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A solution to the single-question crowd wisdom 
problem
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Once considered provocative1, the notion that the wisdom of the 
crowd is superior to any individual has become itself a piece of 
crowd wisdom, leading to speculation that online voting may soon 
put credentialed experts out of business2,3. Recent applications 
include political and economic forecasting4,5, evaluating nuclear 
safety6, public policy7, the quality of chemical probes8, and 
possible responses to a restless volcano9. Algorithms for extracting 
wisdom from the crowd are typically based on a democratic voting 
procedure. They are simple to apply and preserve the independence 
of personal judgment10. However, democratic methods have 
serious limitations. They are biased for shallow, lowest common 
denominator information, at the expense of novel or specialized 
knowledge that is not widely shared11,12. Adjustments based on 
measuring confidence do not solve this problem reliably13. Here 
we propose the following alternative to a democratic vote: select 
the answer that is more popular than people predict. We show that 
this principle yields the best answer under reasonable assumptions 
about voter behaviour, while the standard ‘most popular’ or ‘most 
confident’ principles fail under exactly those same assumptions. 
Like traditional voting, the principle accepts unique problems, 
such as panel decisions about scientific or artistic merit, and legal or 
historical disputes. The potential application domain is thus broader 
than that covered by machine learning and psychometric methods, 
which require data across multiple questions14–20.

To illustrate our solution, imagine that you have no knowledge of US 
geography and are confronted with questions such as: Philadelphia is 
the capital of Pennsylvania, yes or no? And, Columbia is the capital of 
South Carolina, yes or no?

You pose them to many people, hoping that majority opinion will be 
correct. This works for the Columbia question (question C), but most 
people endorse the incorrect answer (yes) for the Philadelphia question 
(question P), as shown by the data in Fig. 1a, b. Most  respondents may 
only recall that Philadelphia is a large, historically significant city in 
Pennsylvania, and conclude that it is the capital21. The minority who 
vote no probably possess an additional piece of evidence, that the  capital 
is Harrisburg. A large panel will surely include such individuals. The 
failure of majority opinion cannot be blamed on an uninformed panel 
or flawed reasoning, but represents a defect in the voting method itself.

A standard response to this problem is to weight votes by  confidence. 
For binary questions, confidence c implies a subjective  probability 
c that a respondent’s vote is correct and 1 −  c that it is incorrect. 
Probabilities may be averaged linearly or nonlinearly, producing 
 confidence-weighted voting algorithms22. However, these succeed 
only if correct votes are accompanied by sufficiently greater confidence, 
which is neither the case for (P) or (C), nor more generally23. As shown 
by Fig. 1c, d, confidences associated with yes and no votes are roughly 
similar and do not override the incorrect majority in (P).

Here we propose an alternative algorithm that asks respondents to 
predict the distribution of other people’s answers to the question and 

selects the answer that gains more support than predicted. The  intuition 
underlying the algorithm is as follows. Imagine that there are two 
 possible worlds, the actual one in which Philadelphia is not the capital 
of Pennsylvania, and the counterfactual one in which Philadelphia is 
the capital. It is plausible that in the actual world fewer people will vote 
yes than in the counterfactual world. This can be formalized by the toss 
of a biased coin where, say, the coin comes up yes 60% of the time in the 
actual world and 90% of the time in the counterfactual world. Majority 
opinion favours yes in both worlds. People know these coin biases but 
they do not know which world is actual. Consequently, their predicted 
frequency of yes votes will be between 60% and 90%. However, the 
actual frequency of yes votes will converge to 60% and no will be the 
surprisingly popular, and correct, answer.

We refer to this selection principle as the ‘surprisingly popular’ (SP) 
algorithm, and define it rigorously in the Supplementary Information. 
In problem (P), the data show that respondents voting yes believe that 
almost everyone will agree with them, while respondents voting no 
expect to be in the minority (Fig. 1e). The average predicted percentage 
of yes votes is high, causing the actual percentage for yes to underper-
form relative to these predictions. Therefore the surprisingly popular 
answer is no, which is correct. In (C), by contrast, predictions of yes 
votes fall short of actual yes votes. The surprisingly popular answer 
agrees with the popular answer, and the majority verdict is correct  
(Fig. 1f).

Could an equally valid algorithm be constructed using respondents’ 
confidences? Assume that respondents know the prior world probabili-
ties and coin biases. Each respondent observes the result of their private 
coin toss, and computes their confidence by applying Bayes’ rule. The 
hypothesized algorithm would need to identify the actual coin from 
a large sample of reported confidences. Figure 2 proves by counter-
example that no such algorithm exists (Theorem 1 in Supplementary 
Information provides a general impossibility result). It shows how 
identical distributions of confidences can arise for two different biased 
coin problems, one where the correct answer is yes and one where the 
correct answer is no. Admittedly, real people may not conform to the 
idealized Bayesian model. Our point is that if methods based on pos-
terior probabilities (votes and confidences) fail for ideal respondents, 
they are likely to fail for real respondents.

By comparison, the SP algorithm has a theoretical guarantee, that it 
always selects the best answer in light of available evidence (Theorem 
2 in Supplementary Information). Theorem 3 extends the algorithm to 
multiple-choice questions, and shows how vote predictions can identify 
respondents that place highest probability on the correct answer. These 
results are based on a common theoretical model that generalizes the 
biased coin example to multiple, many-sided coins.

To test the SP algorithm, we conducted studies with four types of 
semantic and perceptual content (details in SI). Studies 1a, b, c used 
50 US state capitals questions, repeating the format (P) with  different 
populations. Study 2 employed 80 general knowledge questions. 
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Study 3 asked professional dermatologists to diagnose 80 skin lesion 
images as benign or malignant. Studies 4a, b presented 90 20th  century 
 artworks (Fig. 3) to laypeople and art professionals, and asked them 
to predict the correct market price category. All studies included a 
dichotomous  voting question, yielding 490 items in total. Studies 1c, 
2, and 3 additionally measured confidence. Predicted vote frequencies 
were computed by averaging all respondents’ predictions (details in 
Supplementary Information).

We first test pairwise accuracies of four algorithms: majority vote, 
SP, confidence-weighted vote, and max. confidence, which selects 
the answer endorsed with highest average confidence. Across all 
490 items, the SP algorithm reduced errors by 21.3% relative to 
 simple  majority vote (P <  0.0005 by two-sided matched-pair sign 
test). Across the 290 items on which confidence was measured, the 
 reduction was 35.8%  relative to majority vote (P <  0.001), 24.2% relative 
to  confidence-weighted vote (P =  0.0107), and 22.2% relative to max. 
confidence (P <  0.13).

When frequencies of different correct answers in the same study are 
imbalanced, percentage agreement can be high by chance. Therefore we 
assess classification accuracy within a study by categorical correlation 
coefficients, such as Cohen’s kappa, F1 score, or Matthews correlation. 
The SP algorithm has the highest kappa in every study (Fig. 4); other 
coefficients yield similar rankings (Extended Data Fig. 1–3).

The art domain, for which majority opinion is too conservative, 
 provides insight into how SP works. Art professionals and  laypeople 
estimated the price of 90 artworks by selecting one of four bins: 
<$1,000; $1,000–30,000; $30,000–1,000,000; and >$1,000,000. 
Respondents also predicted the binary division of their sample’s votes 
relative to $30,000. Monetary values throughout refer to US dollars.

