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Abstract 

This paper studies price bargaining when both parties are subject to perception biases with numbers. The 

empirical analysis focuses on the auto finance market in the U.S., using a large data set of 35 million auto 

loans. I observe that the scheduled monthly payments of auto loans bunch at $9- and $0-ending digits, 

especially over $100 marks. The number of loans also increases from $1- to $8-ending digits. It is especially 

intriguing that $9-ending loans carry a higher interest rate and $0-ending loans have a lower interest rate 

than loans ended at other digits. Motivated by these observations, I develop and estimate a Nash bargaining 

model that allows for number biases from both consumers and finance managers of auto dealers. Results 

suggest that both parties perceive a discontinuity between payments ending at $99 and $00, and a steeper 

slope for larger ending digits, in their payoff functions. Low income and minority consumers have a lower 

bargaining power than the others. This model can explain the phenomena of payments bunching and 

differential interest rates for loans with different ending digits. I use counterfactual to show that, counter-

intuitively, having number biases is beneficial in a bargaining setting. Consumers’ payments are reduced 

by $203 million in total and the aggregate payments of finance managers increased by $102 million because 

of own number biases. Another counterfactual quantifies the economic impact of imposing non-

discretionary markup compensation policies. I find that the payments of African American consumers will 

be lowered by $452-473 million and that of Hispanic consumers by $275-300 million in total. 

Key words: Bargaining, Number Biases, Auto Finance, Minority Consumers, Dealer Compensation  

                                                           
1 This paper represents the views of the author only and not Equifax Inc. I am deeply grateful to Equifax Inc. for 

supporting the research and allowing me access to their data. Zhenling Jiang is a doctoral student in marketing at 

Washington University in St. Louis, Olin Business School, and can be reached at zjiang26@wustl.edu. 
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1. Introduction 

Bargaining is a commonly used price-setting mechanism in many markets such as automobiles and B-to-B 

transactions. In bargaining, final prices vary across transactions instead of set by one side as fixed posted 

prices. The two parties in negotiations evaluate the key variable of interest (e.g., price) and reach a 

bargaining outcome depending on their relative bargaining power. Most of the empirical bargaining 

literature characterizes the perceived value of the bargaining outcome with a fully rational model and 

focuses on evaluating the key determinants of bargaining power that lead to the observed bargaining 

outcomes (e.g., Draganska et al. 2010). However, people often use simple cognitive shortcuts when 

processing information, which makes accounting for bounded rationality important in describing economic 

behaviors (see Conlisk 1996 for a review). In a bargaining setting, decision-makers on both sides are human 

beings. Behavioral decision researchers have long recognized psychological influence in negotiation, such 

as status quo bias and reciprocity heuristic (Malhotra and Bazerman 2008). Decision-makers may also be 

subject to perception biases when evaluating numbers. For example, people have the tendency to focus on 

the leftmost digit of a number while partially ignoring other digits (Poltrock and Schwartz 1984, Lacetera 

et al. 2012). With such a bias, a number with 99-ending (e.g., $299) may be perceived to be significantly 

lower than the next round number (e.g., $300). One consequence of such biases in the marketplace is the 

ubiquitous 99-cents pricing (Thomas and Morwitz 2005, Basu 2006).  

In this paper, I empirically study a bargaining setting where the bargaining outcomes are affected 

by number biases in addition to bargaining power. When both parties are influenced by number biases, they 

will try to push the price toward their favorite side. For example, while buyers prefer a price with 99-ending 

digit, sellers perceive a price a bit higher with 00-ending digit to be a better deal. This makes the bargaining 

outcome different from when prices are only set by one party. In this study, I use a large data set with 35 

million auto loans in the U.S. over a period of four years, and discover several intriguing data patterns. 

First, the scheduled monthly payments of auto loans bunch at both $9- and $0-endings. This bunching 

pattern is stronger over $100 marks, with more than twice as many loans with $99-ending and 1.5 times as 

many loans with $00-ending, as loans with $01-ending. Furthermore, the number of loans is systematically 

higher for larger ending digits (from $1 to $8). Second, while the interest rate for $9-ending loans is 0.6% 

higher than the average, the rate for $0-ending loans is 0.5% lower, after controlling for all consumer 

characteristics such as credit scores. Finally, I find that consumers with a minority origin (African American 

or Hispanic) and low income are more likely to have $9-ending loans, and pay a higher interest rate, than 

other consumers with a similar credit profile and loan attributes. These data patterns are difficult to explain 

by a standard economic model. I therefore develop a bargaining model that allows for number biases from 
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both parties in the bargaining, which can explain the phenomena of payments bunching and differential 

interest rates across consumer loan payments in the data. 

The auto finance market provides a perfect setting for studying price bargaining. The dealer markup 

compensation policy in the indirect auto lending market leads to negotiations that cause loan payments to 

vary across transactions. In a standard loan arrangement, banks quote a risk-adjusted interest rate, called 

bank buy rate, based on the consumers’ risk profile (e.g., credit score). On top of the bank buy rate, auto 

dealers charge consumers a markup, which represents their compensation for arranging the loan. Unlike the 

bank buy rate, the markup reflects the relative bargaining power between consumers and finance managers 

of auto dealers. Thus, loan payments are the outcome of price negotiations instead of fixed prices. Studying 

how consumer loan payments are determined has important policy implications. The markup compensation 

policy has attracted much debate and legal actions. Opponents to this policy alleged that minority 

consumers end up paying interest rates higher than similarly situated Caucasian borrowers (e.g., Munro et 

al. 2005). Auto loans represent an expensive purchase for consumers with large impact on their financial 

situations. With 107 million Americans carrying an auto loan2, the size of the auto finance market makes 

this study economically important.  

I seek to address two main research questions in this study. The first question is to understand how 

individual number biases affect bargaining outcomes. I show that, counter-intuitively, having number biases 

is beneficial for the party with the biases in bargaining. This is achieved by building a bargaining model 

that incorporates number biases from both sides, estimating the model with auto loan data, and exploring 

the effect of biases on bargaining outcomes through a counterfactual analysis. The second question is to 

quantify the change in loan payments for minority consumers if the discretionary markup compensation is 

banned through regulatory policy. This is obtained by evaluating the change in payment outcomes among 

different consumer groups through another counterfactual analysis, in which banks offer dealers two 

alternative non-discretionary compensation policies.  

1.1. Research Strategy and Main Findings 

Given the nature of the dealer compensation policy, I propose a bargaining model involving individual 

consumers and finance managers with loan payments as the equilibrium outcome of a Nash bargaining 

game. The model allows both parties to have potential perception biases toward numbers in their payoff 

functions. Guided by reduced-form data patterns, I assume the payoff functions can have two types of 

biases. First, payoff functions can have a discontinuity between payments ending at $99 and $00. Moreover, 

                                                           
2 Federal Reserve Bank of New York, Quarterly Report on Household Debt and Credit, May 2017 Q1. 

https://www.newyorkfed.org/medialibrary/interactives/householdcredit/data/pdf/HHDC_2017Q1.pdf 
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the perceived difference from a $1 change in payment can depend on its ending digit, i.e., the perceived 

change from $8 to $9 can be different from that from $7 to $8. Note that neither of the biases is imposed in 

payoff functions. Depending on the model parameters estimated from data, the payoff functions of both 

parties can reflect the biases or reduce to a standard bargaining model without biases.  

I estimate the model on the data that consist of realized loan outcomes and consumer characteristics. 

I use the simulated method of moments, with the first and second moment conditions, in the estimation.  To 

pin down the model parameters associated with the number biases of consumers and finance managers, I 

impose a set of linear equality constraints, under which the proportion of simulated loan payments ending 

at each digit is the same as observed from data, in the criterion function.   

Estimation results suggest that number biases exist not only for consumers but also for finance 

managers. For consumers, the perceived difference between $99- and $00-ending payments is $2.05 instead 

of $1. Their sensitivity toward a $1 change is higher with larger ending digits (e.g., the perceived gap 

between $9- and $0-ending is $1.27, which is higher than the gap between $0- and $1-ending at $0.9). The 

estimated biases for finance managers are similar. Standard economic studies usually assume that 

companies are fully rational entities in making business decisions. In this setting, however, finance 

managers who represent auto dealers are also human beings. They can be subject to the same human 

tendency with numbers when negotiating with consumers. This study thus adds to the existing literature 

that documents psychological biases among professionals, such as lawyers in legal disputes (Birke and Fox 

1999), professional traders in trading activities (Coval and Shumway 2000), and managers in a 

multinational corporation regarding strategic initiatives (Workman 2012). I show that incorporating number 

biases from both parties is important for two reasons. First, it is essential to explain the observed data 

patterns. In particular, the biases drive payments bunching at $0-ending digits with a lower interest rate and 

at $9-ending digits with a higher interest rate. Second, failure to account for the biases can lead to biased 

estimates for consumers’ bargaining power.  

With the model estimates, I explore the effects of the biases on bargaining outcomes using a 

counterfactual analysis. Under the scenario where consumers and/or finance managers are not subject to 

the biases, their payoff functions become linear and continuous. I compare the loan payments when 

consumers are subject to biases compared to when they are not. Behavioral biases are typically thought to 

make people worse off. Counter-intuitively, I find that having the biases actually benefits consumers in the 

bargaining, as they end up with lower monthly payments ($203 million in total, or 0.025%). This is because 

the biases act as a psychological hurdle to stop finance managers to push the payments higher than $9- or 

$99-ending digits. The effect is more significant for low bargaining power consumers. Similarly, dealers 

will receive a higher markup profit ($102 million in total, or 0.013%) when finance managers are subject 
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to the biases, as it is more difficult for consumers to push payments below $0- or $00-ending payments. 

When both parties have the biases, the total loan payments will be reduced by $33 million compared to the 

scenario where neither party has the biases.  

The estimated bargaining model allows me to quantify the economic impacts from alternative 

dealer compensation policies. In 2013, the Consumer Financial Protection Bureau (CFPB) issued a bulletin 

announcing that it would hold indirect auto lenders accountable for discriminatory pricing.3 Since then, the 

CFPB has taken action against several large auto lenders with significant fines. Despite this, the 

discretionary markup practice is still commonly used by most indirect auto lenders. I use another 

counterfactual analysis to investigate the impacts from a non-discretionary markup policy. Fixing the total 

profit for dealers at the same level, I measure the subsequent change in loan payments for minority 

consumers. My calculation shows that consumers from predominantly African American and Hispanic 

geographical locations will pay $374 and $373 less for a loan, respectively. In total, the savings are $452 

million for African American consumers, and $275 million for Hispanic consumers. 

1.2. Related Literature 

This paper is related to the literature in bargaining, numerical cognition and 9-ending prices, as well as 

studies of the bunching phenomenon.  

The prior bargaining literature has studied price negotiation in the contexts of automotive sales 

(Chen et al. 2008, Morton et al. 2011, Larsen 2018), B-to-B transactions (Draganska et al. 2010, Grennan 

2014) and interactions between online sellers and buyers (Backus et al. 2018, Zhang et al. 2018). Most of 

the empirical bargaining literature assumes fully rational agents, and studies how bargaining power 

influences bargaining outcomes. This paper contributes to the empirical bargaining literature by studying 

how number biases from both sides also influence the bargaining outcomes. I show that considering number 

biases is essential in explaining the puzzling reduced-form data patterns in bargaining outcomes. In 

addition, failure to incorporate these biases could lead to biased estimates in the model. The insights could 

generalize to other settings where bargaining outcomes are numeric in nature.  

This paper also draws on the literature on numerical cognition, and the marketing literature on 9-

ending prices. The numerical cognition literature in psychology primarily focuses on the differences in 

behavioral perception between round and precise numbers. Past research has shown that buyers may 

underestimate the magnitude of precise prices (Thomas et al. 2010), and that precise numbers signal sellers’ 

confidence (Jerez-Fernandez et al. 2014). Offers at round numbers, however, can symbolize completion 

(Yan et al. 2017) and willingness to cut prices (Backus et al., 2018). This paper also draws from the 

                                                           
3 https://files.consumerfinance.gov/f/201303_cfpb_march_-Auto-Finance-Bulletin.pdf 
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marketing literature that studies the prevalence of 9-ending prices in retail sales (e.g., Monroe 1973, 

Schindler and Kibarian 1996, Stiving and Winer 1997, Anderson and Simester 2003, Thomas and Morwitz 

2005). 9-ending prices are generally found to have positive impact on sales, because consumers round down 

the prices or the prices signal a low-price image. This phenomenon is not limited to prices only. Lacetera 

et al. (2012) find a discontinuous drop in the price of used cars when the odometer crosses 10,000 miles, 

driven by the left-digit bias of consumers when processing mileage. In this paper, I build on the numerical 

biases theory in several ways. I study the impact of such biases in a bargaining setting with an economically 

significant purchase. Bargaining involves two-sided interaction. I show that in a bargaining setting number 

biases exist not only among consumers but also among finance managers. Furthermore, beyond the effect 

of $9- and $0-endings, I examine the different sensitivity of payment changes as the ending digit increases 

from $1 to $9.  

