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Abstract

Mobile in-app advertising is growing in popularity. While these ads have excellent
user-tracking properties through mobile device IDs, they have raised concerns among
privacy advocates. There is an ongoing debate on the value of different types of mobile
targeting, the incentives of ad-networks to engage in behavioral targeting and share user-
data with advertisers, and the role of regulation. To answer these questions, we propose
a modeling framework that consists of two components — a machine learning framework
for predicting click-through rate and a stylized analytical framework for conducting
data-sharing counterfactuals. Using data from the leading in-app ad-network of an
Asian country, we show that our machine learning model improves targeting ability by
17.95% over no targeting. These gains mainly stem from behavioral information and the
value of contextual information is relatively small. Stricter regulations on user-tracking
substantially shrink the value of behavioral targeting. Counterfactuals show that the
total advertisers’ surplus grows with more granular information-sharing between the
ad-network and advertisers. However, there is heterogeneity among advertisers in
their preferred level of data-sharing. Importantly, the ad-network’s revenues are non-
monotonic, i.e., it prefers to not share behavioral information with advertisers. Thus,
the ad-network may have natural incentives to preserve users’ privacy without external

regulation.
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1 Introduction

1.1 Mobile Advertising and Targeting

Smartphone adoption has grown exponentially in the last few years, with more than two billion
people owning a smartphone today (eMarketer, | 2017a). The average smartphone user now spends
over 2.8 hours per day on her phone. In addition to making phone calls and browsing, users spend a
significant amount of time on native applications, popularly known as “apps” (Perez, 2015} |Chatiey,
2017). As mobile usage has surged, advertisers have followed the eyeballs. In 2016, mobile ad spend
overtook desktop ad spend for the first time by generating over $106 billion dollars in revenues
worldwide, which accounts for 55.7% of digital advertising revenues (eMarketer, [2017b).

The rapid growth of mobile advertising partly stems from an ad format unique to the mobile
environment — “in-app ads” or ads shown inside apps. In-app advertising now generates over $72
billion dollars worldwide and owes its increasing popularity to two factors (AppAnniel 2017). First,
with the proliferation of free apps, in-app advertising has become a mainstream app monetization
strategy (Hollander, 2017). Second, in-app ads have excellent tracking and targeting properties,
allowing advertisers to “behaviorally” target their ads. Advertisers and ad-networks have access to
a unique device ID associated with the mobile device that they can use for tracking and targeting
purposes, referred to as IDFA (ID For Advertisers) in iOS devices and AAID (Android Advertiser
ID) in Android devices. This device ID is highly persistent and remains the same unless actively
re-set by the user. This allows advertisers to stitch together user data across sessions, apps, and even
other advertisers (Edwards), 2012)

While the advertising industry has lauded the trackability of in-app ads suggesting that they
create value for advertisers by allowing them to target the right consumer, consumers and privacy
advocates have derided them citing privacy concerns. Bowing to pressure from consumers, mobile
phone makers have started taking steps to limit user-tracking. First, in 2012, Apple went from
UDID (Unique Device ID) to IDFA. The latter is user re-settable (much like a cookie), whereas
the former was a fully persistent unique device ID that could not be erased by users under any
circumstance (Stampler, [2012). In 2013, Android made a similar move from Android ID to AAID
(Sterling), |2013)). While this caused some consternation among advertisers, it nevertheless did not
upend the mobile advertising ecosystem since few users actively re-set IDFAs on a regular basis.
However, in mid-2016, Apple took a much stronger stance in support of privacy by allowing users

to completely opt out of tracking through LAT (Limit Ad Tracking), wherein a user can simply

I'This is in contrast to browser-based mobile ads, which have poor tracking properties since third-party cookies don’t
work in many browsers (e.g., Safari, the most popular browser) and hence tend to be poorly targeted (Sands| |[2015).



switch off tracking indefinitely (Gray, 2016)E] This makes it impossible for advertisers to target ads,
attribute conversions, or re-target and re-engage users. Studies show that nearly 20% of 10S users
have already chosen to opt into LAT, raising significant concerns among advertisers about the future
of targeted mobile advertising (Seufert, 2016).

This tension between behavioral targeting and privacy in mobile advertising is part of a larger
ongoing debate over consumer tracking and privacy in digital contexts. Advertisers argue that
tracking allows consumers to enjoy free apps and content, and see relevant ads, whereas regulators
and consumers demand higher privacy, control over their data, and limits on data-sharing among
firms. In mid-2016, the European Union signed the General Data Protection Regulation (GDPR)
agreement, which will go into effect in May 2018 (Kint, |2017). Under the new regulations,
consumers will have to opt into (rather than opt out of) behavioral targeting and will need to give
explicit permission for their data to be shared across firms. Violators will be fined up to 4% of
their global revenues. In the US, under the Obama administration, the Federal Communications
Commission (FCC) adopted legislation to limit tracking and data-sharing among large ISPs. The
advertising industry lobbied against these rules, and scored a win when these rules were recently
relaxed under the Trump administration (Fung, 2017). Nevertheless, polls show that over 92%
of US consumers believe that the government should ban tracking and sharing of consumer data
(Edwards-Levy and Liebelsonl 2017).

Even as this debate rages on, we do not have a good understanding of how tracking and data-
sharing affect advertisers’ ability to target, the incremental value of different types of information
on improving targeting accuracy, and the incentives of different players in the mobile advertising
industry. Lack of clear empirical analyses of these issues hampers our ability to have an informed

discussion and to form policy on these issues.
1.2 Research Agenda and Challenges

In this paper, we are interested in three key research questions related to targeting and privacy in the
mobile ecosystem.

e First, what is the value of different pieces of information in improving targeting accuracy? We
are specifically interested in the relative value of contextual vs. behavioral information. The
former quantifies the context (when and where) of an impression, and the latter constitutes
historic data on an individual user’s past app usage, ad exposure, and ad response. Contextual
information is privacy preserving whereas behavioral information is based on user-tracking

and therefore impinges on user-privacy. Further, we want to quantify the total improvement in

ZWhen a user turns on LAT, her IDFA simply shows up as a string of zeroes to the advertisers. Thus, all the consumers
who have opted into LAT are visible as one large ghost segment to ad networks.



targeting effectiveness that can be achieved when all types of information are used.

e Second, how would stronger privacy regulations affect the ad-network’s ability to target? If the
ad-network were to lose the ability to do user-tracking through device IDs (e.g., through blanket
adoption of LAT or government regulation), to what extent would its targeting ability suffer?

e Finally, we are interested in examining the relationship between the advertisers’ targeting ability
and platform revenues. Does the ad-network have an incentive to share targeting data with
advertisers and thereby enable targeted bidding? If yes, is there an optimal level of data-sharing?
To build a unified and scalable framework to answer these questions, we need to overcome

three key challenges: 1) achieve high predictive accuracy, 2) have sufficient randomness in the data
generating process, and 3) tie prediction to incentives. We discuss each of these in detail below.
First, to accurately quantify the value of different pieces of targeting information, we need to
build a click prediction model with the best possible out-of-sample accuracy. That is, the model
should be able to accurately predict whether a targeted impression will lead to a click or not.
Indeed, models with poor predictive ability will lead to downward bias and noise in the estimates of
the value of information. In the marketing literature, the commonly used approach to predictive
modeling involves making functional form on the relationship between the outcome variable and the
independent variables. From a statistical perspective, this can be thought of as parameter inference
given a functional form. Implicitly, this allows the researcher to constrain the model space as well
as the extent of interactions between variables. While this simplifies the problem that we need to
solve, it also compromises the model’s predictive ability because the researcher cannot intuit the
appropriate functional-form a priori and indeed the correct functional form is likely to be extremely
complex. Instead, the correct approach to building models with high predictive accuracy can be
formally thought of as function evaluation. This allows for full flexibility in the interactions between
variables as well as function-specification. However, this is also a much harder statistical learning
problem to solve, especially when we have a large number of featuresE] Indeed, this problem is
NP-hard and we need to turn to machine learning methods built for function evaluation to solve it.
Second, we need sufficient randomness in the data generating process for our predictive model to
be applicable to counterfactual scenarios. Consider a hypothetical scenario where an ad is targeted
to only women in the observed data. A well-specified machine learning model can generate accurate

predictions of womens’ CTR for this ad. However, it cannot tell us how men will respond to this

3We have around 160 features. So from a function evaluation perspective, we have to explore all the non-linear
combinations of these features. This problem is exacerbated by the fact that we don’t know which of these variables
and which interaction effects matter, a priori. Even if we try to constrain the model to pairwise interactions, we would
be working with 12960 variables. Thus, it is not feasible to come up with the best non-linear specification of the
functional form either by manually eyeballing the data or by including all possible interactions.



ad since we never observe mens’ response to it. Thus, if we want to use our predictive models to
generate counterfactual predictions of CTRs for alternative targeting strategies, we need the model
to have been trained on data that is not too narrowly targeted. Third, we need an underlying model
of strategic interactions that can quantify effect of different targeting strategies on ad-network and
advertiser revenues. Without an economic model of market players which puts some structure on
revenues, we cannot make any statements on how ad-networks or advertisers’ incentives to target
and/or the extent to which these incentives are aligned.

Thus, we need a unified modeling framework that coherently combines predictive machine
learning models with prescriptive economic models in order to overcome these challenges and

answer our research questions of interest.
1.3 Our Approach

We present a modeling framework consists of two main components — (1) A machine learning
framework for Click-Through Rate (CTR henceforth) prediction, and (2) a stylized analytical
model to characterize the ad-network and advertisers’ profits under different data-sharing (and
corresponding targeting) scenarios.

e The machine learning part consists of two modules — (a) a feature generation framework and (b) a
learning algorithm. The former relies on a set of functions to generate a large number of features
that capture the contextual and behavioral information associated with an impression. Our
feature functions can be aggregated over different lengths of history preceding the impression,
thereby allowing us to capture the impact of long-term, short-term, and ongoing session-level
history. Using these functions, we generate a total of 161 features. These serve as input variables
into a CTR prediction model, which forms the second module. We use the Extreme Gradient
Boosting algorithm (XGBoost) proposed by |Chen and Guestrin (2016)), a fast and scalable
version of boosted regression trees, to train and infer the optimal the CTR prediction model. Our
contribution here primarily lies in our feature generation framework that generates informative
and theory-driven feature functions for the mobile in-app advertising ecosystem.

e The second component of our model is a framework for conducting data-sharing counterfactuals.
We develop a stylized analytical model of data-sharing that characterizes the ad-network’s
revenue and advertisers’ profit under different-levels of data-sharing. We analytically prove
that while the total surplus in the system increases with more granular data-sharing and tar-
geted bidding, the ad-network’s revenue can go in either direction when we do not impose
any functional form assumptions on the distribution of match values. We then combine this
analytical model with the machine-learning targeting models developed in the first module

to derive empirical estimates of the ad-network’s revenue and advertisers’ surplus under four
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counterfactual data-sharing scenarios.

We apply our framework to one month of data from the leading mobile advertising ad-network
from a large Asian country. The scale and scope of the data are large enough to provide realistic
substantive and counterfactual results. For our analysis, we sample over 27 million impressions for
training, validation, and testing, and use another 146 million impressions for feature generation.

A notable feature of our data is the extent of randomization of ads over impressions. Unlike
other advertising ecosystems, in our setting ads are shown over a large variety of impressions
and impressions can be allocated a wide variety of ads, i.e., the targeting/match between ads and
impressions is quite low. Three unique structural aspects of the marketplace contribute to this
feature. First, the ad-network uses a quasi-proportional auction mechanism, where the allocation
rule is probabilistic rather than deterministic (Mirrokni et al., 2010). Thus, the highest scoring
bidder does not always win. Second, the ad-network supports limited targeting and the extent of
targeting in the ad-network is low. Third, the ad-network uses the average past CTR of an advertiser
in the ad-network to generate the advertiser’s score (bid x CTR). So the score is a weak predictor
of the likelihood of a click. Together these lead to significant randomness in the allocation of ads to
impressions. In principle, we do not need any randomness in the data generating process to build a
good predictive model of clicks. All the substantive results from the machine learning module of our
model are valid as long as the joint distribution of features and clicks is the same in the training and
test data-sets. However, when we move to counterfactuals, we need our machine learning to be able
to predict the CTR of not just the ad actually shown in an impression, but of all ads competing for
that impression. In this case, having seen a large variety of ad-impression matches greatly enables
our analysis. Thus, the second set of counterfactual results would not be possible if ads were not

sufficiently randomized over impressions in the observed data.
1.4 Findings and Contribution

We now describe our main findings. Our results can be categorized into two groups — a first set of
substantive results from the machine learning component of the model, and a second set of results
from the what-if analysis that combines the analytical model of data-sharing with the machine
learning targeting model.

We start with the substantive results from the machine learning model. First, we show that our
full targeting model (that uses all the 161 features) can significantly improve advertisers’ targeting
ability. Our model leads to a 17.95% improvement in targeting ability compared to the base case
of no targeting, as measured by Relative Information Gain (RIG). We also show that XGBoost
outperforms other commonly used methods such as least squares, logistic regression, LASSO,

single regression trees, and random forests. More broadly, models that employ data partitioning



(e.g., tree-based algorithms) perform better than other model classes.

Second, we quantify how different pieces of information contribute to the efficacy of our
targeting model. We first consider the relative value of contextual and behavioral information. We
find that pure behavioral targeting (without using any contextual information) leads to a 12.14%
improvement in R/IG compared to the baseline model, whereas pure contextual targeting (without
using any behavioral information) provides only 5.25% improvement in RIG. Taken together, our
results can help managers gain intuition on when and where consumers click, which consumers
click, and what types of ads they click on and estimate the benefits of targeting based on different
features.

Third, we examine the impact of strengthening privacy regulations on the ad-network’s ability
to target. We consider a scenario where user-tracking through device IDs is banned (e.g., through
blanket implementation of LAT) and the ad-network has to rely on the second-best user-identifier,
IP address. In this case, the performance of our full targeting model drops to 13.38%. Moreover, we
find that the relative value of contextual vs. behavioral information flips, i.e., contextual features
contribute more to the model’s performance than behavioral features based on IP. This suggests
that behavioral targeting without a reliable user-identifier is not very effective. Next, we examine if
the loss in behavioral information can be mitigated if we have longer user histories. Surprisingly,
the efficacy of IP-based behavioral targeting worsens with the length of history. Thus, using longer
histories can actually be counter-productive with weak identifiers.

We further investigate why IP is a weak identifier. Note that both IP and device IDs suffer from
the problem of potentially identifying one user as multiple users because the user-identifier can be
re-set. In the case of IP, this problem is more severe because it can be automatically re-set whereas
device-IDs like AAID have to be actively re-set by the user. While this is one source of the problem,
IP has a more serious flaw — that of incorrectly identifying multiple users as one user because they
share the same IP. Our findings on the length of user history suggest that the problems with using IP
as the user-identifier likely stem from the latter issue.

Finally, we address the question of ad-network’s incentives —“Does the ad-network have incentive
to share targeting data with advertisers and thereby enable targeted bidding? If yes, is there an
optimal level of data-sharing? In an influential paper, |Levin and Milgrom| (2010) conjecture that
high levels of targeting can soften competition between advertisers and thereby reduce ad-network’s
revenues. We flesh out their ideas in a stylized analytical model that uses second price auctions
and characterize the ad-network’s revenue, advertiser’s surplus, and total surplus under different
data-sharing scenarios. Our analytical model highlights the ad-network’s trade-off between value

creation and value appropriation when deciding the optimal level of data-sharing.



We take this model to data and consider four counterfactual data-sharing scenarios. We show
that as the ad-network shares more granular targeting data, the total surplus increases (implying
that targeting creates value by matching the best advertiser and impression). However, ad-network
revenues are not monotonic; it does not increase with more granular data-sharing. Interestingly,
we find that ad-network revenues are maximized when the ad-network restricts data-sharing to the
contextual level, i.e., sharing behavioral information thins out the market, which in turn reduces ad-
network revenues. Thus, ad-network may be incentivized to adopt a privacy-preserving data-sharing
regime, especially if it cannot extract any additional surplus from advertisers through explicit
data-sharing contracts. Next, we examine advertisers’ surpluses. Although a majority of advertisers
prefer a regime where the ad-network shares behavioral information, there is heterogeneity in
their preferences. That is, some advertisers prefer more privacy-preserving data-sharing scenarios.
Overall, given the structure of incentives of the ad-network and advertisers, it may not be necessary
for an external entity such as EU/FCC to impose privacy regulations. To some extent, self-regulation
by the industry is feasible.