Both professionals and laypeople strongly favoured the lower two 
bins, with professionals better able to discriminate value (Fig. 5). The 
preference for low price is not necessarily an error. Asked to price 
an unfamiliar artwork, individuals may rely on their beliefs about 
 market prices, and assume that expensive (>$30,000) pieces are 

rare. This shared knowledge creates a bias when votes are counted, 
because  similar, hence redundant, base rate information is factored 
in  repeatedly, once for each respondent. Indeed, Fig. 5 shows that 
the majority verdict is strongly biased against the high category. For 
example, facing a $100,000 artwork, the average professional has 
a 30% chance of making the correct call, while the majority vote of 
the  professional panel is directionally correct only 10% of the time. 
It is difficult for any expensive artwork to be recognized as such by a 
 majority. The SP algorithm corrects this by reducing the threshold of 
votes required for a high verdict, from 50% to about 25%.

The two studies on propositional knowledge yielded different results 
(Fig. 4). On capital cities (Studies 1a, b, c), SP reduced the number of 
incorrect decisions by 48% relative to majority vote. SP was less effective 
on the knowledge questions in Study 2 (14% error reduction, P =  .031, 
two-sided matched-pair sign test). This is the only study that used the 
Amazon Mechanical Turk respondent pool. In contrast to other  studies, 
the predicted vote splits in Study 2 were in the 40–60% interval for 81% 

0

Fr
eq

.
Fr

eq
.

4

8

0
5

10

15

0

2

4

0

6

12

No

Yes

No

Yes

0 10 20 30

Votes (n)

a c e
Philadelphia is the capital of Pennsylvania, yes or no?

Confidence (%) Predicted per cent agreement
with own answer

Votes (n) Confidence (%) Predicted per cent agreement
with own answer

10050 1000

10050 1000

100 0 100

d f
Columbia is the capital of South Carolina, yes or no?

0 10 20

b

4

8

4

8

4

8

6

3

50

0 0

0 0

100 0 10050

Figure 1 | Two example questions from Study 1c, described in text. 
a, Majority opinion is incorrect for question (P). b, Majority opinion is 
correct for question (C). c, d, Respondents give their confidence that 
their answer is correct from 50% (chance) to 100% (certainty). Weighting 
votes by confidence does not change majority opinion, since respondents 
voting for both answers are roughly equally confident. e, Respondents 
predict the frequency of yes votes, shown as estimated per cent agreement 
with their own answer. Those answering yes believe that most others will 
agree with them, while those answering no believe that most others will 
disagree. The surprisingly popular answer discounts the more predictable 
votes, reversing the incorrect majority verdict in (P). f, The predictions 
are roughly symmetric, and so the surprisingly popular answer does not 
overturn the correct majority verdict in (C).
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Figure 2 | Why ‘surprisingly popular’ answers should be correct, 
illustrated by simple models of Philadelphia and Columbia questions 
with Bayesian respondents. a, The correct answer is more popular in the 
actual world than in the counterfactual world. b, Respondents’ vote 
predictions interpolate between the two possible worlds. In both models, 
interpolation is illustrated by a Bayesian voter with 2/3 confidence in yes 
and a voter with 5/6 confidence in no. All predictions lie between actual 
and counterfactual percentages. The prediction of the yes voter is closer to 
the percentage in the yes world, and the prediction of the no voter is closer 
to the percentage in the no world. c, Actual votes. The correct answer is the 
one that is more popular in the actual world than predicted—the 
surprisingly popular answer. For the Philadelphia question, yes is less 
popular than predicted, so no is correct. For the Columbia question yes is 
more popular than predicted, so yes is correct. The example also proves 
that any algorithm based on votes and confidences can fail even with ideal 
Bayesian respondents. The two questions have different correct answers, 
while the actual vote splits and confidences are the same. Confidences  
2/3 and 5/6 follow from Bayes’ rule if the actual world is drawn according to 
prior probabilities that favour yes by 7:5 odds on Philadelphia, and favour no 
by 2:1 odds on Columbia. The prior represents evidence that is common 
knowledge among all respondents. A respondent’s vote is generated by tossing 
the coin corresponding to the actual world. A respondent uses their vote as 
private evidence to update the prior into posterior probabilities via Bayes’ rule. 
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of items, compared to 22% of such items across other studies. This 
limited opportunities for SP to alter majority vote.

Empirical results can be compared against simulations based 
on the biased coin model (Fig. 2). The world prior, coin biases, the 
actual world, and respondent coin flips are randomly generated 
to produce simulated finite samples of votes, confidences, and vote 
predictions (Extended Data Fig. 4 and Supplementary Information). 
Under these sampling assumptions, individuals are correct 75% of the 
time. Applying majority voting gives an accuracy of 86%. This 11% 
improvement is the standard wisdom of the crowd effect. SP is almost 
infallible for large samples, and it shows good, though not perfect, 
 performance even on small sample sizes. However, given the 86% 
 accuracy of  majority vote, SP may need many problems to demonstrate 
a  statistically significant advantage. For example, with 50 problems and 
n =  30, the SP superiority attains P <  0.05 for only 40% of simulated 
studies.

SP performance will always be limited by the information available 
to the respondents and their competence. If the available evidence is 
incomplete or misleading, the answer that best fits the evidence may 
be incorrect. This qualifier can be made explicit by careful phrasing of 

questions. A question like “Will global temperature increase by more 
than 5%?” could be worded as: “Given current evidence, is it more 
likely or not that global temperature will increase by more than 5%?”

The SP algorithm is robust to several plausible deviations from ideal 
responding (Supplementary Information). The SP outcome will not 
change, for example, if respondents predict the vote frequency in the 
world they believe more likely, instead of considering both possible 
worlds and interpolating predictions (Fig. 2). Alternatively, some 
respondents may find the prediction task too difficult. In that case, 
they are likely to predict a 50:50 split or make a random estimate. Such 
uninformative predictions would move the SP result closer to majority 
opinion but would not compromise its correct directional influence.

When applying this method to potentially controversial topics, such 
as political and environmental forecasts, it can be important to guard 
against manipulation. For example, a respondent might try to increase 
the chance that a particular option wins by submitting a dishonest low 
vote prediction for that option. To discourage such behaviour, one can 
impose truth-telling incentives with the Bayesian truth serum, which 
also elicits respondents’ vote predictions24,25. This mechanism scores 
predictions for accuracy, and answers according to the log- ratio of 
actual to predicted votes. The log-ratio is an information theoretic 
measure of surprising popularity, which is maximized by honest 
responding. Here, we have shown that the surprising popularity of 
answers is also diagnostic of truth.

