change purchase probabilities.

Similarly, consider increasing the intercept ξA of product A. On the one hand, the purchase

probability of product A should increase, because this product has higher expected utility. On the

other hand, the consumer finds it optimal to search up to product C only when the realization

of εA is relatively low, implying that the purchase probability of product A should decrease. The

net impact of increasing ξA on the conditional purchase probability A is therefore ambiguous and

depends on the specific distributional assumptions of the model. In fact, constructing an example

in which the purchase probability of product A is non-monotonic in the product intercept ξA is

possible.

Hence, once we condition on the observed search sequence, no clear mapping exists from the

purchase probabilities to preference parameters or search costs. This observation suggests that

choice data provide little additional information to help identify parameters of the model.

5 Estimation

5.1 Parametrization

The identification argument in the previous section does not impose any restrictions on the dis-

tribution of preferences and search costs across consumers. However, in a typical application, the

panel dimension of the data is unlikely to be long enough to nonparametrically identify individual

preferences, and our application is not an exception. Therefore, we help identification by making

several distributional assumptions.15

First, we assume that product intercepts ξ follow a multivariate normal distribution:

ξ ∼ N(ξ̄, Σξ), (11)

where ξ̄ is a vector of means and Σξ is a diagonal J × J matrix. Second, price sensitivity α is

assumed to be heterogeneous across consumers, capturing differences in the marginal utility of

income. Specifically, α follows a log-normal distribution to ensure the price coefficient is non-

negative for all consumers:

15In Appendix D, we assess (parametric) identification in our particular setting. Specifically, we estimate our model
based on a simulated dataset that mimics our actual data in terms of the number of consumers and number of search
sessions per consumer. We also employ the same distributional assumptions regarding various model parameters that
are outlined in this section.
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logα ∼ N(ᾱ, σ2α), (12)

where ᾱ and σ2α denote the mean and the variance . Similarly, search costs c follow a log-normal

distribution with mean c̄ and variance σ2c :

log c ∼ N(c̄, σ2c ). (13)

We do not model observed heterogeneity for several reasons. In our empirical application, we do

not have access to any demographic variables that might be used to model observed heterogeneity

in preferences. This situation is relatively common in online markets where firms tend to have rich

information on consumers’ purchase histories but relatively little information on their demographic

profiles. Furthermore, many studies in the literature on preference heterogeneity show that demo-

graphic variables explain only a small share of preference heterogeneity relative to the unobserved

component (Rossi and Allenby (1993), Rossi, McCulloch, and Allenby (1996), Allenby and Rossi

(1999)). Hence, modeling observed heterogeneity may not be crucial for explaining the observed

behavior of consumers.

Finally, we fix the variances of taste shocks µ and ε by assuming σ2µ = 0.1 and σ2ε = 1. Although

the first normalization is necessary because it fixes the scale of utility, the second one is not required.

We could in principle estimate σ2ε from the data. However, increasing the variance of ε leads to an

increase in the benefits from search, which makes consumers search more. Reducing search costs c

affects consumers’ behavior in a similar way because it also leads to more search. Thus, the variance

of the post-search shock can be identified separately from search costs only through functional form.

To solve this issue, in our estimation, we fix σ2ε . We also re-estimate the model based on different

normalization of σ2ε and find this approach has little impact on our key counterfactuals.16

5.2 Likelihood Function

To derive the likelihood function, we first summarize the restrictions that observed choices impose

on model parameters and realizations of taste shocks. Let vector θ = (ξ, α, c) denote the consumer’s

type that describes her product intercepts, price sensitivity, and search costs. Additionally, let p

denote the J × 1 vector of product prices. If a consumer with type θ searches products S in order

π and purchases product y ∈ S, the following inequalities must hold:

wOm(θ, µ, ε, p) = δπm −max
l∈Sm

δl ≥ 0 for m = 1, . . . ,M (14)

wSm(θ, µ, ε, p) = zm −max{uπ1 , . . . , uπm−1} ≥ 0 for m = 2, . . . ,M (15)

16When changing the normalization of the variance by factor k, the estimated search cost changes (as expected) by
roughly a factor 1/k. Because search costs and the post-search-shock variance are not fully co-linear, other parameter
estimates also change, but only very slightly.
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wSM+1(θ, µ, ε, p) = max{uπ1 , . . . , uπM } −max
k/∈S

zk ≥ 0 (16)

wP (θ, µ, ε, p) = uy −max
x∈S

ux ≥ 0, (17)

where (14) corresponds to the order of search, (15) and (16) describe inequalities for continua-

tion and stopping decisions, and (17) contains purchase inequalities. To simplify notation, define

function W (θ, µ, ε, p) as

W (θ, µ, ε, p) = min{wO1 , . . . , wOM , wS2 , . . . , wSM+1, w
P }. (18)

Note that W (θ, µ, ε, p) ≥ 0 if and only if all the inequalities in (14)-(17) hold.

Adding subscripts i for consumers and t for search sessions, we now formulate the likelihood of

the model. Suppose a researcher observes data on search and purchase decisions as well as prices

of products at the time of each decision; we let Dit denote these data for consumer i and session

t, and we let D denote the data for all consumers and sessions. Suppose the data D include N

consumers, and each consumer i conducts Ti search sessions. The likelihood of observing search

and purchase decisions of consumer i in period t given consumer’s type θi and prices pit is

Lit(Dit|θi, pit) = Pr (Wit(θi, µit, εit, pit) ≥ 0|θi, pit) , (19)

where the uncertainty on the right-hand side comes from taste shocks µit and εit, both of which are

unknown to an econometrician. The vector of prices is indexed by i because consumers conduct

their search sessions at different times.

