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Abstract

In many competitive settings consumers buy multiple product categories, and some prefer

to use a single �rm, generating complementary cross-category price e�ects. To study pricing

in supermarkets, an organizational form where these e�ects are internalized, we develop a

multi-category multi-seller demand model and estimate it using UK consumer data. This

class of model is used widely in theoretical analysis of retail pricing. We quantify cross-

category pricing e�ects and �nd that internalizing them substantially reduces market power.

We �nd that consumers inclined to one-stop (rather than multi-stop) shopping have a greater

pro-competitive impact because they generate relatively large cross-category e�ects.

JEL Numbers: L11: L13: L81

1 Introduction

In many competitive settings consumers buy multiple categories and �nd it convenient to obtain

them all from a single store, location, or �rm. This shopping behavior can generate complementary

cross-category pricing e�ects, as an increase in the price of one category may lead a consumer to

transfer away all his category purchases. The magnitude of cross-category pricing e�ects depends

on shopping behavior: a consumer that prefers to purchase all categories at a single store may

generate larger cross-category e�ects than a shopper willing to use multiple stores, since the latter

can easily switch stores only for the category a�ected by a price change and not for other categories.
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Whether sellers internalize such cross-category e�ects depends on the organization of supply.1

In supermarket organization there is a maximal level of internalization, as a single seller sets prices

for all categories sold at the same store. In malls, streets or public market places, on the other

hand, separate categories have independent vendors�e.g. butchers for meat, bakers for bread,

etc.2 There are some cases with incomplete levels of internalization, such as stores that lease a

section of their �oor space, and delegate pricing, to an independent category seller.3

It has long been recognized that the internalization of complementary pricing e�ects can sub-

stantially mitigate market power. In the monopoly case in Cournot (1838) a single seller of two

strictly complementary categories sets an overall Lerner index that is half as high as would arise

with two independent sellers. In oligopoly settings�where categories sold by any �rm are pricing

complements because of the costs to shoppers of buying from multiple �rms�internalization can

greatly intensify price competition (see Nalebu� (2000)). This is closely related to the �nding from

the compatibility literature that two multi-product �rms may set more competitive prices if their

products are incompatible (i.e. have in�nite �shopping costs�)�so that consumers must buy only

from one �rm�than when they are not (see Matutes and Regibeau (1988), Economides (1989)).

The market power of supermarkets is an issue of widespread interest. The industry's revenues

are a large share of GDP and its behavior a�ects many interest groups from consumers to suppliers.

The analysis of pricing in the supermarket industry has typically been conducted at two alternative

levels. The �rst is the level of the individual supermarket category, e.g. breakfast cereals, alcoholic

drinks, etc., where there are concerns that prices are set ine�ciently, either too high because of

market power (see Hausman et al. (1994), Nevo (2001), Villas Boas (2007), Bonnet and Dubois

(2010)), or too low because of a predatory intent or a negative consumption externality (see Gri�th

et al. (2010)). The second is the level of the retailer as a whole, setting prices across a range of

categories (see for example Chevalier et al. (2003) and Smith (2004)), which is the focus of antitrust

investigations into supermarket competition (see Competition Commission [CC] (2000, 2008)) and

retail merger cases such as the proposed merger of Whole Foods and Wild Oats (considered by the

Federal Trade Commission [FTC]).4 At this level there has been much interest in the growth of large

retail �rms such as Walmart and Carrefour (see Basker (2007) for a survey). Sometimes public

policy has been introduced to protect traditional forms of retail organization such as streets and

market places, which do not internalize cross-e�ects, by curtailing the growth of supermarkets: e.g.

in France a law (Loi Ra�arin, 1996) imposed restrictions on new supermarkets for this purpose.

For pricing analysis at each of these two levels it is important to understand the extent to which

the internalization of cross-category e�ects mitigates market power.

1A well-known example outside of retailing is the selling of component parts for an aeroplane. The proposed
GE-Honeywell merger would have resulted in a single seller of two categories (aircraft engines and avionics) and the
consequences of internalization of complementary cross-category e�ects was a central issue in the European Union's
approach to the merger. See Nalebu� (2009).

2We use the term category or product category to refer to a group of similar product lines that are close
substitutes, as in these examples.

3For example, retailers such as Sears and Walmart sometimes rent out space within their stores to independent
sellers, in return for a rental payment (see Wall Street Journal Sept. 22, 2010). These arrangements are sometimes
referred to as �stores within a store� or �in-store concessions�.

4FTC v. Whole Foods Markets, Inc., 533 F.3d 869 (D.C. Cir. July 29, 2008).
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A related issue, in the supermarket industry and more generally, is whether consumers that

prefer one-stop shopping (i.e. to use a single store) constrain market power more than those that

choose multi-stop shopping (who use multiple stores). This has been an important question in

prominent antitrust investigations. One possibility is that the former�known in some contexts

as �core� or �single-homing� shoppers�have the greater pro-competitive impact, because they

generate a relatively large cross-category e�ect when they change store. The opposite can also

be argued, however: multi-stop shoppers may have the greater pro-competitive e�ect as they �nd

it easier to substitute any individual category between stores. In the UK's CC inquiries into the

supermarket industry, some �rms claimed that �since supermarkets could not price discriminate

[in favor of multi-stop shoppers], these other outlets collectively placed a competitive constraint on

the grocery retailer's o�er� and that multi-stop shoppers �e�ectively [...] determined supermarket

prices across the board.� See CC (2000, paragraph 2.31). According to one of the main �rms in

the CC investigation �it was the marginal shopper�with the greatest tendency to migrate�who

determined prices� and this �rm claimed that it �had a high proportion of secondary shoppers and

could not be indi�erent to them in terms of its price setting.� (See CC (2000, paragraph 4.68)).