The SP algorithm may be compared to prediction markets, where 
individuals trade contracts linked to specific future events26. Both 
methods allow experts to override the majority view, and both  associate 
expertise with choosing alternatives whose eventual popularity exceeds 
current expectations. However, unlike prediction markets, SP accepts 
non-verifiable propositions, such as counterfactual conjectures in 
 public policy, history or law. This, together with the simple input 
requirements, greatly expands its application range.

a b

c d

e f

Figure 3 | Selection of stimuli from Study 4 in which respondents 
judged the market price of 20th century artworks. a, Roshan 
Houshmand, Rhythmic Structure. b, Abraham Dayan, dance in the living 
room. c, Matthew Bates, Botticelli e Filippino. d, Christopher Wool, 
Untitled, 1991, enamel on aluminum, 90′ ′  ×  60′ ′  © Christopher Wool; 
courtesy of the artist and Luhring Augustine, New York. e, Anna Jane 
McIntyre, Conversation With a Spoonbill. f, Tadeusz Machowski,  
Abstract #66.
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Figure 4 | Results of aggregation algorithms on studies discussed in the 
text. Study 1a, b, c: n (items per study) =  50; Studies 2 and 3: n =  80; Study 
4a, b: n =  90. Agreement with truth is measured by Cohen’s kappa, with 
error bars showing standard errors. Kappa =  (A −  B)/(1 −  B), where A is 
per cent correct decisions across items in a study, and B is the probability 
of a chance correct decision, computed according to answer percentages 
generated by the algorithm. Confidence was not elicited in Studies 1a, b 
and 4a, b. However, in 4a, b we use scale values as a proxy for confidence27, 
giving extreme categories (on a four-point scale) twice as much weight in 
scale-weighted voting, and 100% weight in maximum scale. The results 
for the method labelled ‘Individual’ are the average kappa across all 
individuals. SP is consistently the best performer across all studies. Results 
using Matthews correlation coefficient, F1 score, and per cent correct are 
similar (Extended Data Figs 1–3).
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Although democratic methods of opinion aggregation have been 
influential and productive, they have underestimated collective intel-
ligence in one respect. People are not limited to stating their actual 
beliefs; they can also reason about beliefs that would arise under hypo-
thetical scenarios. Such knowledge can be exploited to recover truth 
even when traditional voting methods fail. If respondents have enough 
evidence to establish the correct answer, then the surprisingly popular 
principle will yield that answer; more generally, it will produce the best 
answer in light of available evidence. These claims are theoretical and 
do not guarantee success in practice, as actual respondents will fall 
short of ideal. However, it would be hard to trust a method if it fails with 
ideal respondents on simple problems like (P). To our knowledge, the 
method proposed here is the only one that passes this test.
Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Figure 5 | Logistic regressions showing the probability that an artwork 
is judged expensive (above $30,000) as function of actual market price. 
Thin purple lines are individual respondents in the art professionals and 
laypeople samples, and the yellow line shows the average respondent. 
Price discrimination is given by the slope of the logistic lines, which is 
significantly different from zero (χ2, P <  0.05) for 14 of 20 respondents in 
the professional sample, and 5 of 20 respondents in the laypeople sample 
(χ2, P <  0.05). Performance is unbiased if a line passes through the red 
diamond, indicating that an artwork with a true value of exactly $30,000 
has a 50:50 chance of being judged above or below $30,000. The bias 
against the higher price category, which characterizes most individuals, 
is amplified when votes are aggregated into majority opinion (blue line). 
The surprisingly popular algorithm (green line) eliminates the bias, and 
matches the discrimination of the best individuals in each sample.
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METHODS
No statistical methods were used to predetermine sample size. The experiments 
were not randomized and the investigators were not blinded to allocation during 
experiments and outcome assessment.
Informed consent. All studies were approved by the MIT Committee on the Use 
of Humans as Experimental Subjects (COUHES). For all studies, informed consent 
was obtained from respondents using text approved by COUHES. For in-person 
studies, respondents signed a consent form and for online studies, respondents 
checked a box.
Studies 1a, b: state capitals. Materials and methods. The survey instrument 
 consisted of a single sheet of paper which respondents were asked to complete. 
The sheet contained 50 propositions each consisting of “X is the capital of Y” for 
every state Y with X the most populous city in the state Y. For example, the first 
proposition was “Birmingham is the capital of Alabama”. The propositions were 
in alphabetical order of state. For each proposition, respondents gave the answer 
T for true or F for false. For each proposition they also estimated the percentage 
of participants in the experiment who will answer true. There was no time limit 
for this or any other study.
Respondents and procedure. Study 1a was conducted in the context of two MIT, 
Sloan MBA classes. A total of 51 respondents were asked to mark their answer 
sheet by a personal code, and were promised feedback about the results, but no 
other compensation. Study 1b was conducted at the Princeton Laboratory for 
Experimental Social Science (PLESS, http://pless.princeton.edu/). Thirty-two 
respondents were drawn from the pool of pre-registered volunteers in the PLESS 
database, which is restricted to Princeton students (undergraduate and graduate). 
Respondents received a flat $15 participation fee. In addition, the two respondents 
with the most accurate answers received a $15 bonus, as did the two respondents 
with the most accurate percentage predictions. (In fact, one respondent received 
both bonuses, earning $45 in total.) Respondents marked their sheet by a pre- 
assigned code, known only to the PLESS administrator who distributed the fee 
and bonus.
Study 1c: state capitals. Materials and methods. The survey was administered on 
a computer. On each screen, the header was the sentence “X is the capital of Y” as 
in studies 1a and 1b. There were then four questions as follows:
(a) Is this more likely [t]rue or [f]alse [Answer t or f]:
(b) What is your estimated probability of being correct (50 to 100 percent):
(c)   What percentage of other people do you think thought (a) was true [1 to 100 

percent]:
(d)  What do you think is the average probability that people answered for (b) 

[50 to 100 percent]:
In this paper, we do not use the response to question (d).
Respondents and procedure. The study was conducted in the MIT Behavioural 
Research Laboratory. Thirty-three respondents were recruited from the MIT Brain 
and Cognitive Sciences Department experimental respondents mailing list, with 
participation restricted to members of the MIT community. Respondents received 
a $15 participation fee. In addition, the top 20% of respondents with the most 
accurate answers with respect to ground truth and the top 20% of respondents 
with the most accurate predictions about the beliefs of others earned a $25 bonus. 
Respondents were eligible to receive both bonuses. Both types of bonuses were 
explained in detail to respondents.
Study 2: general knowledge questions. Materials and methods. The survey 
consisted of 80 trivia questions in the domains of history, language, science, and 
geography. The survey was administered as an online questionnaire and question 
order was randomized across respondents. The questions were a subset of the 150 
questions from the true/false quizzes in these domains on the quiz site Sporcle 
(http://www.sporcle.com). Two online pilot experiments (of 70 and 80 questions 
each) were conducted in which respondents were only asked whether they thought 
the answer to each question was true or false, that is, respondents were not asked 
to make predictions about the answers of others. Using the results of the two pilot 
experiments, 80 questions were selected by matching the questions for percentage 
correct; for example, a question that 30% of respondents answered correctly was 
matched with a question that 70% of respondents answered correctly. This resulted 
in a balanced final survey with respect to the number of questions the majority 
answered correctly as well as the number of questions for which the correct answer 
was false. That is, for half of the 80 questions the actual answer was false, and for 
half the actual answer was true. Of the 40 questions where the actual answer was 
false, in the pilot 20 were answered incorrectly by the majority, 1 had a tie vote, and 
19 were answered correctly by the majority. Of the 40 questions where the actual 
answer was true, in the pilot 19 were answered incorrectly by the majority, 1 had 
a tie vote, and 20 were answered correctly by the majority.

Examples of propositions which respondents evaluated, together with the 
percentage of respondents who answered correctly in the pilot experiment in 

parentheses, are as follows: Japan has the world’s highest life expectancy (10%), 
Portuguese is the official language of Mozambique (30%), The currency of 
Switzerland is the Euro (50%), The Iron Age comes after the Bronze Age (70%), 
The longest bone in the human body is the femur (90%).

Respondents were asked for each question to make their best guess as to whether 
the proposition is more likely true or false, to think about their own beliefs and 
 estimate the probability that their answer was correct, and to think about other 
 people’s beliefs and predict the percentage of people who guessed the answer was 
true.