In sum, our paper makes three main contributions. First, from a substantive perspective, we
quantify the efficacy of targeting, present a comprehensive comparison of contextual and behavioral
targeting, and the impact of stricter privacy regulations on advertisers’ ability to target. Importantly,
we identify the misalignment of the ad-network’s and advertisers’ incentives regarding behavioral
and contextual information disclosure. Second, from a methodological perspective, we present a
framework for building effective targeting models and conducting data-sharing counterfactuals. A
key contribution of our paper lies in its combination of machine learning techniques with economic
models. An important point we make is that while machine learning models are useful for pure
prediction tasks (e.g., targeting), if we want to answer broader questions on economic importance
(e.g., revenues under counterfactual strategies), we need some additional data attributes (at least
some randomization in the data generating process) and a theory-driven economic models of
strategic interactions between market players. Finally, from a policy perspective, we establish the
preferences of the ad-network and advertisers on the optimal level of data-sharing. We expect
our model and findings to be of interest to policy-makers interested in regulating data-sharing and

user-tracking in the mobile advertising marketplace.

2 Related literature

First, our paper relates to the computer science literature on the engineering side of targeting — how
to do targeting and how we can build models to predict click-through rates (CTR). A body of earlier
works in that literature has developed probabilistic models of ad placement for both contextual
and behavioral targeting (Broder et al.,|2007; |Chakrabarti et al., 2008} |(Chen et al., 2009; | Ahmed
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et al., 2011). Another stream of computer science literature on targeting pertains to models of CTR
prediction in online advertising and makes some prescriptive suggestions on feature generation,
model selection, learning rates, and scalability (McMahan et al., 2013;|He et al., 2014} Chapelle
et al., 2015). Although we build our machine learning framework following their approaches,
our work differs in two main ways. First, our goal is substantive — we seek to understand and
quantify the impact of different types of information in mobile ad targeting, whereas the previous
papers are mainly concerned with presenting methods for predicting clicks in a scalable fashion.
Second, unlike these previous papers, we then use our model to conduct counterfactuals addressing
important policy questions: what are the ad-network’s incentives to share data with advertisers, and
the implications of such sharing on revenues and consumer privacy.

The marketing and economics literature on targeting has focused on two issues. First, a series of
papers focus on measuring the returns to targeting. Farahat and Bailey| (2012) use a difference-in-
difference estimator to decompose the impact of targeting into selection bias and treatment effects
components. The second stream of work focuses on the interplay between privacy and targeting.
Using data from a series of regime changes in advertising regulations, (Goldfarb and Tucker| (201 1b)
find that lowering targeting reduces consumer response rates. |(Goldfarb and Tucker| (2011a) and
Tucker| (2014) highlight the perils of excessive targeting as consumers perceive increased targeting
as a threat to their privacy. Please see Goldfarb| (2014) for an excellent review of targeting in online
advertising and Acquisti et al.|(2016) for a detailed discussion of consumer privacy issues.

Next, our paper relates the growing body of literature on ad-network’s incentives to target in
marketing and economics. Early analytical papers in this area show that imperfect targeting can
benefit firms by softening competition (Chen et al., 2001} Iyer et al., 2005). Levin and Milgrom
(2010) were one of the first to conjecture the trade-off between value creation and market thickness
whereby too much targeting can thin markets which in turn would soften competition and make
the ad-network worse off. This is particularly the case when targeting information reveals that
an arriving impression is the high value match for only one advertiser (Celis et al., [2014). This
assumption leads to a set of theoretical predictions that ad-network revenues exhibit a non-monotonic
pattern with the extent of targeting (Bergemann and Bonatti, 2011; Fu et al., 2012;|Amaldoss et al.,
2015; Hummel and McAfeel, [2016)).

In spite of the increasing interest from the theoretical side, there has been little empirical work
on ad-network’s incentives to do targeting. 'Yao and Mela| (2011)) present a structural model to
estimate advertisers’ valuations and show that targeting benefits both advertisers and the ad-network.
Similarly, Johnson| (2013)) finds that both advertisers and publishers are worse off when the ad-

network introduces stricter privacy policies that reduce targeting. However, Athey and Nekipelov



(2010) present a case study of two keywords and show that “coarsening” CTR predictions can help
a search advertising ad-network generate more revenue. In a more recent paper, |Lu and Yang (2015)
study the ad-network’s decision on the targeting breadth, defined as the level of comprehensiveness
of the user’s interest profile, and find that there is a nonlinear relationship between the ad-network
revenues and the targeting breadth allowed by the ad-network.

Our work also relates to the literature on information-sharing. Pancras and Sudhir| (2007) were
one of the first in marketing to examine the incentives of data-intermediaries. They find that a
monopolist data-intermediary has an incentive to sell its services using non-exclusive arrangements
with downstream retailers and use the maximum history available to target consumers. Related to
auctions, a set of theory papers shows that full information disclosure may not always be optimal for
the auctioneer (Ganuza, [2004; De Corniere and De Nijs, [2016; Marotta et al., 2017). In our setting,
the ad-network can be interpreted as a data-intermediary that sells advertising slots through auction.
We consider different data-sharing strategies and show that without explicit transfers between the
ad-network and advertisers, the ad-network has an incentive to restrict data.

Our work thus adds to the growing literature on applications of machine learning in marketing
(Toubia et al., [2003; Evgeniou et al., 2007; |Dzyabura and Hauser, 201 1; Huang and Luo, [2016;
Liu and Dzyabura, 2016). Our paper closely relates to Yoganarasimhan| (2017), who presents a
case-study of personalized search and examines how heterogeneity in user-history and query-type
can affect returns to personalization. We adopt many aspects of her approach such as the feature-
generation functional framework, her data preparation techniques that takes advantage of user-level

history, and boosted trees for training.

3 Setting and Data

3.1 Setting

Our data come from the leading mobile in-app advertising network of a large Asian country, which
had over 85% market-share in the category in 2015. The ad-network works with over 10,000 apps
and 250 advertisers and it serves over 50 million ads per day (about 600 auctions per second).

3.1.1 Players

We now describe the four key players in this marketplace.
e Consumers: individuals who use apps. They see the ads shown within the apps that they use
and may choose to click on the ads.
e Advertisers: firms that show ads through the ad-network. They design banner ads and specify

their bid as the amount they are willing to pay per click, and can include a maximum budget if



they choose to. Advertisers can target their ads based on the following variables — app category,
geographical location, connectivity type, time of the day, mobile operators, and mobile brand of
the impression. The ad-network does not support more detailed targeting at this point in time.

e Publishers: app developers who have joined the ad network. They accrue revenues based on
the clicks generated within their app. Publishers earn 70% of the cost of each click in their app
(paid by the advertiser), and the remaining 30% is the ad-network’s commission.

e Ad-network or Platfomﬂ functions as the matchmaker between users, advertisers, and pub-
lishers. It runs a real-time auction for each impression generated by the participating apps and
shows the winning ad during the impression. The platform uses a CPC pricing mechanism, and

therefore generates revenues only when clicks occur. [
3.1.2  Auction Mechanism

The platform uses a quasi-proportional auction mechanism (Mirrokni et al.,[2010). Unlike other
commonly-used auctions (e.g. second price or Vickrey), these auctions use a probabilistic winning

rule. The platform’s allocation rule is:

bamy,
ZJGAF bjm;

Tq = ey
where 7, is the probability that advertiser a with bid b, and quality score m,, wins the auction when
the the set of advertisers is \A”". Currently, the platform simply aggregates all total past impressions
and clicks for an ad, and uses the ad-specific eCTR (expected Click Through Rate) as the quality
score (m,) 1n its auctions. After each impression, the ad-specific eCTR is updated based on whether
the ad was clicked or not. Thus, the extent of customization in the quality scores is quite low.
Further, the ad that can generate the highest expected revenue for the platform (the one with the
highest b,m,,) is not guaranteed to win. Rather, an ad’s probability of winning is proportional to the
expected revenue generated from it.

Quasi-proportional auctions have some advantages compared to the standard second price
auction. While it is well-known that a second-price auction with optimal reserve prices is revenue
optimal (Myerson, |1981} |Riley and Samuelson, 1981)), setting optimal reserve prices requires the
auctioneer to know the distribution of valuations within each auction. This is not feasible when the
valuations are changing constantly and/or the bidders in the system vary widely, as is commonly the

case in online ad auctions. This is especially the case with our platform where the market is changing

4Throughout the paper, ad-network and platform are used synonymously.
3 An impression lasts one minute. If a user continues using the app beyond one minute, it is treated as a new impression
and the platform runs a new auction to determine the next ad to show the user.
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significantly and advertisers are learning their valuations and responding to them as the marketplace
evolves. In a prior-free setting such as this, Mirrokni et al. (2010) show that quasi-proportional
auctions offer better worst-case performance than second-price auctions, especially when bidder
valuations are starkly differentﬁ Second, it ensures that individual consumers are not exposed to the
same ad repeatedly. In contrast, in a deterministic auction, the same advertiser would win all the
impressions unless his budget runs out. This can be irritating to consumers in mobile app settings
because they would see the same ad for many consecutive impressions. For these reasons, the

platform has adopted a quasi-proportional auction mechanism and does not employ a reserve price.
3.2 Data

We have data on all the impressions and corresponding clicks (if any) in the platform, by all the
participating apps for a one month period from 30 September 2015 to 30 October 2015. Each

impression in the data comes with the following information.
e Time and date: The time-stamp of the impression.

e [P address: The Internet Protocol address associated with the impression, which is essentially

the IP of the accessing user’s smartphone when the impression occurs.

e AAID: Android Advertising ID is a user re-settable, unique, device ID that is provided by the
Android operating system[] It is accessible to advertisers and ad networks for tracking and

targeting purposes. We use it as the user-identifier in our main analysis.
e App ID: A unique identifier for apps that advertise through the platform.
e Ad ID: This is an identifier for ads that are shown to the users.
e Bid: The bid that the advertiser has submitted for her ad.
e Location: The exact location of a user based on latitude and longitude.
e Connectivity type: It refers to the user’s type of connectivity (e.g., WiFi or cellular data)
e Smartphone brand: The brand of user’s smartphone (e.g., Samsung, Huawei, etc.)

e MSP: The user’s mobile-phone service provider.

5Consider a setting with two bidders A and B, where A has a valuation of $100 and B $1. In this case, if the auctioneer
has no prior knowledge of the distribution of valuations, he cannot set an appropriate reserve price. Without a reserve
price, A will win the auction and pay $1 in a second price auction, which is significantly lower than her valuation.

7 Apple’s app store is not available in the country where our data are sourced from. Hence, all smartphones use the
Android operating system.
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e [SP: The user’s Internet service provider.
e Click indicator: This variable indicates whether or not the user has clicked on the ad.

The total data we see in this one month interval is quite large. Overall, we observe a total of
1,594,831,699 impressions and 14,373,293 clicks in this time-frame, implying a 0.90% CTR.

3.3 Data Preparation
3.3.1 Validation

Our goal is to develop a model that can accurately predict the CTR for a new impression. To achieve
this goal, we specify and train a supervised machine learning algorithm. These learning algorithms
typically require three steps (and corresponding data-sets) — training, validation, and testing (Hastie
et al., |2001)). Training is the process of constructing our prediction rule using data. However, as
the prediction rule evolves to captures more complex relationships between variables, it is likely to
over-fit on the training data. As a result, we might end up picking a model with great in-sample
performance, but poor out-of-sample performance if we only use training data for model selection.
Validation helps us avoid this problem by using parts of the data (referred to as the validation data)
to validate the model and ensure that it will have a good out-of-sample performance. Since both
training and validation data are used in model specification and selection, we use a completely new
data, test data, to evaluate the model’s out-of-sample performance . Please see Appendix §A|for a
detailed description of our validation and model selection procedure. Further, in we show that

our model selection and results are robust to the validation procedure used.
3.3.2 Data Splits

We have a snapshot of one month of data, from September 30 to October 30. We use the XX two
days (October 28 and 29) for training and validation, and the last day for testing (October 30). We
also use the preceding history from September 30 to Oct 27 (referred to as global data) to generate
the features associated with these impressions. The splits of data are shown in Figure [I] Note that
we do not fit our model on the global data because we do not have sufficient history to generate
features for these impressions. Further, constraining all the three data-sets — training, validation,
and testing — to a three-day window has advantages because recent research has shown that data
freshness plays an important role in CTR prediction, i.e., using older history for prediction (and

ignoring more recent history) can lead to poor predictive performance (He et al., 2014).
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Figure 1: Schema for data generation.

3.3.3 Sampling

We draw a sample of 728,340 unique users (out of around 5 million) seen on October 28, 29, and 30
to form our training, validation, and test datasetsﬂ We then track the impressions containing these
users for the last one month to build the global data and generate the associated features for training,
validation, and test datasets. In Appendix we show that this sample size is sufficient and that
increasing the size of the sample further does not significantly improve model performance.

Figure 1| presents a visual depiction of the sampling procedure. Rows represent different users.
We sample some users (rows in black point) and track them over the last one month and generate
the global data. All the users in global data must be once present in either training and validation, or
test data. In total, there are 146,825,916 impressions in global data, 17,856,610 impressions in the
training and validation data, and 9,625,835 impressions in the test data.

Note that both our user-based sampling procedure and feature generation approach (see
require us to be able to identify and track users. For this purpose, we use the AAID variable as our
user identifier. In we further examine the value of this user identifier and discuss what would

happen if we did not have access to this variable.

8 Another approach would be to randomly sample impressions in each split of the data. However, this would not give us
the complete user-history for each impression in the training, validation, and test data-sets. This in turn would lead to
significant loss of accuracy in user-level features, especially since user history is sparse. In contrast, our user-based
sampling approach gives us unbroken user-history.
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. Number of Share of top sub-categories | Number of
Variable . st nd rd : i
sub-categories 1 2 3 impressions
App 9709 37.12% 13.56% 3.05% | 27,482,444
Ad 263 18.89% 6.71%  6.31% | 27,482,444
Hour of the Day 24 739%  7.32%  6.90% | 27,482,444
Smartphone Brand 8 46.94% 3230% 9.53% 25,270,463
Connectivity Type 2 54.64% 45.36% 27,482,444
ISP 9 68.03% 14.02% 7.09% 10,701,303
MSP 3 48.57% 43.67% 7.76% | 26,051,042

Table 1: Summary statistics for the categorical variables.

3.4 Summary Statistics

We now present some summary statistics on our training, validation, and test data, which constitutes

a total of 27,482, 444 impressions.

Table[T|shows the preliminary statistics on the categorical variables in the data. For each variable,

we present the number of unique values, the share of top three sub-categories, and the number of

non-missing data for each variable. While we always have information the app, ad, and time-stamp

of the impression, the other variables are sometimes missing. The shares are shown after excluding

the missing variables in the respective category.
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Figure 2: Cumulative fraction of impressions associated with the top 100 ads and top 100 apps.

Next, we present some detailed statistics on ads, apps, and user-behavior. We observe a total of
263 unique ads and 9709 unique apps in the data. Further, the top three sub-categories in each have

large shares and there is a long tail of smaller apps and ads. The top 37 ads account for over 80% of
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Figure 3: Histogram of Click-through Rate for Ads and Apps

the impressions (see Figure[2a). Similarly, the top 50 apps account for 80% of impressions (see
Figure 2b). Therefore, we focus on these top 37 ads and top 50 apps and group the smaller ads and
apps into separate categories in our feature generation. It helps us reduce the dimensionality and
boosts the speed of our feature generation framework.

Figure 3a) and [3b|show the histogram of CTRs for ads and apps respectively. The variance of
CTRs among apps is higher than the variance among ads. An important factor driving this pattern is
the lack of targeting in the platform. While users self-select into apps, ads are assigned to users more
randomly due to the probabilistic nature of the auction. Therefore, we observe less variation in ads’
CTR compared to that of apps. Later in §5.2.2] we show to what extent each piece of information
helps us predict the click-through rates of impressions.