In the US in the proposed Whole Foods/Wild Oats merger the parties to the proposed merger

argued that many of their customers �cross-shop� in a wide range of other �rms, buying di�erent

categories from di�erent stores, and that these multi-stop shoppers constrain prices more than

one-stop (or core) shoppers. In these investigations the authorities had to decide whether to focus

on promoting competition between retailers that are substitutes for one-stop shoppers, or between

retailers combined by multi-stop shoppers. In both cases there was a debate as to which consumer

type constrained supermarket prices the most, with implications for whether a narrow or wide

de�nition of the market was appropriate for competition analysis.

In this paper we have two main goals. First, we develop a multi-store multi-category model

of consumer demand that belongs to a class of models used widely in the theoretical literature to

analyze retail pricing, and estimate it using household-level data on shopping choices at consumer-

store-category level. Recent demand models used to study retail market power have not considered

cross-category externalities, despite the prominence of this issue in the theoretical literature. Sec-

ond, we use the model to study two policy-relevant issues in retail pricing (as mentioned above):

(i) the implications of the internalization of cross-category externalities for market power and (ii)

the relative impact on market power of consumers inclined to one-stop and multi-stop shopping.

We de�ne categories to correspond to product groups sold by traditional independent sellers of

grocery products in streets and public market places (butchers for meat, bakers for bread, etc.) in

order to analyze cross-e�ects that are internalized in supermarket organization but not in a well

known alternative organization of supply.

In the model each consumer decides whether to use a single store or multiple stores for their

purchases in a given shopping period. For each category a consumer makes a discrete choice of

store, and a continuous choice of how much to buy. There is di�erentiation between stores at

two levels. The �rst is at individual category level: the consumer views stores as being di�erent

for any category. We allow this di�erentiation to be partly vertical, re�ecting di�erences in the
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average quality of stores for any category, and partly horizontal, re�ecting variation in individual

consumer preferences. The second level of di�erentiation is at the overall shopping level: each

consumer views the �xed costs of shopping at each store di�erently because of spatial variation in

consumer location. For any consumer the bene�t of multi-store shopping�going to the best store

for each category�must be weighed against the �xed costs of using multiple stores. Consumers

inclined to one-stop shopping either have relatively high shopping costs or view a single store as

being the best for all categories.

There are two main econometric challenges in estimating the taste parameters that enter

category-speci�c demands. First, a signi�cant number of zero expenditures are observed at cate-

gory level, so that there are binding nonnegativity constraints in the consumer's continuous cate-

gory demand problem. Second, given that a consumer's unobserved store-category tastes in�uence

both his choice of store and his category demands, the consumer's unobserved tastes are not in-

dependent of the observed characteristics of the stores the consumer selects. To overcome these

problems we estimate the consumer's utility parameters in a single step which jointly models both

the consumer's nonnegativity constraints and his combined discrete-continuous choice of store and

category demand.

The estimated parameters imply complementary pricing e�ects between categories sold by the

same retailer. We calculate the Lerner index of market power implied by these elasticities in Nash

equilibrium, using the retailers' �rst-order pricing conditions. We �nd that ignoring cross-category

e�ects and analyzing each category in isolation can result in market power being overestimated

substantially: accounting for complementary cross-category e�ects reduces the estimated Lerner

index by more than half for most categories and �rms. To quantify the externality between product

categories (internalized by a supermarket) we compute the implicit marginal (Pigouvian) subsidy

per unit of output that must be o�ered to an independent category seller to ensure it does not

increase prices relative to the observed levels (set by supermarkets). We �nd that the externality is

about 47% of the price of the category (on average across �rms and categories).5 This externality

is analogous to the �pricing pressure� concept that measures the e�ects of a merger, introduced

in Farrell and Shapiro (2010).6 The absolute value of our estimates are larger than standard

externality levels used to �ag an adverse merger, i.e. our estimates indicate that supermarket

organization mitigates market power signi�cantly.

To assess whether consumer types inclined (because of their taste type) to one-stop shopping

(at observed prices) have a greater competitive impact than those inclined to two-stop shopping,

we compare the e�ect of a marginal price change (for one �rm and one category at a time) on

the pro�ts from each consumer group. We �nd that the pro�t from one-stop shopping types falls

5The presence of large external e�ects between product categories at a retail location is consistent with the
theoretical literature on multi-category sellers, as discussed in Nalebu� (2000), and supported empirically by a
study of rental payments in shopping malls in Gould et al. (2005), which found that mall owners o�ered large
rent subsidies to stores that generate a positive externality (by drawing consumers to the mall) for other stores in
di�erent product areas.

6Supermarket organization (or any form of retailing in which cross-category e�ects are internalized) can be
interpreted as a merger of independent category sellers in a shopping location (see Beggs (1992)). This leads
to downward pricing pressure, because the categories have complementary cross-price e�ects, the reverse of the
standard upward pricing pressure that follows from merger of substitutes.
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and pro�t from two-stop shopper types increases. This implies that the former have the greater

pro-competitive impact. We �nd that this is a consequence of the greater cross-category e�ects of

one-stop shopper types. Since shopping costs are an important determinant of one-stop shopping

we also compare consumers by shopping costs and �nd similar results: we �nd that those with high

shopping cost have a greater pro-competitive impact than those with low shopping costs. This is

consistent with the approach ultimately taken by the CC and FTC in the cases mentioned above,

where the focus of the authorities was on maintaining a competitive market for shoppers inclined

to one-stop shopping.

