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Abstract

Marketing managers are responsible for understanding and predicting customer pur-
chasing activity, a task that is complicated by a lack of knowledge of all of the calendar
time events that influence purchase timing. Yet, isolating calendar time variability
from the natural ebb and flow of purchasing is important, both for accurately assessing
the influence of calendar time shocks to the spending process, and for uncovering the
customer-level patterns of purchasing that robustly predict future spending. A compre-
hensive understanding of purchasing dynamics therefore requires a model that flexibly
integrates both known and unknown calendar time determinants of purchasing with
individual-level predictors such as interpurchase time, customer lifetime, and number of
past purchases. In this paper, we develop a Bayesian nonparametric framework based
on Gaussian process priors, which integrates these two sets of predictors by modeling
both through latent functions that jointly determine purchase propensity. The esti-
mates of these latent functions yield a visual representation of purchasing dynamics,
which we call the model-based dashboard, that provides a nuanced decomposition of
spending patterns. We show the utility of this framework through an application to
purchasing in free-to-play mobile video games. Moreover, we show that in forecasting
future spending, our model outperforms existing benchmarks.
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1 Introduction

Marketers in multi-product companies face the daunting task of understanding the ebb and
flow of aggregate sales within and across many distinct customer bases. Such spending dy-
namics stem from both the natural stochastic process of purchasing that is characterized by
customers’ interpurchase times, lifetimes with the firm, and number of past purchases, and
from the influence of managerial actions and shocks operating in calendar time. These other
shocks are often outside the control of the company, and include events such as holidays,
barriers to purchasing like website outages, and competitor actions. While individual-level
factors such as the recency of purchasing are often powerful predictors of future spend ac-
tivity, managers think and act in calendar time. Hence, to successfully execute a customer-
centric marketing strategy, managers need to understand how calender time events interact
with individual-level e↵ects in generating aggregate sales.

An accurate accounting of the underlying drivers of spending is not possible unless
both individual-level and calendar time e↵ects are simultaneously modeled. For example,
in models of spending that omit calendar time and rely solely on individual-level e↵ects,
momentary disruptions in spending that occur in calendar time may be erroneously con-
flated with predictable, individual-level purchase propensities. Similarly, a small bump in
spending on any given calendar day could represent random noise if many customers are
still active on that day, or a significant calendar time event if few customers are still active.
Importantly, activity level is unobserved, but can be captured by individual-level variables
like interpurchase time. Flexibly including both types of e↵ects in an individual-level model
of purchase propensity is thus crucial for dynamic customer base analysis, and the devel-
opment of such a framework is our primary objective.

In this paper, we describe a flexible and robust Bayesian nonparametric framework
for customer base analysis that accomplishes that objective by probabilistically modeling
purchase propensities in terms of underlying dynamic components. We demonstrate the
utility of our new framework on spending data from mobile video games. Our model uses
Gaussian process priors over latent functions to integrate events that occur at multiple time
scales and across di↵erent levels of aggregation, including both calendar time and individual-
level time scales like interpurchase time, time since first purchase (customer lifetime), and
number of past purchases. Its nonparametric specification allows for the flexible modeling of
di↵erent patterns of e↵ects, such that the model can be seamlessly applied across di↵erent
customer bases and dynamic contexts. The resulting latent function estimates facilitate
automatic model-based visualization and prediction of spending dynamics.

Customer base analysis is central to modern marketing analytics. Contributions in
this area have focused on the stochastic modeling of individuals in terms of interpurchase
time and lifetime, in contractual and non-contractual settings (Fader et al., 2005; Schmit-
tlein et al., 1987; Fader et al., 2010; Schweidel and Knox, 2013). These papers show that
customer-level e↵ects can explain much of the variability of spending over time. However,
they typically omit, or assume a priori known, calendar time e↵ects. Events in calendar
time, including marketing e↵orts and exogenous events such as competitor actions, hol-
idays, and day-of-the-week e↵ects, can substantially impact spending in many industries.
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For digital products, such as those in our application, relevant calendar events include prod-
uct changes that are launched simultaneously to all customers, and exogenous shocks such
as website or e-commerce platform outages and crashes. Moreover, many of these events
pose a common problem to marketing analysts: although calendar time events undoubtedly
influence spend rates, analysts may be unaware of the form of that influence, or of the very
existence of certain events. This problem is exacerbated in larger companies, where the
teams responsible for implementing marketing campaigns or managing products may be
distinct from the analytics team, and where information may not flow easily across di↵erent
organizational silos.

To cope both with such information asymmetries and with unpredictable dynamics
in spending, sophisticated managers often rely on aggregate data methods, including ex-
ploratory data analyses, statistical process control, time series models (Hanssens et al.,
2001), and predictive data mining methods (Neslin et al., 2006). These tools can forecast
sales, model the impact of calendar time events, and provide metrics and visual depictions
of dynamic patterns that are easy to grasp. Unfortunately, these methods typically ignore
individual-level predictors of spend, like those captured by customer base analysis models,
which precludes their use in characterizing customer-level spend behaviors and in perform-
ing CRM-relevant tasks. Furthermore, not including these individual-level e↵ects means
these models cannot account for the latent activity level of customers, which may in turn
lead to an inaccurate understanding of the true nature of calendar time events.

Building on both the customer base analysis and aggregate data approaches, we use
Bayesian nonparametric Gaussian process (GP) priors to fuse together latent functions that
operate both over calendar time and over more traditional individual-level inputs, such as
interpurchase time, customer lifetime, and purchase number. In this way, we integrate
calendar time insights into the customer base analysis framework. We use these latent
functions within a discrete hazard specification to dynamically model customer purchase
propensities, while controlling for unobserved heterogeneity. We term the resulting model
the Gaussian Process Propensity Model (GPPM). While Bayesian nonparametrics have been
successfully applied to marketing problems (e.g. Ansari and Mela, 2003; Wedel and Zhang,
2004; Kim et al., 2007; Rossi, 2013; Li and Ansari, 2014), to the best of our knowledge,
our paper is the first in marketing to take advantage of the powerful GP methodology.
It is important to note that, although our paper applies GPs in the context of customer
purchasing, GPs provide a general mechanism for estimating latent functions, and can be
employed in many other substantive contexts. We therefore also provide an accessible
introduction to GPs in general, to encourage their wider adoption within marketing.

In our application, the GP nonparametric framework means that the shapes of the latent
propensity functions that govern purchasing are automatically inferred from the data, thus
providing the flexibility to robustly adapt to di↵erent settings, and to capture time-varying
e↵ects, even when all the information about inputs may not be available. The inferred latent
functions allow a visual representation of both calendar time and individual-level patterns
that characterize spend dynamics, something that is not possible in standard probability
models, where the output is often a set of possibly unintuitive parameters. We refer to the
collection of these plots as the model-based dashboard, as it gives a visual summary of the
patterns of spending in a particular customer base, and serves as a tool for analyzing the
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spending dynamics within and across customer bases. It is important to note that these
model-based dashboards are distinct from real-time dashboards that continuously stream
various marketing metrics, like those described in Pauwels et al. (2009).

In this paper, we begin by describing what Gaussian process priors are (Section 2.1),
and how they can be used to specify latent dynamics in a model for dynamic customer base
analysis (Sections 2.2 and 2.3). We then apply our model to spending data from two mo-
bile video games owned by a large American video game publisher. These games are quite
distinct, spanning di↵erent content genres and target audiences. We show how the parame-
ter estimates and accompanying model-based dashboards generated from our approach can
facilitate managerial understanding of the key dynamics within each customer base, both
in the aggregate and at the individual level (Sections 3.1 and 3.2). We compare the GPPM
to benchmark probability models, including di↵erent buy-till-you-die variants such as the
BGNBD (Fader et al., 2005) and the Pareto-NBD (Schmittlein et al., 1987), hazard models
with and without time-varying covariates (e.g. Gupta, 1991; Seetharaman and Chintagunta,
2003), and variants of the discrete hazard approach, including a sophisticated state-space
specification, and show that the GPPM significantly outperforms these existing benchmarks
in fit and forecasting tasks (Section 3.4). We conclude by summarizing the benefits of our
framework, citing its limitations, and identifying areas of future research.

2 Modeling Framework

In our framework for dynamic customer base analysis, we focus on flexibly modeling individual-
level purchase propensity. We model this latent propensity in terms of the natural variability
in purchase incidence data along four dimensions: calendar time, interpurchase time (re-
cency), customer lifetime, and number of past purchases. Our focus on modeling purchase
incidence is consistent with the majority of the literature on customer base analysis, and
also fits nicely with our application area, where we focus on purchasing of a single product,
and where there is minimal variability in spend amount.1 We use a discrete-time hazard
framework to specify the purchase propensity, as most customer-level data are available at
a discrete level of aggregation. This is also the case in our application, where daily data are
available.

The observations in our data consist of a binary indicator yij that specifies whether
customer i made a purchase at observation j, and a corresponding tuple (tij , rij , `ij , qij)
containing the calendar time, recency, customer lifetime, and number of past purchases,
respectively. Recency here refers to interpurchase time, or the time since the customer’s
previous purchase, while customer lifetime refers to the time since the customer’s first
purchase. Depending on the context, a vector zi of demographics or other time invariant
variables, such as the customer acquisition channel or acquisition date, may also be available.
The probability of customer i purchasing is modeled as

Pr(yij = 1) = logit�1

⇥
↵(tij , rij , `ij , qij) + z0i� + �i

⇤
, (1)

1Throughout the rest of the paper, we use the words purchasing and spending interchangeably to refer
specifically to purchase incidence.
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where,

logit�1(x) =
1

1 + exp(�x) .

We see in Equation 1 that the purchasing rate is driven by a time-varying component ↵(.)
and two time invariant e↵ects, z0i� and �i, which capture the observed and unobserved
sources of heterogeneity in base spending rates, respectively. This setup models spend
dynamics via aggregate trajectories—that is, all customers are assumed to follow the same
dynamic pattern—while maintaining individual heterogeneity in the spending process via
the random e↵ect �i and by using other observed individual-specific variables, zi, when
available. In our application, we will focus exclusively on unobserved heterogeneity. It is
important to note that while calendar time is an aggregate time scale, the recency, lifetime,
and purchase number dimensions are individual-level time scales. That is, customers may, at
any given point in calendar time t, be at a di↵erent positions in the (rij , `ij , qij) subspace,
and therefore the aggregate sales at any given calendar time t are the amalgam of the
activities of customers who di↵er widely in their expected purchase behaviors.

The core of our framework is the specification of the purchase propensity, ↵(tij , rij , `ij , qij).
We treat ↵(.) as a latent function and model it nonparametrically using Gaussian process
priors (Rasmussen and Williams, 2006; Roberts et al., 2013). The nonparametric approach
models random functions flexibly and allows us to automatically accommodate di↵erent pat-
terns of spend dynamics that may underlie a given customer base. These dynamics operate
along all four of our dimensions. Furthermore, these dynamics may operate at di↵erent
time scales within a single dimension, including smooth long-run trends and short-term
patterns, as well as cyclic variation, which are inferred from the data. To allow such rich
structure, we use an additive combination of unidimensional GPs to specify and estimate
the multivariate function ↵(tij , rij , `ij , qij).