To give an estimate of the probability that their answer was correct, respondents 
chose one of the six following options:
(a) Totally uncertain, a coin toss (about 50% chance of being correct).
(b) A little confident (about 60% chance of being correct).
(c)  Somewhat confident (about 70% chance of being correct).
(d) High confidence (about 80% chance of being correct).
(e)  Very high confidence (about 90% chance of being correct).
(f)  Certain (about 100% chance of being correct).

Respondents were asked not to search for the answers to the questions. 
Respondents searching for the answer, rather than answering from their own 
knowledge, does not affect testing the aggregation method since this is simply an 
additional source of information for some respondents who may thus be more 
accurate. The average time to complete all three parts of a question was 17 s and 
it was not the case that if a respondent took more time to answer a question they 
were more likely to be correct, suggesting that, in fact, searching for the correct 
answer was not common.
Respondents and procedure. Respondents were recruited from Amazon Mechanical 
Turk and were paid a flat fee of $5.00 with 39 respondents completing the survey. 
Respondents who took part in either of the pilot experiments were excluded from 
participating in the final experiment.
Study 3: dermatologists assessing lesions. Materials and methods. The survey 
was administered online. Respondents were divided into two groups, with one 
survey containing images of 40 benign and 20 malignant lesions, and the other 
survey  containing images of 20 benign and 40 malignant lesions. The 80 images 
used in the experiment were obtained from Atlas Dermatologico, DermIS, and 
DermQuest. The images were selected to be approximately the same size, had no 
visible signs of biopsy, and were filtered for quality by an expert dermatologist. 
Question order was randomized across respondents. Since all lesions pictured in 
the survey had been biopsied, whether a particular lesion was benign or malignant 
was known to us.

For each image of a lesion, respondents predicted whether the lesion was benign 
or malignant, gave their confidence on a six point Likert scale from ‘absolutely 
uncertain’ to ‘absolutely certain’ and estimated the likely distribution of opinions 
amongst other dermatologists on an eleven-point scale from ‘perfect agreement 
that it is benign’ to ‘perfect agreement that it is malignant’ with the midpoint 
labelled as ‘split in opinions with equal number of benign and malignant diagnoses’.
Respondents and procedure. Dermatologists were recruited by referral and 25 
respondents answered the survey, with 12 in the condition with 40 benign lesions and 
13 in the condition with 20 benign lesions. Respondents had an average of 10.5 years 
of experience. Respondents were told that a $25 donation would be made to support 
young investigators in dermatology for every completed survey, and that if the survey 
was completed by a particular date this would be increased to $50. Respondents were 
also told that a randomly selected respondent would receive $1,000.
Study 4a, b: professionals and laypeople judging art. Materials and methods. The 
survey instrument consisted of a bound booklet with each page containing a colour 
picture of a 20th century art piece and questions about the piece. The medium and 
dimensions were given for each piece.

Respondents were told that the survey contained 90 reproductions of modern 
(20th century) artworks, and that for each artwork they would be asked a few 
questions that would help us understand how professionals and non-professionals 
respond to modern art, including predicting how other people will respond to 
each piece. Respondents were told that ‘professionals’ refers to people working 
with art in galleries or museums, and ‘non-professionals’ refers to MIT master’s 
and doctoral students who have not taken any formal art or art history classes.

For each artwork, respondents were asked for four pieces of information:
(1)  Their ‘simple personal response’ to the artwork by circling either ‘thumbs 

up’ or ‘thumbs down’.
(2)  Their estimate of the percentage of art professionals and of MIT students 

circling ‘thumbs up’ in (1).
(3)  Their prediction of the current market price of the artwork by checking one 

of four value categories: <$1,000; $1,000–30,000; $30,000–1,000,000; and 
>$1,000,000.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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(4)  Their estimate of the percentage of art professionals and of MIT students 
predicting a market value over $30,000.

In this paper, we do not use the responses to questions (1) and (2).
The images in Fig. 4 are reproduced with the permission of the artists and 

galleries, as indicated in the legend.
Respondents and procedure. Two groups of respondents completed the survey. The 
MIT group consisted of 20 MIT graduate students who had not taken courses in art 

or in art history. They were paid $20 as compensation for their time. Respondents 
came individually into the laboratory, and completed the survey in a room alone. 
The professional group consisted of art professionals—predominantly managers 
of art galleries. The art professionals were visited by appointment at their offices 
and completed the survey during the appointment.
Data availability statement. Data from all studies, as well as analysis code, is 
available upon reasonable request from the corresponding author.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 1 | Performance of all methods across all studies, shown with respect to the Matthews correlation coefficient. Error bars are 
bootstrapped standard errors. Details of studies are given in Fig. 4 of the main text.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 2 | Performance of all methods across all studies, shown with respect to the macro-averaged F1 score. Error bars are 
bootstrapped standard errors. Details of studies are given in Fig. 4 of the main text.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 3 | Performance of all methods across all studies, shown with respect to percentage of questions correct. Error bars are 
bootstrapped standard errors. Details of studies are given in Fig. 4 of the main text.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 4 | Performance of aggregation methods on 
simulated datasets of binary questions, under uniform sampling 
assumptions. One draws a pair of coin biases (that is, signal distribution 
parameters), and a prior over worlds, each from independent uniform 
distributions. Combinations of coin biases and prior that result in 
recipients of both coin tosses voting for the same answer are discarded.  
An actual coin is sampled according to the prior, and tossed a finite 
number of times to produce the votes, confidences, and vote predictions 
required by different methods (see Supplementary Information for 

simulation details). As well as showing how sample size affects different 
aggregation methods the simulations also show that majorities become 
more reliable as consensus increases. A majority of 90% is correct about 
90% of the time, while a majority of 55% is not much better than chance. 
This is not due to sampling error, but reflects the structure of the model 
and simulation assumptions. According to the model, an answer with  
x% endorsements is incorrect if counterfactual endorsements for that 
answer exceed x% (Theorem 2), and the chance of sampling such a 
problem diminishes with x.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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1 Theory
The formal model builds on the biased coin example, generalizing to m coins, each
coin having n possible sides. In part, this is a standard normative account of how
individuals should make inferences about hypotheses (coins) from data (toss outomes).
The additional assumption is that individuals take these inferences one step further,
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and compute correct expectations of tosses observed by others. We also assume an
infinite sample of respondents.

A more complete Bayesian model would have parameters for respondent errors
and biases, and would also deal with the finite sample issue. However, it is important
to first understand what can be deduced from different types of input in the ideal
case. This sets boundaries on what one might expect to achieve with richer models.

We begin with a negative result, Theorem 1, that an infinite sample of correctly
computed posterior probabilities over coins is compatible with any possible coin (=an-
swer) being correct. This reveals a limitation of methods based on posterior proba-
bilities, such as votes and confidences.

We then show how to determine the correct answer in three increasingly complex
settings: (1) m = 2, n ≥ 2, (2) m = n > 2, (3) m,n ≥ 2. In particular, Theorem 2
proves that the surprisingly popular algorithm for binary questions described in the
main text is valid.

Extensions to multiple choice questions (m > 2 coins) rely on a key Lemma,
which Theorem 3 applies this to the m = n > 2 case. We then consider the fully
general m,n problem, and indicate, without formal proof, how the correct answer
can be derived if in addition to vote predictions one also elicits posterior probabilities
(whose elicitation is not required for Theorems 2 and 3).

The results presented here which justifying choosing the surprisingly popular an-
swer assume ideal Bayesian respondents. However, the biased coin argument pre-
sented in the main text remains valid even with certain departures from Bayesian
rationality. For example, respondents might simplify the prediction task by pre-
dicting the vote split in the world that they think is more likely, and ignoring the
possibility of the less likely world. Then, those voting for the correct answer will make
accurate predictions, while those voting for the wrong answer will underestimate the
vote for the correct answer. The average predicted vote for the correct answer will
again underestimate the actual vote, confirming the surprisingly popular principle.