This paper is also related to the economic literature that studies of bunching phenomena. Bunching 

is commonly observed at the level where discontinuities in monetary incentives occur, such as income 

bunching at the level where tax rate changes (Saez 2010), and drug demand bunching at the level where 

insurance payment jumps (Einav et al. 2015). Bunching can also be driven by psychological incentives. For 

example, the finishing times of marathon races bunch before hour marks, because the hour marks serve as 

a reference point (Allen et al. 2016). In the above examples, bunching occurs because consumers make one-

sided decisions that are driven by the incentive discontinuity. This paper studies the bunching phenomenon 

with consumers and finance managers bargaining on auto loan payments. It leads to payments bunching at 

both $9- and $0-ending digits with systematically different interest rates in the opposite direction. 

The rest of the paper is organized as follows. Section 2 introduces the auto finance industry 

background and presents reduced-form data patterns. I describe the bargaining model incorporating biases 

with numbers in Section 3 and discuss the model estimation and identification issue in Section 4. Section 5 

presents the estimation results and findings from counterfactual analyses. Finally, Section 6 concludes. 

2. Industry Background and Data  

2.1. The Auto Finance Industry Background 

The auto finance market is of high economic significance. With a $1.2 trillion balance in 2017,4 auto loans 

represent the third largest consumer credit market in the United States. The auto finance market is crucial 

                                                           
4 Federal Reserve Bank of New York, Quarterly Report on Household Debt and Credit, May 2017 Q1. 

https://www.newyorkfed.org/medialibrary/interactives/householdcredit/data/pdf/HHDC_2017Q1.pdf 
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to the automotive industry as over 80% of new vehicles sold in the United States are financed.5 In this 

market, consumers typically obtain financing through auto dealers (i.e., indirect auto loans). Cohen (2012) 

shows that about 80% of auto loans are originated at a dealer location following the purchase of a new or 

used vehicle. Indirect auto loans are a significant source of profit for dealers. Keenan (2000) estimates that 

12.9% of dealership profit come from financing and insurance.  

In this paper, I focus on cases where consumers get auto loans from a traditional bank through an 

auto dealer6. In a typical transaction at the auto dealer, the consumer first chooses a car and negotiates on 

the car price itself. After that, she will be brought to the finance manager’s office to arrange auto financing. 

The focus of this paper is to study how the monthly payment number is determined after consumers have 

selected the loan amount, i.e., how much to borrow, and the loan length, i.e., how long to borrow7. Why is 

the monthly payment a bargained outcome? This is because auto dealers get compensated by arranging auto 

financing for consumers from a bank. Finance managers from auto dealers add a markup on top of the bank 

buy rate as part of the total consumer cost. The extra markup serves as the dealer compensation for arranging 

the loan. Unlike the bank buy rate, which is determined by the consumer’s credit risk, the markup is at the 

dealer’s discretion and depends on with whom the dealer arranges the loan. 

Because of the markup policy, the finance manager has incentive to increase the loan payment so 

that the dealer will receive a higher markup. Yet the consumer can negotiate for a lower payment if she 

finds the payment too high. A report by the Center for Responsible Lending estimates that the average 

markup is $714 per transaction using 2009 auto industry data and the markup varies across individual 

consumers. In my data, I find that the interest rate for auto loans varies a lot for consumers with the same 

credit profile and loan characteristics. This suggests that there is room for bargaining the loan payment in 

each transaction.  

2.2. Data Description 

The empirical analysis of this paper leverages anonymized data on individual credit profiles provided by 

Equifax Inc., one of the three major credit bureaus in the United States. The data sample includes all non-

subprime8 auto loans originated from banks or credit unions in the United States during a four-year period 

                                                           
5 Consumer Reports, Consumers Rely on Car Financing More than Ever. 

http://www.consumerreports.org/cro/news/2013/09/car-financing-on-rise-loans-and-leases/index.htm 
6 I do not consider auto loans from manufacturing financing (e.g., Toyota Financial) because these loans are often 

provided to promote the vehicle sales. 
7 After loan amount and length are determined, the monthly payment and interest rate are one-to-one, where a higher 

interest rate will imply a higher monthly payment and vice versa.  
8 Non-subprime consumers refer to those with at least 620 credit score at the time of auto loan origination. Subprime 

lending typically involves additional information required, such as verified employment and income through providing 

pay stubs or tax return documents, beyond the standard credit profile. This information can lead to additional variation 

in interest rates. As the required additional information is unobserved from my data, I exclude subprime consumers in 
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from 2011 to 2014. For each auto loan in the sample, I observe the origination date, loan amount, loan 

length, and scheduled monthly payment. The annual percentage rate (APR)9 can be calculated from the loan 

amount, loan length, and the monthly payment (see Appendix A for detail). To remove potential outliers, I 

select auto loans with loan lengths from 2 to 8 years, loan amount between $10k and $60k, and APRs above 

1.9%.10 The selected data sample includes 35 million auto loans. Panel A of Table 1 shows some descriptive 

statistics for the loan characteristics. The average loan amount is about $23,000, with a $399 monthly 

payment for about five and half years, and the average APR is 4.3%.  

Table 1. Summary Statistics     

 Mean 25th Percentile Median 75th Percentile 

Panel A: Loan Characteristics     

Loan Amount ($) 22,965 15,821 21,161 28,115 

Loan Length (years) 5.4 5 5.8 6 

Monthly Payment ($) 399 294 370 475 

APR 4.8% 3.0% 4.0% 5.5% 

Panel B: Consumer Characteristics 

Credit Score (620-850) 726 674 725 778 

Age 46 33 45 56 

Income ($) 83,749 56,578 74,659 101,062 

House Value ($) 207,185 121,200 168,300 248,100 

Caucasian (%) 0.733 0.603 0.787 0.904 

Hispanic (%) 0.097 0.025 0.056 0.131 

African American (%) 0.089 0.014 0.040 0.104 

Asian (%) 0.040 0.009 0.020 0.045 

Other (%) 0.041 0.009 0.022 0.054 

For consumer characteristics, I observe the credit score and age of each consumer as well as the 5-

digit zip code of her living place. The credit score is measured at the month of auto loan origination. I 

further obtain the average household income, house value and racial composition at the zip code. The 

average house value comes from the American Community Survey. Household income and racial 

composition data comes from the Census. It measures the percentage of population that is Caucasian, 

African American, Hispanic, Asian, or others. I use these data to proxy for the household characteristics of 

individual consumers. Panel B of Table 1 shows some descriptive statistics for these variables. An average 

                                                           
the analysis to avoid potential bias in the analysis (e.g. a high loan payment can be due to the consumer being 

unemployed and not because of her low bargaining power). 
9 I use APR and interest rate interchangeably in the paper.  
10 Loans with lower interest rates are very likely to be special promotional rates. They are commonly seen in 

manufacturer financing (e.g., Toyota Financial Service), with the goal of promoting vehicle sales.  
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consumer in the data sample is 46 years old, has 726 credit score, lives in an area with an average $83.7k 

household income, $207k house value, 73.3% Caucasians, 9.7% Hispanics, and 8.9% African Americans.  

2.3. Reduced Form Data Analysis 

2.3.1. The Bunching Phenomenon 

I illustrate the bunching patterns in monthly loan payments. Scheduled monthly payments bunch at both 

$9- and $0-endings. Such bunching pattern is more significant at $100 marks. Beyond $9- and $0-endings, 

the number of loans also increases with larger ending digits from $1 to $8. Moreover, the level of $9-ending 

bunching varies systematically across different groups of consumers.  

Figure 1 plots the frequency of the monthly payment ending digit when payments cross $100. Each 

bar represents the percentage of loans with ending digit from $0 to $9. Instead of a uniform distribution of 

10% probability for each number, there are more loans with $9-ending payments as well as $0-ending 

payments.11 When payments cross $100 marks, $9-ending payments are more than twice as many, and $0-

ending payments are 1.5 times as many, as payments ending at $01. Bunching pattern is similar, although 

less pronounced, at other $10 marks, where $9-ending payments are 30% more, and $0-ending payments 

are 12% more, than $1-ending payments. Beyond $9- and $0-endings, another interesting pattern is that the 

percentage of loans is higher for payments with a larger ending digit.12 For example, payments ending at 

$8 are 17% more than payments ending at $1.  

Figure 1. Frequency of Monthly Payment Ending Digit 

 

                                                           
11 The data sample includes all auto loans from banks and credit unions. Some loans may be originated directly from 

banks or credit unions and are not subject to the typical markup process in indirect auto lending. I expect the 

bunching pattern to be more significant for loans originated at the dealer location. 
12 $5-ending is an exception. The number of loans is especially high for payments ending at $25 or $75. This is 

likely driven by consumers and finance managers perceiving these payments as round numbers. 
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Consumers who pay monthly payments with $9-ending digits and those who pay with $0-ending 

digits are different across multiple consumer characteristics. Panel A in Table 2 shows on the ratio of the 

number of $99-ending over the next $01-ending loans (e.g., $399/$401). The $9-ending bunching is higher 

among consumers with lower credit scores, older ages, and living in areas with lower incomes and larger 

minority populations. Panel B in Table 2 shows the ratio of the number of $00-ending loans over the next 

$01-ending loans (e.g., $400/$401). Opposite to $9-ending, the $0-ending bunching is higher among 

consumers with higher credit scores. 

Table 2. Heterogeneous Levels of Payment Bunching at $99- and $00-endings 

Panel A: The Ratio of $99-ending Loans to $01-ending Loans (Overall ratio: 2.08) 

Credit Score 620-660 661-700 701-740 741-780 781-850 

 2.27 2.21 2.10 2.02 1.90 

Age <30 31-40 41-50 51-60 >60 

 2.03 2.08 2.10 2.09 2.13 

Income (zip-level) < $50k $50-70k $70-90k $90-120k > $120k 

2.23 2.07 2.08 2.07 1.97 

Caucasian Proportion (zip-level) <50% 50-70% 70-80% 80-90% >90% 

 2.31 2.14 2.08 2.00 1.98 

Hispanic Proportion <2% 2-5% 5-10% 10-20% >20% 

 2.04 2.04 2.05 2.12 2.24 

African American Proportion <2% 2-5% 5-10% 10-20% >20% 

 1.93 2.05 2.16 2.17 2.36 

Panel B: The Ratio of $00-ending Loans to $01-ending Loans (Overall ratio: 1.55) 

Credit Score 620-660 661-700 701-740 741-780 781-850 

 1.50 1.50 1.54 1.57 1.61 

Age <30 31-40 41-50 51-60 >60 

 1.48 1.55 1.56 1.56 1.59 

Income (zip-level) < $50k $50-70k $70-90k $90-120k > $120k 

 1.57 1.56 1.54 1.54 1.52 

Caucasian Proportion (zip-level) <50% 50-70% 70-80% 80-90% >90% 

 1.58 1.54 1.52 1.55 1.55 

Hispanic Proportion <2% 2-5% 5-10% 10-20% >20% 

 1.56 1.54 1.53 1.54 1.59 

African American Proportion <2% 2-5% 5-10% 10-20% >20% 

 1.56 1.55 1.55 1.52 1.53 
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2.3.2. Interest Rates  

This sub-section illustrates two points regarding loan interest rates. First, $9-ending loans have a higher 

average interest rate, while $0-ending loans have a lower interest rate, than loans with payments ending at 

other digits. Second, minority consumers pay a higher interest rate on average than Caucasian consumers. 

Loans with $9- and $0-ending payments are systematically different. Table 3 compares the 

characteristics for loans with different ending digits. On average, $9-ending loans have lower credit scores, 

larger loan amounts, longer loan lengths, and higher APRs compared with $0-ending loans.  