Next we examine the association between the length of user-history and CTR. Preliminary
analysis suggests that users are becoming less sensitive to ads with time. Figure 4 shows the CDF
of the length of history for all the impressions and clicks. Most of the clicks come from users
with shorter history, while most impressions come from users with longer history. Users who have
seen less than 500 impressions generate around 50% of all impressions, whereas they contribute to
over 75% of the clicks. Thus, exploiting user-history information can help us explain the clicking

behavior observed in data.
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Figure 4: Empirical CDF of the length of user history for impressions and clicks (truncated at
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impression (excluding it).

3.5 Randomness in the Data Generation Process

We now describe the importance and role of randomness in our model and present some empirical
evidence on the extent of randomization observed in the data.

Randomization in data is not necessary to build a good predictive model of clicks. As long
as the joint distribution of covariates and outcome (click) in the training set is the same as that in
the test set, we can build a good predictive model. In other words, if we do not use the model to
predict in counterfactual situations that are “not seen in the data”, the lack of randomization is not
a problem. Thus, even without randomization, all the substantive results in §E] are valid because
there is no change in the system and the training and test sets have the same joint distribution of
covariates and clicks.

However, in §6] we consider counterfactual targeting scenarios and predict the CTR of not just
the ad actually shown in a given impression, but of all the ads competing for that impression. In
such cases, our predictions of CTRs for the competing ads in the focal impression will be inaccurate
if these ads were never shown in impressions similar to the focal impression. This is mainly because
the joint distribution of covariates and clicks in the counterfactual scenario is not the same with that
in the training set. For example, if an ad is only shown in App X in our data, then no predictive
model (ML or otherwise) will be able to accurately predict the ad’s click probability in App Y.
Therefore, we need to see sufficient randomness in the allocation of ads across impressions to ensure

that the joint distribution of covariates and clicks in our counterfactual scenarios is the same with
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| Targeting Area % of Top Ads Targeting ||

App Category 32.4%
City 35.1%
Connectivity Type 5.4%
Time of the Day 32.4%
MSP 2.7%
Mobile Brand 2.7%
ISP 2.7%

Table 2: Targeting decisions of the top 37 ads.

that in the training setﬂ Later in we propose a filtering approach which approximate the joint
distribution of covariates and clicks using the auction mechanism and overcome this issue.

There are three main factors that contribute to the randomness in our data. First, it is the
probabilistic nature of the quasi-proportional auctions. Unlike deterministic auctions where the
highest scoring bidder always wins, in quasi-proportional auctions all bidders have a chance of
winning. Therefore, ads end up being shown over a wide range of impressions. Second, the CTR
used to generate the score (bid x CTR) is simply the average CTR for the ad in the platform. So the
score is a weak predictor of the likelihood of receiving a click. Again, this leads to a scenario where
ads are shown in a broad set of apps, users, and situations. Third, there are only few categories over
which advertisers can target their ads and the extent of targeting happening in the system is low.
Table [2[ shows the list of variables over which advertisers can now target and the percentage of top
advertisers that target on each of these variables. Interestingly, more than half of the top ads do not
target in any given targeting area and even those that do target, do so minimally. Moreover, the
platform does not do any behavioral or user-level targeting. Thus, the extent of randomization of ads
over impressions is quite high. Figure[5]shows the empirical CDF of the number of competing ads
(among the top 37) for each impression in the test data among top ads per impression. Almost all
the impressions have at least 10 ads competing for it and the median impression has 20 competitors.
This pattern, together with the probabilistic auction mechanism, ensures that a large variety of ads

are shown across impressions.

“However, unlike a causal model, we do not need the allocation of ads across impressions to be completely orthogonal
or perfectly random. As long as the extent of randomness is sufficiently large to ensure that the joint distribution of
counterfactual scenario is the same as that of training set, we can get reasonable CTR predictions for all the top ads for
all impressions.
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Figure 5: Empirical CDF of the number of competitors (from the top 37 advertisers) per impression.

4 Machine Learning Framework

We start with the problem definition. To target ads, we need to develop a model that accurately
predicts whether an impression will generate a click or not. Thus, our problem is one of CTR
prediction. To solve this problem, we need to have three inputs (in addition to the data) — 1)

Evaluation metric, 2) Feature set, and 3) Classifying algorithm. We discuss each of these below.
4.1 Evaluation Metric

To evaluate whether a model improves our ability to predict clicks, we first need to define a measure
of predictive accuracy or an evaluation metric. There is no one ideal metric for all situations and the
appropriateness of the metric depends on the goals of the project. In our case, we need a metric
that can — 1) Accurately capture the improvement in CTR prediction for each impression (since the
accuracy of this prediction has implications for the revenue and surplus of the platform as well as
the advertisers). This is in contrast to classification tasks, where only the relative ordering of the
predictions matters. 2) Be used to compare models with different features and evaluate the value of
different types of information.

A metric that satisfies both these objectives is “Relative Information Gain” or RIG, and we use
it as our primary evaluation metric. R/G is based on LoglLoss, which is the most commonly used
metric in the CTR prediction literature (Y1 et al., 2013)).

RIG is formally defined as follows. Consider a data set with /N impressions, where y =
{y1, 92, ...,yn} denotes the set of observed click indicator for the NV impressions. For a given

model A, let §ao = {§a1,Ja2, - - -, Jan } denote the CTRs estimated by the model. Then the LogLoss
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of model A is given by:

N
- 1 N X

L (ga,y) = =5 Zl (yilog (ai) + (1 — yi) log (1 = §ai)) )

By definition, LogLoss is the negative log of likelihood for our prediction model. Hence, the higher

the LogLoss, the worse our model’s performance. In order to compare the performance of different

models, we define RIG as:

3)

ﬁlog loss (&
RIG(9a,9B5Y) = <1 <YA7y)) x 100

B Llog loss (yB; y>

where ¥ o and g are the predictions from models A and B, respectively. RIG can thus be interpreted
as the percentage improvement in LogLoss that we achieve by going from model B to model A. If
the baseline model A performs better than model B, then RIG would be negative.

In our empirical analysis, we always use average observed CTR for the data as the baseline
model (unless otherwise specified). This is the simplest aggregate metric that we can derive from
the data, and it tells us how well we can do without any model. It is important to control for this
baseline because if the baseline CTR in the data is very high (close to 1) or very low (close to zero,
as in most e-commerce settings, including ours), a naive prediction based on average CTRs can
provide a pretty good LogLoss. By defining RIG over this baseline, we are able to evaluate the
relative benefit of a given model over and above a naive prediction. Moreover, normalizing the
LogLoss with the average CTR reduces the sensitivity of the metric to the data distribution (He
et al., 2014). Nevertheless, we need to be careful when interpreting RIGs computed on different
datasets because there is no obvious normalization in those cases (Y1 et al., [2013)).

In Appendix we present three other commonly used evaluation metrics — (1) Mean Squared
Error, (2) AUC, and (3) 0/1 Loss. We discuss the pros/cons of these metrics and demonstrate the

performance of our model on them.
4.2 Feature Generation Framework

Feature generation is an important step in all machine learning problems. Since our goal is CTR
prediction, we need a set of informative features that can help accurately predict the probability of
click for a given impression.

We follow the functional feature generation framework proposed by Yoganarasimhan| (2017).
There are three advantages to adopting her framework. First, her function-based approach allows us

to generate a large and varied set of features using a parsimonious series of functions instead of
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defining each feature individually. Second, it allows for a natural mapping between feature inputs
and feature classification. Third, the general class of features she suggests have been shown to offer

significant predictive power in these classes of problems.
4.2.1 Inputs for Feature Functions

Each impression ¢ in our training, validation, and test data can be uniquely characterized by the
following four variables — (1) the hour of the day during which the impression occurred (denoted by
t;), (2) the app p; within which it occurred, (3) the user u; who generated the impression, and (4)
the ad a; which was shown in the impression. In addition, we have a history of impressions and
clicks observed in the system prior to this impression.

To generate a set of features for a given impression ¢, we use feature functions that take some
inputs at the impression level and output a corresponding feature for that impression. Our feature
functions are typically of the form F'(6;,, 0y, 0it, 0iu: Miv, Mie) (though some functions may have

fewer inputs). We now define each of these inputs:

1. Ad related information: The first input 6;, captures the ad related information for impression
i. It can take two possible values: 6, € ©;, = {a;, @}. Here, a; denotes the ad shown in
it" impression, where a; € A = {a",a®,... a®) a(}. The elements a,a®, ... a7
refer to the top 37 ads, whereas all the smaller ads are grouped into one category, which is
denoted by as al®. Finally, if §;, = &, then it means that the feature is not ad-specific and is

aggregated over all possible ads.

2. Contextual information: The second and third inputs 6;, and 0;, capture the app and time
related information for impression . Together they capture the context (where and when) for

the impression.

(@) 0;, € ©,, = {p;, D} can take two possible values. §;, = p; refers to the app where the
impression was shown and p; € P = {pM p@ ... pO9) p1 p1) through p©® refer
to the top 50 apps, and p® refers to the category of all smaller apps (which we do not

track individually). Finally, 0;, = @ means that the function is aggregated over all apps.

(b) 6; € ©; = {t;, I} characterizes the time-related information for impression i, where
t; denotes the hour of the day during which the impression occurred, and @ which
implies that the function is aggregated over all hours of the day. Naturally, ¢; can take

24 possible values ranging from 1 through 24.

3. Behavioral information: The fourth input 0;, € ©;, = {u;, &} captures the behavioral

information for impression 7. If 6;, = u;, it means that the feature is specified for user u; who
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generated the impression. Features that use this information are the ones that can allow us
to do behavioral targeting. In general, u; € U = {u, ... w8340} where U is the full
sample of users in the training, validation, and test data. As usual, #;, = & denotes that the

function is aggregated over all possible users.

4. History: The last two inputs, 7;, and 7;., capture the history over which the function is
aggregated. 7;;, denotes the beginning or starting point of the history and 7,. denotes the
end-point of the history.

(@) nw € Hip = {l, s,0;} can take three possible values which we discuss below:

e 71;, = [ denotes long-term history, i.e., the starting point of the history is September
30 2015, the date from which data is available.

e 7;, = s denotes short-term history, i.e., only data on or after Oct 25 2015 are
considered.

e 7, = o; denotes ongoing session-level history, i.e., the history starts from the
beginning of the session within which the impression occurs This history is the
most accessible in the user’s short-term memory. Note that by definition, 7;, = o;

implies that the function is calculated at the user level.

(b) nie € Hie = {g,r;} can take two possible values which we define them as follows:

e 7;c = g implies that the feature is calculated over the global data, i.e., data after
October 28 2015 are not considered. These features are calculated without using
any impression from the training, validation and test data-sets.

e 1;. = r; refers to real-time aggregation, i.e., the feature is calculated over all the

information up till the focal impression <.
In Figure[6] we present a picture with five example users to illustrate different types of history.

The domain for our feature functions is the Cartesian product of the sets described above. For
example, ©; = ©,, X 0;, X O, X 0;, X H;, x H,. is the domain for functions that take all the

inputs.
4.2.2 Feature Functions

We now use the nomenclature described above to define the following functions.

10A session ends when there is a five minute interruption in a user’s exposure to the ads. So if the time difference
between two consecutive impressions shown to a user-app combination is more than five minutes, we assume that the
latter impression belongs to a different session than the former.
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Figure 6: Depiction of history for five example users.The A refers to the focal impression 7 for which
the features are being generated. + denotes the last impression just before the focal impression, and
x refers to the first impression in the session in which the focal impression occurs.

1. Impressions(6;q, Oip, Oit, Oi; Miv, Mie): This function counts the number of impressions with
the characteristics given as inputs over the specified history. Formally, Impressions : ©; —
Z* U {0} takes an input from O, and returns the number of impressions with the specified

characteristics (Z™ represents the set of positive integers). Impressions is defined as follows:

[mpTQSSiOHS(Hia7 0ip7 Oit, Oiu; 77@'b77h'e) = Z ]l(Aj = eia)]l(Pj = Hip)]l(Tj = eit)]l(Uj = eiu)7
je[nib"’?ie}

C))
where U, A, P, and T' are random variables indicating user, ad, app, and time respectively.
The summation is over the two history variables — the starting point of the history 7;, and
end point of the history 7;.. For example, Impressions(a;, p;, t;, u;; [, r;) returns the number
of times ad a; is shown to user u; while using app a; at the hour of day ¢; in the time period

starting September 30 2015 and ending with the last impression before i.

If instead we are interested in the number of times that user u; has seen ad a; over all apps
and all hours of the days from October 25 (n;, = s) till the end of the global data (1, = g),
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we would have:

Impressions(a;, @, D, u;;s,9) = Z 1(A; = a)1(P; = 2)1(T; = 2)1(U; = ;)

J€ls.g]

j€ls.g]

In general, the Impressions function aims to capture the effects of repeated ad exposure
on user behavior that has been shown to yield higher ad effectiveness in the recent literature
(Sahni, 2015 Johnson et al., [2016). This function may also capture some unobserved ad-
specific effects, e.g., an advertiser may not have enough impressions simply because he does

not have a large budget.

2. Clicks(0iq, 0ip, 0it, Oiu; v, Mie): This function counts the number of clicks with the charac-
teristics given as inputs over the history specified. The domain and range are the same as
Impressions function. The only difference is that C'licks only counts the impressions that

led to a click. Let C' denote the binary random variable for a click. Then:

ClZ.CkS(ei(“ Qipa 91'757 ezua Niv, 771'6) = Z ]1(‘4] = 92@)]1<]D] = QZP)E(T} - 92t>]1(UJ = 97@)]1(0]
JEMibsMie]

)
Clicks is a good indicator of both ad and app performance. Moreover, at the user-level, the
number of clicks captures an individual user’s propensity to click, as well as her propensity to

click within a specific ad and/or app. Thus, this is a very informative metric.

3. CTR(0ia,0ip, Oit, 033 Miv, Mie): This function calculates the click-through rate (CTR) for a
given set of inputs and history, i.e., the ratio of clicks to impressions. Formally, CT' R : ©; —

[0, 1], takes an input from ©; and returns CTR. If Impressions(6;q, Oip, Oit, Oiu; Miv, Mie) > O:

Clicks(biq, Oip, Oits Gis Mivs Mie)
Impressions(6iq, Oip, Oit, Oiu; Mivs Nie) ’

CTR(bia, i, Oit, Osus Mty Mie) = ©)

else if Impressions(Oia, Oip, Oit, Oiu; Niv, Nie) = 0, CTR(Oia, Oip, Oit, Oini; Nit, Mie) = 0,

The C'T'R function is a combination of Impressions and Clicks. Intuitively, features
generated based on this function capture the click-propensity at the user, ad, app, and time

level and their interactions. It thus explains a substantial variation in the data]]

"Tn principle, we do not need to CTR over and above Clicks and Impressions if we our learning model can
automatically generate new features based on non-linear combinations of basic features. Machine learning models like
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4. AdCount(8;y, 0;u; niv, mic): This function returns the number of distinct ads shown for a given
set of inputs, e.g., the number of distinct ads a user has seen while using a given app. Formally,
AdCount : ©;, X Oy, X Hip X Hie — ZT U {0} is defined as:

AdCount(0sp, Ogus Miv, Mie) = Z L(Impressions(a, Oip, D, Opus; nivs Mie) > 0) (7

acAF

Features derived using this function capture the variety in ads seen by users within and across
apps for different histories. Behavioral literature suggests that when consumers view ads with

higher variety, they are more likely to engage with them (Redden, 2007).

We use the full set of ads seen in our data (denoted by A") and not just the top 37 ads to
calculate this function This ensures that we are capturing the full extent of variety in ads

seen by users.

5. Entropy(0:p, Oiu; i, Mie): This function captures entropy or dispersion in the ads seen by
a user. We use [Simpson| (1949)’s measure of diversity as our entropy metric. Entropy :
Oip X O X Hip X Hie — R is defined as follows:

1
Z(IE.AF ]mpressz'ons(a, Hi]n @, 911“ Niv, nie)Q

Entropy(Oip, O Miv, Mie) = ®)
Entropy contains information over and above just the count of the number of unique ads
seen in the past since it captures the extent to which ads were dispersed across impressions.
Consider two users who have both seen five impressions in the past, but with the following
difference — a) the first user has seen five distinct ads, or b) the second has seen same ad five
times. Naturally, the dispersion of ads is higher in case (a) than in case (b). The Entropy

function reflects this dispersion — in case (a) the entropy is = 0.2, whereas in

T
case (b) it is 5% = 0.04. Thus, entropy is higher when ads are more dispersed.