The theoretical literature makes extensive use of a multi-store multi-category modeling frame-

work to study retail pricing. Some papers in this literature impose one-stop shopping (Stahl

(1982), Beggs (1992), Smith and Hay (2005)) while others model the multi-stop shopping deci-

sion (Klemperer (1992), Armstrong and Vickers (2010), Chen and Rey (2012)).7 The empirical

literature on retail market power�in contrast to the theoretical literature, as noted in Smith

and Thomassen (2012)�has typically not incorporated cross-category externalities. We adapt

the multi-store multi-category theoretical framework for empirical analysis. We develop a model

that is multiple-discrete-continuous, in that the consumer can choose one or more (discrete) stores

and makes a (continuous) non-negative choice of quantity for every category. We build on the

existing literature on multiple-discrete choice (see Hendel (1999), Dubé (2005), Gentzkow (2007)),

and discrete-continuous choice (see Dubin and McFadden (1984), Haneman (1984)).8 Our multi-

category multi-store model brings together the empirical literature that measures market power for

a single supermarket category (e.g. Nevo (2001) and Villas Boas (2007)), with the literature on spa-

tial competition between retail outlets in which the choice of category is not modelled (e.g. Smith

(2004), Davis (2005) and Houde (2012)). The paper also relates to an established literature in

quantitative marketing studying store choice (e.g. Bell et al (1998), Fox et al. (2004)) and another

studying multi-category demand (e.g. Chintagunta and Song (2007), Mehta (2006)) by studying

these di�erent aspects of demand in a uni�ed multi-store multi-category utility framework.

The rest of the paper is organized as follows. In Section 2 we discuss relevant features of the

market and the data. We discuss the model in Section 3 and estimation in Section 4. We report

estimates in Section 5 and in Section 6 we analyze supermarket pricing.

2 The Market and the Data

Supermarkets became widespread in the US and UK in the mid 20th century. Until then broad

grocery categories had been sold by independent sellers in streets, public market places, or through

direct delivery to households. The categories used in this paper are de�ned to correspond approx-

7Some papers (e.g. Lal and Matutes (1994), Lal and Rao (1997), Rhodes (2015)) use this theoretical framework
to study aspects of supermarket pricing (e.g. �Hi-Lo� pricing, advertising of speci�c product prices, etc.) that we
ignore because they are more relevant at a product level rather than the broader category level of analysis we adopt.

8These two discrete-continuous papers consider a single discrete and a single continuous choice in which zero
demand is not allowed. We generalize to allow for multiple continuous choices and we allow for zeros so that the
paper is also related to the literature on demand estimation subject to nonnegativity constraints, notably Wales
and Woodland (1982).

5



imately to the products sold by these traditional vendors. They are shown in Panel B of Table

2�Bakery, Drink, Fruit & Vegetables, among others�along with indicative products in each cate-

gory.9 Thus products in the Bakery category are sold by a traditional baker, Drink in a liquor store,

Fruit & Vegetables by a greengrocer, and so on. This de�nition allows us to analyze cross-e�ects

that are internalized by supermarkets but not in a familiar alternative organization of supply.

We adopt a week as the shopping period in which the consumer plans his shopping. A weekly

shopping frequency was found in survey evidence in CC (2000, paragraph 4.77 and Appendix 4.3)

in which 982 respondents were asked the question: �How often do you carry out your main grocery

shopping?� A large majority (70%) reported a weekly frequency, with 14% less frequently and 16%

more frequently. We aggregate store choices and expenditures to the weekly level and assume that

decisions on how much to spend in each store are made for the whole week.

To analyze shopping behavior we use data from the TNS Superpanel (now run by Kantar),

which records the grocery shopping of a representative panel of households in Great Britain. Our

sample is for the three-year period October 2002 - September 2005. The data are recorded by

households, who scan the bar code of the items they purchase and record quantities bought and

stores used. The grocery items include all products in the categories listed in Table 2 including

those sold in irregular weights such as fruit, vegetables and meat. Prices of items bought are

obtained from the expenditure and quantity information that the household records, and cashier

receipts are used to con�rm these prices. 26,191 households participated in the consumer panel in

the period of our data with an average of 67.6 weeks recorded per household. Demographic and

location information for each household is recorded annually. We treat the household as a single

decision-making agent and we use the term consumer to refer to this agent.

In the rest of this section we discuss the construction of the data used for estimation and provide

descriptive statistics. The model is too computationally burdensome to estimate on the full sample

of consumer-weeks and we therefore select a subsample for estimation. Furthermore we want to

maintain multiple observations per consumer in order to use the panel structure of the data. We

therefore construct a sample comprising a panel of 2000 consumers and three weeks per consumer.

We choose the three weeks for each consumer in such a way that they are spaced at quarterly

(13 week) intervals in order to avoid interdependencies between weeks for a given consumer and

we pick di�erent sets of weeks (randomly) for each consumer, which allows us to make use of

time-series price variation across the full sample period. Further details of sample construction are

given in Appendix B where we also show that the estimation sample is representative by comparing

demographics between our sample, the full TNS sample and census data.

To obtain consumer choice sets we match each consumer to stores based on the distance from

the consumer's home. We use a store dataset from the Institute for Grocery Distribution (IGD),

which includes the postcode of all supermarket outlets in Great Britain. To compute the distance

between consumers and stores we use postcode information in the consumer and store data.10

9Supermarkets appear to think about their product o�ering at a category level when determining price and
quality positions: they often de�ne management jobs by category, and thus organize product selection and and
pricing decisions this level. (For more discussion of these points, see CC(2008), Appendix 8.1, paragraphs 10-13).