Table 3. Characteristics for Loans with Different Ending Digits 

Ending 

Digit 

 

Credit Score 

 

(1) 

Loan Amount 

($1000) 

(2) 

Loan Length 

(Years) 

(3) 

APR  

(%) 

(4) 

$5 725.52 22.97 5.45 4.785 

$6 725.90 22.90 5.44 4.778 

$7 725.66 22.96 5.45 4.791 

$8 725.46 23.04 5.46 4.804 

$9 724.20 23.34 5.54 4.847 

$0 726.23 22.82 5.42 4.754 

$1 726.29 22.84 5.41 4.761 

$2 726.18 22.84 5.41 4.770 

$3 726.10 22.88 5.42 4.776 

$4 725.86 22.93 5.44 4.787 

To further investigate the difference in interest rates for loans with different ending digits, I use 

regression analysis to control for other factors that can affect the interest rate as follows: 

𝑖𝑛𝑡𝑖 = ∑ 𝛾𝑗 ∙ 𝐼(𝑑(𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑖) = 𝑗)

9

𝑗=1

+ 𝑋𝑖𝛽 + 𝜖𝑖 

where 𝑖𝑛𝑡𝑖 is the interest rate of loan 𝑖, and 𝐼(𝑑(𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑖) = 𝑗) an indicator variable that equals 1 if the 

ending digit of the monthly payment is 𝑗 (𝑗 is from 1 to 9, with 0 as the normalized factor). 𝑋𝑖 includes 

credit score, loan amount, and loan length. I also include date and state fixed effects for each loan. Results 

are reported in Table 4. To capture the potential non-linearity of the relationship between interest rates and 

covariates 𝑋𝑖, Column (1) and (3) use third order polynomial functions of these variables, while Column 

(2) and (4) categorize them into bins and use bin fixed effects. Column (3) and (4) also include consumer 

characteristics, including age, ethnicity, income, and average house value.  
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 Across different specifications, $9-ending loans consistently carry the highest interest rate, about 

0.053% higher than $0-ending loans.13 To put the numbers in perspective, for a 5 year, $25000 loan with 

6% APR, this difference would result in a $36 higher cost for consumers. As the coefficients for $1-ending 

to $9-ending are all significant positive, it implies that $0-ending payments have the lowest interest rate. 

Figure 2 visually presents the regression results from Column (1). Beyond $9- and $0-ending, loans with 

large ending digits generally have a higher interest rate than loans with small ending digits.14  

Figure 2. Interest Rate for Loans with Different Ending Digits 

 

 Table 4 also shows that minority consumers, as well as consumers with older age, lower income, 

and lower house value are more likely to have higher interest rates. Furthermore, consumers from 

geographical regions with high African American and Hispanic population are charged higher interest 

rates. Since banks do not use these characteristics when deciding the bank buy rate, the interest rate 

difference reflects the dealer markup. Put in the context of bargaining, the reduced-form analysis provides 

an evidence that these consumers have a lower bargaining power. 

 To summarize, there are more loans with $9-ending payments, which carry a higher interest rate 

on average, and there are more loans with $0-ending payments with a lower interest rate. In addition, the 

tendency to have $9-ending loans is higher among consumers with a lower bargaining power, who receive 

a higher interest rate. I discuss how number biases from both consumers and finance managers in a 

bargaining setting can explain these data patterns after introducing the model. 

                                                           
13 For robustness, I have also implemented a machine learning method, using boosted trees, to predict APR for loans 

with different ending digits, and the results are very similar (see Appendix B for details). 
14 The slightly higher interest rate of $4-ending loans than that of $5-ending loans is an exception. This is likely due 

to $5-ending payments being perceived as round numbers, similar to $0-ending payments.  
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Table 4. Interest Rate Regression Results 

 Dependent variable: APR 

 (1) (2) (3) (4) 

$1-ending 0.00012*** 0.00013*** 0.00014*** 0.00014*** 
 (0.00002) (0.00002) (0.00002) (0.00002) 

$2-ending 0.00018*** 0.00019*** 0.00019*** 0.00020*** 
 (0.00002) (0.00002) (0.00002) (0.00002) 

$3-ending 0.00022*** 0.00024*** 0.00023*** 0.00025*** 
 (0.00002) (0.00002) (0.00002) (0.00002) 

$4-ending 0.00029*** 0.00031*** 0.00028*** 0.00031*** 
 (0.00002) (0.00002) (0.00002) (0.00002) 

$5-ending 0.00017*** 0.00021*** 0.00016*** 0.00020*** 
 (0.00002) (0.00002) (0.00002) (0.00002) 

$6-ending 0.00019*** 0.00022*** 0.00019*** 0.00022*** 
 (0.00002) (0.00002) (0.00002) (0.00002) 

$7-ending 0.00028*** 0.00031*** 0.00027*** 0.00030*** 
 (0.00002) (0.00002) (0.00002) (0.00002) 

$8-ending 0.00037*** 0.00040*** 0.00036*** 0.00039*** 
 (0.00002) (0.00002) (0.00002) (0.00002) 

$9-ending 0.00053*** 0.00061*** 0.00049*** 0.00057*** 
 (0.00002) (0.00002) (0.00002) (0.00002) 

Age   0.00004*** 0.00003*** 

   (0.0000003) (0.0000003) 

Income (in $1 million)   -0.03293*** -0.03260*** 

   (0.00015) (0.00015) 

African American percentage   0.01045*** 0.00985*** 

   (0.00003) (0.00003) 

Hispanic percentage   0.01463*** 0.01388*** 

   (0.00006) (0.00005) 

Average house value (in $1 million)   -0.00071*** -0.00039*** 

   (0.00005) (0.00005) 

Covariates 𝑋  Polynomial Categorical Polynomial Categorical 

Date Opened Fixed Effects Yes Yes Yes Yes 

State Fixed Effects Yes Yes Yes Yes 

Observations 34,760,946 34,760,946 34,760,577 34,760,577 

𝑅2  0.30016 0.31733 0.30829 0.32458 

Covariates 𝑋 include credit score, loan length and loan amount. Results from two 

specifications are shown: Column (1) and (3) use third order polynomials, and Column 

(2) and (4) categorize each covariate into bins and use bin fixed effects. 

Note:                                                                                       *p<0.1; **p<0.05; ***p<0.01 
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3. The Bargaining Model Incorporating Number Biases 

In this section, I propose a bargaining model that involves consumers and finance managers of auto dealers. 

Importantly, it allows for number biases from both parties. The proposed model can explain the bunching 

phenomenon and the differential interest rates shown in data.  

3.1. Nash Bargaining  

Because of the discretionary markup policy in indirect auto financing, I characterize the realized monthly 

payments as the bargaining outcome between consumers and finance managers. I assume that, by the time 

of discussing the loan arrangement, consumers have already chosen the car they want to buy and have 

agreed on the car price with the dealer. In addition, consumers have decided the loan amount and loan 

length. What is left for bargaining is the monthly payment, which will determine the loan interest rate.15  

The bargaining outcome can be a result of back-and-forth counter-offers from both parties. Not 

observing these from data, I cannot model the potentially complicated negotiation process. Instead, I borrow 

the standard Nash solution concept and focus on the outcome of the bargaining game. The advantage of 

this approach is that the model can allow for various bargaining processes, which may involve lengthy 

negotiations or reach agreements right away. It has been shown that the Nash solution is a good 

approximation to the equilibrium outcome in non-cooperative strategic alternating bargaining games with 

either time-preference or uncertain termination of the bargaining (e.g., Binmore et al. 1986).  

The key assumption behind the Nash solution concept is that, for auto loan 𝑖, the monthly payment 

𝑝𝑖 observed from the data will maximize a joint-value function as follows: 

𝑣(𝑝𝑖) = (𝑢𝑐(𝑝𝑖) − 𝑢𝑐(𝑟𝑖
𝑐))

𝛼𝑖 ∙ (𝑢𝑓(𝑝𝑖) − 𝑢𝑓(𝑟𝑖
𝑓

))
1−𝛼𝑖

     (1) 

In this value function, 𝑢𝑐(𝑝𝑖) represents the payoff function for the consumer, and 𝑢𝑓(𝑝𝑖) the payoff 

function for the finance manager. The reservation price for the consumer is 𝑟𝑖
𝑐, and for the finance manager 

is 𝑟𝑖
𝑓
. Thus, 𝑢𝑐(𝑝𝑖) − 𝑢𝑐(𝑟𝑖

𝑐) represents the surplus for the consumer and 𝑢𝑓(𝑝𝑖) − 𝑢𝑓(𝑟𝑖
𝑓

) the surplus for 

the finance manager.  Finally, 𝛼𝑖 is the consumer’s relative bargaining power, which ranges from 0 to 1, 

and the finance manager’s bargaining power is 1 − 𝛼𝑖. To maximize the joint-value function, 𝑝𝑖 has to be 

within the range where both the consumer and the finance manager enjoy positive surpluses; otherwise, the 

                                                           
15 Consumers could instead face a menu of loan schedules, each with a unique combination of loan amount, loan 

length and monthly payment. Even in this case, there can still be room for negotiation on the actual monthly payments, 

after consumers have selected the loan amount and length. The identification issue will be further discussed in section 

4 in the paper. 
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negotiation will break down. The larger the bargaining power of one party, the larger the surplus it will gain 

from the bargaining. 

To model the reservation prices, I use the institutional details that a bank or a credit union will offer 

the finance manager a bank buy rate which is based on some loan and consumer characteristics (e.g., credit 

score) 𝑋𝑖. This buy rate determines a monthly payment 𝑝(𝑋𝑖). I assume that the finance manager will not 

accept a monthly payment lower than 𝑝(𝑋𝑖),16 and therefore 

𝑟𝑖
𝑓

= 𝑝(𝑋𝑖)          (2) 

Next, I assume there is a maximum interest rate, which uniquely determines a monthly payment 𝑝(𝑋𝑖), 

which the consumer can obtain from outside sources (e.g., from her own bank). The consumer will not 

accept a monthly payment higher than 𝑝(𝑋𝑖). Therefore, the reservation for consumers is to pay 𝑝(𝑋𝑖),  

𝑟𝑖
𝑐 = −𝑝(𝑋𝑖)          (3) 

3.2. Payoff Functions 

The consumer’s payoff decreases with the monthly payment. Suppose she evaluates the cost of the payment 

without biases, her payoff function would be 𝑢𝑐(𝑝𝑖) = −𝑝𝑖, and her surplus from the negotiation is 𝑝(𝑋𝑖) −

𝑝𝑖. Likewise, if the finance manager can evaluate the monetary return of the payment without biases, his 

payoff function would be 𝑢𝑓(𝑝𝑖) = 𝑝𝑖, and his surplus is 𝑝𝑖 − 𝑝(𝑋𝑖).  

The model allows for two types of biases with numbers, the extent of which will be estimated from 

the data. The first type captures the discontinuity in the perceived value when payments cross $100 marks. 

This helps explain the high level of bunching at $99- and $00-ending loans. Let 𝑑(𝑝𝑖) be the digit in the 

hundredth place for payment 𝑝𝑖, e.g., 𝑑($400) = 4 and 𝑑($399) = 3. I use a specification 𝛿𝑐 ∙

[𝑑(𝑝(𝑋𝑖)) − 𝑑(𝑝𝑖)] to model the discontinuity in the consumer’s perceived value. Model parameter 𝛿𝑐 

captures the discontinuous change in consumer’s payoff every time payment 𝑝𝑖 crosses $100 marks. This 

bias captures the effect that $399 may be perceived to be much lower than $400. Similarly, the discontinuity 

                                                           
16 This assumption can be violated if the auto dealer is willing to take a loss from financing so that it can gain from 

selling the car and add-on services. In the data sample, I exclude loans with APRs lower than 1.9% (see the discussion 

in the data section) to avoid mis-specifying the reservation prices for those loans.  
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for the finance manager is specified as 𝛿𝑓 ∙ [𝑑(𝑝𝑖) − 𝑑 (𝑝(𝑋𝑖))]. Model parameter 𝛿𝑓 captures the 

discontinuous change in finance manager’s payoff when payment 𝑝𝑖 crosses $100 marks.17 

The second type of bias is that the sensitivity to $1 change in payment may differ as the payment 

increases to the next $10 level. This bias helps explain the observed payments bunching at $9- and $0-

endings, as well as the increasing number of loans from $1- to $8-ending. Let ⌈𝑝𝑖⌉10 be the number that 

rounds up payment 𝑝𝑖 to the next $10 level. For example, ⌈$389⌉10 = ⌈$390⌉10 = $390. I use a 

specification, 101−𝜌𝑐
∙ (⌈𝑝𝑖⌉10 − 𝑝𝑖)𝜌𝑐

− (⌈𝑝𝑖⌉10 − 𝑝𝑖), to allow for curvature in the consumer’s payoff 

function. The functional form ensures that this bias goes away when 𝑝𝑖 ends in $0, and that the payoff is 

monotonic in 𝑝.18 Depending on the parameter 𝜌𝑐, the consumer’s payoff function can be concave (0 <

𝜌𝑐 < 1), convex (𝜌𝑐 > 1) or linear (𝜌𝑐 = 1) within the $10 range19. The payoff curvature captures the 

effect that the perceived difference between payments with $6- and $7-endings can be different from that 

between $5- and $6-endings. Likewise, the effect on the finance manager is represented by (⌈𝑝𝑖⌉10 − 𝑝𝑖) −

101−𝜌𝑓
∙ (⌈𝑝𝑖⌉10 − 𝑝𝑖)𝜌𝑓

, where model parameter 𝜌𝑓 determines the curvature of the finance manager’s 

payoff function.  