Combining these individual likelihoods for different search sessions, we obtain the full likelihood of

the data D:

L(D|Ω, p) =
N∏
i=1

� (
Ti∏
t=1

Lit(Dit|θi, pit)

)
· dF (θi|Ω), (20)

where Ω = (ξ̄, ᾱ, c̄, diag(Σξ), σα, σc) denotes the vector of parameters describing the distribution of

types θi, and p summarizes price vectors different consumers faced in different search sessions. Be-

cause types θi are unobserved, the likelihood function in (20) contains an expectation of consumer-

specific likelihoods with respect to the joint distribution of θi. This joint distribution, F (θi|Ω), is

fully defined by the distributional assumptions in (11)-(13).

5.3 Importance Sampling

A straightforward approach to estimation would be to maximize the simulated version of the like-

lihood (20) with respect to parameters Ω. In our application, this approach is impractical because

we need to recompute the simulated likelihood for each new guess of parameters; this repeated

computation tends to be computationally burdensome because we have to recompute reservation
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utilities and simulate consumers’ decisions for each draw of types and taste shocks. To solve this

issue, we estimate the model using the importance-sampling method proposed in Ackerberg (2009).

First, we rewrite the likelihood function, multiplying and dividing the consumer and period-specific

likelihoods by some function g(θi):

L(D|Ω, p) =

N∏
i=1

� (
Ti∏
t=1

Lit(Dit|θi, pit) ·
f(θi|Ω)

g(θi)

)
g(θi)dθ.i

Importantly, the function g(θi), the so-called proposal density, does not depend on the values of

unknown parameters Ω. This observation suggests that instead of drawing consumers’ types from

f(θi|Ω), we can take NM draws of types from the proposal density g(θi) and approximate the

likelihood function with a simulated counterpart:

L̃(D|Ω, p) =
N∏
i=1

1

NM

NM∑
m=1

(
Ti∏
t=1

L̃it(Dit|θmi , pit) ·
f(θmi |Ω)

g(θmi )

)
, (21)

where θmi denotes the m-th draw of types for consumer i, and L̃it(Dit|θmi , pit) is the simulated

consumer and session-specific contribution to the likelihood:

L̃it(Dit|θmi , pit) =
1

NS

NS∑
s=1

1 {Wit(θ
m
i , µ

s
it, ε

s
it, pit) ≥ 0} . (22)

In this expression, µsit and εsit are draws of taste shocks. We estimate parameters Ω by maximiz-

ing the simulated expression L̃(D|Ω, p) in (21). Appendix C describes details of the estimation

procedure.

The importance-sampling approach has several important advantages over a simple frequency

estimator. First, importance sampling significantly reduces the computational burden of estimation.

The only part of the likelihood in (21) that depends on parameters Ω is the weights f(θmi |Ω)/g(θmi ),

so recomputing likelihood contributions L̃it(Dit|θmi , pit) for each new guess of parameters Ω is not

necessary. Instead, we can precompute these likelihood contributions for draws of types θmi and

taste shocks µit and εit, and use these precomputed values during maximization. Precomputing

likelihood contributions significantly reduces the computational burden and allows us to use a

relatively large number of draws per consumer. In our application, we set NS = NM = 100, which

results in at least 10,000 simulation draws per consumer.

The second advantage of the importance sampling method is that the resulting objective func-

tion is smooth in parameters because the weights f(θmi |Ω)/g(θmi ) in (21) are continuous and differ-

entiable in Ω. This smoothness allows us to use derivative-based optimization methods to estimate

the model. Note that a frequency estimator would generate a discontinuous function, making

gradient-based methods impractical.17

17An alternative approach to smoothing the objective function is to use a kernel-smoothed frequency estimator
as in Honka (2014) and Honka and Chintagunta (2015); however, in our application, we found such an approach
to work significantly slower than importance sampling as it requires recomputing likelihoods for each new guess of
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One practical consideration is the choice of proposal density g(θi). Ideally, we would choose the

proposal density that coincides with the true density of types θi, f(θi|Ω0). Because we do not know

the true values of parameters Ω0, in practice, we choose g(θi) = f(θi|Ω̃0), where Ω̃0 are initial values

of parameters for our estimation. To obtain reasonable initial values, we choose Ω̃0 that roughly

matches four types of moments to their data counterparts: purchase probabilities Pr(yit = k),

probabilities of first searches Pr(π1,it = k), persistence in purchases Pr(yit = k|yi,t−1 = k), and

expected duration of search sessions E(Mit).

6 Data and Results

6.1 Data and Descriptive Statistics

We use data from the Chinese online store of a large international chain of cosmetic stores. The

layout of the store’s website is similar to other online retailers. Figure 2 shows the typical layout of

an online store that looks similar to the one we analyze. Consumers can enter search terms or use

category tags or filters to narrow down the set of relevant products. Consumers are then presented

with a list of products that contains basic information including product names, prices, photos, and

short descriptions. They can then click on each product to visit the product page, which contains

a more detailed product description as well as customer reviews.

The sample covers the full year of 2014 and includes detailed information on browsing and

purchase activity of all website users during this year. We observe the date and time of each

page visit, types of visited pages (main page, product page, shopping cart, etc), and identities

of products described on each visited page. In addition, we have information on purchases made

through the website. Unique consumer identifiers allow us to follow consumers over time and match

their browsing activity to related purchases.18

In our analysis, we focus on the category of moisturizers. Moisturizers are cosmetic products

designed to prevent and treat dry skin, protect sensitive skin, and improve skin tone and texture.

The category is suitable for our analysis because consumers purchase moisturizers on a regular basis,

so we can observe some of them making several purchases in this category. Observing repeated

search sessions and purchases is crucial for our estimation strategy because the panel dimension of

the data helps identify the time-invariant component of preferences. Another advantage of choosing

moisturizers is a relatively small number of products in this category. To simplify estimation, we

focus on the 10 most popular moisturizers, which account for more than 60% of category sales.