1.1 Model
The model extends the biased coin example in two ways. First, we generalize to an
arbitrary number m of possible worlds (each containing a possible coin). One of the
worlds is actual, the rest are counterfactual. We identify worlds with possible answers
to a multiple choice question. Uncertainty about the actual world, i.e., the correct
answer, is modeled by a random variable taking on values in the set {a1, . . . , am} of
m possible answers to a multiple-choice question. Second, we distinguish between
a respondent’s vote for a particular answer and the evidence on which that vote is
based. The evidence respondent r possesses is summarized by a private ‘signal’ Sr,
which is a random variable taking on categorical values in the set {s1, . . . , sn}. A
respondent’s vote V r is given by a function V r = V (Sr) that maps signals to votes
V r ∈ {v1, . . . , vm} for the m possible answers.

2
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Conditional on world ai, signals of different respondents are independent, identi-
cally distributed with probabilities p(sk|ai). Therefore, all differences in knowledge
are captured by signals. The prior p(ai) gives probabilities consistent with the evi-
dence that is common knowledge among all respondents. For problem (P) discussed
in the main text, common knowledge might be that Philadelphia is a large city. Ideal
respondents know the joint distribution p(sk, ai), which defines the possible world
model (to avoid degeneracies, we assume p(ai) > 0, p(sk) > 0). However, they do not
know which ai is the correct answer ai∗ , and nor do they know the actual distribution
of received signals. In terms of the coin example, they know which coins are possible
and the properties of each coin, but they do not know which coin is actually being
used.

Respondents have two types of beliefs, both computed from their received signal
sk and the joint distribution p(sk, ai). Beliefs about the correct answer are given
by the posterior probabilities p(ai|sk), which can be obtained from knowledge of the
joint distribution of signals and answers. Beliefs about signals received by other
respondents, say the probability of another respondent receiving signal sj written as
p(sj|sk), are derived by computing the distribution of signals p(sj|ai) conditional on
a particular answer being correct, and marginalizing over all possible answers,

p(sj|sk) =
∑

i

p(sj|ai)p(ai|sk)p(ai)

More explicitly, one would write, p(sqj |srk) = Pr(Sq = sj|Sr = sk), which is the
probability that another, randomly selected respondent q receives signal sj given that
respondent r has received signal sk. We omit the supercripts because the probability
is the same for any pair of different respondents q, r.

As discussed in the main text and proven in Theorem 1 below, the probabilities
p(ai|sk) are always inconclusive, in that even an infinite sample of perfectly computed
posterior probabilities over answers is compatible with any given answer being correct
in some possible world model. Posterior probabilities strongly constrain the set of
models with which they are compatible, but they do not identify the actual world.

Theorem 1. The correct answer cannot be deduced by any algorithm relying exclu-
sively on knowledge of actual signal probabilities, p(sk|ai∗), k = 1, . . . , n and posterior
probabilities over answers implied by these signals, p(ai|sk), k = 1, . . . , n, i = 1, . . . ,m.

Proof. The proof is by construction of a possible world model that generates these
signal probabilities and posterior probabilities for an arbitrarily selected answer.

Assume that the distribution of signals, p(sk|ai∗), and posterior probabilities,
p(aj|sk), are known but the correct answer ai∗ is unknown. We choose any answer ai,
and construct a corresponding possible world model q(sk, aj) such q would generate
the known signal distribution and posteriors if i∗ = i.
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Observe first that the known parameters do do not constrain the prior over signals,
which we can set equal to:

q(sk) =
p(sk|ai∗)
p(ai|sk)

(
∑

j

p(sj|ai∗)
p(ai|sj)

)−1, k = 1, ..., n

Because posteriors must match observed posteriors: q(aj|sk) = p(aj|sk), for k =
1, . . . , n, j = 1, . . . ,m, the possible world model is now fixed: q(sk, aj) = q(aj|sk)q(sk).
In particular, the prior over answers may be computed from the joint distribution,

q(ai, sk) = q(ai|sk)q(sk) = p(sk|ai∗)(
∑

j

p(sj|ai∗)
p(ai|sj)

)−1

by summing over k:

q(ai) = (
∑

j

p(sj|ai∗)
p(ai|sj)

)−1

The marginal distributions q(sk), q(ai), together with the matching posteriors,
q(aj|sk) = p(aj|sk), for k = 1, . . . , n, imply that if the correct answer is ai, one
would observe signal distribution p(sk|ai∗):

q(sk|ai) =
q(ai|sk)q(sk)

q(ai)
= p(sk|ai∗)

Because ai was freely chosen, this proves the theorem.

Theorem 1 shows that the distribution of posterior probabilities over answers
does not rule out any possible answer as the answer responsible for generating that
distribution.

We turn therefore to the second type of beliefs, about signals received by other
respondents. Because votes are functions of signals, ideal respondents receiving signal
sk can compute the conditional probability p(vi|sk) that another respondent will vote
for ai. For example, if the voting function instructs respondents to vote for the
most likely answer, V (sj) = argmaxi p(ai|sj), to predict the probability that another
respondent votes for ai the respondent receiving signal sk would add the probabilities
of all signals j that are the most favorable to ai:

p(vi|sk) =
∑

j:V (sj)=vi

p(sj|sk) =
∑

i=argmaxk p(ak|sj)

p(sj|sk)

Again, this notation suppresses respondent identity. In explict random variable no-
tation, we would write p(vi|sk), as p(V q = vi|Sr = sk) for q ̸= r, i.e. the proba-
bility that an arbitrary respondent q votes for vi. This is not to be confused with
p(V r = vi|Sr = sk) which corresponds to stochastic voting by respondent r.

4
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Similarly, we can define the joint distribution of votes (of an arbitrary respondent)
and answers:

p(vi, ak) =
∑

j:V (sj)=vi

p(sj, aj)

The conditional distributions, p(vi|ak), and p(ak|vi), are likewise well defined for any
voting function.

1.2 The two worlds, many signals case m = 2, n ≥ 2

We consider a more general version of the voting rule above, which allows us to avoid
unanimity even when both signals favor the same answer. Specifically, we consider
a cutoff based voting rule that instructs respondents to vote for a1 if the probability
of a1 exceeds probability c1, and for a2 if the probability of a2 exceeds c2 = 1 − c1.
Formally, we can express this as

V (sk) = argmax
i

c−1
i p(ai|sk) (1)

The above voting rule is identical to the decision algorithm for an ideal observer in
signal detection theory. If c1 = c2 = 0.5, the respondent is assumed to vote for the
more likely answer.

Theorem 2. Assume that not everyone votes for the correct answer. Then the aver-
age estimate of the votes for the correct answer will be underestimated.

Proof. We first show that actual votes for the correct answer exceed counterfactual
votes for the correct answer, p(vi∗ |ai∗) > p(vi∗ |ak), k ̸= i∗, as:

p(vi∗ |ai∗)
p(vi∗ |ak)

=
p(ai∗ |vi∗)p(ak)
p(ak|vi∗)p(ai∗)

=
p(ai∗ |vi∗)

(1− p(ai∗ |vi∗))
(1− p(ai∗))

p(ai∗)

The fraction on the right is well defined as 0 < p(ai∗ |vi∗) < 1; it is greater than one
if and only if p(ai∗ |vi∗) > p(ai∗ |vi∗)p(vi∗) + p(ai∗ |vk)p(vk) = p(ai∗), as p(ai∗ |vi∗) >
ci∗ , p(ai∗ |vk) < ci∗ by definition of the criterion based voting function.