2.1 Gaussian Process Priors

We begin by describing GPs and highlight how they can nonparametrically capture rich,
dynamic patterns in a Bayesian probability model. A Gaussian process is a stochastic
process {f(⌧) : ⌧ 2 T } indexed by input elements ⌧ such that, for any finite set of
input values, ⌧ = {⌧

1

, ⌧
2

, . . . , ⌧M}, the corresponding set of function outputs, f(⌧ ) =
{f(⌧

1

), f(⌧
2

), . . . , f(⌧M )}, follows a multivariate Gaussian distribution. The characteris-
tics of the stochastic process are defined by a mean function and a covariance function, also
called a kernel. For a fixed set of inputs, a Gaussian Process reduces to the familiar multi-
variate Gaussian distribution, with a mean vector determined by the GP’s mean function,
and a covariance matrix determined by its kernel. However, unlike a standard multivariate
normal distribution that is defined over vectors of fixed length, a Gaussian process defines
a distribution over outputs for any possible set of inputs. From a Bayesian perspective, this
provides a natural mechanism for probabilistically specifying uncertainty over functions.
Since the estimated function values are the parameters of a GP, the number of parameters
grows with the number of unique inputs, making the model nonparametric.

While GPs are often defined over multidimensional inputs, for simplicity of exposition,
we begin by assuming a unidimensional input, ⌧ 2 R (e.g., time). To fix notation, suppose
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f is a function that depends on that input. Let ⌧ be a vector of M input points, and
let f(⌧ ) be the corresponding vector of output function values. As described above, a GP
prior over f is completely specified by a mean function, m(⌧) = E[f(⌧)], and a kernel,
k(⌧, ⌧ 0) = Cov[f(⌧), f(⌧ 0)], that defines a positive semidefinite covariance matrix

K(⌧ , ⌧ ) =

0

BBB@

k(⌧
1

, ⌧
1

) k(⌧
1

, ⌧
2

) . . . k(⌧
1
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2
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1
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. . .

...
k(⌧M , ⌧

1

) k(⌧M , ⌧
2

) . . . k(⌧M , ⌧M )

1

CCCA
, (2)

over all the outputs. We discuss specific forms of the mean function and kernel in Sections
2.1.1 and 2.1.2. Generally, these functions are governed by a small set of hyperparameters
that embody certain traits of the GP. For instance, the squared exponential kernel, which
we discuss in considerable detail in Section 2.2.2, is given by k

SE

(⌧i, ⌧j) = ⌘2 exp{�(⌧i �
⌧j)2/(2⇢2)}. This form encodes the idea that nearby inputs should have related outputs
through two hyperparameters: an amplitude, ⌘, and a smoothness, ⇢. Intuitively, these two
hyperparameters determine the traits of the function space being modeled by a GP with
this kernel.

Given a fixed vector of inputs ⌧ , letting f(⌧ ) ⇠ GP(m(⌧ ), k(⌧ , ⌧ 0)) is equivalent to
modeling the vector of function outputs via a marginal multivariate Gaussian f(⌧ ) ⇠
N (m(⌧ ),K(⌧ , ⌧ )). The mean m(⌧ ) and covariance matrix K(⌧ , ⌧ ) of the above multivari-
ate normal marginal distribution are again parsimoniously determined through the small
set of hyperparameters underlying the mean function and kernel of the GP. The fact that
the marginal of a GP is a multivariate normal distribution makes it easy to comprehend
how function interpolation and extrapolation work in this framework. Conditioned on an
estimate for the function values at the observed inputs, and on the mean function and kernel
hyperparameters, the output values for the latent function f for some new input points ⌧ ⇤

can be predicted using the conditional distribution of a multivariate normal. Specifically,
the joint distribution of the old and new function values is given by


f(⌧ )
f(⌧ ⇤)

�
⇠ N

✓
m(⌧ )
m(⌧ ⇤)

�
,


K(⌧ , ⌧ ) K(⌧ , ⌧ ⇤)
K(⌧ ⇤, ⌧ ) K(⌧ ⇤, ⌧ ⇤)

�◆
, (3)

and hence the conditional distribution of the new outputs can be written as

f(⌧ ⇤) ⇠ N (m(⌧ ⇤) +K(⌧ ⇤, ⌧ )K(⌧ , ⌧ )�1[f(⌧ )�m(⌧ )],

K(⌧ ⇤, ⌧ ⇤)�K(⌧ ⇤, ⌧ )K(⌧ , ⌧ )�1K(⌧ , ⌧ ⇤)). (4)

This equation again makes clear that the kernel and mean functions determine the distri-
bution of the output values both for existing and new inputs. As the mean and covariance
of the marginal multivariate normal are parametrized via the mean and kernel functions,
the GP remains parsimonious, and can interpolate and extrapolate seamlessly for any set
of input values. The choice of mean function allows us to model di↵erent a priori expected
functional forms, while the kernel determines how much the functions deviate nonparamet-
rically from that mean function.
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2.1.1 Mean Functions The mean function captures expected functional behaviors.
Within the range of observed inputs, the mean function often has very little influence over
the estimated function values; instead, the properties of the estimated function are largely
determined by the kernel, as we describe in the next section. Because of this, in many GP
applications, the mean function is set to a constant, reflecting no prior assumptions about
functional form. However, far from the range of observed inputs, the posterior expected
function values revert to the mean function.2 In some applications, this mean reverting
behavior in combination with a constant mean function is problematic, as we may expect
the function values to be increasing or decreasing, both in and out of the range of inputs.
To capture this expected behavior, we may choose to use a non-constant mean function.

In this paper, we use either a constant mean function, or a parametric monotonic power
mean function, given by m(⌧) = �

1

(⌧ � 1)�2 , �
2

> 0. This specification captures expected
monotonic behavior, while also allowing for a decreasing marginal e↵ect over the input.3

We use (⌧ � 1) and restrict �
2

> 0, to be consistent with our identification restrictions that
we describe later. We emphasize again that the mean function sets an expectation over
function values, but does not restrict them significantly. The GP structure allows functions
to nonparametrically deviate from the mean function, resulting in function estimates that
di↵er from the mean’s parametric form. This is obvious in all panels of Figure 1, where we
plot random draws from GPs with di↵erent mean functions and kernels. Across the panels
of Figure 1, we see shapes that are sometimes dramatically di↵erent from the respective
constant and power mean functions that generated them. The main role of the mean
function is in extrapolating far from the range of the observed inputs, where it determines
expected function behavior in the absence of data. While we use only these two mean
functions as a simple way of capturing our prior expections, any parametric form could be
potentially used as a mean function. Given the capacity of the GP to capture deviations
from parametric forms, it is generally considered best practice to use simple mean functions,
and let the GP capture any complexities.

2.1.2 Kernels The kernel defines much of the fundamental structure of a GP, and in
combination with the mean function, determines the latent function space of a GP prior.
As such, kernels are the primary source of model specification when working with GP
priors. Any function over two inputs that results in a positive semidefinite gram matrix
can be used as a kernel, and many di↵erent kernel forms have been explored in the GP
literature (Rasmussen and Williams, 2006, Chapter 4). Kernels encode the structure of
functions via a small number of hyperparameters, leading to highly flexible yet parsimonious
model specification. In this paper, we use two simple kernels that are suitable building
blocks for describing functions in our context.

2This behavior can be seen through Equation 4, in conjunction with, for example, the squared exponential
kernel, briefly mentioned above, which has functional form kSE(⌧i, ⌧j) = ⌘2 exp{�(⌧i � ⌧j)

2/(2⇢2)}. As the
distance between the observed inputs and the new input grows, the value of the kernel goes to zero, and we
see the mean in Equation 4 will revert to the mean function. This mean reverting property is dependent
on the kernel being stationary, meaning that it depends only on the distance between inputs. We refer the
interested reader to Rasmussen and Williams (2006), for a comprehensive discussion of these issues.

3We note that the properties of this specification are suitable for our specific application, but may not
be suitable in other domains and substantive applications.
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Figure 1: Examples of mean function/kernel combinations. Top-left: zero mean function and SE kernel with
⇢2 = 50 and ⌘2 2 {0.1, 1, 5, 20}; Top-right: zero mean function and SE kernel with ⇢2 2 {1, 10, 100, 1000};
Bottom-left: power mean function m(⌧) = ±2(⌧ � 1)0.3 and SE kernel with ⇢2 = 100 and ⌘2 2 {0.1, 5};
Bottom-right: periodic kernels with ⌘2 = 10, ⇢2 2 {2, 100}, and ! 2 {7, 30}.

The first kernel is the squared exponential kernel (SE) defined as

k
SE

(⌧j , ⌧k; ⌘, ⇢) = ⌘2 exp

⇢
�(⌧j � ⌧k)2

2⇢2

�
, (5)

where the hyperparameter ⌘ > 0 is the amplitude, and ⇢ > 0 is the characteristic length-
scale or “smoothness.” The amplitude can be best explained by considering the case when
⌧j = ⌧k ⌘ ⌧ . In this case, k(⌧, ⌧) = ⌘2, which is the variance of the normal distribution at
the fixed input value ⌧ . More generally, ⌘2 captures variance around the mean function.
If ⌘ ! 0, the GP will largely mirror its mean function. We illustrate this using both the
constant and power mean functions in the left column of Figure 1, where we randomly
draw GPs with a fixed ⇢ and varying ⌘ values. From these two panels, we can see that
small values of ⌘, as in the light-colored solid (green) and long-dash (yellow) curves, yield
functions that stay closer to their mean functions, relative to the dark-colored dot-dash
(red) and short-dash (blue) curves with higher ⌘ values. The characteristic length-scale
⇢ intuitively indicates how far apart two input points need to be for the corresponding
outputs to be uncorrelated. Hence, a high value of ⇢ corresponds to very smooth functions,
while a small value of ⇢ yields jagged, unpredictable functions. We see this illustrated in
the top-right panel of Figure 1, where we fix the amplitude ⌘ and vary the length-scale ⇢.
We can see a clear contrast between the highly jagged solid (green) curve with ⇢2 = 1, and
the increasingly smooth dashed curves, with ⇢2 2 {10, 100, 1000}.

The second kernel we use is the periodic kernel, defined by

k
Per

(⌧j , ⌧k;!, ⌘, ⇢) = ⌘2 exp

(
�
sin2

�
⇡(⌧j � ⌧k)2/!

�

⇢2

)
. (6)

This kernel allows for periodic functions with period ! that are again defined by an am-
plitude ⌘ and a length-scale ⇢. Note that this type of variability could also be captured
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by the squared exponential kernel; the benefit of using the periodic kernel is that forecasts
based on this kernel will always precisely mirror the estimated pattern. Hence, any pre-
dictable cyclic variability in the data would be captured both in and out-of-sample. In the
bottom-right panel of Figure 1, we plot four draws from di↵erent periodic kernels. There,
we show di↵erent cycle lengths (30 days and 7 days), together with di↵ering smoothness
and amplitude parameters.