The literature on eye-tracking has shown that consumers’ attention during advertisements
reduces as ad-repetition increases (Pieters et al.,|1999). We therefore expect the dispersion
of previous ads to influence a user’s attention span in our setting. Since attention is a
prerequisite to clicking, we expect entropy-based measures to have explanatory power in our

CTR prediction model.

Boosted Trees do this naturally and it is one of their big advantages. However, other methods like OLS and Logistic

regressions cannot do automatic feature combination and selection. So we include this feature to help improve the

performance of these simpler models. This ensures that we are not handicapping them too much model comparisons.
12We observe 263 unique ads in our data. Thus, the range of AdCount in our data goes from 0 to 263.
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6. AppCount (0,4, 0iu; niv, Mie): This function calculates the number of distinct apps in which a
given ad is shown to a specific user. It is thus similar to AdC'ount. AppCount : ©;, X O, X
Hip X Hie — Z77 U {0} is defined as follows:

AppCount(0sq, 0r; niy mie) = > L(Impressions(0a, p, ., Oiu s ie) > 0),  (9)
peEP

where P is the set of apps, as defined in Previous studies have documented the
spillover effects in multichannel online advertising (L1 and Kannan, 2014). We therefore
expect click probabilities to vary if a user saw an ad in just one app vs. saw it in many
different apps. We also expect the click behavior of users to vary based on the number of apps

they use. AppCount-based features help us capture these differences.

7. TimeV ariability(0,; niv, Mie): This function measures the variance in a user’s CTR over
different hours of the day. TimeV ariability : ©;, X H; X Hie — R is defined as follows:

TimeV ariability(0s; v, Nie) = Var,[CT R(D, &, t, Oi; Niv, Nie )] (10)

Features based on this function capture variations in the temporal patterns in a user’s clicking

behavior and we expect this information to help predict clicks.

8. AppV ariability(0;,; nw, nie): This function measures the variance in a user’s CTR across
different apps and is analogous to TimeV ariability. AppV ariability : ©;, X Hip X Hie — R
is defined as follows:

AppV ariability(0; Niv, Nie) = Var,[CTR(D, p, D, i Nib, Mie )] (11)

Note that both TimeV ariability and AppV ariability are defined at the user level.
In addition, we include the following standalone features in our model:
9. Bid(a;): The bid submitted for ad a; shown in impression .
10. Latitude(u;): The latitude of user u; when impression ¢ occurs.

11. Longitude(u;): The longitude of user u; when impression ¢ occurs.

13 has 51 elements, the top 1-50 apps and the 515 element being the group of all smaller apps. In principle, we could
use all the apps observed in the data and not just the Top 50 apps (like we did in the case of AdCount). However, we
found that doing so does not really improve model performance. So we stick with this simpler definition.
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12.

13.

14.

15.

16.

WiFi(u;): Denotes whether the user is connected via WiFi or mobile data plan during

impression ¢. It can take two possible values, {0, 1}.

Brand(u;): Denotes the brand of the smartphone that user u; is using. We observe eight
smartphone brands in our data and therefore capture each brand using a dummy variable. So

the range for this function is {0, 1}®.

M S P(u;): Denotes the Mobile Service Provider used by user u; during impression i. We

observe four MSPs in our data. So the range for this function is {0, 1}%.

IS P(u;): Denotes the Internet service providers (ISP) of user u;. We observe nine unique
ISPs in our data. So the range of this function is {0, 1}°.

AdDummy(a;): Generates dummy variables for each of the top ads in the data. Although
we expect our main features to capture many of the ad-fixed effects, we include ad dummies
to capture any residual ad-fixed effects, e.g., banner design. The range of this function is

{0, 1}?8, since there are 37 top ads and a 38" category comprising all the smaller ads.

4.2.3 Feature Classification

We now use functions defined above to generate a total of 161 features for each impression. We
present the full list of features in Table[AT]in Appendix

To aid our analysis, we classify features based on the inputs used to generate them into the

following (partially overlapping) categories:

e Ad-specific features (F4): These are features that contain information on the ad shown during

the impression. Formally, an ad-specific feature is one that is generated with input 6, # <. All

the features generated using the functions AdCount, Entropy, Bid, and AdDummy are also

included in F'4 since they use ad-specific information.

e Contextual features (F): These are features that contain information on the context of the

impression. Since our feature functions can take two types of contextual input, we further

classify them into two (partially overlapping) sub-categories:

e App-specific features (£'p): These features contain information on the app in which the

impression was shown. Formally, an app-specific feature is one that is generated with
input 6;, # &. It also includes all features generated using the functions AppCount and

AppV ariability since they both use app-level information.

e Time-level specific features (F7): These features contain information on the hour of the

day during which the impression occurred. Formally, a time-specific feature is one that
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is generated with input 6;; # @. It also includes all features generated using the function
TimeV ariability.

e Behavioral features (F'g): These are features that contain information on the behavior of the
user who generated the impression. Formally, a behavioral feature is one that is generated with
input ¢;, # @. In addition, features generated using Lattitude, Longitude, WiF'i, Brand,
MSP, ISP are also classified as behavioral since they contain user-specific information.

Together, these three feature sets form the full set of features Fr = Fg U Fo U F4. All the feature
classifications are shown in Table [Al{and in we examine the relative value of these different

categories of features in their ability to predict clicks and improve targeting outcomes.
4.3 Learning using Boosted Regression Trees

For the prediction task, we use the Extreme Gradient Boosting with Regression Trees (XGBoost)
algorithm proposed by [Chen and Guestrin (2016). In §4.3.1| we give a brief overview of boosting
and XGBoost. Then, in we present a detailed exposition of the method.

4.3.1 Boosting

The concept of boosting was first introduced by Schapire (1990) and |[Freund (1995) who showed
that it is possible to generate a strong learner using a combination of weak learners. Soon after,
Freund and Schapire (1996) developed the first boosting algorithm, AdaBoost. In an important
paper, Breiman| (1998) showed that boosting can be interpreted as gradient descent in function space.
This view was expanded by Friedman| (2001), who showed how boosting can be applied to a large
set of loss functions using any underlying weak learner (e.g., CART, logistic functions, regressions).
Since then, boosted regression trees, also known as MART (multivariate adaptive regression trees)
have been used to solve a variety of prediction problems.

MART can be viewed as performing gradient descent in the function space using shallow
CART or regression trees (with a small number of leaves). CART is scalable, easy to interpret, can
handle a mixture of discrete and continuous inputs, is insensitive to monotone transformations, and
performs automatic variable selection (Murphy, 2012). However, it has limited accuracy because of
its discontinuous nature and because it is trained using greedy algorithms. In particular, shallow
regression trees tend to low variance, but high bias. Boosting allows us to preserve the low variance
and reduce the bias. Thus, MART produces high quality classifiers that combine the positive aspects
of CART with those of boosting (Caruana and Niculescu-Mizil, 2006)).

More recently, (Chen and Guestrin (2016)) introduced a new boosted tree algorithm, XGBoost,
that improves on MART. XGBoost differs from MART on four key dimensions. First, from a
methodological standpoint, it can be interpreted as performing Newton boosting in the function
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space (as opposed to gradient descent), and thereby uses information from the Hessian as well.
Thus, both the quality of the leaf structure and the leaf weights learned are more accurate in each
step. Second, XGBoost uses a trick commonly used in Random Forests — column sub-sampling,
which reduces the correlation between subsequent trees. Third, XGBoost employs a sparsity-
aware split finding, which makes the algorithm run faster on sparse/missing data. Finally, from an
implementation perspective, XGBoost is highly parallelized, which makes it fast and scalable.
XGBoost is one of the most successful prediction algorithms developed in the last few years.
From 2015 onwards, most of the KDD cup winners have used XGBoost as their learning algorithm
(either as a standalone model or in ensembles)Ef] Further, (Chen and Guestrin (2016) note that
“Among the 29 challenge winning solutions published at Kaggle’s blog during 2015, 17 solutions
used XGBoost.” In sum, boosted tree algorithms in general, and XGBoost in particular, have been

shown to perform exceptionally well in tasks involving predicting human behavior
4.3.2 XGBoost

We start by considering a generic tree ensemble method as follows: let y; and x; denote the click
indicator and the vector of features for impression i such that y; € {0,1} and x; € R, where k is

the number of features. Then a tree ensemble method is defined as follows:

J
gi= o) =D _omx) =D wlll. (12)
P =1
where ¢; : RF — {1,2,..., L;} and w9 € R%i constitute the j** regression tree 7; with L, leaves.

Here ¢; maps an impression to the leaf index and wY) represents the weight on leaves. The tree
ensemble method uses J additive functions to predict the output. In order to estimate the set of

functions, Chen and Guestrin (2016) minimize the following regularized objective:
. 1 2
£(9) =Zjl<yi,yi>+ijILj+§A;Hw<”}} , (13)

where v and A\ are the regularization parameters to penalize the model complexity, and [ is a
differentiable convex loss function (in our case, we use log loss as defined in §. Here, in contrast
to MART, XGBoost penalizes not just tree depth but leaf weights as well.

Since the regularized objective in Equation (I3)) cannot be minimized using traditional optimiza-

“Ensemble methods outperform a well-configured boosted tree model by only a small amount (Bekkerman, 2015).
This is important because ensemble models come with very high computational costs.

SExamples include store sales prediction, customer behavior prediction, product categorization, ad CTR prediction,
course dropout rate prediction, etc.
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tion methods in Euclidean space, we employ Newton boosting in function space to train the model
()

in an additive manner. Formally, if we define 7;”’ as the prediction of the i'" impression at the j

iteration, we will add 7; to minimize the following objective:

I (14)

- 1o
L(¢) = ZZ(Q§] Vo mi(xi),y) + L+ 5)‘ [Jw®

In each iteration, we greedily add the tree that most improves our model according to the objective
function in Equation (13). Since the model uses a greedy algorithm to find the best split at each
iteration, it is impossible to search over all tree structures. Thus, we restrict the set of trees by
specifying the maximum depth of a tree. To optimize this objective function, Friedman et al.| (2000)

propose a second-order approximation:

- 1 1 ‘
£(6) = STV, 5) + iy (x,) + ngﬂf(xi)} +7Ls + 5A meHz 7 (15)

i

where G; = E)gl(j_l)l(ygj_l),yi) and H; = 8;£j_1)l(@§j_1), y;) are first and second order gradient
statistics on the loss function. This approximation is used to derive the optimal tree at the step.

Note that implementation of this optimization routine requires the researcher to provide a set
of hyper-parameters. These include the regularization parameters v and A defined in Equation
Further, XGBoost uses two additional parameters to prevent over-fitting. The first is called
shrinkage parameter () introduced by [Friedman| (2002), which functions like learning rate in
stochastic optimization. The second is the column sub-sampling parameter (), which is used to
pick the fraction of features supplied to a tree and ranges from O to 1. In addition, we also need to
specify parameters that structure the optimization problem and let the algorithm end. The first is
dpmaz» the maximum depth of trees. As mentioned earlier, this ensures that the model searches over
a finite set of trees. Second, we set the number of maximum number iterations. Finally, the last
parameter defines the early stopping rule, x € Z*, which stops the algorithm if the loss does not
change in x consecutive iterations. This parameter also helps prevent over-fitting.

Note all that these parameters cannot be inferred from the training data alone and should be set
based on a scientific validation procedure. Appendix §A|provides a step by step explanation and the

final values used for these hyper-parameters in our analysis.

5 Results

This section is organized as follows. In we discuss the gains in predictive ability from our

machine learning framework. In we present an analysis of how different classes of features
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I Training and Validation Test ||

LogLoss for Full Model 0.041927 0.044364
LogLoss for Baseline Model 0.051425 0.054070
RIG of Full Model over the Baseline 18.47% 17.95%

Table 3: LogLoss and RIG (in percentage) shown for training, validation, and test data.

contribute to these gains. In we examine how stricter privacy regulations on user tracking
would affect the ability to target. Finally, in we discuss the robustness and scalability of our
approach.

5.1 Gains in Targeting Ability

Table 3] shows the gains in predictive ability on both the training and validation data and the test data.
The first row depicts the LogLoss for the full model (which uses the set of 161 features derived in
and the gradient boosting algorithm described in §4.3). The second row depicts the LogLoss
for the baseline model, which is simply the average CTR for the dataset. The third row is the RIG
of the full model compared to the baseline.

The RIG of the full model over the baseline is 17.95% on the test data. This improvement is
quite substantial in CTR prediction problems (He et al., 2014]). It suggests that our machine learning
framework significantly improves our ability to predict whether an impression will receive a click
or not. From the ad network and advertisers’ perspectives, this improvement directly translates to
improved ability to target, or provide a better match between impressions and ads. Further, in
and Appendix we show that the improvements in predictive ability are similar when we use
other evaluation metrics such as AUC, percentage improvement in MSE, and 0/1 Loss.

The RIG improvement for training and validation data is 18.47%, which is somewhat higher
than 17.95% for the test data. There are two potential reasons for this. First, all statistical models
estimated on finite data have higher in-sample fit than out-of-sample fit. Indeed, this is the main
reason we use the test data to evaluate model performance. Second, the difference could simply
reflect the differences in the underlying data distributions for the two data-sets. As discussed in
we cannot compare RIG across data-sets because it is co-determined by both the model and the data.

Thus, the difference between the RIG values across the data-sets is not necessarily informative.
5.2 Value of Feature Sets

We now examine the impact of different types of features on the predictive accuracy of our model.
This is important for three reasons. First, it gives us intuition on which consumers click, how they
click, when they click, and what types of ads they click on. Second, data storage and processing

costs vary across feature types. For example, some user-specific behavioral features require real-
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RIG of A over B Full Sample | 1P Adsand
Top Apps
Behavioral over Baseline 12.14% 14.82%
Contextual over Baseline 5.25% 5.98%
Full over Baseline 17.95% 22.85%
Behavioral over Contextual 7.27% 9.40%
No. of Impressions 9,625,835 6,108,511
Percentage of Test Data 100% 63.5%

Table 4: Comparison of Behavioral and Contextual models for different samples of test data.

time updating, whereas pure-contextual features tend to be more stable, and can be updated less
frequently. In order to decide whether to store and update a feature or not, we need to know its
incremental value in improving targeting. Third, the privacy and policy implications of targeting
depend on the features used. For example, models that use behavioral features are less privacy-
preserving than those that use purely contextual features. Before adopting models that are weaker
on privacy, we need objective measures of whether such models actually perform better.

We use the feature categorization discussed in for this analysis. Recall that we categorized
features into three broad overlapping sets — 1) Behavioral, denoted by Fz, 2) Contextual, denoted
by F¢, and 3) Ad-specific, denoted by F'4. Within contextual, features are further sub-categorized
as App-specific (Fp) and Time-specific features (Fr).

5.2.1 Behavioral vs. Contextual Features

To evaluate the relative value of behavioral and contextual information, we define two models:
e Behavioral model: This model is trained using behavioral and ad-specific features, without
including any contextual features. Formally, the feature set used is (Fp U F4) \ Fe.
e Contextual model: This model is trained using only contextual and ad-specific features, without
including any behavioral features. The feature set for this model is (Fo U F) \ Fg.
Both models include ad-specific features that are neither behavioral nor contextual (e.g., Feature 2
in Table because it is reasonable to expect the ad-network to have this information They also
use the same objective and training algorithm and only differ on the set of features used. Hence, it
is possible for us to directly compare the RIG of one model over another within the same data

The results from these two models and their comparisons with the Baseline model are presented

16We can also specify Behavioral and Contextual models that ignore ad-specific information. The qualitative results on
the relative value of behavioral and contextual information for that case are similar to those presented here.

17As discussed in RIGs are not directly comparable across different data-sets. Simply put, in Table comparisons
within a column are interpret-able, but comparisons across a row are not.
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in Table 4| First, consider the results for the full test data (presented in the second column). The
Behavioral model has a 12.27% RIG over the baseline, which is considerably higher than 5.12%
of the Contextual model over the baselinem Directly comparing the Behavioral model to the
Contextual model gives us an RIG of 7.54%. Together, these findings suggest that behavioral
targeting is more effective compared to contextual targeting in mobile in-app advertising. While
it is possible that additional contextual information (that we do not have) can change the relative
ordering of these findings, our findings establish a base case for these comparative results.