A respondent with signal sj computes expected votes by marginalizing across the
two possible worlds, p(vi∗ |sj) = p(vi∗ |ai∗)p(ai∗ |sj)+p(vi∗ |ak)p(ak|sj). The actual vote
for the correct answer is no less than the counterfactual vote, p(vi∗ |ai∗) ≥ p(vi∗ |ak).
Therefore, p(vi∗ |sj) ≤ p(vi∗ |ai∗), with strict inequality unless p(ai∗ |sj) = 1. Because
weak inequality holds for all signals, and is strict for some, the average predicted vote
will be strictly underestimated.

If there are more than two possible answers m > 2, the actual proportion of votes
for the correct answer exceeds predictions provided that votes are defined by a cutoff
vector

∑
i ci = 1. However, it no longer points to a unique correct answer, as more

than one answer may be underestimated.
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1.3 The case m = n > 2

Our results for the general case with more than two answers and the same number
of signals and answers, rely on a Lemma that shows how the ratio of posterior prob-
abilities on the correct answer relative to any other answer can be derived from the
signal frequencies, and their pairwise conditional probabilities. The Lemma is impor-
tant because it expresses terms whose estimate requires knowing the correct answer
(posterior probabilities on truth) as functions of terms that do not require knowledge
of the correct answer.

Lemma. Consider a possible world model with m answers and n signals and joint
probability distribution p(sj, ai). Let ai∗ denote the correct answer. Then:

p(ai∗ |sk) ∝ p(sk|ai∗)
∑

i

p(si|sk)
p(sk|si)

(setting 0/0 ≡ 0).

Proof. From Bayes’ rule, we have,

p(si) = p(sk)
p(si|sk)
p(sk|si)

After summing over i, with
∑

i p(si) = 1, we solve for the prior probability of signal
sk:

p(sk) = (
∑

i

p(si|sk)
p(sk|si)

)−1

Invoking Bayes’ rule again,

p(ai∗ |sk) =
p(sk|ai∗)
p(sk)

p(ai∗) = p(sk|ai∗)
∑

i

p(si|sk)
p(sk|si)

p(ai∗)

Because p(ai∗) is constant across all k, the Lemma follows.

The Lemma shows how the distribution of signals, and the pairwise predictions of
signals, can identify the answer given by respondents who are best informed, in the
sense of assigning the highest probability on the correct answer. These respondents
would be least surprised by the correct answer, were it revealed.

To convert this Lemma into an algorithm for selecting the correct answer we need
to assume that for each answer there is a unique signal such that respondents with that
signal assign most probability to this answer, which is also more than the probability
assigned to it by other respondents. This assumption is violated, for example, with
the posteriors below:
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p(ai|sk) =

⎛

⎝
.4 .3 .3
.45 .55 0
.2 .3 .5

⎞

⎠

If the correct answer is a1 (first column), then respondents with s2 (second row)
would be least surprised, yet they would believe that the most likely correct answer
is a2. A selection principle based on treating as correct the answer selected by these
respondents would incorrectly choose a2. The theorem below rules out this possibility,
by requiring that respondents voting for a given answer assign assign more probability
to it than do respondents voting for other answers.

Theorem 3. Assume m = n, V (si) = vi, and p(ai|si) > p(ai|sj). Let ai∗ denote the
correct answer. Define the prediction-normalized vote for ak, V (k), as

V (k) = p(vk|ai∗)
∑

i

p(vi|sk)
p(vk|si)

(setting 0/0 ≡ 0). Then the correct answer has the highest prediction-normalized
votes.

Proof. Applying the Lemma, we have,

p(ai∗ |sk) ∝ p(sk|ai∗)
∑

i

p(si|sk)
p(sk|si)

Because V (si) = vi, we can rewrite this as:

p(ai∗ |sk) ∝ p(vk|ai∗)
∑

i

p(vi|sk)
p(vk|si)

= V (k)

p(ai∗ |si∗) > p(ai∗ |sk) by the assumption that respondents who vote for a given answer
(including ai∗) assign greater posterior probability to it than respondents voting for
any other answer ak. Therefore V (i∗) > V (k), proving that the correct answer ai∗
has the highest prediction-normalized vote.

One could apply Theorem 3 to experimental data using the following estimation
procedure. Because ai∗ matches the actual world, the frequency of votes for answer
ak provides an estimate for p(vk|ai∗), which is exact in the limit of an infinite number
of respondents. The probabilities p(vk|si) are estimated by asking respondents to
predict the frequency of votes vk and then averaging the predictions of those who
voted vi.
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1.4 The case m,n ≥ 2

It is possible to extend our approach to the general setting of m worlds, and n signals,
provided one also elicits respondents’ posterior distribution over possible answers.

Here we simply indicate the main idea, and for convenience consider m > 2, n = 2.
That is, we have many coins, each with exactly two sides. Each individual thus has
a small amount of information bearing on the many possible answers.

The bias of coin i is given by the ratio on the left side of the Bayesian identity
below,

p(s1|ai)
p(s2|ai)

=
p(ai|s1)
p(ai|s2)

p(s1|s2)
p(s2|s1)

, i = 1, ..., n

The analyst does not know these true coin biases, but can estimate them from the
terms on the right, which respondents provide as their posterior probabilities, p(ai|s1),
p(ai|s2), and pairwise predictions, p(s1|s2), p(s2|s1). The data therefore can be used
to assign the correct bias to each possible coin.

To find the actual coin, the analyst asks respondents to report their toss outcome.
The frequencies of observed tosses will converge to p(s1|ai∗) and p(s2|ai∗). The actual
coin is then revealed as the coin whose assigned bias matches the observed one:

i = i∗ ⇐⇒ p(ai|s1)
p(ai|s2)

p(s1|s2)
p(s2|s1)

=
p(s1|ai∗)
p(s2|ai∗)

A concrete example illustrates this. Assume three coins, a priori equally likely:
(A) 2 : 1 biased for Heads, (B) 2 : 1 biased for Tails, (C) unbiased.

Let us assume the actual coin is C. Respondents report their toss, their posterior
probabilities on A, B, C, and their predicted toss distribution. Because toss reports
converge to an even split between Heads and Tails, the analyst learns that the actual
coin is unbiased. However, he does not yet know which of the coins, A, B, C is the
unbiased one. By applying Bayes’ rule to their toss, respondents derive and report
posterior probabilities over A,B,C as (49 ,

2
9 ,

1
3) given Heads, and (29 ,

4
9 ,

1
3) given Tails.

With this information, the analyst now knows the exact distribution of posteriors
over A, B, C. However, Theorem 1 shows that every such distribution of posteriors
can be reconciled with any possible world, that is, any of the three coins.

Adding predictions identifies the actual world. In this case, by symmetry of the
assumptions, respondents’ predictions are symmetric p(sj|sk) = p(sj|sk). From the
predictions and the posteriors the analyst computes the bias of each possible coin,
and notes that coin C is unbiased, and is the only coin whose computed bias matches
the actual one. He therefore deduces that the actual coin must be C.

The same method works in the general case, with more than two signals. It is
important, however, that the elicitation separates signals (e.g., Heads vs. Tails) and
possible states of the world (e.g., A, B, C). Respondents report signals, predict signals,
and assign posteriors to states of the world.