Other Possible Kernels In addition to the above described kernels, many other
types have been proposed in the GP literature. In this paper, we use the simplest kernels
that exemplify a given trait (stationary variability with the SE and cyclicality with the
periodic). These are by far the most commonly used kernels, the squared exponential
especially serving as the workhorse kernel for the bulk of the GP literature. Additional
kernels include the rational quadratic, which can be derived as an infinite mixture of squared
exponential kernels, and the large class of Matern kernels, which can capture di↵erent levels
of di↵erentiability in function draws.

2.1.3 Additivity Just as the sum of Gaussian variates is distributed Gaussian, the
sum of GPs is also a GP, with a mean function equal to the sum of the mean functions
of the component GPs, and its kernel equal to the sum of the constituent kernels. This
is called the additivity property of GPs, and can allow us to define a rich structure even
along a single dimensional input. Specifically, the additivity property allows us to model
the latent function f as a sum of sub-functions on the same input space, f(⌧) = f

1

(⌧) +
f
2

(⌧) + . . . + fJ(⌧), where each of these sub-functions can have its own mean function,
mj(⌧), and kernel, kj(⌧, ⌧ 0). The mean function and kernel of the function f are then

given by m(⌧) =
PJ

j=1

mj(⌧) and k(⌧, ⌧ 0) =
PJ

j=1

kj(⌧, ⌧ 0), respectively. This allows us
to flexibly represent complex patterns of dynamics even when using simple kernels like
the squared exponential. We can, for example, allow the di↵erent sub-functions to have
di↵erent squared exponential kernels that capture variability along di↵erent length-scales,
or add a periodic kernel to isolate predictable cyclic variability of a given cycle length. It
is through this additive mechanism that we represent long-run and short-run variability in
a given dimension, for instance, or isolate predictable periodic e↵ects from unpredictable
noise, as we discuss in Section 2.2.4 Until now, we have focused on illustrating GPs in
unidimensional contexts. We now show how additivity can be leveraged to construct GPs
for multidimensional functions.

2.1.4 Multidimensional GPs In practice, we are often interested in estimating a
multidimensional function, such as the ↵(.) function in Equation 1. Let h(.) be a generic

4In general, determining the number of additive components suitable for a given application requires
both substantive knowledge and expectations about the nature of the dynamics at work, and data-driven
evidence from the estimated hyperparameter values. For instance, depending on the kernel, a small amplitude
hyperparameter compared to the output scale could indicate the component is relatively uninfluential in
describing the results. Similarly, if the length-scale is estimated to be very large, this can indicate minimal
dynamics are being uncovered by that component. Both of these phenomena can indicate redundancy in
the specification. Kernel specification is a rich topic in the GP literature, and the interested reader can find
considerable discussion in Rasmussen and Williams (2006), Chapter 5.
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multidimensional function from RD to R. The inputs to such a function are vectors of the

form ⌧m ⌘ (⌧ (1)m , ⌧
(2)

m , . . . , ⌧
(D)

m ) 2 RD, for m = 1, . . . ,M , such that the set of all inputs is
an M ⇥D matrix. Just as before, h(.) can also be modeled via a GP prior. While there are
many ways in which multi-input functions can be modeled via GPs, a simple yet powerful
approach is to consider h(.) as a sum of single input functions, h

1

(.), h
2

(.), . . . , hD(.), and
model each of these unidimensional functions as a unidimensional GP with its own mean
function and kernel structure (Duvenaud et al., 2013). The additivity property implies that
additively combining a set of unidimensional GP’s over each dimension of the function is
equivalent to using a particular sum kernel GP on the whole, multidimensional function.
We use such an additive structure to model ↵(tij , rij , `ij , qij) in the GPPM.

Additively separable GPs o↵er many benefits: first, they allows us to easily understand
patterns along a given dimension, and they facilitate visualization, as the sub-functions
are unidimensional. Second, the additivity property implies that the combined stochastic
process is also a GP. Finally, the separable structure reduces computational complexity.
Estimating a GP involves inverting its kernel matrix. This inversion requires O(M3) com-
putational time and O(M2) storage demands for M inputs. In our case, as the inputs
(tij , rij , `ij , qij) can only exist on a grid of fixed values, we will have L < M inputs, where L
corresponds to all unique observed (tij , rij , `ij , qij) combinations. Despite the reduction, this
is a very large number of inputs, and would result in considerable computational complex-
ity, without the separable structure. The additive specification reduces this computational
burden to that of inverting multiple (in our case, six) T ⇥ T matrices, where T ⌧M is the
number of time periods observed in the data.

2.1.5 GPs Versus Other Function Estimation Methods As Gaussian process pri-
ors are new to marketing, it is worthwhile to briefly summarize the rationale for using
them, instead of other flexible methods for modeling latent functions like simple fixed ef-
fects, splines, or state space models. Foremost, GPs allow for a structured decomposition of
a single process into several subprocesses via the additivity property. This additive formu-
lation facilitates a rich representation of a dynamic process via a series of kernels that can
capture patterns of di↵erent forms (e.g., periodic vs. non-periodic) and operate at di↵erent
time scales. Yet, as the sum of GPs is a GP, the specification remains identified, with a
particular mean and covariance kernel. Achieving a similar representation with other meth-
ods is either infeasible or more di�cult.5 Moreover, GPs are relatively parsimonious, and
when estimated in a Bayesian framework, tend to avoid overfitting. Bayesian estimation of
GPs involves estimating the function values and hyperparameters jointly, thus determining
both the traits of the function, and the function values themselves. As the flexibility of the
latent functions is controlled via a small number of hyperparameters, we retain parsimony.
Moreover, the structure of the marginal likelihood of GPs, obtained by integrating out

5While we emphasize the relative benefits of GP priors here, we also note that there are many links
between these methods, including between GP methods and smoothing splines (Kalyanam and Shively (1998)
and Shively et al. (2000)), and between GP methods and state space models. We include a sophisticated
state space analog of our model in our benchmarks. Our state space formulation is also closely related to
cubic spline specifications (see Durbin and Koopman (2012) for details). As we will describe later, although
this method produces fits that are roughly on par with the GP approach, we cannot easily obtain the
decompositions that are natural in the GP setting.
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the function values, clearly shows how the model makes an implicit fit versus complexity
tradeo↵ whereby function flexibility, as captured by the hyperparameters, is balanced by a
penalty that results in the regularization of the fit (for details, see Rasmussen and Williams
(2006), Section 5.4.1).

2.2 Full Model Specification

The flexibility a↵orded by GP priors makes them especially appropriate for modeling our
latent, time-varying function, ↵(tij , rij , `ij , qij). Recall that the basic form of the GPPM is:

Pr(yij = 1) = logit�1

⇥
↵(tij , rij , `ij , qij) + z0i� + �i

⇤
. (7)

For ease of exposition, we will subsequently omit the ij subscripts. For simplicity and to
reduce computational complexity, we assume an additive structure,

↵(t, r, `, q) = ↵
T

(t) + ↵
R

(r) + ↵
L

(`) + ↵
Q

(q), (8)

and model each of these functions using separate GP priors. This structure and the nonlinear
nature of the model implies an interaction between the e↵ects: for example, if the recency
e↵ect is very negative, calendar time events can do little to alter the spend probability. While
additivity is a simplifying assumption, in our application, this compensatory structure seems
to explain the data well.

To specify each of these additive components, we return to the mean functions and
kernels outlined in Sections 2.1.1 and 2.1.2, and to the additivity property of GPs from
Section 2.1.3. Recall that the mean function encodes the expected functional behavior: with
the constant mean function, we impose no expectations; with the power mean function, we
encode expected monotonicity. The kernel choice endows the GP with additional properties:
a single SE kernel allows flexible variation with one characteristic length-scale, while the
periodic kernel allows the GP to exhibit predictable cyclic behavior with a given period.
Additivity allows us to combine these kernel properties, to achieve variation along more
than one length-scale, or to isolate predictable cyclic behavior in a given dimension. We
can use these general traits of mean function and kernel combinations to specify our model,
based on the expected nature of the variation along a given dimenion. Below, we explain
the specification used in our application. The GPPM framework is highly flexible, and
throughout the following sections, we also explain how this specification can be modified to
handle more general settings.

Calendar Time In calendar time, we expect two e↵ects to operate: long run trends, and
short run disturbances. These short run events could include promotions, holidays, or other
shocks to the purchasing process. Furthermore, we expect cyclicality such that purchasing
could be higher on weekends than on weekdays, or in particular months or seasons. As we
describe later, in our application, given the span of our data, we expect only one periodic
day of the week (DoW) e↵ect. Together, this description of spend dynamics implies a
decomposition of ↵

T

into three sub-components,

↵
T

(t) = ↵Long

T

(t) + ↵Short

T

(t) + ↵DoW

T

(t), (9)

11



where we model each component such that,

↵Long

T

(t) ⇠ GP(µ, k
SE

(t, t0; ⌘TL , ⇢TL)),

↵Short

T

(t) ⇠ GP(0, k
SE

(t, t0; ⌘TS , ⇢TS)),

↵DoW

T

(t) ⇠ GP(0, k
Per

(t, t0;! = 7, ⌘TW , ⇢TW)).

Without loss of generality, we impose ⇢TL > ⇢TS , to ensure that the long-run component
captures smoother variation than the short-run component. We use constant mean functions
here because, a priori, we do not wish to impose any assumptions about calendar time
behavior. The constant mean µ in the long-run component captures the base spending rate
in the model. Far from the range of the data, this specification implies the posterior mean of
these e↵ects will revert to this base spending rate, reflecting our lack of a priori knowledge
about these e↵ects.

This specification is very general, and has shown good performance in our application,
where we illustrate the kinds of trends and disturbances that can be captured across these
two components.6 Furthermore, the modularity of the additive GP specification allows easy
modifications to accommodate di↵erent settings. Longer spans of data may contain variation
in spending along di↵erent length-scales, which may require additional SE components.
There may also be several periodicities requiring additional periodic components. These
can be easily included additively.

Individual-level E↵ects The remaining e↵ects—recency, lifetime, and purchase number—
operate at the customer-level. In most applications, we do not expect short-run shocks along
these inputs. We do, however, expect monotonicity. For instance, intuitively, we expect
spend probability to be generally decreasing in interpurchase time. Similarly, we expect
spend probability to be generally increasing in purchase number,7 and to be generally de-
creasing in customer lifetime. Furthermore, while we expect monotonicity, we also expect
a decreasing marginal e↵ect. For example, we expect a priori that the di↵erence between
having spent 5 versus 10 days ago is quite di↵erent than the di↵erence between having
spent 95 versus 100 days ago. Together, these expected traits justify using our power mean
function:

↵
R

(r) ⇠ GP(�R1(r � 1)�R2 , k
SE

(r, r0; ⌘R , ⇢R)),

↵
L

(`) ⇠ GP(�L1(r � 1)�L2 , k
SE

(`, `0; ⌘L , ⇢L)),

↵
Q

(q) ⇠ GP(�Q1(r � 1)�Q2 , k
SE

(r, r0; ⌘Q , ⇢Q)).