We consider a consumer to be searching a given product if she visits the corresponding product

page. A search session is defined retrospectively from the purchase in which it ended. Specifically,

the search session includes all searches that occurred within one week before a given purchase.19

parameters.
18Our data provider is tracking the browsing and purchase activity of consumers, using browser cookies. Each time

a consumer logs in, the website ties browsing history from a given cookie to the account of this consumer. In our
data, we observe anonymized identifiers of consumers that correspond to unique accounts.

19Over 80% of all searches occur within one week before some purchase. When two purchases of the same consumer
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Figure 2: Example of Webpage Layout. The two figures show the layout of a page with search
results (top figure) and a product page (bottom figure) from an online store similar to the one in
our sample.

are less than seven days apart, we attribute only searches that occurred between two purchases to the later purchase.
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Panel A: Search Behavior
Average Number of Searches per Session 1.37
Number of Searches 1 72.82
(Percentage) 2 19.98

3 5.44
≥ 4 1.77

Panel B: Persistence
Purchase in t = Purchase in t-1 0.67
First search in t = First search in t-1 0.62

Panel C: Product-Level
Product Brand Avg. Purch. Search Repeat Repeat Repeat

Price Share Share Purch. Search Search
(Yuan) Prob. Prob. Prob.

(>1 Prod.
Searched)

1 Caudalie 249.9 0.220 0.271 0.73 0.73 0.55
2 Clinique 444.5 0.213 0.275 0.56 0.63 0.52
3 Laneige 215.0 0.093 0.108 0.75 0.80 0.64
4 Clinique 340.0 0.090 0.183 0.57 0.57 0.45
5 SK-II 650.0 0.079 0.106 0.58 0.63 0.38
6 Caudalie 284.0 0.072 0.106 0.73 0.63 0.52
7 Loccitane 260.0 0.070 0.083 0.68 0.69 0.27
8 Caudalie 226.5 0.059 0.089 0.79 0.67 0.36
9 For Beloved One 560.0 0.056 0.066 0.52 0.42 0.24
10 Clinique 340.0 0.048 0.080 0.70 0.47 0.33

Table 2: Descriptive Statistics.

Because our empirical model does not include an outside option, we do not consider searches that

did not end in a purchase. The final sample includes 4,010 search sessions conducted by 3,577

consumers. Of all consumers, 358 (10%) made at least two purchases, and some consumers bought

as many as eight moisturizers during the sample period.

Table 2 provides descriptive statistics on search behavior and presents some evidence of prefer-

ence heterogeneity. Turning to search behavior (see Panel A of Table 2), we note that consumers

search little, and the average search session contains only 1.37 searched products. Out of all search

sessions, 72.8% finish after one search, 20% finish after two searches, and the remaining 7.2% end

after three or more searches. This observation suggests search costs are high or benefits from

search are limited (i.e., the variance of post-search shocks εijt is small). Furthermore, the number

of searches per session varies significantly across consumers, indicating heterogeneity in search costs

and search benefits.
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Next, we investigate persistence in search and purchase behavior across different search sessions

of the same consumer (Panel B of Table 2). Consumers tend to make persistent decisions: 67% of

search sessions end in the same purchase as the previous search session. Moreover, search behavior

exhibits a similar persistence, as 62% of the first searches are products that have also been searched

first during the previous session. The persistence in both purchase and search behavior indicates

substantial preference heterogeneity across consumers.

Finally, Panel C of Table 2 presents descriptive statistics at the product level. Prices vary

substantially across products and range from 215 to 650 yuan (US$34.4 and US$104). Market shares

also differ significantly, indicating some degree of vertical differentiation. We also report measures

of repeat purchase and search behavior at the product level in the last three columns. Interestingly,

even products that garner only a small market share tend to be purchased by consumers who have

already purchased the same product in the past. For instance, the repeat purchase probability for

the most popular product (22% market share) and the least popular product (4.8% market share)

are almost identical: 0.73 versus 0.70.

6.2 Estimation Results

Table 3 presents estimation results from the structural model of search. The estimated parameters

include means and standard deviations of product intercepts ξ for nine products (the intercept for

the first product is normalized to zero) as well as parameters that determine the distribution of

price coefficients α and search costs c. To ease interpretation, we report the mean and standard

deviation of the price coefficient and search costs rather than the location and variance parameter of

the corresponding log-normal distribution. Note we cannot easily monetize the search-cost estimate,

because search costs are identified only in relation to the fixed magnitude of the normalized variance

σ2ε (see the discussion in section 5.1). We also present estimation results for a demand model with

perfect information in the last three columns of Table 3. The perfect-information model does not

include search costs but is otherwise identical to the search model. To estimate this model, we use

only purchase data and ignore data on search.

Our discussion in section 3 suggests that ignoring search costs may lead to overestimation of

preference heterogeneity. To establish whether this bias arises in our setting, we first need to

make the estimated parameters from both models comparable. Due to different normalizations,

the natural way to compare estimates is to monetize parameter estimates.20 We provide the mon-

etized values of product intercepts (net of price) and standard deviations for the two models in

columns (3) and (6) of Table 3.21 According to the results, the variances of product intercepts are

almost uniformly overestimated when we ignore search costs: on average, standard deviations are

20Because the price coefficient is heterogeneous as well, we take draws from the distribution of estimated parameters
and compute monetized preference parameters for each set of draws. We report the average value of monetized
preference parameters across simulation draws.