Combining the two biases, the consumer’s payoff function is  

𝑢𝑐(𝑝𝑖) = −𝑝𝑖 + 𝛿𝑐 ∙ [𝑑(𝑝(𝑋𝑖)) − 𝑑(𝑝𝑖)] + (101−𝜌𝑐
∙ (⌈𝑝𝑖⌉10 − 𝑝𝑖)𝜌𝑐

− (⌈𝑝𝑖⌉10 − 𝑝𝑖)) (4) 

and the finance manager’s payoff function is 

𝑢𝑓(𝑝𝑖) = 𝑝𝑖 + 𝛿𝑓 ∙ [𝑑(𝑝𝑖) − 𝑑 (𝑝(𝑋𝑖))] + ((⌈𝑝𝑖⌉10 − 𝑝𝑖) − 101−𝜌𝑓
∙ (⌈𝑝𝑖⌉10 − 𝑝𝑖)𝜌𝑓

) (5) 

To better illustrate the effect of the biases on the payoff functions, I plot several examples under 

different parameter values in Figure 3. The length of arrows represents the payoff difference for $1 change 

                                                           
17 For the consumer, 𝑑(𝑝(𝑋𝑖)) is included as a scaling constant, so that when 𝑝𝑖 = 𝑝(𝑋𝑖), the consumer payoff 

discontinuity will become zero. Similarly, for the finance manager, 𝑑 (𝑝(𝑋𝑖)) is also a scaling constant to restrict 

the manager’s payoff discontinuity to zero when 𝑝𝑖 = 𝑝(𝑋𝑖). 
18 A more general specification is −(⌈𝑝𝑖⌉10 − 𝜆 ∙ (⌈𝑝𝑖⌉10 − 𝑝𝑖)𝜌𝑐

). I choose 𝜆 = 101−𝜌𝑐
 to satisfy the following 

conditions: 1) When 𝜌𝑐 = 1, 𝜆 = 1 as such the payoff function is linear. 2) To ensure payoff monotonicity, 𝜆 needs 

to satisfy 0 < 𝜆 < 10 ∗ 9−𝜌𝑐
. 

19 This can be seen by examining the first and second order derivative of the consumer’s payoff function within the 

$10 range. The first order derivative is 
𝜕𝑢𝑐(𝑝𝑖)

𝜕𝑝𝑖
= −101−𝜌𝑐

∙ 𝜌𝑐 ∙ (⌈𝑝𝑖⌉10 − 𝑝𝑖)𝜌𝑐−1 < 0. The sign of the second order 

derivative depends on 𝜌𝑐, 
𝜕2𝑢𝑐(𝑝𝑖)

𝜕𝑝𝑖
2 = 101−𝜌𝑐

∙ 𝜌𝑐 ∙ (𝜌𝑐 − 1) ∙ (⌈𝑝𝑖⌉10 − 𝑝𝑖)𝜌𝑐−2. It is negative when 0 < 𝜌𝑐 < 1, which 

corresponds to a concave consumer’s payoff function within the $10 range, and positive when 𝜌𝑐 > 1, which 

corresponds to a convex consumer’s payoff function,  



17 
 

in payment. I assume that the payoff discontinuities over $100 marks are 𝛿𝑐 = 1.5 and 𝛿𝑓 = 1. The 

curvature of the payoff function is determined by 𝜌𝑐 and 𝜌𝑓. When 𝜌𝑐 = 0.7, consumers are more sensitive 

to the change in payment as it increases to the next $10 level (Figure 3, top left), with the largest perceived 

difference between $9- and $0-ending payments. When the payment crosses $400, there is an additional 

drop of 𝛿𝑐. When 𝜌𝑐 > 1, consumers are less sensitive to payment changes with larger ending digits (Figure 

3, bottom left). Similarly, the top right diagram of Figure 3 shows that with 𝜌𝑓 = 0.8, the finance manager 

is more sensitive to payment changes with larger ending digits but the curvature is less than that of the 

consumer’s payoff as 𝜌𝑓 > 𝜌𝑐. The bottom right diagram of Figure 3 shows that when 𝜌𝑓 = 1.2, finance 

managers are less sensitive to payment changes with larger ending digits. 

Figure 3. Examples of Consumer’s and Finance Manager’s Payoff Functions 
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3.3. Bargaining Power  

The relative bargaining power 𝛼𝑖 in equation (1) can be heterogeneous among consumers. For example, 

minority or lower income consumers may be more likely to have a lower bargaining power. The consumer 

bargaining power is specified as follows 

𝛼𝑖 =
1

1+𝑒𝑥𝑝(𝜇𝑎+𝑋𝑖𝛽+𝜖𝑖)
         (6) 

where 𝑋𝑖 includes a vector of loan characteristics including the loan amount and loan length, and consumer 

characteristics including credit score, age, zip-code level household income, house value, and the proportion 

of African Americans and Hispanics in the population. The stochastic component 𝜖𝑖 captures the 

heterogeneity in bargaining power beyond what is explained by 𝑋𝑖. I assume that it follows a normal 

distribution, i.e., 𝜖𝑖~𝑁(0, 𝜎𝜖
2). The parameters 𝜇𝑎 , 𝛽 and 𝜎𝜖 govern the distribution of bargaining power in 

the consumer population.20  

Note that the Nash solution concept predicts that the final monthly payment depends on the 

bargaining power of the consumer relative to the finance manager, without the need for details about how 

the two parties bargain back-and-forth. The model does not require multiple rounds of negotiations. If the 

finance manager has full information on the joint value function, he could offer the payment predicted by 

the model at the beginning and, if the consumer also has full information, she would immediately accept. 

In this sense, the proposed bargaining model can generalize to environments where back-and-forth price 

negotiations are not frequently observed. 

3.4. Payments Bunching and Differential Interest Rates  

In this section, I discuss how the bargaining model with number biases can rationalize the data patterns of 

bunching payments and differential interest rates using a simple stylized model. Note that in the model a 

consumer with a large bargaining power 𝛼𝑖 can push the monthly payment closer to the lower bound 𝑝(𝑋𝑖) 

and away from the upper bound 𝑝(𝑋𝑖). This is the case even though the consumer and the finance manager 

have number biases. The number biases, however, create discontinuities in the payoff functions and make 

the final monthly payment different from that when the biases do not exist. 

3.4.1. Bunching Payments  

To illustrate how bunching payments come from the model, I will use a simplified version of payoff 

functions, where there are only discontinuities in the payoff function between $9- and $0-ending payments. 

                                                           
20 Dealer attributes, such as the dealership for different car manufacturers or the size of the dealer, could also affect 

the relative bargaining power. These attributes are not observed from the data.  
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With only consumer biases, payments bunch at $9-ending and few payments end at $0. Let 𝑧 represent a 

$9-ending payment, and 𝑧 + 1 is $0-ending with $1 more each month. Suppose the consumer’s payoff 

function has a discontinuity of 𝛿𝑐 at 𝑧, that is, 𝑢𝑐(𝑝) = −𝑝 if 𝑝 = 𝑧 and −𝑝 − 𝛿𝑐 if 𝑝 = 𝑧 + 1. Assume 

that the finance manager’s payoff is linear with no bias, that is, 𝑢𝑓(𝑝) = 𝑝. Nash bargaining solution 

concept predicts that the payment 𝑝 maximizes the joint value function. I focus on comparing the likelihood 

of the payment to be at 𝑧 or 𝑧 + 1 by evaluating 𝑙𝑜𝑔 (
𝑣(𝑧+1)

𝑣(𝑧)
) = 𝛼 ∙ 𝑙𝑜𝑔 (1 −

1+𝛿𝑐

𝑝̅−𝑧
) + (1 − 𝛼) ∙

𝑙𝑜𝑔 (1 +
1

𝑧−𝑝
). Since 𝑙𝑜𝑔 (1 −

1+𝛿𝑐

𝑝̅−𝑧
) decreases with the bias 𝛿𝑐 > 0, log (

𝑣(𝑧+1)

𝑣(𝑧)
) is more likely to be 

negative, compared with the case when 𝛿𝑐 = 0. This implies that loan payments are more likely to bunch 

at 𝑧 ($9-ending). In contrast, there will be few payments at 𝑧 + 1 ($0-ending).  

With the same logic, the bias of the finance manager will lead to bunching at $0-ending loans, 

represented by 𝑧 + 1. Only when both consumers and finance managers are subject to biases (i.e. 𝛿𝑐 > 0 

and 𝛿𝑓 > 0), can payments bunch at $9 and $0. Furthermore, the number of loans with payments ended at 

$9 will increase as the consumer’s number bias 𝛿𝑐 becomes larger. The increase is drawn from loans with 

payments ending at $0, $1, and so on, when the bias does not exist. Similarly, the number of loans with 

payments ending at $0 is higher with larger bias 𝛿𝑓 from the finance manager, and the increase is drawn 

from loans with payments ending at $9, $8, and so on. 

The intuition of the bunching pattern is that, with a large drop in the payoff function for consumers 

from $9- to $0-ending payments, it is hard for the finance manager to increase payments from $9- to $0-

ending or beyond. Therefore, there are more loans with payments bunched at $9-ending digits. Likewise, a 

large drop in the payoff function for the finance manager from $0 to $9 makes it hard for consumers to 

bargain down from $0-ending payments, leading more payments to bunch at $0-ending digits.  

3.4.2. Difference in Interest Rates  

The systematic interest rate difference between $9- and $0-ending loans reflects the bargaining power 

difference for consumers with these loans. Using the same simplified example above, I explore how the 

bargaining power 𝛼 influences the likelihood of a loan payment to settle at 𝑧 or 𝑧 + 1. This is done through 

examining how 𝑙𝑜𝑔 (
𝑣(𝑧+1)

𝑣(𝑧)
) = 𝛼 ∙ 𝑙𝑜𝑔 (1 −

1+𝛿𝑐

𝑝̅−𝑧
) + (1 − 𝛼) ∙ 𝑙𝑜𝑔 (1 +

1+𝛿𝑓

𝑧−𝑝−𝛿𝑓) changes with the 

bargaining power. As the bargaining power varies, the implied interest rates will also be different for loans 

with 𝑧 and 𝑧 + 1 payments. 

Bargaining power has two opposite effects on 𝑙𝑜𝑔 (
𝑣(𝑧+1)

𝑣(𝑧)
). The first effect is that, when 𝛼 is low, 

the payment level is closer to the consumer’s reservation price 𝑝̅ and farther away from the finance 
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manager’s reservation price 𝑝. Therefore, log (1 −
1+𝛿𝑐

𝑝̅−𝑧
) and log (1 +

1+𝛿𝑓

𝑧−𝑝−𝛿𝑓) are both smaller, and thus 

𝑙𝑜𝑔 (
𝑣(𝑧+1)

𝑣(𝑧)
) is more likely to be negative. As such the payment is more likely to be set at 𝑧. The second 

effect is that, when 𝛼 is low, the relative weight of log (1 −
1+𝛿𝑐

𝑝̅−𝑧
) (which is negative) is smaller and the 

weight of 𝑙𝑜𝑔 (1 +
1+𝛿𝑓

𝑧−𝑝−𝛿𝑓) (which is positive) becomes larger. Thus, 𝑙𝑜𝑔 (
𝑣(𝑧+1)

𝑣(𝑧)
) is more likely to be 

positive, and there will be more loan payments bunching at 𝑧 + 1.  

Figure 4. Bunching at $9- and $0-ending Payments and Bargaining Power 

 Panel (A). Bunching patterns when the consumer’s bias is larger (𝛿𝑐 = 0.5, 𝛿𝑓 = 0.4). 

  

Panel (B). Bunching patterns when the finance manager’s bias is larger (𝛿𝑐 = 0.4, 𝛿𝑓 = 0.5). 
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Which effect dominates depends on the bargaining power and the extent of the discontinuities in 

the consumer’s and the finance manager’s payoff functions. I use a simulation exercise to illustrate the 

relationship. First, I assume the payoff discontinuities are 𝛿𝑐 = 0.5 and 𝛿𝑓 = 0.4 (i.e. the consumer’s bias 

is larger). The finance manager’s reservation price 𝑝 is drawn uniformly from 400 to 500, and the 

consumer’s reservation price is 𝑝̅ = 𝑝 + 50. Panel (A) of Figure 4 plots the proportions of simulated 

payments ended at $9- and $0-ending digits at different levels of 𝛼. When the overall bargaining power is 

high among consumers (i.e., their 𝛼’s are in the region of 0.5-1), the first effect prevails. That is, the 

proportion of $9-ending payments decreases among consumers with higher 𝛼 within the range (see the left 

diagram). In contrast, the proportion of $0-ending loans increases among consumers with higher 𝛼 (see the 

right diagram). Given that the interest rates are negatively related to the bargaining power, these results 

suggest that, when consumers’ bargaining power is high in general, those who pay $9-ending loans are 

more likely to pay a higher interest rate, and those who pay $0-ending loans are more likely to pay a lower 

interest rate, when compared with the others.  