Again, this specification allows for long-run monotonic behavior, even out-of-sample, as cap-
tured by the mean function, and for nonparametric deviations from this expected functional
form, as captured by the SE kernel. We believe that this specification is very general and
widely applicable. In some cases, however, more nuance may be required in specifying these

6We also include simulated data examples of these e↵ects in Web Appendix B, where we know the e↵ects
true forms, and can show that the GPPM is capable of accurately recovering them.

7We may not expect this in our application area, freemium video games, where there can be decreasing
returns to repeat purchasing.
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e↵ects to accommodate company actions that occur on these time scales. If, for instance,
the company o↵ers promotions based on loyalty, these e↵ects will operate along the lifetime
dimension. In that case, the lifetime component can be modeled similarly to the calendar
time component, with an additive SE component to capture these short-run deviations from
the long-run, decreasing trend embodied in the above specification. We include an example
of this modification in Web Appendix B.

Heterogeneity, Random E↵ects, and Priors We accommodate unobserved hetero-
geneity by assuming that the random e↵ect �i comes from a normal population distribution,
i.e., �i ⇠ N (0,�2). In our application, we found no significant time-invariant e↵ects zi, and
hence we omit z0i� from our model going forward. We estimate the model in a fully Bayesian
fashion, and therefore specify priors over all unknowns, including the GP hyperparameters.
We use the fact that meaningful variation in the inverse logit function occurs for inputs be-
tween -6 and 6, and hence meaningful di↵erences in the inputs to the GPPM will also occur
between -6 and 6, to select proper weakly informative Normal and Half-Normal prior dis-
tributions that give weight to variation in this range. Thus, we let the population variance
�2 ⇠ Half-Normal(0, 2.5) and the base spending rate µ ⇠ N (0, 5). For the squared expo-
nential hyperparameters, we specify ⌘2 ⇠ Half-Normal(0, 5) and ⇢2 ⇠ Half-Normal(T/2, T ).
For the mean function, we let �

1

⇠ N (0, 5), and let �
2

⇠ Half-Normal(0, 5). Importantly,
the fully Bayesian approach, whereby both the GP function values and their associated
hyperparameters are estimated from the data, allows us to automatically infer the nature
of the latent functions that drive spend propensity.

Identification We need to impose identification restrictions because of the additive struc-
ture of our model. Sums of two latent functions, such as ↵

1

(t)+↵
2

(t), are indistinguishable
from ↵⇤

1

(t) + ↵⇤
2

(t), where ↵⇤
1

(t) = ↵
1

(t) + c, and ↵⇤
2

(t) = ↵
2

(t)� c for some c 2 R, as both
sums imply the same purchase probabilities. To address this indeterminacy, we set the
initial function value (corresponding to input ⌧ = 1) to zero for all of the latent functions,
except for ↵Long

T

(t). In this sense, ↵Long

T

(t), with its constant mean function µ, captures the
base spending rate for new customers, and the other components capture deviations from
that, as time progresses. Whenever we implement a sum of squared exponential kernels,
as in the calendar time component, we also constrain the length-scale parameters to be
ordered to prevent label switching. All of these constraints are easily incorporated in our
estimation algorithm, described below.

2.3 Estimation

We use a fully Bayesian approach for inference. For concision, let ↵ij ⌘ ↵(tij , rij , `ij , qij),

which in our specification, is equivalent to ↵ij = ↵Long

T

(tij) + ↵Short

T

(tij) + ↵DoW

T

(tij) +
↵
R

(rij) + ↵
L

(`ij) + ↵
Q

(qij). To further simplify notation, we let the independent compo-
nents of the sum be indexed by k, with generic inputs ⌧k, such that this GP sum can be
written as ↵ij =

PK
k=1

↵k(⌧kij ). Each of these components is governed by a set of hyper-
parameters, as outlined in the previous section, denoted here as �k, with the collection of
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all hyperparameters denoted �. Finally, for each component, we let the vector of function
values over all possible inputs along that dimension be denoted as ↵k. With this simplified
notation, the joint density of the data and the model unknowns is:

p(y, {↵k}, �,�,�2) =
"

IY

i=1

MiY

j=1

p(yij |↵ij , �i)p(�i|�2)
#"

KY

k=1

p(↵k|�k)

#
p(�2)p(�). (10)

As the full posterior distribution p({↵k}, �,�,�2|y) is not available analytically, we use
Markov Chain Monte Carlo Methods (MCMC) to draw samples of the unknown function
values, random e↵ects, population parameters, and GP hyperparameters from the posterior.

As the function values and the hyperparameters do not have closed-form full condi-
tionals, our setup is non-conjugate, and Gibbs sampling is not an option. Moreover, as
the function values and the hyperparameters typically exhibit strong posterior dependence,
ordinary Metropolis-Hastings procedures that explore the posterior via a random walk are
not e�cient. We therefore use the Hamiltonian Monte Carlo (HMC) algorithm that lever-
ages the gradient of the posterior to direct the exploration of the Markov chain to avoid
random-walk behavior. HMC methods are ideal for non-conjugate GP settings such as ours,
as they can e�ciently sample both the latent function values as well as the hyperparame-
ters (Neal, 1998). In particular, we use the No U-Turn Sampling (NUTS) variant of HMC
as implemented in the Stan probabilistic programming language (Ho↵man and Gelman,
2014; Carpenter et al., 2016). We include an overview of HMC in Web Appendix A.

Stan has recently gained traction as an e�cient and easy-to-use probabilistic program-
ming tool for Bayesian modeling. We use Stan as it is an e�cient implementation of adaptive
HMC. Stan programs are simple to write and modify, and therefore facilitate easy experi-
mentation, without the need for extensive reprogramming. This is important for the wider
adoption of this framework in practice.8 Finally, given the e�ciency of HMC and Stan,
convergence, as measured by the R̂ statistic (Gelman and Rubin, 1992), is achieved in as
few as 400 iterations, although in this paper all estimation is done with 4,000 iterations
with the first 2,000 used for burn-in.

3 Application

We apply our framework to understand the spending dynamics in two free-to-play mobile
games from one of the world’s largest video game companies. The data take the form of
simple spend incidence logs, with user IDs and time stamps.9 In free-to-play (or “freemium”)
settings, users can install and play video games on their mobile devices for free, and are
o↵ered opportunities to purchase within the game. These spend opportunities typically
involve purchasing in-game currency, like coins, that may subsequently be used to progress
more quickly through a game, obtain rare or limited edition items to use with their in-game

8We include our Stan code in Web Appendix C.
9There is no personally identifiable information in our data; player information is masked such that none

of the data we use or the results we report can be traced back to the actual individuals. We also mask the
identification of the company as per their request.
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characters, or to otherwise gain a competitive edge over non-paying players. Clearly, the
nature of these purchases will depend on the game, which is why it is important for a model
of spending behavior to be fully flexible in its specification of the regular, underlying drivers
of purchasing. We cannot name the games here because of non-disclosure agreements.
Instead, we use the general descriptors Life Simulator (LS) and City Builder (CB) to describe
the games.

The games and ranges of data used were selected by our data provider, in an e↵ort
to understand spend dynamics over specific periods of time. We use a random sample of
10,000 users for each of the two games. Each sample is drawn from users who installed the
game within the first 30 days, and spent at least once during the training window. We used
8,000 users for estimation, and 2,000 for cross validation. In the Life Simulator (LS) game,
players create an avatar, then live a digital life as that avatar. Purchases in this context
can be rare or limited edition items to decorate or improve their avatar or its surroundings.
Often times, limited edition items are themed according to holidays such as Christmas or
Halloween. Our data come from a 100 day span of time covering the 2014 Christmas and
New Year season. In the City Builder (CB) game, players can create (or destroy) a city as
they see fit. Customers make purchases to either speed up the building process or to build
unique or limited edition additions to their cities. Our data come from an 80 day period of
time at the start of 2015, at the tail end of the Christmas and New Year holidays.

The time series of spending for the two games are shown in Figure 2. We have also
marked specific time periods of interest to the company, which we will discuss in more detail
in our analysis. From these figures, it is di�cult to parse out what exactly is driving the
aggregate pattern of purchases. The figure includes customers who installed the game any
time within the first 30 day window. Typically, customers are most active when they start
playing a game, so we expect to see more spending in the first 30-40 days simply because
there are likely more people playing in that period, and new players are entering the pool
of possible spenders. This rise and subsequent fall is, in essence, the joint impact of the
recency, lifetime, and purchase number e↵ects. We see, however, that even the general rise-
fall pattern varies across the two games. This could be due to di↵erent patterns in these
underlying drivers of spending, or it could be due to the influence of calendar time events.
In essence, it is unclear what else underlies the aggregate spends.

We also see many peaks and valleys in spending over the entire time horizon, the
significance of which cannot be diagnosed without deeper analysis. For example, it is
di�cult to discern which “bumps” in the plots are meaningful, and which represent random
noise. If 5,000 players are active at any given day, then a jump of 50 spends in may
represent a random fluctuation. In contrast, if only 1,000 players are active, the same
jump of 50 spends may be very meaningful. In other words, the significance of a particular
increase in spending depends on how many customers are still actively spending at that
time, which in turn depends on the individual-level recency, lifetime, and purchase number
e↵ects. An accurate accounting of the impact of calendar-time events cannot be made
without considering these individual-level predictors of spending, and it is thus important
to develop a model-based understanding of the underlying spend dynamics, which is what
we do via the GPPM.
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Figure 2: Spend incidence by day (calendar time) in each game. Bars indicate time periods of interest, as
specified by the company, and as discussed more in Section 3.2.1.

3.1 Model Output and Fit

The GPPM o↵ers a visual and highly general system for customer base analysis that is
driven by nonparametric latent spend propensity functions. These latent curves are the
primary parameters of the model, and their posterior estimates are displayed in Figure 3
for LS, and in Figure 4 for CB. We call these figures the GPPM dashboards, as they
visually represent latent spend dynamics. As we will see in 3.2, these dashboards can be
used to accomplish many of the goals we have discussed throughout the previous sections,
including forecasting spending, understanding purchasing at the individual-level, assessing
the influence of calendar time events, and comparing spending patterns across products.

These dashboards are underpinned by a set of hyperparameters, and estimated jointly
with a random e↵ects distribution capturing unobserved heterogeneity. Posterior medians
of these parameters are displayed in Table 1. While the hyperparameters summarize the
traits of the estimated dashboard curves, as explained in Section 2.1, we can gain a greater
understanding of the dynamics from an analysis of the estimated dashboard curves them-
selves, as we do in the subsequent sections. The other parameters in Table 1 are the base
spending rate, µ, and the population variance of the random e↵ects distribution, �2, which
reflects the level of heterogeneity in base spend rates estimated in each customer base.

Model Fit First, to validate our model, we look at its fit to the observed daily spending
data, both in the calibration sample of 8,000 customers and in the holdout sample of
2,000 customers. A closed-form expression is not available for the expected number of
aggregate counts in the GPPM.We therefore simulate spending from the posterior predictive
distribution by using the post convergence HMC draws for each parameter, including the
latent curves and random e↵ects. The top row of Figure 5 shows the actual spending and
the median simulated purchase counts (dashed line) for the two games, along with 95%
posterior predictive intervals.