21As noted above, we do not monetize the search-cost parameter due to the normalization of the post-search shock
variance.
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Search Model Model w/o Search
Coefficients Standard Monetized Coefficients Standard Monetized

Errors Parameters Errors Parameters
(Units:
Yuan)

(Units:
Yuan)

ξ̄2 -0.270 0.040 -49.2 -1.078 0.078 -89.6
ξ̄3 -3.281 0.188 -598.9 -10.190 0.358 -849.4
ξ̄4 -0.686 0.043 -125.0 -1.682 0.064 -140.1
ξ̄5 -0.898 0.055 -163.9 -2.456 0.098 -204.7
ξ̄6 -0.849 0.048 -155.1 -3.276 0.129 -272.7
ξ̄7 -2.386 0.131 -435.4 -6.194 0.220 -516.7
ξ̄8 -3.321 0.138 -605.9 -7.208 0.249 -601.0
ξ̄9 -1.307 0.052 -238.3 -3.358 0.097 -280.0
ξ̄10 -1.684 0.078 -307.5 -4.667 0.168 -388.6

σξ2 0.800 0.051 146.9 2.309 0.099 197.6
σξ3 2.963 0.142 546.7 9.019 0.284 789.0
σξ4 0.841 0.040 154.9 1.604 0.059 139.8
σξ5 0.904 0.041 166.6 2.386 0.076 208.1
σξ6 0.807 0.028 148.6 3.088 0.090 269.3
σξ7 1.931 0.088 356.8 5.086 0.149 446.9
σξ8 2.383 0.096 441.1 5.243 0.149 465.0
σξ9 1.062 0.045 196.2 2.811 0.067 246.8
σξ10 1.204 0.072 222.8 3.434 0.109 303.9

Mean(α) 0.0055 0.0005 - 0.0125 0.0005 -
StdDev(α) 0.0005 0.0002 - 0.0027 0.0003 -
Mean(c) 0.411 0.067 - - - -
StdDev(c) 0.042 0.015 - - - -

Table 3: Estimation Results. The unit of observation is a search session. The sample contains
3,577 consumers and 4,010 search sessions. Monetized intercepts are reported net of price, i.e.,
ξ̄Monet
j = (ξ̄j/α)− pj .

overestimated by 29.8%. 22

Model fit

We examine model fit by comparing several key predictions with their empirical counterparts. For

this purpose, we split the sample of 3,577 consumers into a training and a holdout sample. The

training sample includes 1,800 randomly selected consumers, whereas the remaining consumers

constitute the holdout sample. We find that parameter estimates for the training sample are

similar to those based on the full sample. Table 4 reports the simulated predictions and their

empirical counterparts for the hold-out sample.

22Out of nine variance terms, only the variance for product 4 is slightly larger in the search model.
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I. Purchase probabilities II. Search probabilities
(based on first searches)

Product Data Simulated Product Data Simulated

1 0.213 0.226 1 0.206 0.214
2 0.214 0.207 2 0.211 0.208
3 0.094 0.091 3 0.087 0.097
4 0.100 0.111 4 0.090 0.101
5 0.077 0.073 5 0.092 0.084
6 0.075 0.068 6 0.076 0.058
7 0.068 0.069 7 0.072 0.073
8 0.059 0.054 8 0.069 0.060
9 0.058 0.053 9 0.053 0.052
10 0.042 0.047 10 0.043 0.055

III. Persistence Prob. VI. Number of searches

Data Simulated Data Simulated

Purchase 0.643 0.553 Average 1.448 1.414
First Searches 0.692 0.785

Table 4: Out-of-sample Fit of the Search Model. We estimate the model on a training sample,
which includes 1,800 randomly selected consumers. The holdout sample consists of the remaining
1,777 consumers.

We first evaluate the fit in terms of market shares for both first searches and purchase behavior

in panels I and II and find that the model predictions fit the holdout data reasonably well. Sim-

ilarly, the average number of searches predicted by the model is similar to the actual search-spell

length in the holdout sample. The model does slightly worse in terms of fitting persistence in

searches and purchases. Persistence in purchases is underestimated, whereas persistence in search

is overestimated. We note the model contains no parameter that specifically caters to matching

persistence, such as a switching cost. Hence, the degree of persistence predicted by the model is

entirely driven by preference heterogeneity and search costs.

7 Optimal Pricing

7.1 Price Elasticities and Markups

The bias in heterogeneity estimates may affect our inference about price elasticities and market

power of firms. Because we overestimate the degree to which preferences are different across con-

sumers, we mistakenly conclude that most consumers have strong preferences for certain products

and therefore respond little to price changes.23 As a result, we underestimate demand elasticities

and arrive at the wrong conclusion that competition among firms is mild.

This point is illustrated in Table 5, where we report price elasticities from the search and perfect-

23Several authors have emphasized that higher dispersion of consumer preferences often leads to less elastic demand
(Anderson and Renault, 1999; Zhou, 2017).
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Own-price Elasticities

Product Search No Search

1 -2.317 -1.935
2 -2.933 -2.504
3 -0.675 -0.506
4 -2.732 -3.001
5 -4.761 -4.175
6 -2.621 -1.723
7 -1.292 -1.112
8 -0.985 -0.997
9 -4.125 -3.517
10 -2.640 -2.081

Table 5: Estimated Own-price Elasticities.

information models. Consistent with the logic above, the perfect-information model underestimates

own-price elasticities of all 10 products. This bias in elasticities, in turn, affects our inference about

markups of firms: under the assumption of Bertrand-Nash pricing, our estimation results from

the perfect-information model imply an average markup of 226.6 yuan, whereas the search model

predicts an average markup of only 181.8 yuan. Therefore, by ignoring search, we overestimate

markups of firms approximately by 25%. Overall, our results suggest that, to correctly understand

the competitive environment, one needs to be aware of search frictions and the way these frictions

affect pricing strategies. If a researcher incorrectly infers from high choice persistence that products

are highly differentiated, he will tend to underestimate how strongly firms compete with each other.