One possible critique of the above analysis is that it does not exploit the full capacity of
contextual information since we pool the data for the non-top ads and non-top apps during feature
generation. For example, all small ads are treated as one ad and simply identified as 6;, = a(®,
which makes the contextual information murky. To address this issue, we consider a sub-sample of
the test data which only consists of impressions that were shown in a top app and showed a top ad
and re-run all the above comparisons. This accounts for 63.5% of our test data. The performance
of our Full model on this subset of the data is even better than that on the full sample because
there is no information loss on the ads or apps. The findings on the relative value of behavioral
vs. contextual features are even stronger in this data-set, which suggests that our results in the full

sample were not driven by the lack of good contextual information.
5.2.2 Incremental Value of Different Types of Features

Having established the relative value of behavioral and contextual information, we now delve deeper
into the value of different feature sets. We quantify the relative value of each of the following feature
sets — ad-specific features (F'4), app-specific features (F'p), time (F7), and behavioral features (Fp).
For each feature-set, we consider the following two models:

e Forward Addition Model: This model starts with the null set and then adds features generated
with a particular piece of information alone. Forward addition models demonstrate how much
we can gain by using only one piece of information.

e Backward Deduction Model: This model starts with the full set of features and then deducts
features generated using a particular piece of information. Backward deduction models show
the loss in predictive accuracy when we do not have a specific piece of information.

Table [5| presents the results for both these models for four types of features.

Ad information: The forward addition model that only includes ad-related information reaches
an RIG of 0.99% over the baseline, i.e., the gain from purely ad-related features is quite small. This
is also borne out by the fact that the RIG of the backward deduction model for ad-features is 17.26%,

18The Behavioral model is also closer in performance to the Full model than the Contextual model. Compared to the
Full model, the loss in performance of the Behavioral model is -6.95% and that of the Contextual model is -15.67%.
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Piece of Information Forward Addition Model Backward Deduction Model
Feature Set RIG Feature Set RIG
Ad FA\(FPUFTUFB) 0.99% FF\FA 17.26%
App Fp\(FAUFrUFp) 439% Fp\ Fp 15.08%
Time Fr\(FAUFpUFB) 0.11% Fr\ Fr 15.65%
Behavioral Fp\(FaUFpUFr) 10.26% Fr\ Fp 5.25%

Table 5: RIG of Model with/without Different Pieces of Information over Baseline CTR

which is very close to 17.95%, the RIG of the full model (see Table El])

Together, these results imply that ad information adds only marginally to the predictive accuracy
of our framework. This finding likely stems from three reasons. First, it could be due to the fact that
in-app ads are quite small and cannot convey much information or have significant persuasive quality.
Second, since we do not have access to the creatives used, we do not have detailed ad-specific
features such as message or design that can influence clicks. Finally, because all ads are shown to
all users due to the randomization from the proportional auction, there is no additional information
on user-segments in the ad-specific features.

App information: The forward addition model that includes only app-level features has an RIG
of 4.39% over the baseline, while the backward deduction model that subtracts app-specific features
from the full model has an RIG of 15.07% over the baseline. The value of app-level features is thus
higher than that of ad-level features.

Users self-select into apps, which in turn makes app-level features indicative of underlying
user-segments. Further, aggregated app-specific features may capture both user interface (UI) and
user experience (UX) factors that affect users’ propensity to click within a particular app. Both
these reasons may play an important role in predicting clicks.

Time information: The forward addition model with time information has an RIG of 0.11%,
which is minimal. However, the backward deduction model without time-specific features has an
RIG of 15.65% over the baseline. This translates to a relative information loss of 2.80% compared to
the full model, which is quite high This suggests that although temporal information alone does
not help our prediction model much, its interactions with other pieces of information are valuable.

Behavioral information: Finally, we examine the value of behavioral features. This analysis is
analogous to the comparison of Behavioral and Contextual models presented in The forward
addition model with behavioral features is the Behavioral model excluding ad-specific features,

while backward deduction model without behavioral features is identical to the Contextual model.

9We define relative information loss as the percentage loss in LogLoss compared to the full model.
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Interestingly, we find that the forward addition model performs better than the backward deduction
model without behavioral information. This result is in stark contrast to the results for other pieces

of information, and it reiterates the unique value of behavioral features in predicting CTR.
5.3 Targetability and User Identifiers

User-identification and tracking are at the core of targeting technology in the digital advertising
industry. Mobile in-app advertisements rely on a user re-settable device ID for tracking purposes
(referred to as AAID in our data). Privacy advocates have demanded that mobile phone makers
disable such tracking, whereas advertisers have argued that this would lead to significant loss in
their targetability (and hence revenues). As discussed earlier, Apple has already taken a step in this
direction with the introduction of LAT.

Consider a situation where consumer privacy laws are strengthened so as prevent the use of a
tracking identifier (such as the broad implementation of LAT). Under this new regime, the platform
and advertisers would have to rely on IP as their user-identifier. While IP address is a commonly-
used tracking metric in online settings, it is problematic for two reasons. First, all users behind the
same NAT firewall or proxy have the same external IP address. So when we use IP address as the
user-identifier, all of them are grouped under the same ID and identified as a single user. Second, IP
addresses are generally not static, especially in the case of mobile phones. When a user switches
from a WiFi connection to 3G/4G (or vice-versa), the IP address changes. Thus, the same user will
show up with different IP addresses in the data.

To examine how using IPs would affect the platform’s targeting ability, we re-do all our analysis
using IP as our user-identifier instead of AAID. The sampling, feature-generation, training, and
testing are all analogous to the earlier analysis, except now IP is used as the user ID. We first
draw a sample of 799,219 unique IPs from October 28 to October 30 and then track them back to
September 30. This gives us 162,869,975 impressions in global data, 19,574,051 impressions in the
training and validation data, and 10,614,219 in the test data@] We then generate all the features for
the impressions in the training, validation, and test data-sets based on this data. Note that because
IP is now our user-identifier, all user-specific behavioral features are now defined over the same IP
instead of the same AAID. We then train model and test its performance on the test data. The results
are presented in Table[6] There are major differences with Table [] that are worth noting. First, the
overall performance of the model drops substantially — from 17.95% to 13.38%. This indicates that
there is considerable information loss when we move from AAID to IP. Second, we find that the

Contextual model performs slightly better than the Behavioral model. With full sample, the RIG

20The sample size is chosen to be similar to the one used in the main analysis to enable us to compare results from this
section with the main analysis.
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RIG Full Sample | Top Ads/Apps | Users with Long History
Behavioral over Baseline 5.04% 5.52% 3.47%
Contextual over Baseline 5.33% 6.28% 6.43%

Full over Baseline 13.38% 16.64% 10.56%
Contextual over Behavioral 0.31% 0.80% 3.07%

No. of Impressions 10,614,219 6,751,331 1,711,613
Percentage of Test Data 100% 63.61% 16.13%

Table 6: RIG for different model specifications and samples using IP as the user-identifier.

of the Contextual model over the Behavioral model is 0.31% and when we constrain the data to
top ads and top apps, this number increases to 0.80%. Again, this indicates that there is significant
information loss at user-level features with IP as the identifier.

We now examine if the loss in behavioral information is mitigated if we focus on users with
long history. So we present the results for impressions where the user (as identified by the IP) has
at least seen 1000 impressions from September 30 to October 29. Surprisingly, the Contextual
model outperforms the Behavioral model in this case, even more than the other samples; the RIG
of the Contextual model over the Behavioral model is 3.07%. We believe this stems from one of
the fundamental problems with using IP as a user-identifier: an IP address with long history is
actually a combination of different users with the same IP. Figure [/| presents a visual illustration
of this problem. In the full test data, 33% of unique IPs corresponds to two or more AAIDs (see
Figure[7a)). This percentage rises to 43% when we only focus on users addresses with long history
(see Figure [7b). Thus, as we track users longer, the amount of noise in the tracking (and hence
behavioral features) increases. Thus, tracking users for longer leads to worse targeting when we use
a noisy identifier such as IP

In sum, there are two problems with using IP: 1) we treat different users as one, 2) we may
observe different IPs for one user. As such, the accumulation of user history is not be very helpful
when using IPs. However, only the latter is an issue with AAID, i.e., the same AAID can never
correspond to multiple users. Thus, the noise in behavioral information with AAIDs is lower.
Privacy regulations on tracking users can lead to either of these two problems. Our findings suggest
that the former is a more important issue and that advertisers and policy-makers should be aware of

the role of different sources of noise in user-identifiers.

21 Another possibility is that users with the same IP and different AAIDs are the ones who re-set their AAID. However,
we do not think this is the cause of the discrepancy between AAIDs and IPs for two reasons. First, practically not
many users re-set their AAIDs regularly. Second, if IPs were indeed mapping to unique users, the performance of the
Behavioral model would not be worse than that in the main analysis.
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Figure 7: Empirical CDF of number of AAIDs associated with one unique IP.

5.4 Robustness Checks

To confirm the robustness of our findings, we conduct checks on all three aspects of our ML
approach — the evaluation metric used, the learning model used, the feature generation approach, as

well as on the size of the data used. We discuss these tests briefly here and refer readers to Appendix
for details.

1. First, we consider the robustness of our results to the evaluation metric used. We consider
three alternative metrics — Area Under the ROC Curve (AUC), 0/1 Loss, and Mean-Squared
Error (MSE). All the key points that we made earlier continue to hold when we use one of
these other metrics. We refer readers to Appendix for a detailed discussion of these
metrics, and to Tables for results using these alternative metrics (which are

analogous to Tables [4] and [5| presented earlier).

2. Second, we examine whether other learning models can give us better predictive power than
XGBoost. We consider five other commonly used learning models in different models — 1)
Least Squares, 2) LASSO, 3) Logistic Regression, 4) CART (Classification And Regression
Tree), and 5) Random Forests. We train, tune, and validate all the models using the same
training and validation data. The performance of XGBoost is significantly better than that of
the other methods; please see Table |A5|in the Appendix for the performance of these
other models on the test data. Since we use the same data and features to train and validate
all these models, the differences stem from their ability to optimize the objective function.
Please see Appendix for a discussion of these alternative learning models and the details

on tuning and validation of these models.
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3. Third, we run a few robustness checks on the feature generation framework.

e We start by considering different ways of aggregating over the history. One possibility is
to use n;. = r; for all the features, i.e., update all the features in real-time. We find no
difference in terms of the prediction accuracy when we adopt this approach, though it
increases the computational costs of implementation significantly. Therefore, we stick to
our current approach where we use a combination of global and real-time features.

e Next, we examine the model’s performance under an alternative definition of long- and
short-term history for features that are updated in real-time. The idea is to have the length
of history fixed, instead of having the n;;, fixed for each impression. In other words, instead
of aggregating over [l, r;] and [s, r;] where [ and s are fixed, we aggregate over [l;, r;] and
[si, ;] where [; and s; are no more fixed, but the length of [I;, ;] and [s;, r;] are fixed. For
example, [; for impression ¢ on Oct 28 is the same time on Sep 30, while /; for impression
2 on Oct 30 is the same time on Oct 2. Under this new approach, we find a slight decrease
in the performance: the RIG drops to 17.69% improvement over the baseline.

e We also consider a model with dummy variables for the top apps in our feature set (similar
to what we now do for top ads). Again, we find no discernible differences in the results
without app dummies: the RIG is 17.97% over the baseline. This may be due to the fact
that our feature generation framework captures the fixed effects of apps well. Overall, we
find that our feature set works well and any additional features or more complex feature

generation mechanisms do not provide any significant benefits in RIG.

4. Fourth, we present some checks to establish that our data sample is sufficient and large enough
to produce reliable results. Recall that we follow a user-based sampling procedure, wherein
we randomly select 728,340 users and track them for a month (which translates to 584,029
users in training+validation and 433,287 users in test data). In Table in Appendix
we present the RIG gains for different sample sizes, starting with 1000 users. We find that
the RIG gains start stabilizing with the sample of 100,000 users. After this point, sampling
more users leads to only small improvements in the model performance. This suggests that

our sample of 728,340 users is sufficient for our purposes.

5. Fifth, we examine whether our results are sensitive to the validation procedure used to pick
the tuning parameters (described in Appendix §A)). We consider two other approaches that
are widely used in practice: 1) hold-out validation, and 2) k-fold cross validation. The details
of each are presented in Appendix We find that our approach yields slightly higher
predictive accuracy than other validation methods.

37



6. Finally, we show that our findings on using IP as the user-identifier are not driven by the fact
that the data-sets used for the main analysis and the IP analysis came through two different
sampling strategies. In Appendix we run a series of tests on the 15% of impressions
that included in both samples and show that the substantive findings on the unreliability of

using IP as a user-identifier continue to hold.

6 Implications for Data-sharing and Targeting

We now use our machine learning model to examine the implications of changing the platform’s
data-sharing strategies. We focus on two important issues:

e To what extent is the platform incentivized to share data with advertisers and to enable micro-
targeting? Is there an optimal data-sharing (and corresponding targeting) strategy from the
platform’s perspective?

e How does the total surplus accrued by advertisers vary across data-sharing scenarios? Are the
incentives of all the advertisers aligned or is there heterogeneity in advertisers’ preferences on
the optimal level of data-sharing?

Incentives are particularly important in this context because if the platform is incentivized to not
share data with advertisers and to enable micro-targeted bids, then we may naturally converge to
a market with higher consumer privacy protection. In contrast, if the platform is incentivized to
share users’ behavioral data with advertisers, then an external agency (e.g., government) may have
to impose privacy regulations that balance consumers’ need for privacy with platform’s profitability
motives. Similarly, if a substantial portion of advertisers prefer a more restrictive data-sharing
regime, then the mobile ad-industry can self-regulate. So we seek to quantify the platform and
advertisers’ profits under different data-sharing strategies.

The rest of this section proceeds as follows. In we present a simple example to fix ideas
and highlight the platform’s efficiency-revenue trade-off. In we present a stylized model to
characterize the platform’s revenue under different data-sharing strategies. In we combine this
analytical model and the machine learning model developed earlier to derive empirical estimates
of the platform’s profit, advertisers’ revenues, and total surplus under different counterfactual
data-sharing strategies. Finally, in §6.4, we present the findings from our counterfactual analysis,

the limitations of our approach, and conclude with a discussion on optimal mechanism design.
6.1 A Simple Example

Starting with Levin and Milgrom!(2010), a growing body of theoretical literature argues that sharing
too much targeting information with advertisers can thin auction markets which in turn would soften

competition and make the platform worse. Please see §2|for a detailed discussion of this literature.
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We now present a simple example to highlight this idea. Consider a platform with two advertisers
(aV and a?) competing for two impressions by two users (u(") and u(?). There are two possible
pricing mechanisms — Cost per Impression (CPI) and Cost Per Click (CPC). We can formally show
that both CPI and CPC mechanisms generate the same revenues for the platform and advertisers
under different targeting strategies, though the interpretations are slightly different. To avoid
repetition, we focus on the CPI case throughout the text and refer readers to Appendix [E] for the
CPC example and analysis.

We consider second price CPI auctions, where the highest bidder wins the impression and pays
the bid of the second-highest bidder for the impression. These auctions have the useful property of
truthful bidding by advertisers (Vickrey, 1961)17_5] Further assume that the advertisers are symmetric
in their valuation of a click and asymmetric in their match values for impressions (their valuation of
a click is normalized to 1 hereafter). Equation (I6)) shows the match values between the advertisers
and users, which can also be interpreted as the eCTR of an impression for the advertiser-user pair.

Notice that advertiser a(!) has a better match with user () and advertiser «(® with user u®.