We see that the fit is exceptional, and tracks the actual purchases almost perfectly in
both cases. This is not surprising, as we model short-run deviations in the probability of
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Figure 3: Posterior dashboard for the Life Simulator customer base. Curves are the median posterior
estimates for the latent components of ↵(t, r, `, q) with 95% credible intervals. The blue plots (top row) are
the calendar time components, while the red (bottom row) are the individual-level e↵ects. The marked time
periods (green bars) are areas of interest to the company, as discussed in Section 3.2.1.
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Figure 4: Posterior dashboard for the City Builder customer base. Curves are the median posterior estimates
for the latent components of ↵(t, r, `, q) with 95% credible intervals. The blue plots (top row) are the calendar
time components, while the red (bottom row) are the individual-level e↵ects. The marked time periods (green
bars) are areas of interested to the company, as discuss in Section 3.2.1.
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Component LS CB Component LS CB

Cal, Long ⌘TL 0.17 0.22 Lifetime ⌘L 0.06 0.23

⇢TL 11.75 10.32 ⇢L 9.77 12.25

Cal, Short ⌘TS 0.15 0.16 �L1 -0.34 -0.75

⇢TS 1.11 1.29 �L2 0.25 0.36

Cal, DoW ⌘TW 1.08 1.19 Purchase Number ⌘Q 0.10 0.20

⇢Q 9.17 9.59 ⇢Q 4.93 5.36

Recency ⌘R 0.04 0.10 �Q1 0.28 0.52

⇢R 10.23 11.05 �Q2 0.15 0.30

�R1 -0.59 -0.13 Base Rate µ -1.49 -1.92

�R2 0.49 0.72 Heterogeneity �2 0.68 0.93

Table 1: Posterior median parameter estimates for both games.

spending on a daily basis and therefore essentially capture the residuals from the smoother
model components. That is, the short-run calendar time component captures any probabil-
ity that is “left-over” from the other components of the model, enabling us to fit in-sample
data exceptionally well. To test that the model does not overfit the in-sample day-to-day
variability, we explore the simulated fit in the validation sample of 2,000 held-out customers.
The bottom row of Figure 5 shows that the fit to this sample is still excellent, although not
as perfect as in the top row. While the probabilistic residuals from the calibration data are
not relevant for the new sample, much of the signal present in the calendar time trends and
the individual-level e↵ects continue to matter, thus contributing to the good fit.

Fit Decomposition To better understand how the latent curves in the dashboard con-
tribute to the fits seen in Figure 5, we now break down that fit along our latent dimensions.
For that, we focus on the LS game. Our main focus is on assessing how much of the
day-to-day spending is explained by the calendar time components of the model versus the
typically smoother, individual-level recency, lifetime, and purchase number components. To
do that, we examine how the fit changes when di↵erent components of the model are muted.
We “mute” a component by replacing it with a scalar that is equal to the average of its
function values over all its inputs. Note that we do not re-estimate a model when we mute
a component; instead, muting allows us to see how much of the overall fit is driven by a
given component.

The fit decomposition is shown in Figure 6. Overlaid on the true spending time series,
we have three muted fits: in the first, we mute the short-run calendar time component; in
the second, we mute both the short and long-run calendar time components; and in the
third, we mute all calendar time components. From the continued good fit of the muted
models, we can see that the majority of the full model fit is actually driven by the individual-
level predictors of spend: recency, lifetime, and purchase number. This finding is largely
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Figure 5: True and simulated spending by day under the GPPM with 95% posterior predictive intervals.
The black is the data while the red (dashed) is the median simulated fit. In the top row, we show the fit
in the estimation data of 8,000 customers, where the two curves are nearly indistinguishable, while in the
bottom row, we show the fit in the validation sample of 2,000 held-out customers.

in keeping with the established literature on customer base analysis, which has robustly
shown that models based on these components can do well at fitting and forecasting spend
activity. However, we also find that calendar time plays a non-negligible role: while the
short-run component generally captures the residuals, as explained before, the long-run
component plays an important role in capturing changes in base spending rates over time.
Furthermore, the cyclic component, which is a highly predictable yet novel element of our
model, plays an important role in explaining day-to-day variability in spending.

3.2 Dashboard Insights

While fit validates the utility of the GPPM, one of the primary motivations of the model
is to provide managers with a model-based decision support system that captures e↵ects
of interest, and allows for a visual understanding of the drivers of spend behavior. Thus,
the key output of our model is the GPPM dashboard (Figures 3 and 4), which portrays the
posterior estimates of the latent propensity functions. These latent spend propensity curves
are readily interpretable, even by managers with minimal statistical training. We illustrate
here the insights that managers can obtain from these model-based visualizations.

3.2.1 Calendar Time E↵ects Events that happen in calendar time are often of great
importance for managers, but their impact is often omitted from customer base analysis
models. The GPPM includes these e↵ects nonparametrically through the calendar time
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Figure 6: Fit decomposition on the LS spending data. Each panel from left to right represents muting an
additional component of the model; the worsening fit shows how much of the full model fit is driven by the
muted component.

components of the model, such that impact of calendar time events is captured flexibly and
automatically. Calendar time e↵ects are estimated jointly with the individual-level drivers
of spending, recency, lifetime, and purchase number. This means the impact of calendar
time on propensity to spend is assessed only after controlling for these drivers of respend
behavior, which account for the natural ebb and flow of spending, including dynamics in
the numbers of active customers.

Importantly, capturing the impact of calendar time events requires no inputs from
the marketing analyst, as would be required in a model where time-varying covariates are
explicitly specified. This implies that their presence and significance must be evaluated ex
post facto. This has many benefits: first, even in the face of information asymmetries or
unpredictable shocks, the events will be captured by the GPPM. Second, the shape of the
impact of these events is automatically inferred, rather than assumed. Finally, because the
impact is captured by changes in the calendar time components of the propensity model,
their impact can be assessed visually. We demonstrate the analysis of calendar time events
using our two focal games. The top row of plots in each dashboard (colored blue) represents
the calendar time e↵ects. From left to right, we have the long-run trends, short-run shocks,
and periodic day of the week e↵ects. Beneath these curves, we have placed bars indicating
time periods of interest to the company.

Life Simulator Events Two events of note occurred in the span of the data. The
first marked time period t 2 [17, 30] corresponds to a period in which the company made
a game update, introduced a new game theme involving a color change, and also donated
all proceeds from the purchases to a charitable organization. The second marked period,
around t 2 [37, 49], corresponds to another game update that added a Christmas-themed
quest to the game, with Christmas itself falling at t = 48, right before the end of the holiday
quest.

From the dashboard, we learn several things: first, there is a prominent spike in short-
run spending the day before Christmas. This Christmas Eve e↵ect illustrates that events do
not have to be anticipated to be detected in the model, and we illustrate in the subsequent
section how the GPPM parses out the impact of short-run events, using this e↵ect as the
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example. In the long-run curve, we see a decrease in spending coinciding with the charity
update, an increase in spending coinciding with the holiday event, and then a significant
drop-o↵ subsequent to the holiday season. Without a longer range of data, it is hard to
assess the meaning of these trends. It does appear that the charity event lowered spend
rates. The impact of the holidays is more unclear: it could be that the holiday game update
elevated spending, and then as time went on, spend levels returned to normal. Alternatively,
spend levels could be elevated simply due to the holiday season, with a post-holiday slump
that is unrelated to the game updates. Although we cannot conclusively parse out these
stories, we can tell that calendar time dynamics are at play, and appear linked to both real
world shocks and company actions.

City Builder Events The marked areas of the CB dashboard in Figure 4 again
correspond to events of interest. The start of the data window (t 2 [1, 6]) coincides with
the tail end of the holiday season, from December 30 to January 4. Another event begins at
t = 63, when the company launched a permanent update to the game to encourage repeat
spending. We mark five additional days after that update to signify a time period over
which significant post-update activity may occur. Finally, at t = 72, there was a crash in
the app store.

We see, as in the previous game, that the spending level in the holidays (t 2 [1, 6])
was quite high and fell dramatically subsequently. This lends some credence to a general
story of elevated holiday season spending, as there was no game update in CB during this
time. Spending over the rest of the time period was relatively stable. The update that was
intended to promote repeat spending had an interesting e↵ect: there was an initial drop
in spending, most likely caused by reduced playtime on that day because of the need for
players to update their game or because of an error in the initial launch of the update. After
the update, an uptick in long-run spending is observable, but this was relatively short-lived.
Finally, we find no e↵ect for the supposed app store crash, which in theory should have
prevented players from purchasing for the duration of the crash. It is plausible that the
crash was for a short duration or occurred at a time when players were not playing.

Day of the Week E↵ects Across both games, we note the significance of the periodic
day of the week e↵ect. In both cases, spend propensity varies by day of the week by a
magnitude of 0.3. For comparison, the long-run calendar time e↵ect of LS has a range of
0.5, while that of CB has a range of 0.6. The magnitude of the periodic e↵ect serves to
re-emphasize a point already made in the fit decomposition: a large amount of the calendar
time variability in spending can be attributed to simple predictable cyclic e↵ects, something
customer base models have previously ignored, but that can be powerful in forecasting future
purchase behavior.

3.2.2 Event Detection Often, calendar time events are unknown a priori, but can
significantly a↵ect consumers’ spending rates in the short-run. The short-run function is
capable of automatically detecting and isolating these disturbances. That is, if something
disrupts spending for a day, such as a crash in the payment processing system, or an in-
game event, it will be reflected either as a trough or as a spike in the short-run function,
as evident for example in the Christmas Eve e↵ect in LS. In this section, we illustrate how
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Figure 7: Event detection in the GPPM. From left to right, we add daily data, and see how the impact
of Christmas Eve is separated between the long-run (top, red) and short-run (bottom, blue) calendar time
curves.

this works in practice.

The GPPM estimation process decomposes the calendar time e↵ect along sub-functions
with di↵ering length-scales. As such, when there is a disturbance, the GPPM must learn
the relevant time scale for the deviation—here, either short or long-term—and then ad-
just accordingly. We illustrate this dynamically unfolding adjustment process for the LS
Christmas Eve e↵ect in Figure 7 by estimating the model using progressively more data
over the range 12/23/2014 to 12/25/2014. The di↵erent columns of the figure show how
the long-run (top row) and the short-run (bottom row) components vary when data from
each successive day is integrated into the analysis. The second column shows the impact of
adding the data from Christmas Eve. An uptick in spending is apparent, but the GPPM
cannot yet detect whether this uptick will last longer or just fade away. The day after (third
column), it becomes clear from looking at the long-run and short-run plots that the e↵ect
was only transient, which is reflected clearly in the short-run curve.

This example illustrates that the GPPM can capture e↵ects of interest with no input
from the analyst, and that the nature of this e↵ect is visually apparent in the model-based
dashboard within days of its occurrence. Note that, importantly, each column of Figure 7
represents a re-estimation of the GPPM, using the past day’s data; event detection can only
occur at the level of aggregation of the data (in this case, daily), upon re-estimation of the
model. Nonetheless, this capability can be immensely valuable to managers in multiprod-
uct firms where information asymmetries abound. For example, in digital contexts, product
changes can sometimes be rolled out without the knowledge of the marketing team. Sim-
ilarly, disruptions in the distribution chain can occur with little information filtering back
to marketing managers. The GPPM can capture the impact of such events automatically
and quickly, isolate them from the more regular, predictable drivers of spending, and bring
them to the attention of managers.