From a managerial perspective, these results also imply that firms should set lower prices under

the search model than under the perfect-information model.

7.2 Personalized Prices

Because targeted marketing generates higher profits when consumers have substantially different

preferences, the optimal way to target consumers critically depends on the estimates of preference

heterogeneity. Overestimation of preference heterogeneity when ignoring search therefore leads to

suboptimal targeting. To illustrate this point, we consider the example of personalized pricing in

which the firm charges different prices to different consumers based on their histories of searches

and purchases.

We first develop a general framework to analyze personalized pricing under different models of

consumer behavior and for different consumer histories. To this end, we start by deriving the profit

function of the firm for a given consumer i (the expressions below omit index i to avoid clutter).

Suppose the firm observes a history of decisions taken by a given consumer. The history consists

of all products searched in previous sessions, the order in which these products were searched,

and purchase decisions. Let H = {yt, πt}Tt=1 denote this history, where T is the number of search

sessions the consumer conducted in the past; and let pH = {p1t, . . . , pJt}Tt=1 denote prices the
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consumer faced in these previous search sessions. The firm infers consumer type θ from history H

and pH . Assuming the prior distribution of the firm coincides with the true distribution of types

f(θ|Ω0), the posterior distribution of types θ given history H follows Bayes’ rule:

f(θ|H, pH , Ω0) =
L(H|pH , θ)f(θ|Ω0)�
L(H|pH , θ)dF (θ|Ω0)

, (23)

where L(H|pH , θ) is the likelihood of observing history H given historical prices pH and type θ,

and Ω0 is a vector of the true values of structural parameters. Given this posterior distribution of

types, f(θ|H, pH ,Ω0), the firm sets the price pj that maximizes its expected profits:

Π(pj , H) =
∑
k∈F

�
(pk −mck)Pr(y = k|θ)f(θ|H, pH , Ω)g(Ω)dθdΩ. (24)

Here, pk is the price of product k, mck denotes marginal costs, F describes the set of all prod-

ucts sold by the firm, and Pr(y = k|θ) is the purchase probability conditional on the consumer’s

type. The firm faces two sources of uncertainty: about type θ, which is captured by the poste-

rior density f(θ|H, pH , Ω); and about preference parameters Ω, which is reflected in the density

g(Ω). We approximate posterior beliefs about type θ by taking draws of types from the distribu-

tion f(θ|H, pH , Ω), and g(Ω) is approximated using the asymptotic distribution of the maximum

likelihood estimates Ω̂ (see Appendix E for details). In addition, we infer marginal costs mcj by

assuming the current prices arise from a Nash Equilibrium. When inferring marginal costs, we

assume firms set their prices based on the perfect-information demand model.

To evaluate the profits from different pricing regimes, we use the expected profit function based

on the search model and histories of search and purchase behavior. By construction, this profit

function is maximized when the seller sets personalized prices based on the search model and full

histories of searches and purchases. Below, we derive the optimal personalized prices pij for each

product separately, assuming the firm sets prices for product j while holding fixed the (uniform)

prices of competing products and prices of other products sold by the same firm. This simplifying

assumption allows us to abstract away from potential equilibrium effects and focus on assessing the

scope for targeting.

As a benchmark, we first compute personalized prices based on the perfect-information model.

Specifically, we use estimates from the perfect-information model and infer consumer types θ only

from purchase histories H = {yt}Tt=1. Figure 3 shows the resulting distribution of personalized

prices for one product in our sample.24 The distribution is bimodal with one mode located to the

left, and the other to the right of the current uniform price of 650 yuan. Intuitively, consumers

roughly fall into two groups. One group consists of consumers who have bought the product in

the past; we infer that these consumers have large intercepts and hence large willingness to pay for

the product, which suggests setting a high price. The other group consists of consumers who have

24The graph refers to product 5, which has an average price of p̄5 = 649.9 during our sample period, and for which
the inferred marginal cost equals m̂c5 = 493.5.
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Figure 3: Distribution of Personalized Prices. The graph plots the kernel densities of personalized
prices under three scenarios: (a) perfect information model, (b) search model in which types are
inferred based only on purchase data, and (c) search model in which types are inferred from both
search and purchase data.

never bought the product. Hence, these consumers most likely have a low willingness to pay and

should be charged a low price. To quantify the losses from using this incorrect model, we insert

perfect-information personalized prices for each product into the profit function from the search

model and report the resulting change in profits in Table 6. The results show that targeting based

on the incorrect model increases expected profits on average by 1.1% relative to uniform pricing.

We next analyze the personalized prices derived from a model of consumer search. To isolate

the effect of switching to the right model of consumer behavior, we only allow the firm to set

prices based on purchase histories as in the previous exercise. The results in Figure 3 suggest

the distribution of personalized prices has a similar shape as the one generated by the perfect-

information model but is shifted to the left. Consistent with the discussion in the previous section,

this shift occurs because the search model predicts lower price elasticities, thus suggesting lower

optimal prices than those obtained from the perfect-information model. Furthermore, these prices

have a lower variance than those generated by the full-information model. This difference arises

because the perfect-information model overestimates preference heterogeneity, thus overestimating

the scope for targeting. Overall, according to the second column in Table 6, setting personalized

prices based on the search model and purchase histories on average increases profits by 8.4% relative

to uniform pricing.