8
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1.5 Numerical simulation results
As mentioned in the main text, we performed numerical simulations for the simplest
m = n = 2 case, under a uniform sampling assumption. We randomly sampled
1000 datasets each with 50 questions, answered by up to 1000 respondents. For each
dataset, respondent subsets of size N ∈ {6, 12, 33, 1000} were randomly sampled. For
each question w = 1, 2, . . . a possible world model consisting of a joint distribution of
two world states and two signals p(swk , awi ) was uniformly sampled, with resampling if
it did not satisfy p(awk |swk ) > 0.5. An actual world awi∗ was sampled given p(awi ), and
signals were sampled given p(swk |awi∗). Votes, confidences, and vote predictions were
computed for each ideal Bayesian respondent. The results are shown in Extended
Data Fig. 4

1.6 Power analysis of the surprisingly popular answer versus
voting (based on simulation results)

As described in the section on simulation results above, we sampled 1000 synthetic
datasets each consisting of 50 questions and answered by 30 respondents. We com-
puted the voting and surprisingly popular answers and for each dataset performed a
paired-samples t-test of voting correctness against the correctness of the surprisingly
popular answer. For 392 of the sampled datasets, the test showed a significant ad-
vantage (p < 0.05) of the surprisingly popular answer over voting, and for none of
the sampled datasets was there a significant advantage of voting over the surprisingly
popular answer.

2 Experiment Protocols

2.1 Informed consent
All studies were approved by the M.I.T. Committee on the use of humans as exper-
imental subjects (COUHES). For all studies, informed consent was obtained from
respondents using text approved by COUHES. For in-person studies, respondents
signed a consent form and for online studies, respondents checked a box.

2.2

2.3 Studies 1a, b – State capitals
Materials and methods

The survey instrument consisted of a single sheet of paper which respondents were
asked to complete. The sheet contained 50 propositions each consisting of “X is the
capital of Y.” for every state Y and where X is the most populous city in the state Y.

9
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For example, the first proposition was “Birmingham is the capital of Alabama.”. The
propositions were in alphabetical order of state. For each proposition, respondents
gave the answer T for True or F for False. For each proposition they also estimated
the percentage of participants in the experiment who will answer True. There was no
time limit.

Respondents and procedure

Study 1a was conducted in the context of two MIT, Sloan MBA classes. 51 re-
spondents were asked to mark their answer sheet by a personal code, and were
promised feedback about the results, but no other compensation. Study 1b was
conducted at the Princeton Laboratory for Experimental Social Science (PLESS,
http://pless.princeton.edu/). 32 respondents were drawn from the pool of pre-
registered volunteers in the PLESS database, which is restricted to Princeton stu-
dents (undergraduate and graduate). Respondents received a flat $15 participation
fee. In addition, the two respondents with the most accurate answers received a $15
bonus, as did the two respondents with the most accurate percentage predictions.
(In fact, one respondent received both bonuses, earning $45 in total). Respondents
marked their sheet by a pre-assigned code, known only to the PLESS administrator
who distributed the fee and bonus.

2.4 Study 1c – State capitals
Materials and methods

The survey was administered on a computer. On each screen, the header was the
sentence “X is the capital of Y.” as in studies 1a and 1b. There were then four
questions as follows:

• (a) Is this more likely [t]rue or [f]alse [Answer t or f]:

• (b) What is your estimated probability of being correct (50 to 100 percent):

• (c) What percentage of other people do you think thought (a) was true [1 to
100 percent]:

• (d) What do you think is the average probability that people answered for (b)
[50 to 100 percent]:

In this paper, we do not use the response to question (d).

Respondents and procedure

The study was
conducted in the MIT Behavioral Research Lab (http://web.mit.edu/brl/). 33 re-
spondents were recruited from the MIT Brain and Cognitive Sciences Department

10
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experimental respondents mailing list, with participation restricted to members of
the MIT community. Respondents received a $15 participation fee. In addition, the
top 20% of respondents with the most accurate answers with respect to ground truth
and the top 20% of respondents with the most accurate predictions about the beliefs
of others earned a $25 bonus. Respondents were eligible to receive both bonuses. The
explanation given to respondents about the bonus system is reproduced below.
Determination of bonus:

After the study is complete, we will calculate two accuracy scores for each respondent.

(1). Your objective accuracy score is based on your answers to (a) and (b).

For each statement we calculate the probability that you think the statement is true
and use this, together with whether the statement is actually true to calculate your
score. We use the Brier scoring function, which is designed so that your score is
maximized when you report your true guess and confidence level. Below is a table
which helps you understand the score you would receive, depending on whether your
answer in (a) was correct or incorrect. The table gives the score at intervals of ten
percentage points, but you can choose any percentage between 50% and 100%.

Your confidence Score if (a) correct Score if (a) incorrect
50% 0 0
60% 9 -11
70% 16 -24
80% 21 -39
90% 24 -56
100% 25 -75

Points to note:

• the more certain you claim to be, the more points you can win

• as you approach 100%, the penalty for being incorrect climbs much faster than
the gains for being correct.

A tip:

• In the long run, you will score the most points if the numbers correspond to
your true levels of confidence. Expressing too much confidence is a common
mistake in this game.

(2). Your prediction accuracy score is based on your answers to (c) and (d).

Your prediction accuracy score reflects how well you have predicted the actual per-
centages of respondents who answered Yes to each of the fifty questions, and how
well you have estimated the average confidence levels.
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2.5 Study 2 – General knowledge questions
Materials and Methods

The survey consisted of 80 trivia questions in the domains of history, language, sci-
ence, and geography. The survey was administered as an online questionnaire and
question order was randomized across respondents. The questions were a subset of the
150 questions from the True/False quizzes in these domains on the quiz site Sporcle
(www.sporcle.com). Two online pilot experiments (of 70 and 80 questions each) were
conducted in which respondents were only asked whether they thought the answer to
each question was True or False, i.e respondents were not asked to make predictions
about the answers of others. Using the results of the two pilot experiments, 80 ques-
tions were selected by matching the questions for percentage correct, e.g. a question
that 30% of respondents answered correctly was matched with a question that 70% of
respondents answered correctly. This resulted in a balanced final survey with respect
to the number of questions the majority answered correct as well as the number of
questions for which the correct answer was false, as shown by the contingency table
in Table S1.

Actual answer is false Actual answer is true
Majority incorrect 20 19 39

Majority tie 1 1 2
Majority correct 19 20 39

40 40 80

Table S1: Contingency table showing distribution of questions for Study 2.

Example questions, together with the percentage of respondents who answered
correctly in the pilot experiment are shown in Table S2.
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Example question Percent of
respondents correct in

pilot experiments
Japan has the world’s highest life expectancy 10

The Nile River is more than double the length of the Volga 20
Portuguese is the official language of Mozambique 30

Avogadro’s constant is greater than Planck’s constant 40
The currency of Switzerland is the Euro 50

Abkhazia is a disputed territory in Georgia. 50
The chemical symbol for Tin is Sn 60

The Iron Age comes after the Bronze Age 70
Schuyler Colfax was Abraham Lincoln’s Vice President 80

The longest bone in the human body is the femur 90

Table S2: Example questions from Study 2 and percent correct in pilot experiments.

Respondents were given the following instructions:
Please read the following 80 True/False trivia questions carefully and make your best
guess.