10Geographic coordinates for every postcode in Great Britain are available from the Postcode Directory, produced
by the UK's O�ce for National Statistics. For each store in the IGD data we therefore have an exact location. The
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We assume that the consumer's choice set is made up of the nearest 30 stores to the consumer's

home.11 The fraction of expenditure on store visits outside the nearest 30 is 1.2%. For each store

that is chosen by a consumer the TNS survey indicates the �rm (e.g. ASDA, Tesco, etc.) and for

stores operated by the main �rms it usually records the postcode. The postcode is known for 70%

of store choices. When it is not known we assume the consumer goes to a store (in the choice set)

operated by the �rm they choose.12

We compute price indices at �rm level rather than store level. This aligns with the policy of

�rms in the period of the data, which is to set national prices that do not vary by store location.13

The existence of this pricing policy is helpful as we can use prices observed in any transaction

in a given week to compute each �rm's (national) weekly price index. We use the full sample

of transactions in the TNS data to compute the price indices. To compute the price indices we

aggregate over two hierarchical levels, following standard practice in price index construction (see

for example Chapter 2 in O�ce for National Statistics (2014)). At the lower level we compute a

price index for a series of narrowly de�ned product groups, listed in Appendix A (e.g. shampoo is

a product group in the Household category), using quantity from the transactions data to weight

the individual products. At the upper level we compute a price index for each category (e.g.

Household) using sales revenue from the transactions data to weight the lower-level price indices.

At both levels the weights are �xed over time to ensure that intertemporal changes in the price

index re�ect changes in prices rather than composition e�ects in the weights; at the upper level

weights are �xed across �rms so that di�erences between �rms in the price index are driven by

prices rather than �rm-speci�c weights, which avoids selection bias from the possibility that the

consumers selecting a particular �rm have tastes that di�er from the population. The weights are

computed separately for eight demographic types, depending on household size and occupational

class, to allow di�erent types of consumers to have di�erent price indices depending on their tastes.

The resulting prices are at a �rm-category-week-demographic type level. We normalize the prices

so that the price of ASDA in week 1 for each category and demographic type is 1. To obtain

category quantities used in estimation we aggregate expenditure to the store-category-week level

for each consumer and divide by price. Further details of price index construction are in Appendix

C.

Table 1 presents descriptive demographic and choice set statistics for the estimation sample.

Panel A reports demographic characteristics for the 2000 consumers.14 Panels B1 and B2 present

location of each consumer is known at a slightly coarser level (to preserve anonymity), namely the postal sector.
We locate each consumer at the average coordinates of the residential postcodes in their postal sector (listed in the
Postcode Directory).

11The store data include all stores operated by supermarket chains. Where a chain operates more than one very
small store in any choice set�de�ned as having a sales area of less than 10,000 square feet we use only the nearest
of these stores to the consumer; this avoids choice sets from �lling up quickly with very small stores.

12In many cases there is just one candidate store; in cases with more than one we pick one at random, using
empirical probability weights that depend on distance and store size. We use the store's predicted probability
(conditional on choice of �rm) from a reduced form multinomial logit model of store choice, estimated using the
full sample of consumers, for consumers whose store choices are known.

13�Most retailers set their prices uniformly, or mostly uniformly, across their store network [...]. Various other
facets of the retail o�er, such as promotions, may also be applied uniformly, or mostly uniformly, across a retailer's
store network� (CC (2008), para. 4.98 p. 498-501).

14We use the household income variable to allow price sensitivity to depend on demographics. The TNS data
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Table 1: Descriptive Statistics: Demographic and Choice Set Characteristics in Estimation Sample

A: Demographic Variables (2000 consumers) Mean St. Dev.

Household size 2.77 1.33

Household Weekly Income (¿) per Head 226.20 119.04

B: Choice Set Variables (180,000 consumer-week-stores: 6000 consumer-weeks×30 stores)

B1: Store Characteristics Stores Min Dist (km) Size (1000sqft) Price

Firm Type of Firm (share) Mean St. Dev. Mean St. Dev. Mean

ASDA Big Four 0.03 6.54 7.88 45.49 14.04 1.01

Morrison Big Four 0.06 6.41 6.80 33.31 8.78 1.06

Sainsbury Big Four 0.13 4.72 5.70 31.81 16.57 1.21

Tesco Big Four 0.17 3.61 4.56 31.44 22.43 1.10

M&S Premium 0.03 6.84 7.75 8.76 1.27 1.81

Waitrose Premium 0.04 6.58 6.36 18.71 8.27 1.39

Aldi Discounter 0.03 6.76 7.62 8.17 1.67 0.87

Lidl Discounter 0.02 10.31 10.17 9.83 3.01 0.78

Netto Discounter 0.02 8.76 9.14 6.70 1.76 0.76

Iceland Frozen 0.03 4.60 6.18 4.97 1.26 1.12

Others Small Chains 0.39 1.33 1.61 13.14 9.16 1.19

B2: Prices by Category Bakery Dairy Drink Dry Fr,Veg H'hold Meat Milk

Mean 1.15 1.21 1.10 1.15 1.30 1.08 1.13 1.13

St. Dev. 0.19 0.17 0.19 0.19 0.23 0.20 0.19 0.07

St. Dev. (within �rm) 0.03 0.04 0.03 0.03 0.05 0.03 0.04 0.04

Notes: The unit of observation for the statistics in Panel B is the consumer-week-store. There are 180,000
consumer-week-store observations in the choice sets: 6000 consumer-week choice sets and 30 stores per
choice set. Panel B1 presents means across 180,000 consumer-week-stores of: a �rm indicator, store size
and price (mean across categories within the store), as well as the mean across 6000 consumer-weeks of the
minimum (across 30 stores) distance to a store operated by the given �rm (omitting consumer-weeks where
the �rm is not in the choice set). In Panel B2 the price statistics are for the 180,000 consumer-week-store
price observations for each category.