Finally, we derive optimal personalized prices based on the search model, but now the firm is

allowed to set prices based on both purchase and search histories. Adding search data to the history

of consumer decisions leads to more precise inference about consumers’ types θi, thus generating

higher profits from personalized pricing. Specifically, our results suggest that, compared to uniform
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Perfect Search Model Search Model
Product Information (Purchase Data (Purchase and

Model Only) Search Data)

1 0.019 0.026 0.067
2 0.029 0.049 0.085
3 0.041 0.230 0.312
4 0.002 0.008 0.023
5 0.016 0.120 0.168
6 0.008 0.014 0.025
7 0.009 0.172 0.264
8 -0.072 0.069 0.136
9 0.004 0.015 0.027
10 0.054 0.143 0.209

Average 0.011 0.084 0.132

Table 6: Expected Gains from Personalized Pricing under Different Models and Con-
sumer Histories. The gains from charging personalized prices are computed relative to the ex-
pected profits from optimal uniform prices. The table reports gains for three scenarios: (a) pricing
based on the perfect-information model, (b) pricing based on the search model with type inference
based only on purchase data, and (c) pricing based on the search model with type inference based
on both search and purchase data.

pricing, the expected profits of the average firm increase by 13.2%.

In summary, in our application, firms gain little by charging personalized prices based on the

perfect-information model. The average firm gains only 1.1%, and for the firm producing product

8, this incorrect targeting actually reduces profits by 7.2%. Switching to the right model and

using search data significantly increases profits of all firms. Compared to uniform pricing, the

average seller earns 8.4% higher profits when she estimates the search model but uses only purchase

data, and 13.2% higher profits when she uses the search model and complete data on search and

purchase decisions. Furthermore, as expected, the gains from personalized pricing correlate with

the estimated standard deviations of intercepts in column 3 of Table 3. Products with the largest

heterogeneity in the intercepts, such as products 3 and 7, gain as much as 26%-31% of profits

from offering personalized prices, whereas firms selling products with little heterogeneity, such as

products 4 and 6, do not have much scope for targeting and gain only 2.3%-2.5% from personalized

pricing.

8 Conclusion

This paper studies the estimation of preference heterogeneity in a setting where consumers are

imperfectly informed and have to engage in costly search. We show that in the common setting

where products are horizontally differentiated, ignoring search costs leads to an overestimation of

preference heterogeneity. In our empirical exercise, we find that by ignoring search costs, we over-

estimate standard deviations of product intercepts by 30%. This bias has important consequences
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for optimal price setting. When ignoring search frictions, own-price elasticities are underestimated

and markups are overestimated. Hence, when not taking search into account, we underestimate

the intensity of competition between firms. In addition, personalized prices generated based on the

perfect-information model have larger variance than prices based on the model of costly search.

As a result, personalized prices computed under the incorrect assumption of perfect information

increase expected profits by only 1.1%. Personalized prices from the search model, by contrast,

increase expected profits by 13.2%. Thus, our results suggest that ignoring search costs leads to

sub-optimal targeting strategies.
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Dubé, J.-P., G. J. Hitsch, P. E. Rossi, and M. A. Vitorino (2008): “Category Pricing with
State-Dependent Utility,” Marketing Science, 27(3), 417–429.

Elberg, A., P. M. Gardete, R. Macera, and C. Noton (2017): “Dynamic Effects of Price
Promotions: Field Evidence, Consumer Search, and Supply-Side Implications,” .

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin (2004): “Bayesian data analysis.
Texts in statistical science series,” .

Giulietti, M., M. Waterson, and M. Wildenbeest (2014): “Estimation of search frictions in
the British electricity market,” The Journal of Industrial Economics, 62(4), 555–590.

Honka, E. (2014): “Quantifying search and switching costs in the US auto insurance industry,”
The RAND Journal of Economics, 45(4), 847–884.

Honka, E., and P. K. Chintagunta (2015): “Simultaneous or sequential? search strategies in
the us auto insurance industry,” Marketing Science, 36(1), 21–42.

Kim, J. B., P. Albuquerque, and B. J. Bronnenberg (2010): “Online Demand under Limited
Consumer Search,” Marketing Science, 29(6), 1001–1023.

Koulayev, S. (2014): “Search for differentiated products: identification and estimation,” The
RAND Journal of Economics, 45(3), 553–575.

Rossi, P. E., and G. M. Allenby (1993): “A bayesian approach to estimating household pa-
rameters,” Journal of Marketing Research, 30(2), 171–182.

29



Rossi, P. E., R. E. McCulloch, and G. M. Allenby (1996): “The value of purchase history
data in target marketing,” Marketing Science, 15(4), 321–340.

Seiler, S. (2013): “The impact of search costs on consumer behavior: A dynamic approach,”
Quantitative Marketing and Economics, 11(2), 155–203.

Weitzman, M. L. (1979): “Optimal Search for the Best Alternative,” Econometrica, 47(3), 641–
654.

Zhou, J. (2017): “Competitive bundling,” Econometrica, 85(1), 145–172.

30



A Preference Heterogeneity and Search Costs

We have noted in section 3.2 that the way search costs affect purchase probabilities depends on

whether products are horizontally or vertically differentiated, and we discussed the case of horizontal

differentiation in detail. In this appendix, we provide some additional technical details on the

simulation exercise and present simulation results for the case of vertical differentiation.

A.1 Simulation Procedure

In both cases (horizontal and vertical differentiation), we assume there are three products and

we simulate search and purchase behavior for a set of 100,000 consumers, whose intercepts are

drawn from the distributions specified below / in section 3.2. We simulate the search and purchase

behavior of each consumer for 10,000 search sessions and for a fixed value of search costs and

compute purchase probabilities, as well as inferred product intercepts (under the assumption of

perfect information) that rationalize purchase probabilities of each consumer.

In section 3.2, we report two graphs for the horizontal-differentiation case: the distribution of

purchase probabilities and the distribution of inferred intercepts. Both graphs show kernel density

estimates that we compute using a gaussian kernel and the Silverman’s rule-of-thumb bandwidth

parameter. Additionally, we adjust the estimated distribution of purchase probabilities to account

for the fact that probabilities are bounded between zero and one. To this end, we reflect the

estimated density around two points (zero and one), compute kernel density estimates based on

the augmented data, and then truncate the estimates between zero and one.