ORI ¢ i
a (0.5 0.1 0.3

eCTR = N (16)
a® \0.1 0.3 0.2

We now consider the advertiser’s bidding strategy and outcomes under two regimes — 1) No
data disclosure by the platform, and 2) Full disclosure of match values by the platform. The results
from these two scenarios are laid out in Table [/|and discussed below:

e No data disclosure — Here advertisers only know their aggregate match value over both users.
So aV) and a(®’s expected match over the two users are 0.3 and 0.2. In a second price auction,
advertisers simply bid their expected valuations. So a!") wins both impressions and pays the
next highest bid, by; = by = 0.2 for each impression. Therefore, the total revenue of platform
is R = 0.4, and that of the advertisers is W, = 0.2 and W5 = 0, and the total surplus is S = 0.6.

e Full data disclosure — Since advertisers now have information on their match for each impression,
they submit “targeted bids” that reflect their valuations as shown in Table [/, Therefore, the
advertiser who values the impression more wins it. However, because of the asymmetry in

advertisers’ valuation over impressions, the competition over each impression is softer. This

ZThere exist other deterministic auction mechanisms (e.g., first-price auction) that are revenue equivalent to the
second-price auction. For the sake of simplicity, we therefore focus on the second-price auction in our analysis, but
the results are generalizable to other auction mechanisms.
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No Data Disclosure
(or No Targeting)

For both impressions:

Bids:

Advertiser aM: b1y = be; = 0.3
Advertiser a(?): bys = bgs = 0.2

Outcome:
Advertiser a(*) wins both impressions and pays 0.2 per
impression

Platform’s expected revenue:
R=2x02=04

Advertiser’s expected surplus:
W1 =2x(03-0.2)=0.2
Wy=0

Total expected surplus:
S=0.6

Full Data Disclosure
(or Perfect Targeting)
For User u(!)’s impression:
Bids:

Advertiser aV: by, = 0.5, Advertiser a?: b5 = 0.1
Outcome:

Advertiser (1) wins u(1)

s impression and pays 0.1
For User u(?)’s impression:

Bids:

Advertiser aM: by, = 0.1, Advertiser a?: by5 = 0.3
Outcome:

Advertiser a(® wins u(

2)’s impression and pays 0.1

Platform’s expected revenue:
R=014+01=0.2

Advertiser’s expected surplus:
W1 =05-01=04
Wy=03-0.1=0.2

Total expected surplus:
S =028

Table 7: Example depicting two scenarios: 1) No data disclosure and 2) Full disclosure.

ensures higher advertiser revenues, with W; = 0.4 and W, = 0.2. However, the platform’s
revenue is now lower, with 2 = (0.2. Thus, even though ads are matched more efficiently and
the total surplus generated is higher, the platform extracts less revenue.

This example illustrates the trade-off between value creation and value appropriation for the platform,

and highlights the platform’s incentives to withhold excessive targeting information from advertisers.
6.2 Stylized Model

We now develop a simple analytical model that captures the relationship between the platform’s
data-disclosure strategy and the revenues of the platform and advertisers. As before, we assume
that the platform uses a second-price auction with CPI pricing and that advertisers are symmetric in
their valuation for a click (normalized to 1).

Consider a platform that receives I impressions and serves A advertisers. Let m,, denote the
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match value (or eCTR) of ad a for impression i. Let M denote the match value matrix:

mi1 M2 ... MMiA
TMo1 Mo ... MNoAg

M=\ . : (17)
mp My ... MTJA

The expected value of an impression for an advertiser when they have perfect targeting information
is simply its match value of that impression. Thus, if the platform reveals M to advertisers, they
place targeted bids for each impression ¢ equal to b;, = m;,. Each impression ¢ is then sold to the
advertiser with the highest match value (or bid) which is given by max, m;,. The total surplus
generated by the platform is:
I
= max m; 1

Sp X_; ax Mg (18)
In contrast, if the platform conceals information and only provides advertisers with their aggregate
match values over all impressions (1m, = @) then all advertisers place non-targeted bids over
all impressions where b, = m,. In this case, the advertiser with highest match value aggregated

over all impressions wins all impressions and the total surplus generated by the platform is:
Sy = max Z Mg (19)

We can easily show that Sp > 5, i.e., perfect targeting will increase the total surplus generated
in the market.

However, it is not clear how this surplus is distributed between advertisers and the platform.
Under the no targeting strategy, the platform’s revenue for each impression is the same and is equal
to the second highest match value aggregated over all impressions. Defining aél) as the winning ad
under no targeting, the winner then pays max,, % Zle m, per impression. Thus, the platform’s

revenue is:

Ry = max Miq (20)

In the case of perfect targeting, for a given impression 7, the advertiser with the highest match value
(or bid) pays the second highest match value (or bid). This is equal to max, . Mia, where agz
Py ’

denotes the winning ad in ¢-th impression under perfect targeting. Then the platfofm’s total revenue
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is:
I

Rp = Z Iilaé Miq 2D
i=1 2\qp;

While we can theoretically show that Sp > .5, there is no theoretical relationship between Rp
and Ry. Thus, whether the platform’s revenue increases or decreases with targeting is an empirical

question.
6.3 Empirical Analysis of Targeting and Data Sharing
In line with our main results, we consider four different types of data-sharing arrangements:

1. No data-sharing — Advertisers only know their average CTR on the platform. So they cannot

place targeted bids; their bid for all the impressions on the platform is the same.

2. Contextual data-sharing — The platform shares contextual data and outcomes (winner of
impression and click indicator) for all impressions with all the advertisers. Advertisers are not
given any behavioral/user data. Thus, they can generate all contextual and ad-specific features
which are not behavioral, i.e., (Fo U Fy) \ Fj. Using these features, they can calibrate the
Contextual model shown in In this case, each advertiser can target its bid based on the
context. However, advertisers cannot distinguish two different users in the same context, so a

given advertiser submits the same bid for all users in the same context.

3. Behavioral data-sharing — The platform shares impression-level behavioral data and outcomes
(winner of impression and click indicator) with all the advertisers. In this case advertisers can
generate all behavioral and ad-specific features which are not contextual, i.e., (FpU Fa) \ F¢.
Using these features they can calibrate the Behavioral model shown in In this case,
advertisers can identify the user, but not the context. Thus, the optimal bid of each advertiser

is user-specific, but not context-specific.

4. Full data-sharing — The platform share all the data with advertisers. In this case the advertisers
can generate the full set of features I and calibrate the Full model shown in Here,
advertisers can identify both the context and user, and they can target their bids at the

impression-level.

In each of these data-sharing arrangements, advertisers first calibrate a click-prediction model
using the data available to them. Then whenever an impression arrives, they use their model to
predict their match value for the impression and use that as their targeted bid. We briefly explain
our empirical strategy for generating counterfactual estimates of the platform’s profits and total

surplus below and refer interested readers to Appendix §D|for a step by step procedure.
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Formally, let MN , M c MB , and M7 denote the match-value matrix for the No data-sharing,
Contextual, Behavioral, and Full models, respectively. In the stylized analytical model, all im-
pressions always had A advertisers competing for it. However, empirically, we need to derive the
appropriate set of ads competing for each individual impression 7. As discussed in naively
assuming that all ads compete for all impressions can lead to problems because the accuracy of
our targeting models is predicated on the assumption that the joint distribution of co-variates and
clicks is the same in the test and training/validation data-sets. While this is true in observed test
data, it may not always be true when we consider counterfactual targeting strategies. So we develop
a filtering approach to derive the appropriate set of ads in the consideration set for each impression.
Please see Appendix §D|for details on the filtering approach.

Next, we define the arrays in matrices associated with the highest and second-highest match

values as follows:

X0y = AG5) [ m]; > mj , Vi} (22)
X(E) = {(i,7) | mZ]' > mZ; , Vk #£ argmlang , (23)

where T € {N,C, B, F}. Then, the platform’s revenue and the total surplus in the system for a
data-sharing strategy 7 are:

RT= > m] and §T= > ] (24)

(i.9)eX), (L)EX],

Note that we use M7 for surplus calculation, since it is the most accurate estimation of CTR at the
impression-level that we have. Further, we define the advertisers’ surplus under scenario 7 as the
difference W7 = S7 — RT P

6.4 Counterfactual Results
The results from our counterfactual exercise are shown in Table[8]
6.4.1 Platform’s Revenue

As our theory model predicts, more granular information sharing leads to higher efficiency in the
market: the total surplus under full information sharing is 10.8% higher than the no data-sharing

case (see Table[§)). However, platform revenues exhibit more of an inverted U-shaped curve. They

23We can also interpret data-sharing as match value sharing, i.e., in scenario 7, the platform simply shares the vector of
its match values, {mz;, mg;, ey mz;, ceey m];}, with advertiser a. However, this interpretation is predicated on the
assumption that the platform will behave truthfully, i.e., the platform will not shade the match values. This can only
happen when the advertisers’ and platform’s incentives are fully aligned, which as we will see later is not always true.
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| Data-sharing Scenario | Total Surplus | Platform Revenue | Advertisers’ Surplus ||

Full 0.01440 0.01201 0.00239
Behavioral 0.01390 0.01198 0.00192
Contextual 0.01347 0.01207 0.00140
No data-sharing 0.01299 0.01183 0.00116

Table 8: Platform revenues, advertisers’ surplus, and total surplus for different levels of data-sharing
scenarios. The numbers are reported in average terms per impression.

are maximized when the platform restricts data-sharing to the contextual level. When the platform
shares behavioral information with advertisers, advertisers achieve a greater ability to target. While
this increases the efficiency and total surplus of the system, much of this surplus is appropriated by
advertisers and the platform’s revenue suffers. Nevertheless, our findings are weaker than those
predicted by theory models, i.e., while revenues reduce with more granular targeting, the drop is not
very large. This suggests that the strong distributional assumptions on the match values in theory
papers may not hold in real ad auctions.

Thus, the incentives of the platform are not perfectly aligned with that of the advertisers.
However, the platform’s optimal data-sharing strategy is privacy preserving and aligned with
consumers’ preferences. Our findings thus support the advertising industry’s claim that external
regulation is not necessary to reduce user-tracking/targeting, and that the industry can self-regulate.

Finally, our results should be interpreted cautiously with the necessary caveats. First, our
assumption that all advertisers have symmetric valuations may not always hold. Ideally, we should
derive distribution of advertisers’ valuations from data and then use it. However, to do so, we
would first need to analytically derive bidders’ strategies in proportional auctions and then to take
the analytical model to data to structurally estimate the distributions of advertisers’ valuations.
While this is possible in principle, it is beyond the scope of this work. Second, when estimating
the revenues and surpluses under different targeting strategies, we use the same distribution of
features as seen in the current data. However, one may expect that the joint distribution of features
observed in the data would change in response to the targeting strategy because the impressions
shown to users and their click behavior is a function of targeting. Thus, the platform’s surplus and
the machine learning targeting models can both co-evolve in the long run equilibrium. As such, we
do not take a strong stance on the optimal level of targeting in long-run equilibrium. Rather, our
goal is to provide some empirical evidence in support of the idea that excessive data-sharing and
targeting may not be optimal for the platform.

Our findings raise many interesting questions on optimal mechanism design for mobile ad

auctions. Limiting information-sharing to contextual data is an obvious strategy. However, this
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approach also reduces the total surplus and hence caps the platform’s revenues. Thus, the optimal
path for the platform may not be to restrict data-sharing, but instead to consider mechanisms that can
do both — 1) increase efficiency and 2) extract the revenue from winning advertisers by shrinking the
informational rent. For instance, the platform could share granular data, and also adopt the standard
theoretical solution proposed for revenue extraction — optimal reserve prices (Myerson, |1981;
Riley and Samuelson, |1981). |[Ostrovsky and Schwarz (2016) validate these theoretical predictions
using field experiments for search ads. However, they only consider optimal reserve prices for
broad sets of keywords and assume eCTRs to be homogeneous across advertisers. In contrast, we
have a setting where each impression is a unique product and advertisers’ match values for an
impression are heterogeneous. To extract the maximum revenue, the platform has to set dynamic
impression-specific reserve prices, a mechanism that the literature has not explored so far. Platforms
can also consider different auction mechanisms. [Celis et al.| (2014) show that ad auctions often
fail Myerson’s conditions for optimality and provide some evidence that randomized auctions can
lead to better platform revenues. Finally, the platform can charge advertisers for data, i.e., the
platform could act as both an ad-network and data intermediary, and thereby extract the extra surplus
generated from more efficient matching. Pancras and Sudhir| (2007) focus on equilibrium effects
and study this problem for price-targeting. The design and implementation of such data-sharing
contracts for ad-targeting could a fruitful avenue of research and also have big implications for the
ad industry and consumer privacy advocates (to what extent should firms be allowed to sell users’
data).

6.4.2 Advertiser’s Surplus

Now we examine advertisers’ surplus under different data-sharing scenarios and examine how the
total surplus is distributed among different ads. We begin by comparing the total surplus over all
advertisers. As shown in Table 8] advertiser’s surplus is increasing with more granular information
sharing. This validates our theoretical prediction that more granular information helps advertisers
by allowing them to generate more accurate estimates of their match values and place targeted bids.
Under full information sharing, we find over 100% increase in advertisers’ surplus compared to the
baseline. Further, the incremental increase in advertisers’ surplus from contextual to behavioral
data-sharing is around 37%. Together these findings emphasize the value of user-level information
for advertisers.

Next, we explore whether all advertisers benefit from a less restrictive data-sharing regime. In a
competitive environment, greater ability to target does not necessarily translate into higher profits.
Instead, it is the ability to target relative to competitors that matters. In Table 9] we show how

many advertisers benefit as we move from one data-sharing scenario (column) to another (row).
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Full Behavioral Contextual Baseline

Full NA 28 36 35
Behavioral 9 NA 29 27
Contextual 1 8 NA 3

Baseline 2 10 19 NA

Table 9: Number of advertisers who benefit by moving from one data-sharing scenario (column) to
another (row).

In general, more advertisers benefit when the platform shares more granular information. Moving
from behavioral, contextual, and no data-sharing to full information sharing benefits 28, 36, and 35
advertisers respectively (first row of Table[J)). This amounts to over 75% of the top 37 advertisers.
However, more information is not uniformly better for all advertisers. The lower triangle of
Table [0 depicts situations where advertisers go from more data to less. Interestingly, it is populated
with positive numbers, which suggests that individual advertisers often benefit from less information-
sharing even as total advertiser surplus increases. For example, there are nine advertisers who prefer
behavioral data-sharing to full data-sharing. Similarly, while the majority of advertisers prefer
behavioral data-sharing, there is a small portion of advertisers who prefer contextual data-sharing.
We present a simple example to highlight the intuition behind this — a nutrition supplement ad that
advertises on a fitness app can get all the slots in that app at a low cost because other advertisers
would place low bids when only app-level information is shared. However, this ad would be worse
off if only behavioral information is shared, because the competition on the users of this app
becomes more intense and this ad will no more be able to extract a large informational rent.
Overall, our findings offer some evidence that advertisers are likely to be differentially affected
by privacy regulation on user-tracking and data-sharing. Indeed, some advertisers may prefer more
regulation and privacy-preserving laws while others would prefer less. Understanding advertisers’
incentives in this context and the drivers of heterogeneity in their preferences can thus help regulators

craft the appropriate privacy policies in future.

7 Conclusions

Mobile in-app advertising is growing in popularity. In-app ads have unique tracking properties:
they allow advertisers and ad-networks to access the device ID of the mobile devices showing the
ads, and thereby enable high quality behavioral targeting. While this has made them appealing
to advertisers, consumers privacy advocates are concerned about their invasiveness. Therefore,
marketers and policy-makers are interested in understanding the relative effectiveness behavioral
targeting compared to contextual targeting, which is privacy-preserving. These questions lead to a

broader ongoing debate on the incentives of ad-networks to engage in behavioral targeting, to share
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user-level behavioral data with advertisers, and the role of regulation in preserving privacy.

We propose a modeling framework that consists of two components — a machine learning
framework for click-through rate predictions and a stylized analytical framework for conducting
data-sharing counterfactuals. We apply our framework to data from the leading in-app ad-network
of an Asian country. We show that our machine learning model improves targeting ability by
17.95% over the baseline. These gains mainly stem from behavioral information and the value of
contextual information is relatively small. Stricter regulations on user-tracking substantially shrink
the value of behavioral targeting. Counterfactuals show that although total surplus grows with more
granular information-sharing between the ad-network and advertisers, the ad-network’s revenues are
non-monotonic, i.e., it prefers to not share behavioral information. There is also some heterogeneity
among advertisers’ on their preferred level of data-sharing. Our findings suggest in the absence
of data-sharing contracts between the ad-network and advertisers, the ad-network will naturally
choose to preserve users’ privacy.

Our paper makes three key contributions to the literature. From a substantive perspective,
we quantify the relative value of different targeting information and present a comprehensive
comparison of contextual vs. behavioral targeting. From a methodological standpoint, we leverage
the randomization in our data to combine a predictive machine learning model with economic theory.
Finally, from a policy point-of-view, we examine the incentives of two major parties, the platform
and advertisers, on the optimal level of data-sharing. We expect our model and findings to speak to
the debate on privacy and data-sharing regulations in mobile advertising marketplace.