statistics on the stores in consumer choice sets. The unit of observation for this part of the table

is the consumer-week-store: 2000 consumers, 3 weeks per consumer, and 30 stores per choice set,

yielding 180,000 observations. Each consumer-week has a unique choice set because of geographic

and time di�erences. Panel B1 displays store characteristics by �rm. We classify the �rms into a

number of groups. ASDA, Morrisons, Tesco and Sainsbury are traditional supermarkets and we

refer to them as the Big Four. They operate large stores that stock a wide range of products in all

categories. M&S and Waitrose have an emphasis on high quality fresh food, and we refer to these

as Premium �rms. Aldi, Lidl, Netto sell a limited range of grocery products at low prices and are

includes a rich list of discrete demographic variables but not income. The UK's Expenditure and Food Survey (EFS)
includes a variable for gross current household income (variable p352). We estimate household income by regressing
this income variable (for years 2003-2005) on other demographic variables in the ESF that map to those in the
TNS survey, namely indicator variables for the number of cars (0, 1, 2,≥ 3), adults (1, 2,≥ 3) children (0, 1, 2,≥ 3),
household size (1, 2, ...,≥ 6), geographic region in Great Britain (10 regions), social class (6 classes as described in
Appendix C), tenure of residence (dummies for whether the home is privately owned, privately rented, or public
housing, structure of residence (detached house, semi-detached/terrace, and apartment), year, sex of the Household
Reference Person (HRP), and age of the HRP (≤24, 25-34,35-44,45-54,55-64,≥ 65) We dropped the top and bottom
1% household incomes to avoid outliers. The R2 is 0.51 and the number of observations in the regression is 17, 335.
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referred to as Discounters. One �rm (Iceland) emphasizes frozen food but (like all the �rms) it sells

all eight categories. The remaining �rms (combined in the table as Others) are smaller chains that

each have a low market share (namely Co-op, Somer�eld, and a group of very minor chains). The

table reports the distance from the consumer to the nearest store of each �rm: consumers tend to

have shorter distances to �rms that have many stores. Panel B2 presents the price information at

category level. Since category prices are normalized to 1 for ASDA in period 1, a mean category

price above 1 (e.g. 1.15 for bakery) indicates that for most weeks and �rms the price is higher

than in ASDA in period 1. The within-�rm standard deviation is due to price variation over time

after controlling for �rm.

Table 2 reports descriptive statistics on shopping outcomes for the estimation sample. The

unit of observation for the table is the consumer-week: 2000 consumers and 3 weeks per consumer.

Panel A1 shows that 36% of the consumers use one store per week for all three weeks, while 17%

use multiple stores in all three weeks. The remaining 47% of consumers switch in di�erent weeks

between using one and multiple stores. When consumers use more than one store in a given week

we note two features of the data, presented in Panels A2 and A3 respectively. First, shopping

outside the top two stores by spending is minimal (Panel A2). In our model we therefore allow

consumers to visit up to two stores per week, and the observed store choices used in estimation

are the top two stores by spending. Second, within any individual category, multi-stop shoppers

concentrate expenditure in just one store (the identity of which di�ers by category): about 10%

of their expenditure within any category is allocated to the store with the lower expenditure for

that category from the consumer's top two stores (Panel A3). Across all consumers (whether one-

or multi-stop) the share of category spending in the category's second store is 4% (Panel A3).

Our model therefore makes the simplifying assumption that consumers use only one store per

category. Accordingly, observed category demands used in estimation are the purchases made in

the consumer's main store for the category from the consumer's top two stores.

Panel B shows that a substantial proportion of consumers have zero expenditure for a given

category in a given week. This may be because consumers do not wish to purchase all categories

every week or because they buy from non-supermarket sellers (e.g. doorstep deliveries are some-

times used for milk in Great Britain). In line with this our model allows for zero expenditures in

individual categories.

Panel C illustrates how multi-stop shoppers allocate their spending between �rms of di�erent

kinds. We consider the three main types of �rm introduced in Table 1�Big Four, Discounters,

and Premium. We consider the shopping choices of multi-stop shoppers that use, as their top

two stores, a Big Four store in combination with (i) a Discounter store or (ii) a Premium store.

To represent the Big Four we use ASDA and Tesco respectively. The table shows the proportion

of these shoppers that use these Big Four �rms as their main store for the category. Thus for

example 80% of Tesco-Discounter shoppers select Tesco for Bakery, 49% of the same group of

shoppers select the Discounter for Drink, and so on. A pattern emerges in which the Discounter

is strong (relative to the Big Four supermarkets) in categories where products tend to be non-

perishable (e.g. Drink and Household goods), but less strong in perishable categories (e.g. Bakery

9



Table 2: Descriptive Statistics: Shopping Outcomes in Estimation Sample

Observations: 6000 consumer-weeks (2000 consumers × 3 weeks)

A1: Use of Stores (shares sum to one) Share of consumers

One store per week for all three weeks 0.36

One store per week for two of three weeks 0.26

One store per week for one of three weeks 0.20

One store per week for none of three weeks 0.17

A2: Consumer-weeks with >1 store visits Mean St. Dev.

Expenditure share in 1st store by weekly spending (store A) 0.71 0.16

Expenditure share in 2nd store by weekly spending (store B) 0.23 0.13

A3: Share of category spending in 2nd store for category from stores (A,B) Mean St. Dev.