A.2 Vertical Differentiation

To illustrate the impact of search costs in the case of vertical differentiation, we normalize the

intercept of product 1 to zero, and draw intercepts for products 2 and 3 from independent normal

distributions with means 1 and 2, both with a standard deviation of 0.2. Due to these distributional

assumptions, most consumers agree product 3 is the best product and product 2 is second-best.

As before, we compute the distributions of purchase probabilities and inferred product intercepts

using simulation. Due to the differences in mean preferences across products, the distributions now

differ across products and we report them for both product 2 and product 3.

The top graphs in Figure F2 show the distribution of purchase probabilities. Under the as-

sumption of full information, modal purchase probabilities are about 0.65 for product 3 and 0.27

for product 2. An increase in search costs moves the purchase probabilities of different consumers in

the same direction. As search costs increase, consumers shift their purchases from the less preferred

products 1 and 2 toward the most preferred product 3. Therefore, the probability mass in the two

graphs shifts in opposite directions. The figure for product 1 is left out, but looks similar to the

one for product 2.

The bottom graphs in Figure F2 display the distribution of inferred intercepts for product 2

and product 3. As expected, the increase of search costs shifts the inferred distribution of product
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3 intercepts to the right, as this product is purchased more frequently. The impact on the inferred

distribution of intercepts for product 2 is less clear, because the search-cost increase makes product

3 purchases more likely relative to product 2. However, at the same time, product 2 becomes more

likely to be purchased relative to product 1. In our specific example, the inferred distribution of

product 2 intercepts shifts to the right.

In summary, ignoring search costs in the vertical-differentiation case results in biased estimates

of preference parameters. The inferred distributions of intercepts are located to the right of the true

distributions and have larger variances. We would therefore overestimate both means and variances

of intercepts for products 2 and 3 when not taking search behavior into account. In general, the

direction of the bias is less clear in the vertical case, and in the most extreme case of high search

costs and purely vertical differentiation, we would find purchases concentrated around one product

and would conclude that utility of all consumers is very high for that specific product.

B Simulation Exercise with Correlated Errors

Consider an example with two products j = A,B and a continuum of consumers whose preferences

are defined by (1) as before, except now we assume match values εijt of individual products follow

an AR(1) process. Specifically, εijt = ρεij,t−1 +µijt, where ρ ∈ [0, 1) is a correlation parameter and

µijt are iid standard normal utility shocks. When ρ = 0, match values are uncorrelated over time,

in which case, the model is equivalent to the example in section 3.2. By contrast, when ρ > 0 ,

consumers can use match values observed in the previous sessions to predict the current values of

εijt.

To show that omitting search leads to biased estimates of heterogeneity, we generate consumers’

decisions using this extended model and estimate individual-specific product intercepts from the

generated data. In doing so, we assume consumers know the process followed by εijt and update

their beliefs about match values accordingly. To simplify computation, we assume that consumers

make myopic decisions, not taking into account that their current search decisions will change

their information set in the future. Additionally, we assume product intercepts for product A are

normalized to zero for all consumers (ξiA = 0), whereas intercepts for product B follow a standard

normal distribution. Using these assumptions, we simulate behavior of S = 1, 000 consumers in

T = 500 search sessions under different values of ρ, assuming substantial search costs (c = 0.5).

We then infer product intercepts ξiB of different consumers by matching simulated purchase shares

to those predicted by the perfect-information model with correlated match values.25

As we illustrate in Figure F1, ignoring search leads to overestimation of heterogeneity even when

ρ is relatively large (e.g., when ρ = 0.9 as in the bottom panel). The bias is more pronounced under

low values of ρ, but somewhat decreases as match values εijt become more correlated. However,

even under strong correlation, the estimates of heterogeneity are substantially biased. Therefore,

25In our estimation, we assume the researcher knows the value of ρ. This assumption allows us to ensure any bias
in estimated product intercepts arises because we assumed an incorrect model of behavior, and not because we have
to estimate an additional parameter ρ from the data.
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this extended example illustrates that introducing consumer learning does not affect our main

qualitative conclusions.

C Estimation Details

In section 5, we outlined the main features of the importance-sampling estimator; this section

provides additional details. With regards to simulation draws, we set NS = NM = 100. That

is, for each consumer, we take 100 draws from the proposal distribution of types g(θi). For each

of these draws, we take 100 draws from the distributions of utility shocks εit and µit for each

consumer-session pair.

To compute individual likelihoods in (22), we need to first calculate reservation utilities zijt

for each set of random draws θi and µit. Calculating reservation utilities is computationally bur-

densome, so in practice, we use approximations. Recall that zijt is defined from the indifference

condition (which is equivalent to equation (2)):

zijt = −ci + P (uijt ≥ zijt)E(uijt|uijt ≥ zijt) + P (uijt < zijt)zijt.

Under our assumption that εijt follows a normal distribution with standard deviation σε , this

condition can be written in a more convenient form:

zijt = (zijt − δijt)Φ
(
zijt − δijt

σε

)
+ σε · φ

(
zijt − δijt

σε

)
+ δijt − ci,

where Φ(·) and φ(·) represent the Gaussian cdf and pdf. The right-hand side of this expression is a

contraction mapping with respect to zijt, so we can compute reservation utilities through a fixed-

point iteration procedure (see Elberg, Gardete, Macera, and Noton, 2017). To ease computation,

we pre-compute a lookup table that stores zijt for a large number of combinations of δijt and ci.

We compute relevant reservation utilities from this lookup table using linear interpolation. This

method is computationally inexpensive, because we only need to compute the lookup table once

before the estimation. The grid for δijt covers values from -20 to 20 with a step-size of 0.01, and

the grid for ci is from 0 to 5 with a step-size of 0.001. Hence, our lookup table is a 2500 × 1000

matrix of pre-computed reservation utilities.