In the region where consumers’ bargaining power is low overall (i.e., their 𝛼’s are in the region of 

0-0.5), the second effect prevails, and therefore the proportion of $9-ending loans increases and the 

proportion of $0-ending loans decreases, among consumers with higher 𝛼. Consequently, we should 

observe those who pay $9-ending loans are more likely to pay a lower interest rate, and those who pay $0-

ending loans are more likely to pay a higher interest rate, when consumers’ bargaining power is low in 

general. 

Next, I assume the payoff discontinuities are 𝛿𝑐 = 0.4 and 𝛿𝑓 = 0.5 (i.e. the finance manager’s 

bias is larger), and repeat the simulation. Panel (B) of Figure 4 graphically illustrates the results. The data 

pattern is opposite to that in Panel (A). That is, when consumers’ bargaining power is high in general (i.e., 

their 𝛼’s are in the region of 0.5-1), the model predicts those who pay $9-ending loans are more likely to 

pay a lower interest rate, and those who pay $0-ending loans are more likely to pay a higher interest rate. 

In contrast, when the overall bargaining power is high among consumers (i.e., their 𝛼’s are in the region of 

0-0.5), $9-ending loans are more likely to pay a high interest rate and $0-ending loans are more likely to 

pay a low interest rate.  

To conclude, the relationship between the $9- and $0-ending loans and their interest rates depends 

on the consumer bargaining power and the extent of the biases of both sides in my model. Note that the 

model is flexible enough to predict not only the relationship I observe in the data, but also when the 

relationship is the opposite. Consequently, it can be applied to different general contexts when prices are 

determined by the two-sided bargaining. 
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4. Model Estimation  

The data that I use for estimating the proposed model includes the monthly payment 𝑝𝑖, and the loan and 

consumer characteristics 𝑋𝑖. The set of model parameters is Θ = {𝛿𝑐, 𝛿𝑓 , 𝜌𝑐 , 𝜌𝑓; 𝜇𝑎 , 𝛽, 𝜎𝜖}. The first four 

parameters govern the number biases in the payoff function, and the latter three determine the bargaining 

power distribution. In this section, I discuss the estimation strategy, the details of the estimation procedure, 

and the model identification. 

4.1 Moment Conditions with Equality Constraints 

I use the simulated method of moments (SMM) for model estimation because deriving a likelihood function 

is challenging with the stochastic term 𝜖𝑖 entering the joint value function non-linearly (equation (6)). 

Another advantage of using the SMM is that consistent estimates can be obtained with a finite number of 

simulations to construct the moment conditions. I utilize the first and second moment conditions to identify 

the mean and dispersion of bargaining power. In the estimation, I draw 𝜖𝑖
𝑠𝑖𝑚 for every loan from the 

distribution 𝜖𝑖~𝑁(0, 𝜎𝜖
2), where 𝑠𝑖𝑚 = 1, … , 𝑁𝑆. Given 𝜖𝑖

𝑠𝑖𝑚, I simulate the monthly payment, 𝑝𝑖
𝑠𝑖𝑚(𝑋𝑖 , Θ) 

based on observed covariates 𝑋𝑖 and assumed model parameters Θ. Let 𝑝𝑖
𝑠(𝑋𝑖 , Θ) =

1

𝑁𝑆
∑ 𝑝𝑖

𝑠𝑖𝑚(𝑋𝑖, Θ)𝑁𝑆
𝑠𝑖𝑚=1 , 

and let Θ0 be the true parameters. The first and second moment conditions are as follows: 

𝐸[𝑝𝑖 − 𝑝𝑖
𝑠(𝑋𝑖, Θ0)|𝑋𝑖] = 0        (7.a) 

𝐸 [(𝑝𝑖 − 𝐸(𝑝𝑖|𝑋𝑖))2 − (𝑝𝑖
𝑠(𝑋𝑖 , Θ0) − 𝐸(𝑝𝑖

𝑠(𝑋𝑖 , Θ0)))
2

|𝑋𝑖] = 0    (7.b) 

where 𝑝𝑖 is the observed payment. 𝐸(𝑝𝑖|𝑋𝑖) is the average observed monthly payments, and 𝐸(𝑝𝑖
𝑠(𝑋𝑖 , Θ0)) 

is the average simulated monthly payments. At true model parameters Θ0, the differences between the true 

and the simulated payment as well as between the variance of true and simulated payments, are uncorrelated 

with instruments 𝑋𝑖. The estimated Θ̂ set the sample analog of moments as close as possible to zero. 

With the moment conditions alone, however, it is still difficult to pin down the number biases 

parameters. This is because these parameters are uniquely mapped to the distribution of loans with different 

ending digits. To estimate the number biases parameters, I impose a set of linear equality constraints while 

minimizing the criterion function constructed from the moment conditions. Let 𝑒(𝑝𝑖) be the ending digit of 

payment 𝑝𝑖, i.e., 𝑒(𝑝𝑖) = 𝑝𝑖 − ⌊
𝑝𝑖

10
⌋ ∗ 10, where ⌊𝑥⌋ is an operator that removes decimal places from x (e.g. 

⌊29.9⌋ = 29). Also, let  

𝐸[𝑑] =
1

𝑁
∑ {𝑒(𝑝𝑖) = 𝑑}𝑁

𝑖=1 , and 
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𝐸[𝑑](Θ)̂ =
1

𝑁
∑

1

𝑁𝑆
∑ {𝑒 (𝑝𝑖

𝑠𝑖𝑚(𝑋𝑖, Θ)) = 𝑑}𝑁𝑆
𝑠𝑖𝑚=1

𝑁
𝑖=1   

for all ending digits 𝑑 = 0,1, … 9, where {∙} is an indicator function that takes the value of 1 if the logical 

expression inside the bracket is true, and 0 otherwise. The equality constraint I impose in the estimation is 

 𝐸[𝑑] = 𝐸[𝑑](Θ)̂          (8) 

That is, the proportion of payments ending at each digit 𝑑 is the same among observed and simulated 

payments. These equality constraints help identify the number biases parameters. 

4.2 Details of the Estimation Procedure 

Before estimating the model parameters, I estimate the consumer reservation price, −𝑝(𝑋𝑖), and the finance 

manager reservation price, 𝑝(𝑋𝑖), as the first step (see equations 2 and 3). I assume that the finance manager 

reservation price is determined by the bank buy rate, which is the cost of the loan for the dealer. The bank 

buy rate is approximated by the lower bound of APRs for a given loan type that has a similar loan amount, 

length, credit score, and time period, in the data21. For loan types with few observations in data, this method 

will give an imprecise approximation. To solve this problem, I estimate the relationship of the bank buy 

rate and relevant covariates22 in a regression, using data from loans types with at least 50 observations. The 

regression coefficients are then used to predict the bank buy rate for all loan types, including ones with few 

observations in data. To estimate the consumer reservation price, I assume that the interest rate gap between 

the consumer and finance manager reservation varies only across time periods but not among consumers.23 

I estimate the gap in each period of the data24. The consumer reservation interest rates are equal to the 

estimated gap plus the bank buy rate. With the estimated bank buy rate and consumer reservation interest 

rate, I calculate the consumer and finance manager reservation prices, which are expressed as monthly 

payments, using the observed loan amount and loan length. 

                                                           
21 Empirically, I only use loans above the 5th percentile of the APRs, among loans of the same type, to avoid outlier 

issues. Loans are similar if borrowers have the same credit score, within a range of loan amount (within $5000) and 

loan length (within 1 year) and originated in the same month. 
22 I use third-order polynomials of credit score, loan amount and loan length, plus year-month fixed effects, as 

covariates. 
23 This assumption is reasonable if the interest rate from the outside source that a consumer can obtain the auto loan 

also uses the same rule that determines 𝑝(𝑋𝑖), plus a fixed markup. To the consumer, because she will have to search 

for the outside source and apply separately, there is also an additional cost to seek a loan from this source.  The fixed 

markup plus the additional cost is represented by the difference between 𝑝(𝑋𝑖) and 𝑝(𝑋𝑖), which does not vary by 

consumer types. If this assumption is violated, the error of measuring 𝑝(𝑋𝑖) will attribute to the bargaining power in 

the estimation. For example, consumers with a low reservation price, such as those who obtain a pre-approval loan 

from their own bank, will be treated as those who have a high bargaining power in the model. 
24 Similar to using the 5th percentile as the lower bound, I only use loans below the 95th percentile of APRs to avoid 

outlier issues. This way, the gap between lower and upper bounds covers 90% of all observed interest rates. 
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With  𝑝(𝑋𝑖) and 𝑝(𝑋𝑖), I can simulate monthly payment 𝑝𝑖
𝑠𝑖𝑚(𝑋𝑖 , Θ) given simulated 𝜖𝑖

𝑠𝑖𝑚, which 

maximizes the joint value function in equation (1). As there are discontinuities in the payoff functions, 

𝑝𝑖
𝑠𝑖𝑚(𝑋𝑖 , Θ) cannot be solved analytically using the first-order condition. Since all the monthly payments 

in the data are integers (e.g., $399), in the model estimation I calculate the joint value for each integer value 

between 𝑝(𝑋𝑖) and 𝑝(𝑋𝑖), and choose the one with the highest value as the simulated payment. 

Finally, I use a two-step feasible GMM estimation method. In step 1, I set the weighting matrix 𝑊 

to be the identity matrix and compute estimate Θ̂(1). In step 2, I calculate the optimal weighting matrix 

Σ̂ = (
1

𝑁
∑ 𝑔(𝑝𝑖, 𝑋𝑖, Θ̂(1))

𝑇
𝑔(𝑝𝑖, 𝑋𝑖 , Θ̂(1)) 𝑁

1 )
−1

,   

where 𝑔(𝑝𝑖, 𝑋𝑖 , Θ̂(1)) is an 𝑁 × 𝐾 matrix that represents the sample moments (𝑁 is the number of loans and 

𝐾 = 1825 is the number of moments I use). This way it takes account of the variances and covariance 

between the moment conditions. Model estimates Θ̂ are re-computed with the updated weighting matrix.  

4.3. Identification 

4.3.1. Identification of Bargaining Power Parameters 

With 𝑝(𝑋𝑖) and 𝑝(𝑋𝑖) that are computed in the first step, parameters associated with the relative bargaining 

power, {𝜇𝑎 , 𝛽}, are identified from how close the realized monthly payment 𝑝𝑖 is to 𝑝(𝑋𝑖) relative to 𝑝(𝑋𝑖). 

If the average payment across all consumers is close to 𝑝(𝑋𝑖), it implies that the overall consumer 

bargaining power is large, which identifies 𝜇𝑎. If the average payment of consumers with specific 𝑋𝑖 is 

closer to 𝑝(𝑋𝑖) than other consumers to their lower bound payments, this implies that the consumer 

bargaining power associated with 𝑋𝑖 is larger, which identifies 𝛽. Furthermore, the identification of the 

variance 𝜎𝜖 comes from the variation of monthly payments from consumers with the same 𝑋𝑖.  

4.3.2. Identification of Number Biases Parameters 

The identification for the number biases parameters {𝛿𝑐 , 𝛿𝑓 , 𝜌𝑐 , 𝜌𝑓} comes from the distribution of the 

number of loans ending at different digits. The simplified example in Figure 4 is a good illustration. Given 

that 𝜇𝑎, 𝛽, and 𝜎𝜖 are identified, the distribution of 𝛼’s across consumers is identified. Suppose 𝛼’s are 

populated in the low bargaining power region (i.e. between 0 and 0.5). If the loan payments of the majority 

of consumers whose expected bargaining power, i.e., 𝐸(𝛼𝑖|𝑋𝑖 , 𝜇𝑎 , 𝛽, 𝜎𝜖), is low end at $9, while that of 

                                                           
25 I use 9 instruments for model estimation, including constant, loan amount, loan length, credit score, age, African 

American percentage, Hispanic percentage, income, and average house value. With first and second order moment 

conditions (Equation 7a and 7b), there are a total of 𝐾 = 9 ∗ 2 = 18 number of moments. 
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consumers whose expected bargaining power is high end at $0, this implies that the extent of consumers’ 

biases is smaller than that of finance managers’ (i.e., Panel (B) of Figure 4). Suppose 𝛼’s are in the high 

bargaining power region (i.e. between 0.5 and 1). In this case the above bunching pattern will imply the 

opposite for the number biases. 