All consumer-weeks 0.04 0.11

Consumer-weeks with >1 store 0.10 0.15

B: Category Expenditure in 1st Store for category from stores (A,B) Expenditure (¿/wk) Zeros

Category Illustrative Products Mean St. Dev. (share)

Bakery Bread, Cakes, Desserts 3.47 3.33 0.09

Dairy Cheese, Yogurt, Butter 3.33 3.27 0.17

Drink Wine, Spirits, Lager, Cola 4.91 8.20 0.31

Dry Grocery Breakfast Cereals, Confectionery, Co�ee 5.68 5.24 0.10

Fruit & Vegetables Fruit and Vegetables (including frozen) 7.11 6.09 0.06

Household Pet Food, Detergents, Toilet Tissues 6.19 6.98 0.21

Meat Ready Meals, Cooked Meats, Fresh Beef 10.34 9.00 0.07

Milk Low Fat Fresh Milk, Organic Fresh Milk 1.17 1.29 0.30

All Categories 42.21 27.02 0.00

C: Category choices, Consumer-weeks with >1 store

Top two stores (A,B) Tesco/ASDA top store for category (1/0)

Bakery Drink H'hold Meat

Tesco & Discounter 0.80 0.51 0.71 0.66

Tesco & Premium 0.65 0.73 0.86 0.55

ASDA & Discounter 0.68 0.44 0.59 0.72

ASDA & Premium 0.60 0.80 0.89 0.59

Notes: Taylor Nelson Sofres (TNS) Superpanel survey of consumers in Great Britain, October 2002 -
September 2005. The statistics are calculated at consumer-week level (i.e. we aggregate expenditures to
the week) for the 6000 consumer-weeks (2000 consumers and 3 weeks per consumer) used in the estimation
sample. Stores A and B referred to in the table are the consumer's �rst and second stores by overall
spending in any week. In Panel B the illustrative products in each category are from TNS's list of 269
most granular product classi�cations; the full list of such products by category is shown in Appendix A. In
Panel C the (1/0) dummies take the value 1 if the consumer's top store (by expenditure) for the category
is ASDA or Tesco where the �gures displayed are averages for multi-stop shoppers whose top two stores
(by spending) are as listed the �rst column.
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and Meat). The Premium �rms have the opposite pattern: relatively strong for perishables and

relatively weak for non-perishables.

3 Utility and Demand

3.1 A Simple Multi-store Multi-category Model

We start with a simple version of the model to build intuition for the price incentives in the full

model. Suppose there are two stores A and B and each stocks three categories 1, 2 and 3.15 A

consumer has unit demand for every category, and selects a store for each one. Let the store-

category choice (A,B,A) indicate store A for 1, store B for 2 and store A for 3. There are eight

possibilities: (A,A,A), (A,A,B), . . . , (B,B,B). Let pjk denote the unit price at store j = A,B

for category k = 1, 2, 3. The consumer's sensitivity to price is α.

Suppose utility is additively separable in categories and that a unit of category k at store j

gives a gross utility µjk. A shopping cost Γ ≥ 0 is incurred if the consumer visits both stores

(two-stop shopping) and avoided if he visits one (one-stop shopping). Thus, for example, choices

(A,A,A) and (A,B,A) respectively give the following utilities net of price:

U(A,A,A) = (µA1 − αpA1) + (µA2 − αpA2) + (µA3 − αpA3) and

U(A,B,A) = (µA1 − αpA1) + (µB2 − αpB2) + (µA3 − αpA3)− Γ.

If the consumer has no shopping cost (Γ = 0) he selects the store with the highest net utility (µjk−
αpjk) for each category, independent of the store chosen for the other categories. Alternatively, if

his shopping costs are positive (Γ > 0) his category choices are interdependent, as he may give up

the bene�t of shopping around to avoid the shopping cost. This interdependence tends to generate

complementary e�ects between categories at the same store: a price increase for one category at

the store may induce the consumer to buy all categories from the other store.

Consumer tastes�characterized by store-category preferences µjk (for all j and k), price sen-

sitivity α, and shopping cost Γ�are heterogeneous in the population. Consumers of di�erent

(µ, α,Γ)-type respond to a price increase in di�erent ways, which vary in the extent of the cross-

category e�ects they imply. Consider a price increase at store A for category 1. Any consumer

that initially bought category 1 at store A, and is marginal in the sense that he stops buying it

there after the price increase, can be classi�ed into one of the following four exhaustive response

classes:

1. Initial one-stop shopper: (A,A,A)

(a) Drop store A for all categories: change to (B,B,B).

(b) Retain A but drop it for at least category 1: change to (B,A,A), (B,B,A) or (B,A,B).

15It is common in the multi-store multi-category theory literature, discussed in the introduction, to assume J = 2
and K = 2 and to de�ne an individual consumer's tastes as a point in a unit square. In this subsection we use
K = 3 because one of the consumer responses below, namely (2b), is impossible with K = 2.
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2. Initial two-stop shopper: (A,A,B) or (A,B,B) or (A,B,A).

(a) Drop store A for all categories: change to (B,B,B).

(b) Retain store A but drop it for category 1: change to (B,A,B) or (B,B,A).

Of these four responses, (1a) has the maximal cross-category e�ect: consumers in this class transfer

all three categories from the store. At the other extreme, response (2b) has no cross-category e�ect.