Nevertheless, as discussed earlier, our paper suffers from limitations which serve as excellent
avenues for future research. First, our analysis focuses only on clicks and does not capture subse-
quent actions. Future work could examine the effects of targeting and information disclosure on
outcomes further down the purchase funnel (e.g., purchase/conversion). Second, in our counter-
factuals, we assume that all advertisers are symmetric in their valuation for clicks. Relaxing this
assumption and using a structural model to recover the distributions of valuations is a natural next
step. Third, we investigate the case of symmetric information disclosure. However, the platform
could asymmetrically share information with advertisers. Examining advertisers’ strategic behavior
in such environments could be an interesting exercise. Since information is a non-rival good, it
also raises interesting questions on strategic information-sharing among advertisers. Pancras and
Sudhir| (2007) propose a framework to empirically study this problem for price-targeting. Future

work could extend that work to the case of ad-targeting and compare it with price-targeting.
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Appendices

A Validation

The goal of validation is to pick the optimal tuning parameters. They cannot be inferred from the training
data alone because they are hyper-parameters. The validation procedure uses two separate data-sets — training
and validation data (from October 28 and 29, as shown in Figure 1)) to pin down the hyper-parameters. It is
worth noting that at this stage, the test data is kept separate and is brought out only at the end after the model
has been finalized to evaluate the final model performance.

As discussed in XGBoost uses five hyper-parameters that need tuning. Let W = {v, A, v, dmax, Xs }
denote the set of hyper-parameters, where v and A are the regularization parameters, v is the shrinkage
parameter or learning rate, dp,ax is maximum depth of trees, and X is the column sub-sampling parameter,
which refers to the percentage of features randomly selected in each round. For each of these parameters, we
consider the following sets of values:
~ve{7,9,11}

Ae{0,1,2}

v € {0.05,0.1,0.5,1}

dmax € {5,6,7}

Xs € {0.5,0.75}

Overall, WV contains 216 elements. We now describe the validation and testing procedure in detail.

e Step 1: For each element of W, train the model on the first two-thirds of the training and validation data
and evaluate the model’s performance on the remaining one-third. This is the typical hold-out procedure
(Hastie et al., 2001). Boosted trees typically over-fit when they are stopped at some point. So when
training the model, we use the early stopping rule to avoid this problem (Zhang et al., 2005).

e Step 2: Choose the set of hyper-parameters that gives the best model performance on the validation set
(as measured by RIG in our case). Denote this as WW*.

e Step 3: Using W, train the final model on the full training and validation data, and here too we use the
early stopping rule.

e Step 4: Evaluate the final model’s performance on the test data.

Based on the above procedure, we derive the set of optimal hyper-parameters for our empirical setting as
W ={y=9X=1,v =0.1,dnax = 6,xs = 0.5}. Further, when training on the full training and
validation data (Step 3), we do not see any improvement in model fit after 276 steps, so at this iteration
number (following the early stopping rule).

Note that our validation procedure addresses two potential complications with our data and problem
setting. First, our data and features have a time component. Thus, if we are not careful in how we split the
validation and training data-sets, we can end up in situations where we use the future to predict the past (e.g.,
train on data from period ¢ and validate on data from ¢ — 1). To avoid this problem, the splits should be chosen
based on time. Our validation procedure does this by using the first two-thirds of the validation+training data
for training and the latter one-third for validation. However, doing so gives rise to a second problem — by
choosing the most recent data for validation (instead of training), we forgo the information in the most recent
impressions. In CTR prediction, it is important not to waste the most recent impressions while fitting the
model because these impressions are more likely to be predictive of the future (McMahan et al., 2013). To
address this, in Step 3, after choosing the optimal hyper-parameters, we train a final model on the full training
and validation data. This model is then used as the final model for results and counterfactuals.



B Table of Features

Table A1l: List of Features.

No Feature Name Feature Classification Contextual Fgatures .
’ Behavioral Contextual Ad-specific App-specific  Time-specific

1 Impressions(D, D, S, u;l,r) v

2 Impressions(a, , d,J;1, g) v

3 Impressions(,p, J, T;1,g) v v

4 Impressions(2,d,t, 21, g) v v
5 Impressions(a, @, D, u;l,r) v v

6 Impressions(2,p, I, u;l,r) v v v

7 Impressions(2, D, t,u;l, 1) v v v

8 Impressions(a,p, d, 251, g) v v v

9 Impressions(a, D, t,;1, g) v v v
10 Impressions(2,p,t, d;1, g) v v v
11 Impressions(a,p, &, u;l,r) v v v v

12 Impressions(a,p,t, ;1. g) v v v v
13 Impressions(&, D, S, u; s,r) v

14 Impressions(a, d, D, J; s, g) v

15 Impressions(2,p, &, D; s, 9) v v

16 Impressions(&, &, t, 5 s, g) v v
17 Impressions(a, J, D, u; s,1) v v

18 Impressions(&,p, F,u; s, ) v v v

19 Impressions(2, D, t,u; s, r) v v v
20 Impressions(a,p, D, &5 s,9g) v v v

21 Impressions(a, d,t, J; s, 9) v v v
22 Impressions(&,p,t, d; s, g) v v v
23 Impressions(a,p, &, u; s,r) v v v v

24 Impressions(a,p,t,d; s, g) v v v v
25 Impressions(D, d, S, u;o0,T) v

26 Impressions(a, @, D, u;0,71) v v

27 Clicks(9,9, S, u;l, 1) v

28 Clicks(a,,9,2;1, 9) v

29 Clicks(g,p, 9,91, 9) v v

30 Clicks(@,2,t,2;1, g) v v
31 Clicks(a, &, &, u;l, 1) v v

32 Clicks(@,p, @, u;l,r) v v v

33 Clicks(g, 2, t,u;l,r) v v v
34 Clicks(a,p, @, 951, g) v v v

35 Clicks(a,2,t,9;1,9) v v v
36 Clicks(,p,t, 21, 9) v v v
37 Clicks(a,p, @, u;l,r) v v v v

38 Clicks(a,p,t,a;1,g) v v v v
39 Clicks(9, 9,9, u;s,7) v

40 Clicks(a,2,9,D;s,9)

41 Clicks(2,p, 2,9 8,9) v v

42 Clicks(2,9,t,2;5,9) v v
43 Clicks(a, D, &, u; s,1) v v

Continued on next page
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Table A1 - continued from previous page

No.

Feature Name

Feature Classification

Contextual Features

Behavioral Contextual Ad-specific

App-specific  Time-specific

44
45

46
47

48
49
50
51

52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
7
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

Clicks(&,p, &, u;s,7)
Clicks(2,D,t,u;s,r)
Clicks(a,p, D, 9;s,9)
Clicks(a,2,t,9; s,9)
Clicks(g,p,t, D58, 9)
Clicks(a,p, @, u; s, 1)
Clicks(a,p,t,2; s, 9)
CTR(2,2,9,u;l,T)
CTR(a,2,9,5;l,9)
CTR(2,p, 2,251, 9)
CTR(2,2,t,9;1,9)
CTR(a,2,2,u;l,r)
CTR(<,p, D, u;l,r)
CTR(2,9,t,u;l,r)
CTR(a,p,2,2;1,9)
CTR(a,9,t, 251, 9)
CTR(@,p,t,251, 9)
CTR(a,p, D, u;l,r)
CTR(a,p,t,D;1,9)
CTR(D,9,9,u;s,1)
CTR(a,9,2,9;s,9)
CTR(D,p,D,255s,9)
CTR(@,2,t,9;s,9)
CTR(a,o,D,u;s,1)
CTR(D,p, D, u;s,r)
CTR(D,9,t,u;s,T)
CTR(aapv 9, d; Svg)
CTR(a,2,t,255s,9)
CTR(<,p,t,2;8,9)
CTR(a,p, D, u;s,r)
CTR(a,p,t,T;s,9)
AdCount(2,u;l, g)
AdCount(p, d;1,g)
AdCount(p,u;l, g)
AdCount(J,u; s, g)
AdCount(p, ; s, g)
AdCount(p,u; s, g)
AdCount(&,u;0,71)
AppCount(, u,l,g)
AppCount(a, D;1, g)
AppCount(a,u;l, g)
AppCount(2,u; s, g)
AppCount(a, &; s, g)
AppCount(a,u; s, g)
Entropy(2,u;l, g)
Entropy(p, @;1,9)
Entropy(p, u;1, g)

v
v
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Table A1 - continued from previous page

No. Feature Name . Feature Classification . Conte>.<tual Fe.atures .
Behavioral Contextual Ad-specific App-specific  Time-specific
91 Entropy(9,u; s, g) v v
92 Entropy(p, &; s, g) v v v
93 Entropy(p,u; s, g) v v v v
94 Entropy(D, u;o,r) v v
95 TimeVariability(u; 1, g) v v v
96 TimeVariability(u; s, g) v v v
97 AppV ariability(u;l, g) v v v
98 AppV ariability(u; s, g) v v v
99 Latitude(u) v
100 Longitude(u) v
101 | WiFi(u) v
102-109 | Brand(u) v
110-113 | Operator(u) v
114-122 | ISP(u) v
123 | Bid(a) v
124-161 | AdDummy(a) v

C Appendix for Robustness Checks
C.1 Other Evaluation Metrics

We consider three alternative evaluation metrics.

e Area Under the Curve (AUC): It calculates the area under the ROC curve, which is a graphical depiction of
true positive rate (TPR) as a function of false positive rate (FPR). This metric is often used in classification
problems, but is less appropriate for prediction tasks such as ours because of two reasons. First, it is
insensitive to the transformation of the predicted probabilities that preserve their rank. Thus, a poorly
fitted model might have higher AUC than a well-fitted model (Hosmer et al., 2013). Second, it puts the
same weight on false positive rate (FPR) and false negative rate (FNR). However, in CTR prediction, the
penalty of FNR is usually higher than FPR (Yi et al., 2013).

e 0/1 Loss: This is a simple metric used to evaluate correctness in classification tasks. It is simply the
percentage of incorrectly classified impressions. As with AUC, it is not very useful when accuracy of the
prediction matters since it is not good at evaluating the predictive accuracy of rare events (e.g., clicks). For
example, in our case, the loss is lower than 1% loss even if we blindly predict that none of the impressions
will lead to click.

e Mean Squared Error (MSE): This is one of the most widely used metrics for measuring the goodness
of fit. It is similar to LogLoss, which we use to calculate RIG. Both LogLoss and SquareLoss are often
used for probability estimation and boosting in the machine learning literature. Let d; be the Euclidean
distance between the predicted value and actual outcome for impression ¢. This can be interpreted as
the misprediction for the corresponding impression. SquareLoss and Logl.oss for this impression will
then be d% and — log (1 — d;) respectively. Since both functions are convex with respect to d;, they
penalize larger mispredictions more than smaller ones. However, a big difference is that SquareLoss is
finite, whereas Logloss is not. In fact, Logl.oss evaluates d; = 1 as infinitely bad. In our problem, this
translates to either predicting 1 for non-clicks or predicting O for clicks. Therefore, the model optimized

v



| Data | Evaluation Metric | Behavioral | Contextual [ Full ||
Full Sample AUC 0.7910 0.7014 0.8230
Top Ads/Apps AUC 0.8082 0.7192 0.8410
Full Sample 0/1 Improvement (%) 0.63% 0.00% 4.74%
Top Ads/Apps | 0/1 Improvement (%) 1.07% 0.00% 8.23%
Full Sample MSE Improvement (%) 3.41% 0.55% 8.59%
Top Ads/Apps | MSE Improvement (%) 4.86% 0.67% 13.33%
Full Sample RIG 12.14% 5.25% 17.95%
Top Ads/Apps RIG 14.82% 5.98% 22.85%

Table A2: Model performance for the two samples (full and top ads/apps) when evaluated on the
alternative metrics.

by LogLoss will not predict O or 1. Given that we do not know how users interact with the app at the
moment, it is quite unrealistic to predict 1 for an impression, especially because each impression only
lasts a short time. Thus, we choose LogLoss as our main metric, which is also the most common choice
in the literature on CTR prediction (Yi et al., 2013).
We now take the optimized models presented in §5and evaluate their performance on these alternative metrics.
Table[A2]is analogous to Table d]in the main text and Table [A3]and [A4] are analogous to Table[5] By and
large, all our substantive results remain the same when we use the alternative evaluation metrics.

Model Feature Set AUC 0/1 Loss Mean-Squared Error
Value % Improvement Value % Improvement
Ad Fy\ (FpUPFrUFg) | 05918 | 0.009582 0.00% 0.009479 0.11%
App Fp\ (FaUFrUFg) | 0.6745 | 0.009582 0.00% 0.009446 0.46%
Time Fr\ (FaUFpUFpg) | 05336 | 0.009582 0.00% 0.009489 0.01%
User F\ (FaUFpUFr) | 07751 | 0.009568 0.14% 0.009269 2.32%

Table A3: Performance of Forward Addition Model with different pieces of information with on

other metrics

Model | Feature Set | AUC 0/1 Loss Mean-Squared Error
Value % Improvement Value % Improvement
Ad Frp\ Fa 0.8196 | 0.009239 3.57% 0.008753 7.76%
App Fp\ Fp 0.8000 | 0.009249 3.47% 0.008842 6.82%
Time Fp\ Fr 0.8191 | 0.009422 1.67% 0.008981 5.37%
User Fr\ Fp 0.7042 | 0.009582 0.00% 0.009437 0.55%

Table A4: Performance of Backward Deduction Model with different pieces of information with on

other metrics



[ Method RIG over Baseline ||

Least Squares 7.72%
LASSO 7.92%
Logistic Regression 11.17%
Regression Tree 15.03%
Random Forest 15.75%
XGBoost 17.95%

Table AS: RIG of different learning methods for the test data.

C.2 Other Learning Methods

We now compare the performance of XGBoost with other five other learning algorithms and present the
results in[A5] Note that XGBoost outperforms all of them.

Because each learning model has different set of hyper-parameters, we now describe the hyper-parameters
associated with each model and our approach to choosing the optimal hyper-parameters in each case. Note
that in all the cases, we use the same high-level validation procedure described in §A|

e [east squares does not use any hyper-parameters and hence does not require validation. In this case, we
simply train the model on the full training and validation data to infer the model parameters, and report
the model’s performance on the test data.

e For LASSO, the validation procedure is straightforward. The only hyper-parameter to set is the L1
regularization parameter, \. We search over 100 values of A\ and pick the one which gives us the best
performance on the validation set (A = 6.3 x 10~%). We then use this parameter and train the model on
the entire training and validation set and test the performance on the test set.

o For CART, we use the package rpart in R, which implements a single tree proposed by Breiman et al.
(1984). We use recursive partitioning algorithm with a complexity parameter (ctree) as the only hyper-
parameter that we need to select through validation. The main role of this parameter is to avoid over-fitting
and save computing time by pruning splits that are not worthwhile. As such, any split that does not
improve the fit by a factor of complexity parameter is not attempted. We search for the optimal complexity
parameter over the grid ¢ € {0.1,0.05,0.01,0.005,0.001, 0.0005, 0.0001, 0.00005, 0.00001}, and
based on the validation procedure, we derive the optimal complexity parameter as 5~°. That is, the model
adds another additional split only when the R-squared increments by at least 575.

o For Random Forest, we use the package sklearn in Python. There are three hyper-parameters in this case —
(1) n4ree, the number of trees over which we build our ensemble forest, (2) xs, the column sub-sampling
parameter, which indicates the percentage of features that should be randomly considered in each round
when looking for the best split, and (3) nyiy, the minimum number of samples required to split an internal
node. We search for the optimal set of hyper-parameters over the following grid:

® nyee € {100, 500,1000}

e xs €{0.33,0.5,0.75}

e nyin € {100, 500,1000}
Based on our validation procedure, we find the optimal set of hyper-parameters to be: {niyee =
1000, x5 = 0.33, nmin = 500}.

Vi



. - — RIG over Baseline CTR

User Sample Size (N..) Nirain Niest Coefficient  Std. error
1,000 24,500 13,274 13.76% 3.17%
5,000 124,521 66,820 14.25% 1.76%
10,000 249,749 139,123 15.26% 1.48%
20,000 486,007 266,497 16.14% 0.40%
50,000 1,220,394 663,569 16.84% 0.28%
100,000 2,436,037 | 1,332,894 17.27% 0.23%
200,000 4,875,586 | 2,654,110 17.58% 0.20%
400,000 9,749,402 | 5,327,471 17.84% 0.18%
600,000 14,699,589 | 7,928,275 17.91% 0.15%

Table A6: RIG for different sample sizes. Nirain and N,eq are respectively the average size of train
and test data after sampling users.