For each question, we’ll ask you to do three things:

(a) Say whether you think the statement is more likely True or False

(b) Think about your own beliefs and estimate the probability that your answer is
correct

(c) Think about other people’s beliefs and predict the percentage of people who
guessed the answer was ‘True’

To give an estimate of the probability that their answer was correct, respondents
chose one of the six following options:

(a) Totally uncertain, a coin toss (about 50% chance of being correct)

(b) A little confident (about 60% chance of being correct)

(c) Somewhat confident (about 70% chance of being correct)

(d) High confidence (about 80% chance of being correct)

(e) Very high confidence (about 90% chance of being correct)

(f) Certain (about 100% chance of being correct)

13
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To answer the question about other people’s votes, respondents gave a percentage.
Respondents were asked to not search for the answers to the questions. Respon-

dents searching for the answer, rather than answering from their own knowledge,
does not make affect testing the aggregation method since this is simply an addi-
tional source of information for some respondents who may thus be more accurate.
The average time to complete all three parts of a question was 17 seconds and it was
not the case that if a respondent took more time to answer a question they were more
likely to be correct, suggesting that, in fact, searching for the correct answer was not
common.

Respondents and Procedure

Respondents were recruited from Amazon Mechanical Turk and were paid a flat fee of
$5.00 with 39 respondents completing the survey. Respondents who took part in either
of the pilot experiments were excluded from participating in the final experiment.

2.6 Study 3 – Dermatologists assessing lesions
Materials and Methods

The survey was administered online. Respondents were divided into two groups, with
one survey containing images of 40 benign and 20 malignant lesions, and the other
survey containing images of 20 benign and 40 malignant lesions. The 80 images used
in the experiment were obtained from Atlas Dermatologico, DermIS, and DermQuest.
The images were selected to be approximately the same size, had no visible signs of
biopsy, and were filtered for quality by an expert dermatologist. Question order was
randomized across respondents. Since all lesions pictured in the survey had been
biopsied, whether a particular lesion was benign or malignant was known to us.

For each image of a lesion, respondents predicted whether the lesions was benign or
malignant, gave their confidence on a six point Likert scale from ‘absolutely uncertain’
to ‘absolutely certain’ and estimated the likely distribution of opinions amongst other
dermatologists on an eleven point scale from ‘perfect agreement that it is benign’ to
‘perfect agreement that it is malignant’ with the midpoint labeled as ‘split in opinions
with equal number of benign and malignant diagnoses’.

Respondents and procedure

Dermatologists were recruited by referral and 25 respondents answered the survey,
with 12 in the condition with 40 benign lesions and 13 in the condition with 20 benign
lesions. Respondents had an average of 10.5 years of experience. Respondents were
told that a $25 donation would be made to support young investigators in dermatology
for every completed survey, and that if the survey was completed by a particular date
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this would be increased to $50. Respondents were also told that a randomly selected
respondent would receive $1000.

2.7 Study 4a, b – Professionals and laypeople judging art
Materials and Methods

The survey instrument consisted of a bound booklet with each page containing a
color picture of a 20th century art piece and questions about the piece. The medium
and dimensions were given for each piece. Respondents were given the following
generalinstructions about the survey:
The survey contains 90 reproductions of modern (20th century) artworks. For each
artwork we will aks you a few questions.

Your answers will help us understand how professionals and non-professionals re-
spond to modern art.

• By professionals, we have in mind people working with art, in galleries or
museums.

• By non-professionals, we are referring to MIT master’s and doctoral students
who have not taken any formal art or art history classes.

We are also interested in how well people can predict the responses of other people.
So, some questions will ask you to guess how other people will respond.

This will be explained more fully on the next page. If there is anything unclear about
our instructions please do not hesitate to ask!

For each artwork, respondents were asked for four pieces of information:

• (1) Their ‘simple personal response’ to the artwork by circling either ‘thumbs
up’ or ‘thumbs down’.

• (2) Their estimate of the percentage of art professionals and of MIT students
circling ‘thumbs up’ in (1).

• (3) Their prediction of the current market price of the artwork by checking
one of four value categories: under $1,000, or $1,000 to $30,000, or $30,000 to
$1,000,00, or over $1,000,000.

• (4) Their estimate of the percentage of art professionals and of MIT students
predicting a market value over $30,000.

In this paper, we do not use the responses to questions (1) and (2).
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Respondents and Procedure

Two groups of respondents completed the survey. The MIT group consisted of twenty
MIT graduate students who had not taken courses in art or in art history. They were
paid $20 as compensation for their time. Respondents came individually into the
lab, and completed the survey in a room alone. The Newbury group, named for
Newbury street in Boston which has many art galleries, consisted of art professionals
– predominantly managers of art galleries. The art professionals were visited by
appointment at their offices and completed the survey during the appointment.

3 Vote predictions
Our model describes how Bayesian respondents formulate a prediction of the vote
distribution of others based on their received signal. Here, we describe some de-
scriptive statistics of the predictions of votes. Respondents’ votes were, in general,
correlated with their own answers, which is one reason that vote predictions tend
not to be simply 50%-50% . That is, respondents voting for option A, compared to
those voting for option B, put higher probability on other respondents also voting
for option A. Across the three states studies, respondents voting for False predicted
that 49% of respondents would endorse True, whereas those voting for True predicted
that 73% would. For the trivia study, this prediction was 45% and 59%, respectively.
In the lesion study, respondents who voted for benign predicted that 34% of respon-
dents would vote for malignant, but those voting for malignant predicted 79%. In
the Art MIT study, those voting for the expensive price bin predicted that 46% of
other would, whereas those voting for cheap predicted that only 22% would vote for
expensive. For the study with art professionals, these predictions were 53% and 14%,
respectively.

For each study, we can examine how close predictions were to within uniform. For
studies where predictions were given as percentages, we count the fraction of times
that a vote prediction is given which is within 10% of 50-50, i.e. the prediction of
votes for the first option is between 40% and 60%. Across the three states studies,
an average of 36% of predictions were within 10% of 50-50, in the trivia study 56%,
in the art MIT study 29%, and in the art professionals study 19%. For the lesions
study, respondents gave their predictions on an 11 point scale, and 30% of predictions
were one of the three middle bins.

As a further description of the predictions that people made, we compare predic-
tions of the perecentage of people voting True (or malignant) to the probability that
people put on the answer being True (or malignant), inferred from their cote and
confidence. For the MIT states study where confidence was elected this correlation is
rS = 0.64, (p < 0.001), for the lesions study rs = 0.87, (p < 0.001), and for the trivia
study rS = 0.48, (p < 0.001).

We do not have sufficient experimental evidence to justify a particular method
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of eliciting useful vote predictions, but we offer a few suggestions, and speculations
for future testing. Vote predictions can be incentivized for accuracy. For example,
respondents can be paid a bonus which depends on the Kullback-Leibler divergence
between their prediction and the actual distribution, or incentivized more generally
using the Bayesian Truth Serum. Respondents can be explicitly encouraged to con-
sider whether they are in the minority or majority, and what opinions people different
to themselves may hold. Instructions may help respondents recognize cases where de-
spite them having high confidence in an answer, they should also believe that only
a minority of respondents would vote for this answer. It is possible that choosing
to not elicit confidence prior to eliciting predictions may help respondents to avoid
conflating these two quantities. When dealing with respondents answering multiple
questions who give identical vote predictions for every question, one could take steps
to encourage them to reflect on whether this is an accurate reflection of their beliefs.
Respondents could be given information about the composition of the sample that
they are in, to aid them in making good predictions about the answers of others.

Note that if all respondents simply predict that 50% of the sample will endorse
each of two possible answers, then the surprisingly popular answer is the same as that
obtained by majority rule.
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