3.2.3 Individual-level E↵ects While the inclusion of calendar time e↵ects is a key
innovation in our model, the primary drivers of respend behavior are the individual-level
recency, lifetime, and purchase number e↵ects. We can see this both through the fit de-
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composition, where much of the variability in spending is captured even when the calendar
time e↵ects are muted, and also by assessing the range of the e↵ects in the dashboard.
As mentioned in Section 2.2, the range of relevant inputs in an inverse logit framework is
from -6 to 6. For propensity values ↵ < �6, the respend probability given by Logit�1(↵)
is approximately 0. Similarly, for propensity values ↵ > 6, the respend probability is ap-
proximately 1. This gives an interpretability to the curves in the dashboard, as their sum
determines this propensity, and hence their range determines how much a given component
of the model can alter expected respend probability. Relative to the calendar time e↵ects,
we can see in the dashboard that the ranges of the individual-level e↵ects are significantly
larger, implying that they explain much more of the dynamics in spend propensity than the
calendar time components.

Recency and Lifetime In both of our applications, the recency and lifetime e↵ects
are smooth and decreasing as expected. For managers, this simply means that the longer
someone goes without spending, and the longer someone has been a customer in these
games, the less likely that person is to spend. The recency e↵ect is consistent with earlier
findings and intuitively indicates that if a customer has not spent in a while, he or she is
probably no longer a customer. The lifetime e↵ect is also expected, especially in the present
context, as customers are more likely to branch out to other games, with the passage of
time. More interesting are the rates at which these decays occur, and how they vary across
the games. These processes appear to be fundamentally di↵erent in the two games. In
LS, the recency e↵ect has a large impact, whereas the lifetime e↵ect assumes a minimal
role. In contrast, in CB, both appear equally important. These results may be a result
of, for example, the design of the product (game), which encourages a certain pattern of
purchasing.

Purchase Number The purchase number e↵ect also appears di↵erent across the
games. In LS, the e↵ect seems relatively insignificant: although there is initially a slight
rise, it quickly evens out, with a large confidence interval. In CB, the e↵ect appears quite
significant: it is generally increasing, but again appears to flatten out toward the end. The
e↵ect in CB is more consistent with our expectations: significant past purchasing should
indicate a loyal customer, and a likely purchaser. A mild or neutral e↵ect, like seen in
LS, may indicate decreasing returns to spending in the game, or a limited number of new
items that are available for purchase, such that the customer quickly runs out of worthwhile
purchase opportunities.

Behavioral Implications The shapes of these curves have implications for player
behavior and for designing general CRM strategies. In LS, the recency e↵ect is the primary
predictor of churn: if a customer has not spent for a while, she is likely no longer a customer.
On the other hand, the lifetime e↵ect seems to operate only in the first few days of being a
customer, then levels out. This implies that customers are most likely to spend when they
are new to the game, within roughly two weeks of their first purchase. In contrast, in CB,
the e↵ects are more equal in magnitude, and more gradual. The customers that are least
likely to spend again are those that have been customers the longest, and have gone the
longest without spending.

We illustrate these di↵erences here via an individual-level analysis of respend probabil-
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Figure 8: Respend probability heat maps for a customer with q = 3 and �i = 1. Colors represent the
probability of respending in the next 100 days, given the current recency and lifetime values. Note that
some pairs of recency and lifetime that are displayed in the plot are not realistic: a customer cannot have
recency higher than lifetime.

ity. Specifically, we ask the question, given an individual’s recency and lifetime, what is
the probability that she spends again in the next 100 days? To carry out this simulation,
we fix the calendar time e↵ect to its average value, and assume that the individual has
already spent three times. The results of the simulation are displayed in Figure 8, and
re-emphasize the point that recency explains much of the respend probability in LS, while
lifetime and recency are both relevant in CB. This analysis also emphasizes the idea that,
while the dynamic e↵ects in the GPPM are the same for all customers, di↵erent positions in
the individual-level subspace (rij , `ij , pij) are associated with very di↵erent expected future
purchasing behavior.

In summary, we have seen that the GPPM weaves together the di↵erent model com-
ponents in a discrete hazard framework, and o↵ers a principled approach for explaining
aggregate purchase patterns based on individual-level data. The model-based dashboard
generated by the GPPM is not the result of ad hoc data smoothing, but arises from the
structural decomposition of spend propensity via the di↵erent model components. The
GPPM jointly accounts for both the predictable individual-level determinants of respend
probability, such as recency, lifetime, and purchase number, and calendar time events along
multiple length-scales of variation. It is therefore able to flexibly represent the nature of
customer respend probability, as well as accurately portray the existence and importance
of calendar time events and trends.

3.3 Predictive Ability and Model Comparison

Apart from interest in understanding past spending dynamics, managers also need to fore-
cast future purchasing activity. Although the primary strength of the GPPM is in uncover-
ing latent dynamics, and conveying them in an intuitive fashion through the model-based
dashboard, the GPPM also does very well in predicting future spending. Just as in-sample
fit was driven by the recency, lifetime, and purchase number components, predictive per-
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formance depends primarily on the ability to forecast these components for observations in
the holdout data. While forms of recency, lifetime, and purchase number e↵ects are incor-
porated in most customer base models, the isolation of these e↵ects apart from transient
calendar time variability, along with nonparametric characterization of these predictable
components, and the inclusion of the cyclic component, allow the GPPM to significantly
outperform benchmark customer base analysis models in predictive ability.

In this section, we focus on comparing both model fit and future predictive performance,
and therefore reestimate the GPPM by truncating our original calibration data of 8,000
customers along the calendar time dimension. In particular, we set aside the last 30 days
of calendar time activity to test predictive validity. Forecasting with the GPPM involves
forecasting the latent functions that comprise it. In forecasting these latent functions, we
use the predictive mechanisms outlined in Section 2.1 (Equation 4). As the holdout data is
constructed by splitting the original dataset along the calendar time dimension, a substantial
number of the observations in the holdout data contain recency, lifetime, and purchase
number values that are within the observable range of these variables in the calibration
dataset. This is especially true for observations belonging to newly acquired customers.
However, for the oldest customers, the individual-level curves need to be forecast.

3.3.1 Benchmark Models We compare predictive performance of the GPPM with that
of a number of benchmark models. Many individual-level models have been developed to do
customer base analysis. At its core, the GPPM is a very general discrete hazard model and
as such it can be compared to other hazard models for interpurchase times (Gupta, 1991;
Seetharaman and Chintagunta, 2003). Similarly, given its reliance on recency, lifetime,
and purchase number dimensions of spending, the GPPM is closely related to traditional
customer base analysis models for non-contractual settings of the “buy-till-you-die” (BTYD)
vein (Schmittlein et al., 1987; Fader et al., 2005, 2010). Finally, the discrete hazard approach
could be modified with a di↵erent specification of the spend propensity.

Hazard Models We consider two standard discretized hazard models: the Log-Logistic
model and the Log-Logistic Cov model, which are standard log-logistic hazard models with-
out and with time-varying covariates respectively. We choose the log-logistic hazard as it
can flexibly represent both monotonic and non-monotonic hazard functions. In the model
with covariates, we use indicator variables over the time time periods of interest indicated
at the start of Section 3. In estimating both of these models, we employ the same Bayesian
estimation strategy, using Stan, with the same random e↵ect heterogeneity specification as
in the GPPM.

BTYDWe use the Pareto-NBD (Schmittlein et al., 1987) and the BGNBD (Fader et al.,
2010) as benchmarks in this class. While many variants of BTYD have been developed over
the years, the Pareto-NBD has stood the test of time as the gold standard in forecasting
power in non-contractual settings, often beating even more recent models (see, e.g., the PDO
model in Jerath et al. (2011)). The BGNBD is a more discrete analogue of the Pareto-NBD,
where customer death can occur after each purchase, rather than continuously.10

10We estimate these models using the BTYD package in the R programming language.
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Propensity Models In this case, we retain the discrete time hazard inverse logit frame-
work, while altering the specification of the dynamics. In particular, we explore two specifi-
cations: the Linear Propensity Model (LPM) and the State Space Propensity Model (SSPM).
These models have not been explored elsewhere in the literature; we include them here to
help understand the benefits of the GP approach to modeling dynamics.

In the LPM, we remove the nonparametric specification altogether, and instead model
all e↵ects linearly, as

Pr(yij = 1) = logit�1(µ+ �
1

tij + �
2

rij + �
3

`ij + �
4

qij + �i). (11)

This is the simplest discrete hazard model specification that includes all of our time scales
and e↵ects.

In the SSPM, we explore an alternate nonparametric specification for the dynamic
e↵ects. There are a number of competing nonparametric function estimation techniques,
including dynamic linear models and various spline specifications, and there are technical
links between many of these modeling approaches. Moreover, within each of class of models,
there is a range of specifications that are possible, making the choice of a suitable benchmark
di�cult. We chose to implement a state space specification that is roughly equivalent to
the GP structure in our main model. Specifically, we again decompose the propensity
function ↵(t, r, `, q) into additive components along each dimension. For the calendar time
dimension, just as in the GPPM, we make no assumptions about its behavior, and hence
model it as a random walk:

↵
T

(t) = ↵
T

(t� 1) + ✏
Tt, ✏

Tt ⇠ N (0, ⇣2
T

). (12)

For the other dimensions, we assume as in the GPPM that there will likely be monotonicity,
and hence include a trend component. This leads to a local level and trend specification:

↵d(⌧) = ↵d(⌧ � 1) + �d(⌧) + ✏d⌧ , ✏d⌧ ⇠ N (0, ⇣2d), (13)

�d(⌧) = �d(⌧ � 1) + ⇠d⌧ , ⇠d⌧ ⇠ N (0, 2

d). (14)

Interestingly, when used with a Gaussian observation model (meaning the data generating
process is N (↵(⌧), ⌫2) instead of our latent propensity formulation), the local level and
trend model has links to cubic spline smoothing (Durbin and Koopman, 2012). In addition
to the above specified components, we also included a cyclic function of calendar time to
mirror the GP periodic kernel component, as well as the random e↵ects.

3.3.2 Forecasting Results The re-estimated in-sample fit and the out-of-sample fore-
cast of the GPPM for both games are displayed in Figure 9. Again, the dashed lines
represent medians, while the intervals represent 95% posterior predictive intervals. We see
that, again, the GPPM fits very well in-sample, but importantly also fits well in the holdout
period. Out-of-sample, we see smooth decreasing trends in both games, together with the
predictable day of the week e↵ect. Referring back to Figure 6, we see that the forecast fit
is very similar to the fit decomposition with no short and long-run components. This is
because, far from the range of the data, components modeled with a stationary kernel will
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Figure 9: GPPM daily spending forecast. The data is in black with the median simulated GPPM fit in red
(dashed) and 95% posterior predictive intervals. The holdout period is the last 30 days of data, demarcated
by the dashed line.

revert to their mean function, which for the calendar time e↵ects is constant, e↵ectively
muting them far into the holdout period. How long it takes for this reversion to happen
depends on the smoothness of the estimated function.