The response class into which a consumer falls depends on his (µ, α,Γ)-type. Consumers with very

high shopping costs Γ, for example, are likely to fall into class (1a) as they strongly prefer to use a

single store. Consumers with strong (and varying) store preferences µjk−αpjk by category, on the

other hand, are likely to fall into (1b) and (2b) as they are not willing to transfer all their category

demands away from store A even though by doing so they would avoid shopping costs.

We can now relate the model to the two main questions we study in Section 6. First, when

margins are positive, complementarity between categories has a pro-competitive e�ect if it is

internalized�as is the case in supermarket organization�and the magnitude of this e�ect depends

on the distribution of consumer preferences (e.g. it is greater the larger is the proportion of

consumers in class (1a) relative to class (2b)).

Second, we can compare the pro-competitive e�ects of consumer types that choose one-stop

and two-stop shopping respectively by comparing how much each group of shoppers punishes the

supermarket for the price increase. We have just seen that, conditional on being marginal (i.e.

responding to the price change), initial one-stop shoppers tend to have larger cross-category exter-

nalities than two-stop shoppers. This does not, however, imply that one-stop shoppers penalize the

�rm more than two-stop shoppers, because a relatively low proportion of one-stop shoppers may

be marginal: a one-stop shopper, unlike a two-stop shopper, cannot switch an individual category

(say category 1) between stores A and B without incurring shopping costs Γ, as he initially does

not use both stores. Whether one-stop shoppers penalize the �rm more than two-stop shoppers

thus depends not just on the magnitude of the cross-category externalities per marginal shopper

but also on the proportion of each shopper group that is marginal.

3.2 Full Demand Model

We now specify the full model, which generalizes the number of stores and categories and relaxes

the unit demand and additive separability assumptions for categories. We also allow shopping

costs to depend on distances to the chosen stores. At the most general level one can think of the

consumer's weekly problem as choosing how much to purchase in each category at any store.16

To make the model tractable, based on the data patterns presented in Section 2, we assume that

consumers visit no more than two stores, use only one store per category, and only stores that are

among the thirty nearest to the consumer (denoted by the set J ).17

16See Appendix H for a discussion.
17These assumptions can in principle be relaxed in our framework. A relaxation of the second assumption

would allow the consumer to select two stores (each with a nonnegative quantity) for each category. This can
be accommodated by extending the quadratic utility speci�cation to allow the number of continuous quantities
to be 2K instead of K when n(c) = 2, with extra second-order parameters that govern inter-store intra-category
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We call the one or two stores visited by a consumer his shopping choice, which we denote by c

and write as a set: if c has two stores j and j′ then c = {j, j′} and if it has one store j then c = {j}.
Let n(c) denote the number of stores in c. The set of available shopping choices C comprises all

unordered pairs and singletons from the set of available stores J . For each shopping choice the

consumer has a shopping cost Γ(c), which depends on the number n(c) of stores in c and their

locations. Shopping costs include the �nancial, time, and psychological costs involved in shopping

at the stores in c.

There are K demand categories, indexed by k, at each store. For each category the consumer

selects a store j ∈ c. The store-category choices are summarized in d, a vector that lists the store

chosen from shopping choice c for each category. As an illustration suppose K = 3, as in subsection

3.1, and c = {A,B}. Then d = (A,B,A) is an example of a store-category choice. We write Dc
for the set of possible alternatives for d given shopping choice c. For each category the consumer

makes a non-negative continuous quantity choice. The quantity choices are given by the K × 1

vector q. Let p be the full vector of store-category prices pjk and µ the full vector of store-category

tastes µjk.

The consumer's utility from shopping choice c, store-category choice d, and quantity q, at prices

p, is given by

U(c, d, q, p) = u(q, d)− αp′dq − Γ(c) + εc (1)

= (µd − αpd)′q − 0.5q′Λq − Γ(c) + εc (2)

where u(q, d) = µ′dq − 0.5q′Λq. The K × 1 vectors µd and pd collect the tastes and prices (respec-

tively) that are relevant for each category given store-category choice d. Λ is a symmetric K ×K
matrix of parameters, common across consumers.18 The �rst two terms in (1) are variable utility

(in terms of q): u(q, d) is gross utility from the categories bought, and p′dq is the consumer's total

payment for them. The price sensitivity scalar α corresponds to the marginal utility of expenditure

on non-supermarket consumption (in which utility (1) is quasi-linear).

The full model has two sources of product di�erentiation. First, as in the simple model, there

is di�erentiation between stores at category level, as the consumer views stores di�erently for

any category (captured in the store-category taste vector µ). Second, there is di�erentiation across

shopping choices c at the level of �xed utility, captured in Γ(c), which now (unlike the simple model)

includes spatial variation in store locations relative to the consumer. A consumer's (µ, α,Γ)-type

fully characterizes his tastes up to εc, a type-1 Extreme Value (EV) term which is iid across store

choices and which captures any residual unobserved utility that arises from the shopping choice.

Tastes (µ, α,Γ) vary in the population of consumers; we specify how in Section 3.4.

The consumer maximizes U(c, d, q, p) by selecting c, d, and q. The shopping choice c that gives

substitution. This can also be accommodated in the econometric framework in Section 4. Given that category
spending in the category's second store is low (see Section 2) we decided not to generalize in this way.

18Unlike many forms (e.g. AIDS), the quadratic is suitable for our purposes as it can naturally accommodate
zero demands at category level. Quadratic utility demand is estimated empirically in Wales and Woodland (1982).
We assume that the conditions that allow aggregation to category level apply (see Deaton and Muellbauer (1980)
for a discussion).
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the highest total utility net of shopping costs is obtained by solving

max
c∈C

[w(c, p)− Γ(c) + εc] (3)

where

w(c, p) = max
d∈Dc

max
q∈RK≥0

[(µd − αpd)′q − 0.5q′Λq] (4)

is the consumer's indirect variable utility function (i.e. the maximum variable utility from a choice

of (d, q) given shopping choice c and prices p.