D Simulation Exercise

Our identification arguments were phrased in terms of individual-level parameters that can be

identified from a long time-series of data for each consumer. However, our actual data contain

only a limited panel dimension, and hence we constrain individual parameters to be drawn from

specific distributions, which we define at the beginning of section 5.1. To test whether we are able

to recover the structural parameters of such a model with a dataset of the size (in terms of number

of consumers and search sessions per consumer) of our actual data, we implement a simulation
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exercise.

We simulate the behavior of 3,500 consumers, of which 3,000 conduct only one search session and

the remaining 500 conduct two search sessions. Choosing this sample size and panel structure allows

us to mimic the actual dataset we use for estimation and helps us understand whether the panel

dimension available in our data suffices to recover preference heterogeneity. We consider a model

with J = 10 products and fix standard deviations of random utility shocks at σε = σµ = 1. Column

1 of Table F1 reports the values of structural parameters Ω used to generate the dataset. The prices

of products are drawn from the standard normal distribution, independent across consumers, search

sessions, and products.

Table F1 presents the results of this simulation exercise. Overall, coefficients are precisely

estimated; standard errors are small, and the majority of estimates lie within two standard errors

from the truth. We conclude that we are able to successfully recover structural parameters of the

search model in the simulated sample.

E Computation of Personalized Prices

E.1 Computing Expected Profits

We compute expected profits as

Π(pj , H) =
∑
k∈F

�
(pk −mck)Pr(y = k|θ)f(θ|H, pH , Ω)g(Ω)dθdΩ. (25)

This profit function captures uncertainty regarding both type θ and structural parameters Ω. To

compute personalized prices, we first need to calculate the integrals in (25). These integrals do

not have closed-form solutions and have to be approximated using simulation. We take bootstrap

estimates Ω̂b and treat them as draws from the distribution g(Ω).26 For each of these draws Ω̂b, we

use the Metropolis-Hastings algorithm to take S draws of types θbs from the posterior distribution

f(θ|H, pH , Ω̂b). The details of our sampling algorithm are described in Appendix E.2 below. Next,

we use the resulting draws of types and compute the probability that the consumer buys product j

for each of these draws. The expected profits in (25) can then be approximated with the following

expression:

Π(pj , H) ≈ 1

BS

∑
k∈F

B∑
b=1

S∑
s=1

(pk −mck)Pr(y = k|θbs) (26)

Note that B is the number of bootstrap estimates, and S is the number of types we draw for each

of these bootstrap estimates.

26Bootstrap estimates were used earlier in order to compute standard errors. We re-use them here.
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E.2 Taking Draws θbs

To compute the expected profits in (26), we take draws θbs from the distribution f(θ|H, pH , Ω̂b) using

the standard Metropolis-Hastings algorithm. The convergence of the Markov chain is diagnosed

using two different methods. First, we initiate several chains from different starting points and

visually examine whether they converge to the same stationary distribution. Second, we use a

Gelman-Rubin convergence statistic for the parallel chains and terminate the burnout period only

when this statistic starts taking values sufficiently close to one.27 Based on these two tests, we set

the burnout period to be SBURN = 1000 draws. To diminish the effect of the starting distribution,

we discard the first SBURN draws and take the next SMAIN = 10, 000 draws to construct the

main sample. Because draws in this sample exhibit strong autocorrelation (the correlation between

neighboring draws is around 0.9-0.95), we take only each 100th draw, thus thinning the chain and

reducing autocorrelation to 0.2-0.3. The final sample consists of 100 draws of types θbs for each Ω̂b.

27The Gelman-Rubin statistic reflects the ratio of between-chain variance to within-chain variance. Once all
initiated chains have converged, the two variances should become similar and the Gelman-Rubin statistic should
start taking values close to one (Gelman, Carlin, Stern, and Rubin, 2004).
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F Additional Tables and Figures

Standard
Truth Estimates Errors

ξ̄2 -0.200 -0.218 0.006
ξ̄3 -0.400 -0.385 0.007
ξ̄4 -0.600 -0.605 0.007
ξ̄5 -0.800 -0.799 0.007
ξ̄6 -1.000 -0.998 0.009
ξ̄7 -1.200 -1.208 0.008
ξ̄8 -1.400 -1.392 0.009
ξ̄9 -1.600 -1.596 0.007
ξ̄10 -1.800 -1.792 0.009
σξ2 0.200 0.189 0.006
σξ3 0.200 0.193 0.005
σξ4 0.200 0.190 0.004
σξ5 0.200 0.195 0.005
σξ6 0.200 0.189 0.005
σξ7 0.200 0.195 0.004
σξ8 0.200 0.199 0.006
σξ9 0.200 0.201 0.006
σξ10 0.200 0.193 0.006

Mean(α) 0.056 0.060 0.001
StdDev(α) 0.030 0.032 0.001
Mean(c) 0.519 0.522 0.006
StdDev(c) 0.159 0.158 0.004

Table F1: Estimates from Simulation Exercise. The table reports estimates obtained from
the simulated sample (column 2) together with the true values of parameters used to generate the
sample (column 1). The simulated sample contains 3,500 consumers, of which 3,000 conduct only
one search session, and the remaining 500 conduct two search sessions. We set NS = NM = 100.
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Figure F1: Distribution of Estimated Product Intercepts for Different Values of the
Correlation Parameter ρ.
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Figure F2: Vertical Differentiation Case. The two top graphs display kernel density estimates
for the distribution of purchase probabilities under different values of search costs for product 2
(left) and 3 (right). The two bottom graphs show the corresponding kernel density estimates for
the distribution of inferred product intercepts.
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