Figure 5. Bunching Patterns with Different Number Biases Parameters 

 

To illustrate the identification argument beyond the simplified example which only focuses on $9- 

and $0-ending loans, Figure 5 plots the distribution of the simulated monthly payments under different sets 

of biases parameters, with bargaining power 𝛼 drawn from a uniform distribution between 0 and 1. I start 

off with a benchmark case where there are no number biases for consumers or finance managers, i.e., 𝛿𝑐 =

0, 𝛿𝑓 = 0, 𝜌𝑐 = 1, 𝜌𝑓 = 1. As shown in the top left diagram, the distribution of payments is smooth without 

loan payments bunching at any ending digits. When 𝛿𝑐 = 0, 𝛿𝑓 = 0, 𝜌𝑐 = 0.98, and 𝜌𝑓 = 1, i.e., the only 

bias is that consumers become more sensitive to payment change at larger ending digits, payments will 
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bunch at $9-ending and there are very few $0-ending loans, as shown in the top right diagram. This is 

because payments that would have ended at $0 (with $1 more) in the benchmark case will end up at $9 

now. Also, the number of loans with larger ending digits is increasing in the $10 range. Bunching at both 

$9- and $0-endings happens when consumers and finance managers are both more sensitive to payment 

change with larger ending digits, as shown in the bottom left diagram using parameters 𝛿𝑐 = 0, 𝛿𝑓 =

0, 𝜌𝑐 = 0.95, and 𝜌𝑓 = 0.9505. As payment goes from $9- to $0-ending, consumers have a large payoff 

drop while finance managers have a large payoff gain, leading to bunching at both $9- and $0-endings. In 

all of the above cases, bunching at $99- and $00-ending digits are not more prominent, which is inconsistent 

with the data observation (see Figure 1). The bottom right diagram of Figure 5 demonstrates the case when 

𝛿𝑐 = 1, 𝛿𝑓 = 0.995, 𝜌𝑐 = 0.95, and 𝜌𝑓 = 0.9505. That is, both consumers’ and finance managers’ payoff 

functions have a discontinuity at $100 marks. In this case, we observe a higher level of bunching over $100 

marks.  

4.3.3. Monte Carlo Study 

I use a Monte Carlo study to show that the proposed estimation strategy can successfully recover the true 

parameters. I simulate 100,000 loans by randomly drawing loan amount and loan length from the data, and 

simulate the monthly payment for each loan from the model using the “true” parameter values, as shown in 

Column (1) of Table 5.  

I estimate the model using the simulated data set. I use bootstrapping and perform the estimation 

100 times, each with 100,000 loans from resampling the data set. The average parameter estimates from 

the 100 estimations and their bootstrapped standard errors are reported in Column (2) of Table 5. The 

parameter estimates are very close to the true values, with small standard errors, showing that the true model 

parameters can be recovered with the proposed estimation strategy.  

Without using the equality constraints in equation (8), however, the number bias parameters are 

not well identified. Column (3) of Table 5 shows that 𝛿𝑐 and 𝛿𝑓 are under-estimated. Furthermore, all of 

the number biases parameters have large standard errors. This shows that the payments bunching data 

pattern, captured by the equality constraints of the number of loans at each ending digit, is crucial to pin 

down the number biases parameters. 

Finally, even if researchers are only interested in estimating the distribution of consumers’ 

bargaining power, accounting for number biases in the payoff function is still important. To illustrate this 

point, I estimate a bargaining model that imposes no biases for consumers and finance managers (i.e. 𝛿𝑐 =

0, 𝛿𝑓 = 0, 𝜌𝑐 = 1, 𝜌𝑓 = 1). Results are shown in Column (4) of Table 5. The bargaining power estimates 
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are significantly different from the true values, leading to incorrect inference of bargaining power 

distribution among different consumer groups. 

Table 5. Monte Carlo Simulation     

 True 

Parameters 

 

Proposed 

Estimation 

Strategy:  

Estimate (s.e.) 

No Equality 

Constraints: 

Estimate (s.e.) 

No Number 

Biases: 

Estimate (s.e.) 

 (1) (2) (3) (4) 

𝜌𝑐: Consumer’s payoff curvature 
0.8900 

0.8911 

(0.0079) 

0.8779 

(0.0812) 

 

𝜌𝑓: Finance manager’s payoff 

curvature 
0.8915 

0.8927 

(0.0094) 

0.8799 

(0.1048) 

 

𝛿𝑐: Consumer’s payoff discontinuity 

at $100 
0.7400 

0.7340 

(0.0861) 

0.5552 

(0.3108) 

 

𝛿𝑓: Finance manager’s payoff 

discontinuity at $100 
0.7200 

0.7141 

(0.0857) 

0.5576 

(0.3255) 

 

𝑢𝑎: Bargaining power constant 
-0.7500 

-0.7278 

(0.0790) 

-0.7294 

(0.0752) 

-0.6376 

(0.0469) 

𝜎𝜖: Standard deviation of bargaining 

power  
0.8190 

0.8230 

(0.0643) 

0.7626 

(0.0799) 

0.7394 

(0.0408) 

𝛽1: Loan amount in bargaining power 

function 
-0.0500 

-0.0500 

(0.0010) 

-0.0492 

(0.0015) 

-0.0458 

(0.0008) 

𝛽2: Loan length in bargaining power 

function 
0.2000 

0.1969 

(0.0131) 

0.1946 

(0.0120) 

0.1764 

(0.0075) 

5. Results 

In this section, I will first discuss model estimation results for number biases and bargaining power 

parameters. For the ease of computation, the model is estimated from a randomly selected sample of 1 

million loans. I will also discuss several alternative explanations for the observed data patterns. Next, I will 

use the estimation results to conduct counterfactuals. 

5.1. Model Estimation Results 

Model estimation results are reported in Table 6. The first four parameters represent the number biases of 

consumers and finance managers. The curvatures of the payoff functions for both parties, 𝜌𝑐 and 𝜌𝑓, are 

significantly smaller than 1, indicating that the sensitivity to a $1 change in payment increases with a larger 

ending digit (i.e., when payments are closer to the next $10 level), and it is the highest when the payment 

moves from $9- to $0-ending. For consumers, the payoff drop for a $1 increase from a $9-ending payment 

is $1.27, significantly larger than $1. It represents the perceived payoff difference between $9- and the next 
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$0-ending payments, 10 − 101−𝜌𝑐
∙ (10 − 9)𝜌𝑐

. The gap from a $1 change in payment monotonically 

decreases at smaller ending digits, and it is the smallest from $0- to $1-ending payments at $0.90, 

significantly smaller than $1. The payoff function for finance managers is similar to that of consumers. 

Table 6. Estimation Results   

 Estimate Standard Error 

𝜌𝑐: Consumer’s payoff curvature 0.8963 0.0029 

𝜌𝑓: Finance manager’s payoff curvature 0.8981 0.0028 

𝛿𝑐: Consumer’s payoff discontinuity at $100 0.7841 0.0311 

𝛿𝑓: Finance manager’s payoff discontinuity at $100 0.7555 0.0307 

𝑢𝑎: Bargaining power constant 5.1985 0.1401 

𝜎𝜖: Standard deviation of bargaining power 1.1665 0.0098 

𝛽: Bargaining power covariates: 

Loan amount (in $1000) -0.0264 0.0041 

Loan length (in years) 0.0563 0.0054 

Credit score  -0.0090 0.0002 

Age 0.0022 0.0013 

Income (in $1 million) -1.2464 0.0634 

African American percentage 0.5032 0.0433 

Hispanic percentage 0.7147 0.0401 

Average house value (in $1 million) -0.0614 0.0029 

There is a further discontinuity in the perceived payoff functions for both consumers and finance 

managers when payments cross $100 marks, captured by 𝛿𝑐 and 𝛿𝑓. For consumers, the perceived 

difference for a $1 increase from $99- to $00-ending loans is $2.05, which equals the payoff drop of $1.27 

from $9- to $0-ending plus the additional discontinuity of 𝛿𝑐 =0.78. The level of discontinuity is similar 

for finance managers, whose perceived difference between $00- and $99-ending loans is $2.02. The 

additional discontinuities in payoffs contribute to the higher levels of bunching around $100 marks. The 

existence of the discontinuities is consistent with findings in the prior literature in consumers’ payoff 

functions (e.g., Stiving and Winer 1997, Lacetera et al. 2012). I show that, even for finance managers who 

have rich experience in negotiations, they are still prone to human biases the same as consumers. This paper 

therefore adds to the existing literatures that document psychological biases among professionals or experts 

in high-stake decision making, such as lawyers, professional traders, and managers in a multinational 

corporation (Coval and Shumway 2000, Birke and Fox 1999, Workman 2012; see Goldfarb et al. 2012 for 

a review of the behavioral models on managerial decision-making). 

The rest of the parameters in Table 6 govern the distribution of bargaining power among 

consumers. The range of 𝛼𝑖 in equation (6) is between 0 and 1. After transformation, the average bargaining 
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power for consumers is 0.77. That is, the overall bargaining power of consumers is larger than that of 

finance managers. One of the possible reasons is that, if the negotiation breaks down, the dealer will lose 

not only the interest markup but also the profit from selling the vehicle and other follow-up services. 

Consumers therefore may have more power when they negotiate financing terms. Regarding other 

parameters, since 𝑋𝑖 in equation (6) appears in the denominator, consumers’ bargaining power is negatively 

correlated with the covariates that have positive parameter estimates. Table 6 shows that the bargaining 

power is higher for consumers with a larger loan amount, shorter loan length, and higher credit score. These 

results are quite intuitive. A consumer who needs a larger loan amount is likely to purchase more expensive 

vehicles and thus can have more power when negotiating financing terms. A loan request from a consumer 

with a higher credit score and a shorter loan length is more likely to be accepted by more banks or credit 

unions, leading to a higher consumer bargaining power. Note that these characteristics have been controlled 

for when I estimate 𝑝(𝑋𝑖) and 𝑝(𝑋𝑖), thus the results imply that the monthly payments of those consumers 

are distributed more densely toward the lower bound of the range. 

Consumers who live in areas with lower average income, lower house value, and higher minority 

representation, and consumers who are older have a lower bargaining power. The results for minority 

consumers have a strong policy implication. To quantify the parameters, I compare the predicted payments 

for an African American and a Hispanic consumer with that for a Caucasian consumer, while holding the 

other variables at the sample average.26 Results show that the African American consumer pays 1.70%, or 

$443, higher total interest payment than the Caucasian consumer. This number is close to that documented 

in Cohen (2012), who used class action litigation data from five captive lenders to show that African 

Americans on average paid between $347 and $508 more than Caucasians in markup. The Hispanic 

consumer’s payment is 2.50%, or $653, higher than that of the Caucasian consumer, all else equal.  

There can be multiple potential reasons why minority consumers are charged a higher markup. The 

first is that there are measurement errors for the estimates of 𝑝(𝑋𝑖) and 𝑝(𝑋𝑖). Suppose banks and credit 

unions charge a higher buy rate for minority consumers, the estimated 𝑝(𝑋𝑖) for these consumers is 

downward-biased and, as a result, the model will wrongly attribute their higher monthly payments to the 

lower bargaining power. This, however, is inconsistent with the institutional reality, as banks and credit 

unions cannot discriminate minorities when setting the buy rate.27 Furthermore, they do not have 

information on the race of consumers when they evaluate loan requests. The second possible reason is that 

                                                           
26 The payment for the African American (Hispanic) consumer is calculated by fixing the African American 

(Hispanic) variable to 1. The payment for the Caucasian consumer is calculated by fixing both African American 

and Hispanic variables to 0. 
27 Equal Credit Opportunity Act (ECOA), enacted in 1974, makes it unlawful for any creditor to discriminate against 

any applicant on the basis of race, color, region, national origin, sex, marital status or age. 
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minority consumers are less resourceful or less informed about alternative financing sources. Finally, the 

higher markup can be due to the propensity to discriminate against African Americans and Hispanics among 

finance managers. If so, finance mangers can be more aggressive when negotiating with minority 

consumers, who will end up paying more than Caucasian consumers on average. I cannot disentangle which 

of these two latter explanations is the real reason. Nevertheless, the results confirm the existence of a 

significant payment gap for consumers with different races (and other characteristics such as income levels) 

due to the discretionary dealer markup practice. 

I simulate the monthly payment for each loan using the estimation results. Figure 6 plots the number 

of loans at each payment level in the true and the simulated data. The two distributions match quite well. 

In particular, simulated payments also bunch at $9- and $0-endings. In addition, the number of loans 

increases from $1- to $8-ending payments within the $10 range.28 Finally, the level of bunching at $99- and 

$00-ending payments is more significant around $100 marks.  

Figure 6. Distribution of Monthly Payments for Actual and Simulated Data 

 

In addition to matching the overall bunching patterns, the model also provides an explanation for 

the heterogeneous levels of bunching among different consumer groups. As shown in Figure 4(A), when 

the consumer’s relative bargaining power is high, which is the case in my empirical application, low 

bargaining power consumers are more likely to get $9-ending loans. Since African American and Hispanic 

consumers are estimated to have a lower bargaining power, they are more likely to get $9-ending loans, 

                                                           
28 I have imposed the equality constraints in the model estimation. In the simulation, however, I do not impose any 

constraints. It still matches well with the data at each payment level. Also, the simulation replicates the overall trend 

and not just the number of loans at different digits in data.  
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which is consistent with the statistics shown in Table 2. Higher income and higher credit score consumers, 

on the other hand, have a higher bargaining power and are less likely to get $9-ending loans.  