Table 2 shows the predictive performance of the GPPM and all of our benchmark
models. The table reports the mean absolute percentage error (MAPE) and the root mean
squared error (RMSE) for the calibration and holdout datasets. Several of our benchmark
fits are displayed in Figure 10. Crucially, the fit of the GPPM is almost always significantly
better than the benchmarks, both in and out-of-sample. We proceed to briefly analyze each
of the benchmarks, and give intuition for why the GPPM outperforms them.

The log-logistic hazard models perform particularly poorly. In fact, the fit of the log-
logistic models using the full range of the data is worse than forecast fit of the GPPM;
thus, we did not re-estimate the log-logistic models in a separate forecasting task. Neither
of these models captures the lifetime and purchase number drivers of spending, which are
typically highly predictive of spending. Furthermore, the Log-Logistic Covs model includes
the covariates as indicator variables. While this is a very common approach for specifying
events of interest, as we saw in our analyses of calendar time events, the impacts of these
events are unlikely to be constant over time, a fact the GPPM implicitly incorporates in
the calendar time e↵ects.

Of primary interest to us is the comparison with the customer base analysis models.
We see that the fit statistics of the Pareto-NBD and BGNBD are much better than that of
the hazard models. In fact, the fit of the Pareto-NBD in Figure 10 is similar to the calendar
time muted fit in Figure 6. This supports our intuition that the GPPM in a sense generalizes
these models, by accounting for interpurchase and lifetime e↵ects (in a nonparametric way),
while simultaneously allowing for variability in calendar time. Accounting for variability
in calendar time is important, as it lets the GPPM isolate predictable individual-level
e↵ects from the influence of calendar time events. In models that rely only on recency and
frequency data, calendar time events are conflated with base purchasing rates, leading to
erroneous predictions in the presence of calendar time dynamics. We show this through a
set of simulations in Web Appendix B.
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Overall In-sample Holdout Overall In-sample Holdout

GPPM 0.09 0.03 0.24 0.15 0.05 0.32
13.25 5.74 22.54 15.00 9.79 20.97

Log-Logistic 0.42 0.31 0.67 0.41 0.19 0.77
68.27 71.75 59.35 46.78 46.91 46.55

LL Covs 0.28 0.19 0.48 0.27 0.15 0.48
62.81 67.22 51.04 36.28 32.78 41.47

Pareto-NBD 0.24 0.20 0.33 0.27 0.16 0.45
45.10 49.64 32.10 33.54 36.56 27.80

BGNBD 0.23 0.19 0.31 0.34 0.18 0.61
45.03 50.09 30.04 38.53 39.19 37.41

LPM 0.19 0.16 0.26 0.33 0.18 0.58
42.78 47.21 30.02 43.14 38.80 49.53

SSPM 0.07 0.03 0.17 0.17 0.05 0.38
12.57 6.63 20.59 18.25 9.50 27.16

Table 2: Fit statistics. For each model, we report the mean absolute percentage error (MAPE, first row), and
the root mean squared error (RMSE, second row) for both games in the forecasting task. We compute these
measures over the entire range of data (Overall), over just the in-sample portion of the data (In-sample),
and in just the 30 day holdout period (Holdout). Note that both of the log-logistic models were estimated over
the full range of the data; given the poor fit using the full data, we did not estimate them separately using
held out data.

Finally, we see that while a linear specification of the dynamic e↵ects is clearly not suf-
ficiently rich, resulting in the poor fit of the LPM in both settings, a non-GP nonparametric
specification like in the SSPM performs similarly to the GPPM. Specifically, we see that the
SSPM performs as well as the GPPM in LS, while worse than the GPPM in CB. In some
sense, this is not surprising: the SSPM is a complex and novel benchmark, constructed to be
equivalent to the GPPM in terms of which e↵ects it represents and how these are modeled.
Both models capture the same set of predictable individual-level and periodic calendar time
e↵ects. Forecasting spending in the GPPM relies on forecasting these propensity functions,
something which the SSPM also appears to do well.11 Unlike the GPPM, however, the
SSPM is more limited in its ability to separate out e↵ects along a given time scale, which
constrains its ability to perform the calendar time decompositions that are possible with
GPs. This limits the SSPM’s ability to provide equivalent dashboard-like representations
of spend propensity along a given scale, which is one of the GPPM’s core strengths.

11In fact, recent research has established deep links between GPs and state space models, such that some
GP models can be approximated by state-space specifications (Gilboa et al., 2015). This may also explain
their similar performance.
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Figure 10: Daily spending forecasts for several of our benchmark models. The data is in black. The holdout
period is the last 30 days of data, demarcated by the dashed line. A web app where all benchmark fits
can be viewed in isolation and in comparison with the GPPM is available at https://dr19.shinyapps.io/
gppm_benchmarks/.

4 Conclusion

In this paper, we developed a highly flexible model-based approach for understanding and
predicting spending dynamics. Our model, the Gaussian process propensity model, or
GPPM, employs Bayesian nonparametric Gaussian process priors to decompose a latent
spend propensity into components that vary along calendar time, interpurchase time, cus-
tomer lifetime, and purchase number dimensions. Our additive structure yields easily in-
terpretable model outputs and fits customer spending data well.

We showed that the GPPM identifies the latent dynamic patterns in the data via a
principled probabilistic framework that reliably separates signal from noise. It o↵ers a
number of outputs that are of considerable value to managers. First, the GPPM generates
a dashboard of latent functions that characterize the spending process. These model-based
visualizations are easy to comprehend, even by managers who may lack sophisticated statis-
tical skills. Second, we demonstrated that the GPPM is capable of automatically capturing
the e↵ect of events that may be of interest to managers. In situations where certain events
may escape the notice of managers, the GPPM is able to detect these events automatically.
More importantly, the nonparametric nature of the GPPM allows it to flexibly model the
nature and duration of the impact of events (either known or unknown, a priori), without
the need to represent these explicitly via covariates. These advantages of the GPPM make
it ideal for decision contexts involving multiple products and information asymmetries. The
GPPM also flexibly captures the individual-level drivers of spending that reliably explain
and predict spending behavior, including recency, lifetime, and purchase number e↵ects.
These e↵ects can be used to characterize spending patterns within distinct customer bases,
analyze individual customer respend probabilities, and predict future spending activity.
Furthermore, since these e↵ects are estimated jointly with the calendar time events, as
part of a unified propensity model, the predictable, fundamental individual-level drivers of
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spending are determined net of potentially unpredictable calendar time e↵ects. Moreover,
calendar time events can be analyzed net of the impact of expected individual-level spend
activity, in a way not possible with mere aggregate data analysis.

We demonstrated these benefits of the GPPM on two data sets of purchasing activity
within mobile games. We illustrated how the model-based dashboards that are generated
from the GPPM yield easily interpretable insights about fundamental patterns in purchasing
behavior. We also showed that the GPPM outperforms traditional customer base analysis
models in terms of predictive performance, both in-sample and out-of-sample, including
hazard models with time-varying covariates and the class of buy-till-you-die models. The
predictive superiority of the GPPM stems from the fact that it captures the same predictable
e↵ects as traditional customer base analysis models, like recency and lifetime, but does so
in a flexible way, net of the influence of calendar time events.

While the paper showcases the many benefits of our framework, it is also important to
acknowledge some limitations. First, the framework in its current form is computationally
demanding, especially when compared with simpler probability models that can be esti-
mated with maximum likelihood. It is also data intensive. In our application, we used
complete individual-level event log data to estimate the model. Some of the benchmark
models, in particular, the BGNBD and the Pareto-NBD, use only two su�cient statistics
per customer. Both of these limitations can perhaps be addressed in practice by either
data subsampling, or by developing faster inference algorithms. Finally, while we believe
our model-based dashboard is useful, insofar as it provides a snapshot of the key drivers
of spending dynamics, it does not work in real-time, as is the case for many dashboards of
marketing metrics. A streaming data version of our model would be an interesting area for
future work.

To conclude, we believe the GPPM addresses a fundamental need of modern marketing
managers for a flexible system for dynamic customer base analysis. In providing a solu-
tion to this problem, this work introduces a new Bayesian nonparametric approach to the
marketing literature. While we discuss Gaussian Process priors in the context of dynamic
customer base analysis, their potential applicability to other areas of marketing is much
broader. GPs provide a general mechanism for flexibly modeling unknown functions, and
for doing Bayesian time series analysis. We see many potential applications for GPs in
marketing, including in the modeling of the impact of marketing mix variables, such as
advertising and promotions, and in the approximation of unknown functions in dynamic
programming and other simulation contexts. Our work also makes a contribution to the
largely unaddressed field of visual marketing analytics systems, or dashboards. Dashboards
and marketing analytics systems are likely to become even more important in the future,
given the increasing complexity of modern data-rich environments. As dashboards increase
in relevance, we believe that managers will welcome further academic research in this do-
main.
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Web Appendix A: Hamiltonian Monte Carlo

We use a fully Bayesian approach for inference. As outlined in Section 2, the joint density
of all unknowns is given by

p(y, {↵k}, �,�,�2) =
"

IY

i=1

MiY

j=1

p(yij |↵ij , �i)p(�i|�2)
#"

KY

k=1

p(↵k|�k)

#
p(�2)p(�). (15)

As the full posterior distribution p({↵k}, �,�,�2|y) is not available analytically, we use
the Hamiltonian Monte Carlo (HMC) algorithm to draw samples of the unknown function
values ↵k, customer-specific random e↵ects �, population parameters �2, and the GP hy-
perparameters �, from the posterior. For completeness, we include a brief overview of HMC
here, and refer the reader to Neal (2011) for further details.

HMC is a variant of the Metropolis-Hastings algorithm that uses a proposal distribution
that is based on the Hamiltonian dynamics of a particle moving in a potential field. Suppose
our interest is in sampling a set of parameters ✓ 2 Rp (i.e., particle positions) from a target
posterior distribution p(✓|y). For our model, ✓ can contain the entire set of unknown
function values and GP hyperparameters. HMC uses a vector of auxilliary momentum
variables ⇣ 2 Rp drawn from a multivariate normal N(⇣|0,M) where the covariance matrix
M is the mass matrix. Both the positions and the momentum variables are jointly sampled
from a joint density p(✓, ⇣|y) = p(✓|y)p(⇣). The values of ✓ are retained, where as the
samples of ⇣ are ignored. Algorithm 1 outlines a single HMC iteration.