C.3 Sampling and Data Adequacy

We conduct our analyses using a relatively large sample consisting of 727,354 users in the train, validation,
and test data-sets. This corresponds to 17,856,610 impressions in the training and validation data, and
9,625,835 impressions in the test data. We now examine the adequacy the rate the adequacy of our sample by
calculating the RIG for different (lower) sample sizes. That is, we quantify how much our model gains by
using more data, and at what point the marginal value of additional data is minimal.

To calculate the RIG for a given sample size of N,,, we do the following: 1) We take ten random samples
of N, users, and generate two data sets — the training data and the test data. 2) For each sample, we train the
model using the training data and then test the model’s performance on the test datanI 3) We then calculate
the mean and standard deviation of the RIG for each sample. We perform this exercise for nine sample sizes
starting with IV,, = 1000 and going up till N,, = 600, 000. The results from this exercise are shown in Table
We also report the average sample size of train and test data respectively as Nirain and N gest.

In principle, we can perform the above exercise for each sample size with only one sample instead of
ten. However, such an approach is likely to be error-prone, especially at smaller sample sizes, since there is
heterogeneity among users and each sample is random. So we may randomly find a smaller sample to have
a higher RIG than a larger sample in one particular instance. To avoid making incorrect inferences due to
the particularities of one specific sample and to minimize the noise in our results, we employ the bootstrap
procedure described above.

Table [A6[suggests that after about 100,000 users, increasing the sample size improves the prediction only
slightly. However, increasing sample sizes also increase the training time and computational costs. Given the
cost-benefit trade-off, our sample of 727,354 users is more than sufficient for our purposes.

C.4 Other Validation Techniques

The validation procedure outlined in Appendix §A|is the first-best validation procedure in data-rich situations
such as ours. Nevertheless, we examine two other commonly used techniques:

24We use the hyper-parameters obtained from the validation exercise that we performed in the main model for training.
This is likely to help the performance of the models trained on smaller samples because if we were to tune the
model using smaller data, the estimated hyper-parameters are likely to be worse. Thus, the gains reported here more
favorable than what we would obtain if we also validated/tuned the model using the smaller data samples.
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| Identifier RIG over Baseline | No. of Features used in Training ||

No Identifier 5.29% 87

IP Address 12.64% 161
AAID 17.18% 161
Both Identifiers 17.24% 259

Table A7: RIG of models with different identifiers

e Hold-out validation — very similar to our current approach, except that at Step 3, instead of training the
final model on the combination of training and validation data, we simply use the best model (using the
optimal W*) trained based on the training data (from Step 2) as the final model. Thus, we do not use the
validation data to train the final model. This can lead to some information loss (especially from the recent
impressions). We find that the model performance on the test set drops when we use hold-out validation:
our RIG is 17.21% which is lower than that of our validation procedure.

e k-fold cross-validation — we find no improvement in the performance of the model selected by 5-fold
cross-validation (RIG is 17.33%). Please see Footnote 7 in Yoganarasimhan (2017) and Hastie et al.
(2001) for a detailed discussion on the pros and cons of k-fold cross validation.

C.5 Comparison of User Identifiers on Same Data

To ensure that the differences in the results from using IP as a user-identifier compared to using AAID as a
user-identifier (i.e., the differences in Tables ] and[6) are not driven by the differences in samples, we conduct
some additional checks. Recall that we had sampled set of 728,340 unique AAIDs for the main analysis and
another set of 799,219 unique IPs for the analysis above. The results of Table {] are based on the former and
the results in Table E] are based on the latter. Around 15% of the impressions in these two sets are mutual, i.e.,
included in both samples. This overlapping set contains 4,178,828 impressions, of which 2,713,823 of are in
training and validation data, and 1,465,005 in the test data.

We now train four different models, each with features generated using different identifiers and examine
the performance of each on the test data from this overlapping data-set. The results from this exercise are
presented in Table The third column refers to the number of features which are used to train the model.
First, we find that the use of any identifier results in a large information gain; all the models with identifiers
perform better than the first model with no identifier. Second, we find that the AAID helps more than IP: the
model with AAID as the identifier has an RIG of 17.18%, whereas this number drops to 12.64% when we
use IP as the main identifier. This reaffirms the importance of using AAID for user-identification in mobile
advertising and suggests that IP cannot function as a reasonable substitute. We also consider the model with
both identifiers to see if the combination performs better. In this case, we include two sets of behavioral
features — one set generated using AAID as the user-identifier and another set generated using IP as the
user-identifier. Since user-level features are duplicated, the total number of features expands to 259 in this
case. Here, we find very small improvement over simply using AAID-based behavioral features, implying
that IP does not add much information over and above AAID.

viii



Ad1 Ad2 Ad3 Ad 4 Ad1 Ad2 Ad3 Ad 4

Behavioral 0.011 Behavioral 0.028 0.031 0.011 0.004
Contextual 0.014 Contextual 0.017 0.018 0.014 0.006
Baseline 0.018 Baseline 0.010 0.012 0.018 0.005
Step 1: Predictions of the actual data Step 2: Counterfactual predictions
Ad1 Ad2 Ad3 Ad 4 Ad1 Ad2 Ad3 Ad 4
Behavioral 1 0 1 0 Behavioral 0.028 0 0.011 0
Contextual 1 0 1 0 Contextual 0.017 0 0.014 0
Baseline 1 0 1 0 Baseline 0.010 0 0.018 0
Step 3: Filtering Step 4: Final match values
Winning Ad Platform Revenues Total Surplus Advertiser Surplus
Behavioral 1 0.011 0.034 0.023
Contextual 1 0.014 0.034 0.020
Baseline 3 0.010 0.012 0.002

Step 5: Analysis of the competition

Figure 8: Example showing step-by-step counterfactual procedure for one impression and four ads.

D Counterfactual Predictions

D.1 Overview

We now discuss the procedure for generating counterfactual estimates of platform revenues, advertisers’
revenues, and total surplus under four data-sharing scenarios — no data-sharing (baseline), contextual data-
sharing, behavioral data-sharing, and full data-sharing. There is a one-to-one correspondence between
these data-sharing scenarios and the targeting models from §5] The no data-sharing scenario corresponds to
the baseline or no targeting model, contextual data-sharing to the Contextual targeting model, behavioral
data-sharing to the Behavioral targeting model, and full data-sharing to the Full targeting model.

There are three main steps in our counterfactual procedure — 1) generating the match value matrices for
different data-sharing scenarios, 2) filtering, and 3) revenue and surplus estimation. To give an overview
of our counterfactual procedure, we start with a simple example of an impression with four potential ads.
Figure [8| sketches how we generate counterfactuals and analyze the competition for this particular impression.
Suppose that Ad 3 has been shown in this impression in the actual data. Therefore, using our predictions
obtained from different models in §5] we can estimate the match values for Ad 3 under all scenarios as shown
in Step 1 in Figure[§] Next, we need to estimate match values for counterfactual ads, i.e., those that were
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not shown in this impression in the data. To do so, we need to re-generate all the ad-specific features, while
keeping all the features with a« = @ unchanged. After re-generating ad-specific features, we use the targeting
from §5|to estimate the match values for these counterfactual ads, as shown in Step 2 in Figure

However, the estimates of match values or eCTR of some counterfactual ads based on our targeting
models can be inaccurate. As discussed in §3.5] the predictive accuracy of our models is predicated on the
joint distribution of co-variates and clicks in the test data being the same as that in training data. It implies
that the estimates of match value in Step 2 might not be accurate if those counterfactual impressions are not
drawn from the joint distribution of co-variates and clicks in the training set. To satisfy this condition, we use
a filtering procedure which screens out the ads that would not have been shown in the focal impression due
to their targeting decisions. In our example, let us suppose that Ad 2 and Ad 4 do not bid on this particular
impression. As a result, this impression with either Ad 2 or Ad 4 being shown is not drawn from the joint
distribution on which we have trained our models. Therefore, we filter out these two ads as shown in Step
3 and 4 in Figure[§] The idea is to only consider ads that would have been shown in that impression, i.e.,
those that are actually competing for that impression. Given the probabilistic nature of auction used by the
platform, we can then satisfy the joint distribution condition and guarantee correct match value estimates.

Finally, using the match value estimates for all unfiltered ads, we determine the winning ad, platform
revenues, total surplus, and advertiser’s surplus. Note that we have assumed a second price auction wherein
advertisers are symmetric in their valuation of click. So in each data-sharing scenario, the winning ad is the
one with the highest match value in that scenario and it pays the platform the second highest match value.
The total surplus is the match value of the winning ad under full data-sharing because it is our best estimate
of the actual likelihood of a click. Finally, the winning advertiser’s surplus can be calculated by subtracting
the total surplus and the platform’s revenue. This analysis for our example is shown in Step 5 of Figure 8]

D.2 Step by Step Procedure for Generating Counterfactuals

Let M”, M5B , M C and M denote the counterfactual match value matrices for full, behavioral, contextual,
and no (baseline) data-sharing respectively. These matrices each have 7,475,908 rows (number of impressions
in the test set with top apps, i.e., p; # p'®) for impression 7) and 37 columns (top ads, i.e., a; # a'®) for
impression ¢). We further define E as our filtering matrix. Finally, let MF (full), MB (behavioral), M¢€
(contextual), and MN (baseline) denote our final estimated match value matrices. We now present a step by
step procedure for generating each element in the matrices defined above:

1. Generating counterfactual match value matrices: for each row (impression) ¢ and column (ad) j in the
match value matrices:

e Generate the features for impression % as though ad j is being shown in this impression. It is
worth noting that only ad-specific features will change. Other features with ¢ = & remain the
same as data.

e Use the Contextual, Behavioral, and Full models to estimate the match or eCTR for impression
¢ and ad j V ¢, j. Note that this is possible because all the features for a given impression-ad
pair are available. Let rhfj, mg, and m;j denote the estimated match value matrices for the
Contextual, Behavioral, and Full models. Next, to estimate the match value matrix for the no
targeting case, set the elements of rh{\]/ as the average past CTR of ad j for all impressions. This
is our baseline prediction, under the no data-sharing scenario.

2. Filtering counterfactual impressions: for each row ¢ and column j in the filtering matrix:



o Filter the ads that would have not been shown in impression ¢ using the filtering matrix E. For
example, if ad j is excluded from the competition for impression ¢ due to its targeting decisions,
€ij = 0. EISC, €ij = 1.

e Obtain final counterfactual values m;’]‘ = mgeij, where T € {N,C, B, F}.

3. Estimating revenues and surplus: after obtaining counterfactual matrices, we analyze the competition
for each impression ¢. Let a,T RT and SiT denote the the winning ad, platform’s revenue, and total
surplus under scenario 7 respectively. We also define VVJ as advertiser j’s surplus from impression .
For each impressions %, we calculate these metrics as follows:

e Winning ad: the winning ad under scenario T is the ad with the highest match value for ¢,
ie., aT = argmax; m 7. Note that the winning ad is determined using a second-price auction.

Therefore, there is no uncertalnty in who will win the impression in the counterfactuals.

e Platform’s revenue: since the platform runs a second-price auction, the winning ad will pay
the second highest bid. Formally, the revenue that the platform collects for impression 7 under
scenario 7T is:

R] = maxm]; (25)

) i
i\a]

o Total surplus: it is the total value created by impression 7. Hence, it is the match value of the
winning ad which is shared between the platform and advertisers. We can write:

ST =, (26)

(2

It is worth mentioning that it is the match value of winning ad estimated by the full model, since
it is the most accurate model we have.

e Advertiser’s surplus: in each scenario, if an advertiser wins an impressions, its surplus is the
difference between the total surplus and platform’s revenue for that impression. If the advertiser
does not win the impression, its surplus for the impression is zero. For an advertiser j, we can
write her surplus for impression 7 as follows:

W = (ST — R])1(a] =a) 27)

Using Eq. and[27] we can derive the total platform’s revenue, total surplus, and advertiser j’s
under scenario 7 (denoted as R7, S, and WjT respectively) as follows:

RT = Z RT Er\lax mC
=1

"= Z ST = Zmif
=1 =1

I
wl = Z => (ST —RN)1(a] =aV),Vje{1,...,37}
=1
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No Targeting

Perfect Targeting

For both impressions:

Bids:

Advertiser 1: bj; = by =1

Advertiser 2: bjs = bgy = 1

Match values:

Advertiser 1: mq1 = mg; = 0.3

Advertiser 2: my2 = mos = 0.2

Outcomes:

Advertiser 1 wins both impressions and pays

% = 0.66 per click

Platform’s expected revenue:
R=10.66 x (0.5+0.1) =0.4

Adpvertiser’s expected surplus:
W1 =(1-0.66) x (0.5+0.1) =0.2
Wy =0

Total expected surplus:
S=0.6

For User 1’s impression:

Bids:

Advertiser 1: b;; = 1, Advertiser 2: bjp = 1

Match values:

Advertiser 1: mq1 = 0.5, Advertiser 2: m1o = 0.1
Outcome:

Advertiser 1 wins User 1’s impression and pays

X081 — 0.2 per click

For User 2’s impression:

Bids:

Advertiser 1: b;; = 1, Advertiser 2: bjo = 1

Match values:

Advertiser 1: m1; = 0.1, Advertiser 2: m15 = 0.3
Outcome:

Advertiser 2 wins User 2’s impression and pays

1X%1 = 0.33 per click

Platform’s expected revenue:
R=02x05+0.33x0.3=0.2

Adpvertiser’s expected surplus:
Wi=(1-02)x05=04
Wy =(1-0.33) x0.3=0.2

Total expected surplus:
S=038

Table A8: Example depicting two scenarios under CPC mechanism: 1) No targeting and 2) Perfect
Targeting

E Analysis of Cost-per-Click Payment Mechanism

We now present an analysis of targeting under the Cost-per-Click (CPC) mechanism, where an advertiser’s
bid indicates the maximum price he is willing to pay per click. In this case, having a more accurate estimation
of match values for impressions does not change advertisers’ bidding behavior because they do not pay per
impression. Theoretically, if advertisers have infinite budget, they should bid their valuation for click, even if
they know they have higher CTR for some impressions.

However, the ad-network has an incentive to make more efficient matches in order to generate more
clicks since clicks are their main source of revenue. For example, if there is an advertiser with a very high
bid but very low CTR, the ad-network cannot make money by selling the slot to this advertisers. Let v;; and
m;; respectively denote the valuation for click and the match value for advertiser j for impression i. The
maximum revenue that platform could get is then max; v;jm;;. Thus, defining b;; as advertiser j’s bid on
impression %, the platform should sell the ad slot to argmax; b;;m;; and charge her the minimum bid with
which she still wins. It generates the expected revenue of the second-highest b;;m;;. (In fact, this is how
Google’s sponsored search auctions work.)
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Table shows how the example in generalizes to the CPC case. Although CPC and CPI have
different properties, we can easily prove that their revenue is the same under different levels of targeting.
This stems from the fact that under second-price auction, bidders bid their valuation. Thus, the platform’s
expected revenue from impression 4 under both mechanisms is the second highest v;;m;;, as long as the
match-values (or targeting strategies) are the same under both mechanisms. Conceptually, there exists a
one-to-one mapping between CPC and CPI mechanisms if and only if there is a one-to-one mapping between
the data-sharing strategy and resulting match-value matrix. In the CPI mechanism, m;; enters the advertisers’
bidding strategy, i.e., the targeting decision is made by the advertisers. The ad-network’s decision consists of
whether to share targeting information with advertisers or not. In contrast, under the CPC mechanism, the
ad-network directly decides the extent of targeting to engage in and the advertisers always bid their valuation.

Our empirical results suggest that under the CPI mechanism, ad-networks may have incentive to withhold
behavioral targeting information from advertisers. In the CPC context, this translates to the following
result: the ad-network has an incentive to not use behavioral information for targeting, as compared to
contextual information. In both cases, the platform has an incentive to protect users’ privacy by ensuring
that behavioral information is not used for targeting purposes. In sum, the empirical estimates of platform’s
revenue, advertisers’ revenues, and the implications for user-privacy are similar in both settings.
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