The same mechanism explains the systematic interest rate difference for $9- and $0-ending loans. 

Given that low bargaining power consumers are more likely to get $9-ending payments, the average interest 

rate for the loans will be higher than that for other loans. Similarly, consumers with $0-ending loans have 

a higher bargaining power and therefore they have a lower interest rate on average. From the simulated 

data, the difference in interest rate between $9- and $0-ending loans is 0.116%.  

To further evaluate the model performance, I estimate the bargaining model with two alternative 

payoff specifications. They differ in how to incorporate the number bias within the $10 range. In the first 

alternative specification, payoffs change linearly within the $10 range, with a discrete drop in payoffs 

occurring over $10 marks. This specification is similar to the ones used in Lacetera et al. (2012) and Stiving 

and Winer (1997). Although this model can successfully replicate the bunching patterns in simulations, it 

fails to replicate the increase from $1- to $9-ending loans (Figure 1). The second specification uses an 

alternative functional form to capture payoff curvature within the $10 range. Although this model can 

generate the increase from $1- to $9-ending loans as well as the bunching patterns at $9- and $0-endings, 

the fit is clearly not as good as the main model. Details are discussed in Appendix C.  

5.2. Alternative Explanations 

The proposed model is built upon the assumptions that consumers and finance managers negotiate monthly 

payments and that both parties have number biases. I have shown how the model can explain the unique 

patterns in data. However, there may be other explanations that can also rationalize the patterns. In this sub-

section, I will discuss several alternative explanations.  

 Promotional effects. Auto dealers may run promotions with advertised payments ending at $99 or 

$00. This may explain why the bunching phenomenon exists. If this is the reason, however, there should 

be no systematic difference in the interest rates for these two types of loans. In particular, the interest rate 

for $99-ending loans should not be higher than other loans. Furthermore, it cannot explain why there is an 

increasing number of loans with larger ending digits. In addition, I find from data that the bunching 

phenomenon is quite stable over time. This is in contrast with auto dealer promotion activities that are 

periodic in nature. 

Consumer biases only. One may attempt to come up with a more flexible consumer payoff function 

in lieu of finance manager biases to explain the data patterns. Suppose consumer payoffs have a large drop 

from $9 to $0 as well as from $0 to $1, payments can bunch at both $9- and $0-endings. However, such 

specification would imply that the average interest rate for $0-ending loans is higher than $1-ending loans. 
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This is inconsistent with the empirical evidence, as $0-ending loans actually have the lowest interest rate. 

Without allowing finance managers to also have the number biases, it is difficult to rationalize the large 

difference between the interest rates for $9- and $0-ending loans. 

Focal point effect. Alternatively, one may attribute the $0-ending bunching to a focal point effect. 

Based on this explanation, the roundedness of the payments may facilitate negotiations, which will lead to 

a higher number of loans at $0-ending. However, this explanation cannot explain bunching at $9-ending 

digits. It also cannot explain why $0-ending loans have the lowest average interest rate.  

 Finally, one may question the validity of the key model assumption that bargaining leads to the 

observed bunching phenomenon. I have argued that the discretionary dealer markup policy in the auto 

finance market means that there is room for negotiating monthly payments. I run a “placebo” test using data 

from the mortgage loan market also provided by Equifax Inc. The dataset consists of 7.3 million mortgages 

originated in 2014 across the United States. Similar to auto loans, mortgage loans are an important consumer 

installment loan with monthly payments. The discretionary markup policy, however, does not exist in the 

mortgage loan market. Loans are directly provided by banks or credit unions and are subject to much tighter 

regulations. Therefore, the monthly payments do not come from a bargaining setting where number biases 

could play a role. I find no evidence for the bunching phenomenon in data. The proportions of monthly 

payments at $0- and $9-ending digits are both exactly 10%. There is also no difference in the APR for loans 

ending at $0 or $9. These results support for the bargaining assumption in the proposed model that applies 

to the auto loan market. 

5.3. Counterfactuals  

I use the model estimates to investigate two issues using counterfactual analysis. The first is to explore the 

effect of number biases on loan payments. The second is to quantify the payment changes under alternative 

non-discretionary markup policies for minority consumers. 

5.3.1. Effect of Number Biases 

Even though biases with numbers may be a human tendency, there are potential ways to mitigate their 

influence on the decision making process. In the auto finance setting, for example, dealers may direct the 

attention of finance managers away from the monthly payment and highlight the total markup profit or 

interest rate instead, so that managers will no longer be influenced by the biases. Likewise, financial 

education for consumers may help de-bias their perception of numbers.   

To explore the effects of de-biasing, I construct a counterfactual payoff function without number 

biases and use it as the benchmark case. The payoff functions are linear and continuous everywhere, with 

payoff changing by $1 for each $1 increase in payment. I set the parameters 𝛿’s to 0 and the parameters 𝜌′𝑠 
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to 1. With these adjustments, however, the overall payoff levels are also changed. For example, without the 

discontinuity over $100 marks, the consumer payoffs will become higher than the estimated payoff 

function. To remove the effect from this level change, I adjust the constant term in the counterfactual payoff 

function, so that the payoff at any loan payment level is the same under the initial and the counterfactual 

payoff functions.29 By doing so, the difference in payments reflects the impact of non-standard payoff 

functions with curvature and discontinuity instead of changes in the level of payoff.  

I simulate the monthly payments under the counterfactual scenario. The payments are compared to 

those in alternative scenarios where either consumers or finance managers, or both, have the number biases. 

The difference in payments represents the impact of the biases. Results are shown in Table 7. Panel A 

reports the change in payments when consumers are biased (but not finance managers), relative to the 

benchmark case without biases. Biased consumers will pay 0.025% less, with total payments reduced by 

$203 million. Therefore, consumers’ number biases are beneficial for consumers by lowering their 

payments. 

Table 7. Effect of Number Biases on Payments 

  Bargaining Power Percentile (from High to Low) 

 Overall 0 – 20% 20 – 40% 40 – 60% 60 – 80% 80 – 100% 

Average 

Bargaining Power 
0.77 0.96 0.90 0.83 0.70 0.44 

Panel A: Effect of Number Biases for Consumers (Finance Managers not Biased) 

Change in Total 

Payment ($million) 
-202.9 -12.2 -22.4 -41.5 -61.9 -65.0 

% Change -0.025% -0.007% -0.014% -0.026% -0.039% -0.040% 

Panel B: Effect of Number Biases for Finance Managers (Consumers not Biased) 

Change in Total 

Payment ($million) 
101.9 10.4 16.7 22.5 28.0 24.3 

% Change 0.013% 0.006% 0.010% 0.014% 0.018% 0.015% 

Panel C: Effect of Number Biases for Both Consumers and Finance Managers 

Change in Total 

Payment ($million) 
-33.0 0.5 -4.0 -7.5 -10.6 -11.35 

% Change -0.004% 0.0003% -0.002% -0.005% -0.007% -0.007% 

The result that consumers pay less when having the number biases is counter-intuitive. One may 

view biases as a negative factor in the bargaining process by intuition. For example, since consumers’ 

                                                           
29 The procedure is done in several steps. First, I simulate the monthly payment for each loan using the estimates from 

the proposed model with number biases.  I calculate the perceived payoff value, and then adjust the constant term in 

the counterfactual payoff function so that the payoff of the simulated payment is the same under the biased and the 

counterfactual de-biased payoff functions. Lastly, I simulate the counterfactual payments for each loan using the 

adjusted de-biased payoff functions.  
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number biases lead to bunching at $9 with a higher interest rate, one may conclude that removing such bias 

should benefit consumers. This intuition is in general supported in the psychological literature, where biases 

are generally considered to make people worse off. Researchers often propose ways to de-bias consumers 

for a better decision-making strategy (Larrick 2004). Furthermore, studies of the 9-ending retail prices in 

the marketing literature implicitly suggest that firms can take advantage of consumers’ number bias with 

numbers to charge a price higher than when the bias does not exist. My results show the opposite. The key 

difference from the previous literature is that in this study prices (monthly payments) are set through two-

sided negotiations and not decided by firms as in other retail settings. With biases, the perceived drop for 

$1 increase in payment from $9-ending is larger than $1, especially over $100 marks. The large drop in 

payoff makes it harder for finance managers to push the payments higher from $9-ending. In other words, 

the biases create a psychological hurdle for consumers so that they are more resistant to payments crossing 

the hurdle. Although the bias in the payoff function at small ending digits has the opposite effect (since the 

perceived drop for $1 increase is smaller than $1 at those digits), overall the first effect prevails and 

consumers benefit from having the number biases.  

Having number biases is also beneficial for finance managers. As shown in Panel B of Table 7, 

when compared with the benchmark case, dealers will receive 0.013%, or $102 million, higher loan 

payments when their finance managers are biased (and consumers are not). The reason is similar – the large 

drop in payoff for $1 change from $0-ending digits, especially at $100 marks, makes it hard for consumers 

to push down payments from $0-ending. Although the biases also make it easier for consumers to push 

down payments at smaller ending digits, the total effect is still positive for finance managers. When both 

parties are biased, consumers will pay 0.004%, or $33 million in total, less compared to the benchmark 

case. 

The effect of number biases is systematically different for consumers of different bargaining power. 

In the empirical application where the consumer bargaining power is overall high, the decrease in payments 

for biased consumers is more significant among low bargaining power consumers. For example, Panel A 

of Table 7 shows that 32% of the total decrease comes from consumers whose bargaining power is at the 

bottom 20th percentile, while only 6% is from consumers whose bargaining power is at the top 20th 

percentile. The effect of biases is stronger for low bargaining power consumers because they are the ones 

mostly likely to get $9-ending payments. When both parties have number biases, consumers with the bottom 

20th percentile bargaining power pay $11.4 million less loan payments. In contrast, consumers with the top 

20th percentile bargaining power will pay $0.5 million more. 

Because of the discretionary dealer markup policy, low bargaining power consumers pay higher 

markups than high bargaining power consumers do. Consumer’s number biases, however, help reduce the 
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gap in markups between the two types of consumers. For example, Table 7 shows that, consumers’ number 

biases reduce the difference in the markup between consumers with the top 20th and bottom 20th percentile 

bargaining power by 0.29%, or $52.9 million in total. Similarly, the gap is reduced by 0.06%, or $11.8 

million in total, when the biases exist for both consumers and finance managers.  

5.3.2. Non-Discretionary Dealer Markups 

The discretionary markup policy in the auto loan market is controversial and has been under intense 

regulatory scrutiny. A series of class-action lawsuits were filed challenging this practice against most of the 

captive auto lenders in the U.S. as well as some large auto lending financial institutions (Munro et al. 2005). 

Since created in 2011, the Consumer Finance Protection Bureau (CFPB) has taken action against several 

large auto lenders with large settlements.30 These lawsuits claimed that the practice authorizes dealers to 

charge subjective markups that result in disparate impact among minority consumers. My estimation results 

provide evidence in support of these claims. In this section, I investigate the effects of two alternative 

policies that compensate dealers with non-discretionary markups, and quantify the change of payments for 

minority consumers. I also show that, without considering the influence of biases in the bargaining model, 

one would underestimate the impact of the policy changes for minority consumers. 

Under non-discretionary markup compensation policies, markups do not vary among consumers 

because of the difference in their relative bargaining power. Minority consumers would be charged the 

same markup as their Caucasian counterparts, all else equal. Under the first counterfactual policy, auto 

dealers are compensated by a fixed percentage of the loan amount,31 so that consumers with the same loan 

amount get the same level of markup. The markup percentage is calculated to be at the level that the total 

amount that auto dealers make from arranging auto financing is the same as under the current discretionary 

markup compensation. Under the second policy, the level of markup is a fixed percentage of the bank buy 

rate that is based on credit score, loan amount, and loan length but not on consumer demographics such as 

ethnicity. Similarly, the percentage is calculated to achieve the same level of total dealer markup profit as 

under the current compensation policy. Both of these counterfactual policies are easy to implement in 

practice. Dealers are not worse off under the counterfactual policies because of the same level of markup 

profit. Since the bank buy rate does not change, banks and credit unions are also not worse off. 

Under the non-discretionary markup compensation, there is a shift in the consumer payments 

among different groups of consumers. Not surprisingly, low bargaining power consumers benefit from the 

non-discretionary policies. Table 8 reports the change in payments for consumers in different racial groups 

                                                           
30 For example, Ally Financial Inc. paid $98 million for the settlement in 2013, and Honda paid $24 million in 2015.  
31 One bank had adopted this compensation policy, citing the CFPB’s guideline as the reason, but later reverted back 

to the discretionary markup practice.  
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under the new policies. When dealers are compensated by a fixed percentage of the loan amount, consumers 

from predominantly African American areas (i.e. with more than 40% of the population) pay 1.37% lower 

total payments, and consumers from high Hispanic population neighborhoods (i.e. with more than 40% of 

the population) pay 1.35% lower total payments. The aggregate payment decrease among minority 

consumers is quite substantial, with $452 million in total for African American consumers and $275 million 

in total for Hispanic consumers. When dealers are compensated by a fixed percentage of the bank buy rate, 

the reduction in payments is slightly higher, with $473 million in total for African American consumers 

and $300 million in total for Hispanic consumers. In contrast, consumers from predominantly Caucasian 

neighborhoods (i.e. with more than 97% of the population) under the counterfactual policies will have to 

pay $445 million and $484 million more. To conclude, the new non-discretionary policies will have a 

significant economic benefit for minority consumers, while Caucasian consumers will pay a higher monthly 

payment to compensate for the policy change. 