Algorithm 1 HMC Iteration (Given stepsize ✏, number of leapfrog steps, L mass matrix
M , and ✓current )

1: Initialize ✓
(0)

 ✓current, ⇣
(0)

⇠ N (0,M)

2: for l = 0, . . . , L� 1 do . Perform Leapfrog steps
3: ⇣

(l+1/2)  ⇣
(l) +

1

2

✏r✓ log p(✓
(l)|y)

4: ✓
(l+1)

 ✓
(l) + ✏M�1⇣

(l+1/2)

5: ⇣
(l+1)

 ⇣
(l+1/2) +

1

2

✏r✓ log p(✓
(l+1)

|y)
6: end for

7: r = min


1,

p(✓(L)|y) p(⇣(L))

p(✓(0)|y)p(⇣(0))

�
. Compute acceptance probability

8: u ⇠ Uniform(0, 1) . Uniform draw
9: if u < r, then return ✓

(L) . Accept or reject proposal
10: else return ✓

(0)

11: end if

As can be seen from Algorithm 1, each iteration of the HMC algorithm involves several
leapfrog steps in which ✓ and ⇣ evolve according to a discretization of Hamilton’s equations.
The HMC sampler uses the gradient of the log-posterior to direct the exploration of the
posterior. This allows it to avoid the random walk behavior of ordinary Metropolis-Hastings
procedures and it therefore traverses the posterior in an e�cient fashion. HMC methods
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are ideal for non-conjugate GP settings such as ours, as they can e�ciently sample both
the latent function values as well as the hyperparameters.

In practice, we need to specify values for the step size ✏, the number of leapfrog steps
L and the mass matrix M , and finding the right set of values for these can be sometimes
challenging. We therefore use the No U-Turn Sampling (NUTS) variant of HMC as im-
plemented in the Stan probabilistic programming language (Ho↵man and Gelman, 2014;
Carpenter et al., 2016). Stan uses an adaptive version of the HMC algorithm wherein ✏, L
and M are updated across the MCMC iterations to ensure rapid mixing, while still main-
taining detailed balance. Since each iteration of HMC involves multiple leapfrog steps, an
HMC iteration is not directly comparable to that of the ordinary Metropolis-Hastings algo-
rithm, and convergence is achieved in much fewer MCMC iterations. Details of NUTS are
given in Ho↵man et al. (2014).
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Web Appendix B: Simulation Studies

In this appendix, we use simulated data to explore various aspects of the GPPM. In the first
section, we show how the GPPM can be extended to accommodate di↵erent length-scales
of variation along di↵erent time dimensions, to capture things like “loyalty” promotions, for
example, that might occur along the lifetime dimension. In the second section, we explore
links between the GPPM and classic buy-till-you-die (BTYD) models for customer base
analysis, focusing on the BGNBD model as our example. BTYD models have served as the
backbone for many customer base analysis applications, showing a particularly robust ability
to forecast future spending and compute customer-centric quantities of interest by modeling
just interpurchase times and customer lifetimes. The GPPM extends this framework by also
allowing for the consideration of an additional input, calendar time. To explore how the
GPPM generalizes these ideas, we simulate data from both models, and show first how the
recency and lifetime components of the GPPM are able to capture the equivalent BTYD
e↵ects, and second why the inclusion of calendar time e↵ects is important in accurately
estimating individual-level spend rates. Since we use simulated data across all of these
studies, we can see throughout examples of how the GPPM can capture the shape of events
of interest automatically, as we know in these cases exactly the impact a given event.

Extending the GPPM

In Section 2.2 of the paper, we described the modular approach to specifying the GPPM.
Recall that each kernel represents a broad type of functions. In the main paper, we used
SE kernels to pick up variation along two length-scales, short and long, for the calendar
time e↵ects, along with a predictable periodic component. We used a single SE kernel
with a monotonic power mean function to isolate variability along the other dimensions.
In practice, we may want to extend the model in various ways. One potential deviation
from the general model explained in the body of the paper is the need to capture short-run
e↵ects of interest that may occur along other dimensions, particularly along the lifetime
dimension. These e↵ects could exist, for instance, if the company has loyalty based rewards
or promotions, such that the consumer is given a special after a certain number of days
after first purchase.

To cope with shocks along the lifetime dimension, we can extend the GPPM quite
simply by adding an additional SE component to the lifetime specification. By the additive
property of GPs, this specification remains a GP, just with an additive kernel. Hence, we
now model:

↵
L

(`) = ↵Long

L

(`) + ↵Short

L

(`),

where:

↵Long

L

(`) ⇠ GP(m(`), k
SE

(`, `0; ⌘LL , ⇢LL)),

↵Short

L

(`) ⇠ GP(0, k
SE

(`, `0; ⌘LS , ⇢LS)),

⇢LS < ⇢LL
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Figure 11: True e↵ects used to generate the simulated data, with the simulated spending time series shown
in the bottom right panel.

With this setup, we can capture short-run departures from the smooth trend component
along the lifetime dimension, just like we captured both trends and short-run shocks in the
calendar time component before. In this case, we include the same mean function as before
(power mean) along the long-run curve.12

Simulation We simulated data within the GPPM framework, similar to the data from
our application. We simulated the spending of 2,000 customers, entering over a period of
30 days, using the e↵ects displayed in Figure 11. The sum of these e↵ects results in the
spending time series displayed in the bottom right panel of Figure 11. We then estimated
the GPPM on this data, using the extension described above. The resulting extended
dashboard is shown in Figure 12. We see that the GPPM recovers all of the e↵ects in
the data generating process, without specifying any of them as inputs to the model. More
importantly, we see the natural extension of the GPPM to capture the shock to the lifetime
dimension. The instantaneous e↵ect of the loyalty reward is captured in the Lifetime, Short
panel, with the residual e↵ect slight, but noticeable in the Lifetime, Long panel.

Links between GPPM and BTYD

The GPPM provides a natural generalization of buy-till-you-die customer base analysis
models that rely solely on recency and lifetime, such as the BGNBD. While the GPPM
does not explicitly account for customer death, it does so asymptotically by allowing the
probability of purchase to go to zero via the lifetime and recency e↵ects. To explore this
link deeper, we ran a series of simulation studies, testing in which cases the GPPM is able
to capture BGNBD data, and vice versa.

12By additivity, the results would be equivalent if the mean function were included in the short-run term;
however, we find the idea of a trend + shock formulation more intuitive, and hence model it as such.
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Figure 12: Extended GPPM dashboard for simulated data.

We hypothesize that the dynamic spending patterns that are captured by the BGNBD
can also be captured by the GPPM; however, the BGNBD will have a di�cult time fitting
data generated by the GPPM, depending on the strength of calendar time e↵ects present.
This is because the BGNBD and other parametric probability models based on individual-
level e↵ects have no way of separating out temporary shifts in spend propensity due to
calendar time e↵ects from underlying, predictable individual-level e↵ects. To test these
two hypotheses, we first see how the GPPM does at fitting data generated by the BGNBD
model. Then we do the reverse and estimate the BGNBD on data from GPPM specifications
that vary the strength and nature of the calendar time e↵ects.

BGNBD Data, GPPM Fit If the recency and lifetime components of the GPPM do
capture the dynamic patterns inherent in the BGNBD, then the GPPM should be able
to do well on data generated from the BGNBD. To see this, we generate data from 8,000
spenders across 30 first spend dates, similar to our real data. We simulate spending over
100 days according to a BGNBD model, and then fit the GPPM on the first 50 days of
simulated data, and forecast the activity on days 51 to 100. As our main example, we
use the estimated BGNBD parameters (r = 0.243, ↵ = 4.414, a = 0.793, b = 2.426) from
the original BGNBD paper (Fader, Hardie, and Lee, 2010, subsequently FHL). We also
used many combinations of randomly generated parameters to test robustness, with smaller
sample sizes of 2,000 customers. The fit statistics for all of the simulations are summarized
in Table 3. The good fit o↵ers substantial evidence to our claim that the GPPM nests these
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DGP Model Overall Training Holdout

BGNBD, FHL Parameters GPPM 0.07 0.05 0.09
BGNBD, Random* GPPM 0.10 0.06 0.14
GPPM, All* BGNBD 0.54 0.21 0.87
GPPM, Nocal Only* BGNBD 0.22 0.15 0.29

Table 3: Fit summaries for the simulation studies. The first column contains the data generating process,
while the second contains the model used to forecast spending. An asterisk (*) is used to denote the
statistics that are the average value across many simulations. The statistics presented are MAPE (mean
absolute percentage error). RMSE is not relevant here as each simulation results in spending on a di↵erent
scale, and hence RMSE is not comparable across simulations.

traditional probability models.

GPPM Data, BGNBD Fit We also study the reverse situation and examine the per-
formance of the BGNBD on data generated from the GPPM. We show that BGNBD is not
able to fit such data very well, especially in the presence of calendar time dynamics. Specifi-
cally, we use three levels of the day of the week e↵ect — none (Nocyc), weak (Weakcyc), and
strong (Strongcyc) — and three kinds of non-cyclic calendar time e↵ects: none (Nocal), a
long-run peak similar to the general holiday season bump seen in our application (Peakcal),
and a nonlinear decreasing trend across the whole time period (NonlinDeccal). The cyclic
e↵ect was set as ↵w(t) = ✓ sin(2⇡t/7), where ✓ = 0, for no cyclic e↵ect, ✓ = 0.15, for the
weak e↵ect, and ✓ = 0.4, for the strong e↵ect. For the calendar time e↵ects, the non-linear
decreasing calendar time trend is given by ↵

T

(t) = �0.2t0.3; the peak e↵ect is given by
the piecewise function: ↵

T

(t) = 0, when t  20; ↵
T

(t) = 0.5(t � 20), when t 2 [21, 40];
↵
T

(t) = 0.1(50� t), when t 2 [41, 50] and ↵
T

(t) = 0, when t > 50.

Figure 13 and Table 3 show the results from these simulations. We see that BGNBD
fits the mean of the curve in the presence of a cyclic e↵ect. We also see that the BGNBD
generally does well in the cases where there is no short or long-run calendar variation,
underpredicts in the beginning and then overpredicts in the end when there is a decreasing
calendar time e↵ect, and fails significantly at capturing the peak e↵ect. We see in the
Peakcal case (last row of Figure 13) that the BGNBD attributes the peak to higher rates
of spending, and then dramatically overestimates future spending.

The GPPM does not fall prey to this same bias because of its ability to separate
out calendar time e↵ects. To emphasize this, we see the GPPM fit to the worst case
(Strongcyc/Peakcal), together with the estimated calendar time e↵ect, in Figure 14. The
excellent fit and near perfect forecast is not surprising: the GPPM is capturing data gener-
ated from a GPPM. One thing to point out is that this, again, demonstrates the ability of
the GPPM to nonparametrically recover the e↵ects of events, as we see the peak in calendar
time is equivalent to the piecewise function described above.
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Figure 13: The BGNBD fit on various types of data drawn from the GPPM: Nocyc, Strongcyc, and Weakcyc

indicate no, strong, and weak cyclic (day of the week) e↵ects respectively; Nocal indicates no calendar time
dynamics, NonlinDeccal indicates a non-linear decreasing long-run calendar time process, and Peakcal

indicates a calendar time process that is flat but with a peak during the calibration period.
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Figure 14: The GPPM fit and forecast on the Strongcyc/Peakcal simulated data, together with the esti-
mated calendar time e↵ect. We see that the GPPM captures the pointed piecewise e↵ect, and is therefore
able to isolate the predictable, individual-level e↵ects that allow it to accurately forecast future spending.
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