Table 8. Counterfactual Results from Non-Discretionary Dealer Markups 

Change in Payment under 

Non-discretionary 

Markup Compensation 

Fixed Markup by Loan Amount Fixed Markup by Bank Quote 

Total 

Payment 

($million) 

Total 

Payment 

(%) 

Payment 

per Loan 

($) 

Total 

Payment 

($million) 

Total 

Payment 

(%) 

Payment 

per Loan 

($) 

Predominantly African 

American Areas (>40%) 
-451.8 -1.37% -373.8 -472.6 -1.44% -391.0 

Predominantly Hispanic 

Areas (>40%) 
-274.5 -1.35% -373.4 -300.3 -1.47% -408.5 

Predominantly Caucasian 

Areas (>97%) 
444.9 0.48% 120.2 483.9 0.52% 130.8 

 

I have shown that, if the number biases were not incorporated in the bargaining model, the 

bargaining power estimates would be biased. Consequently, the counterfactual estimates about payment 

changes will be biased. For the first non-discretionary markup compensation, I find that the payment 

changes from African American consumers are under-estimated by $36.8 million, or 8.1%. Similarly, the 

payment changes from Hispanic consumers are under-estimated by $12.1 million, or 4.4%. The results are 

similar for the second non-discretionary markup compensation, with the payment changes under-

estimated by $36.7 million for African American consumers and $11.8 million for Hispanic consumers if 

the number biases were not considered. This comparison suggests that the proposed model is important to 

correctly quantify how the current discretionary dealer markup policy has caused over-payments from 

minority consumers. 
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6. Conclusion and Discussion 

This paper investigates how number biases with numbers affect bargaining outcomes in the auto finance 

market. The proposed bargaining model that incorporates the biases from both consumers and finance 

managers can explain the puzzling data patterns of bunching payments and differential interest rates. I use 

a large data set of 35 million auto loans in this study. Two types of biases in the payoff function are 

identified: a larger perceived difference from $1 change at larger ending digits and an additional payoff 

discontinuity between $99- and $00-ending payments. Counter-intuitively, having such biases are actually 

beneficial in a bargaining setting, as consumers will pay less than when their biases are removed. Similarly, 

auto dealers will receive a higher markup profit when their finance managers are subject to the number 

biases. 

From the policy perspective, this paper sheds light on the debate about the discretionary markup 

practice in the auto finance market. I evaluate alternative non-discretionary policies, where dealers are 

compensated by a fixed percentage of loan amount or bank buy rate, and quantify the economic impact of 

the policy changes for minority consumers. Counterfactual suggests that African American consumers pay 

$452-473 million more in total payments, and Hispanic consumers pay $275-300 million more in total 

payments than they would under a non-discretionary policy. Incorporating biases is important in recovering 

unbiased bargaining power estimates. Failure to do leads to the change in payments to be under-estimated 

by $37 million for African American consumers and $12 million for Hispanic consumers. 

The insights from this study have broad implications beyond the auto finance market. Knowing 

that number biases exist not only among consumers but also among employees can be useful for firms to 

better understand what factors drive negotiated prices in many other settings, including estate sales, auto 

sales, online retail platforms (e.g., Taobao.com in China), and B-to-B environments where price 

negotiations are common. The result that consumers’ perceived value has a large drop when crossing a 

threshold suggests that $9-ending prices are stickier than other digits in most retail environments. Beyond 

$9-ending prices, the result that consumers’ sensitivity toward price change is lower at small digits also 

suggests that the demand elasticity may vary across different ending digits in the price. 

Although I use a representative-agent framework to model biases, the model can be generalized to 

incorporate richer heterogeneities. In the proposed model, biases and bargaining power jointly determine 

the level of bunching. Suppose there is a large variation of bunching across different consumer groups 

beyond what could be explained by the difference in their bargaining power, the remaining variation can 

be attributed to the heterogeneity in biases. This is not the case in my empirical application. Thus, the biases 

parameters are assumed to be the same for simplicity.   
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Appendix A: Calculate Auto Loan APR 

For each auto loan, I observe loan amount, loan length and scheduled monthly payment. The implied APR 

(annual percentage rate) can be backed out from these three attributes. The discounted value of each 

monthly payment sums to the loan amount. For a given loan amount and loan length, the higher the APR 

is, the larger the scheduled monthly payment is. 

𝑝𝑚𝑡

1+𝑟
+ ⋯ +

𝑝𝑚𝑡

(1+𝑟)𝑛 = 𝑎𝑚𝑜𝑢𝑛𝑡         (A1) 

𝑝𝑚𝑡 is the scheduled monthly payment, 𝑟 is APR/12, 𝑛 is the length of loan in months, and 𝑎𝑚𝑜𝑢𝑛𝑡 is the 

loan amount.  

Rearranging terms of equation (A1), I get: 

𝑝𝑚𝑡[(1 + 𝑟)𝑛 − 1] − 𝑎𝑚𝑜𝑢𝑛𝑡 ∗ 𝑟 ∗ (1 + 𝑟)𝑛 = 0       (A2) 

I solve for APR 𝑟 by newton’s method. Let f(r) = 𝑎𝑚𝑜𝑢𝑛𝑡 ∗ r ∗ (1 + r)n − pmt[(1 + r)n − 1]. 

The first order derivative of 𝑓(𝑟) is 𝑓′(𝑟) = 𝑎𝑚𝑜𝑢𝑛𝑡 ∗ 𝑛 ∗ (1 + 𝑟)𝑛−1 ∗ 𝑟 + 𝑎𝑚𝑜𝑢𝑛𝑡 ∗ (1 + 𝑟)𝑛 − 𝑝𝑚𝑡 ∗

𝑛 ∗ (1 + 𝑟)𝑛−1. 

 Starting from an initial guess of 𝑟0 = 6%, I calculate the next approximation 𝑟1. 

𝑟1 = 𝑟0 −
𝑓(𝑟0)

𝑓′(𝑟0)
 

The process is repeated as  

𝑟𝑘+1 = 𝑟𝑘 −
𝑓(𝑟0)

𝑓′(𝑟0)
 

until 𝑟𝑘+1 and 𝑟𝑘 are sufficiently close, |𝑟𝑘+1 − 𝑟𝑘| < 𝑒−10 . 
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Appendix B: APR Analysis with Machine Learning Method 

The regression model suggests that the loan APR is systematically different depending on the monthly 

payment ending digit. For robustness, I have also implemented a machine learning method, Extreme 

Gradient Boosted Trees, to predict APR based on the following features, credit score, loan amount and 

length. Boosted tree models bootstrap a multitude of decisions trees, and the final prediction is based on an 

aggregate across multiple trees. Decision tree types of algorithms consider complex interactions among 

features, which may be hard to accommodate with a traditional regression approach. It does so in a way 

that balances in-sample accuracy and out-of-sample prediction. The sample is randomly partitioned into 

training, validation and testing sample. Various models are trained on the training data set, and the one that 

performs the best on the validation data set is selected, which prevents over-fitting. Finally, in the testing 

sample, the selected model is used to predict APR with observed features, including credit score, loan 

amount and loan length. The difference of the actual APR and the predicted APR in the testing data set is 

used to assess whether APR is systematically different for loans with different ending digits. The results 

are close to those from the regression model. In the testing data set, the APR for $9-ending loans is 0.039% 

higher than predicted, and it is 0.023% lower for $0-ending loans than predicted. The difference between 

the two is 0.062%. More generally, the APR is higher for loans with larger ending digits from $1 to $9. 
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Appendix C: Alternative Payoff Specifications 

In this appendix, I present and discuss results from two alternative payoff specifications.  

1. Direct Discontinuity 

In this alternative specification, the payoff function is linear within the $10 range, with a discrete drop in 

payoff when payments cross $10 marks. The discrete drop captures the bias that the perceived difference 

between $9- and $0-endings can be larger than 1. Let 𝑑1(𝑝) be the hundreds digit, and 𝑑2(𝑝) be the tens 

digit of payment 𝑝, e.g., 𝑑1(234) = 2, 𝑑2(234) = 3. Let 𝛿1
𝑐 and 𝛿2

𝑐 denote the level of payoff discontinuity 

at $10 marks and $100 marks respectively. Consumer’s payoff function is  

𝑢𝑐(𝑝𝑖) = −𝑝𝑖 + 𝛿1
𝑐 ∙ [(10 ∙ 𝑑1(𝑝(𝑋𝑖)) + 𝑑2(𝑝(𝑋𝑖))) − (10 ∙ 𝑑1(𝑝𝑖) + 𝑑2(𝑝𝑖))] + 𝛿2

𝑐 ∙ [𝑑1(𝑝(𝑋𝑖)) − 𝑑1(𝑝𝑖)]. 

Figure D1 shows an example of the consumer’s payoff function.  

Figure D1      Figure D2 

 

Finance manager’s payoff increases as the monthly payment increases, with payoff discontinuity 

of 𝛿1
𝑓
 and 𝛿1

𝑓
+ 𝛿2

𝑓
 at $10 marks and $100 marks respectively. Finance manager’s payoff function is  

𝑢𝑓(𝑝𝑖) = 𝑝𝑖 + 𝛿1
𝑓

∙ [(10 ∙ 𝑑1(𝑝𝑖) + 𝑑2(𝑝𝑖)) − (10 ∙ 𝑑1(𝑝(𝑋𝑖) + 𝑑2 (𝑝(𝑋𝑖))] + 𝛿2
𝑓

∙ [𝑑1(𝑝𝑖) − 𝑑1(𝑝(𝑋𝑖)]. 

Figure D2 shows an example of the finance manager’s payoff function. 

 I estimate the model and simulate payments for each loan with the parameter estimates. Figure D3 

presents the numbers of loans at each level of simulated payments. Although this model can successfully 

reproduce the bunching at $9- and $0-endings, with the payoff function being linear within each $10 range, 

it fails to capture the number bias within the $10 range and cannot reproduce the increasing pattern from 

$1 to $9 (Figure 1).  



44 
 

Figure D3 

 

2. Alternative Payoff Curvature Specification within the $10 Range 

The empirical observation of an increasing number of loans from $1- to $9-ending motivates a payoff 

specification with curvature. Consider an alternative way to specify the payoff curvature: 

𝑢𝑐(𝑝𝑖) = −𝑝𝑖 + 𝛿𝑐 ∙ [𝑑(𝑝(𝑋𝑖)) − 𝑑(𝑝𝑖)] + ((𝑝𝑖 − ⌊𝑝𝑖⌋10) − 101−𝜌𝑐
∙ (𝑝𝑖 − ⌊𝑝𝑖⌋10)𝜌𝑐

). 

Same as the main model, 𝛿𝑐 captures the level of perceived value drop when payment 𝑝 crosses 

$100 marks. ⌊𝑝⌋10 rounds down payment 𝑝 to the nearest $10 level, ⌊𝑝⌋10 = ⌊
𝑝

10
⌋ ∗ 10, e.g., ⌊$234⌋10 =

$230. 𝜌𝑐governs the amount of payoff curvature within the $10 range. Figure D4 shows examples of the 

consumer’s payoff function. When 𝜌𝑐 > 1, the perceived difference for a $1 change in payment is larger 

with a larger ending digit, and the opposite is true when 0 < 𝜌𝑐 < 1. 

Figure D4 
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Finance manager’s payoff function is analogous to the consumer’s payoff function, with 𝜌𝑓 

governing the payoff curvature within the $10 range. 

𝑢𝑓(𝑝𝑖) = 𝑝𝑖 + 𝛿𝑓 ∙ [𝑑(𝑝𝑖) − 𝑑 (𝑝(𝑋𝑖))] + (101−𝜌𝑓
∙ (𝑝𝑖 − ⌊𝑝𝑖⌋10)𝜌𝑓

− (𝑝𝑖 − ⌊𝑝𝑖⌋10)).  

 Model estimates under this alternative payoff specification suggest that the consumer’s payoff 

function is concave with 𝜌𝑐 = 1.1039, which is associated with greater sensitivity to payment change as 

the payment gets  closer to the next $10 level, same as the main model. Figure D5 presents the numbers of 

loans with each level of simulated payments. Although this model can reproduce the increasing pattern 

from $1 to $9, the fit is not as good as the main model.  

Figure D5 

 