The outer maximization problem in (4) determines the vector d of store-category choices. Note

that for any category the consumer always does best to select the store j ∈ c with higher linear

term in the quadratic equation (2) so that we can write the optimal store-category choices given

shopping choice c and prices p as19

d(c, p) = [d1(c, p), . . . , dK(c, p)]

= [arg max
j∈c

(µj1 − αpj1), . . . , arg max
j∈c

(µjK − αpjK)]. (5)

The inner nested maximization problem in (4) implies a system of K category demands conditional

on store-category choice vector d

q(d, p) = arg max
q∈RK≥0

[(µd − αpd)′q − 0.5q′Λq] (6)

where the consumer may choose a zero demand for any k. We write the k-the element of q(d, p)

as qk(d, p).

Thus indirect variable utility (4) is w(c, p) = (µd(c,p)−αpd(c,p))
′q(c, p)−0.5q(c, p)′Λq(c, p) where

q(c, p) = q(d(c, p), p). Expressions (3), (5), and (6) give our model's predictions of consumer

behavior.

3.3 Cross-Category E�ects at Store Level

In this subsection we return to the discussion in 3.1 of how consumers respond to a price change.

To do this we aggregate across shopping choices (c) to present the consumer's behavior at store

level (j), which is the level most relevant for thinking about a store's pricing incentives. (We note

that the discussion in this subsection is useful for understanding the pricing analysis of Section 6

but does not develop anything that enters our estimator.)

First consider continuous demand responses conditional on store-category choice d. If d is such

that the consumer chooses store j for category k, then the solution to the problem in (6) implies

qk(d, p) = max

[
1

Λkk

(µjk − αpjk − Σk′ 6=kΛkk′qk′(d, p)) , 0

]
. (7)

19Optimal d is invariant in the level of q. This follows by the absence of store-speci�c e�ects in Λ.
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Equation (7) illustrates how category demands respond to price (holding d constant). The diag-

onal second-order quadratic terms, i.e. Λkk for any k, scale demand and (since α is �xed across

categories) allow own-price e�ects to vary across categories.20 The o�-diagonal second-order terms

Λkk′ determine cross-category e�ects between k and k′ (a positive value indicates substitutes, a

negative value complements).

We now consider the consumer's demand for category k at the level of store j. We aggregate

over the set Cj of shopping choices that include store j:

Qjk(p) =
∑
c∈Cj

{qk(d(c, p), p)× 1[j = dk(c, p)]× 1[c = arg max(w(c, p)− Γ(c) + εc)]} . (8)

This expression does not condition on the chosen c or d and hence allows both to change in response

to a price change. The right hand side of (8) therefore allows us to identify three distinct types of

consumer response that follow a marginal increase in store j's category k price pjk: (i) an intensive

margin change in the consumer's continuous conditional demand qk holding store-category choice

d constant; (ii) a change in the store-category choice dk for category k, holding shopping choice

c constant; and (iii) a change in shopping choice c. In the simple example in 3.1 two of these

responses were present: (ii) and (iii). Response (i) is now added because we allow for continuous

demands. As was the case in the simple example in 3.1 complementary cross-category pricing

e�ects are generated at store j via demand response (iii): a shopper may switch store for all

products because the increase in the price of product k. In the full model there may be further

cross-category e�ects via response (i) which can be of either sign depending on the o�-diagonal

second-order quadratic utility parameters Λkk′ in equation (7).

3.4 Speci�cation of Consumer Type Heterogeneity

In this subsection we specify how tastes (µ, α,Γ) vary across consumers i and weeks t. We now

introduce consumer and time subscripts.

We begin with consumer i's taste at time t at store j for category k which is written in terms

of observed and unobserved taste-shifters:

µitjk = ξfk + β0k

(
β1hzi + β2szj + βTTt + σ1ν

µ
i + σ2ν

µ
it + σ3ν

µ
ik + σ4ν

µ
ijk

)
. (9)

The �rm category e�ect ξfk is common to all consumers and may vary by �rm (f) and category (k)

because di�erent �rms do not o�er the same branded products, and because many products (e.g.

private labels) are �rm-speci�c (see e.g. Corstjens and Lal (2000)). Variation in �rm-category

strengths was suggested by the data presented in Section 2.21

20The speci�cation thus allows the demand elasticity (conditional on store-category choice d) to vary across
categories, as the slope and intercept both have a distinct parameter for each category.

21The main �rms are listed in Table 1 in Section 2. To economize on ξ parameters we aggregate two groups of
smaller �rms: the �Discounters� (Aldi, Lidl, Netto), which have a similar quality position across categories, and the
Others, which are smaller chains (namely Co-op, Somer�eld, and minor chains). This results in 9 �rms (or �rm
groups) that have a distinct ξ for each k: ASDA, Morrison, Sainsbury, Tesco, M&S, Waitrose, Iceland, Discounters,
and Others.
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The remainder of µitjk, i.e. β0k(β1hzi+ . . .), allows the utility for consumer i and store j at time

t to deviate from the �rm-category mean ξfk. In the interest of parsimony the parameters (but not

all of the random terms) in this component are common across categories, up to a scaling term β0k

which allows the size of the e�ect to vary across categories (to normalize we set β0k = 1 for k = K).

The observable variables are: household size hzi, which allows continuous demand to be greater for

larger households, the log of the store's �oor space szj which allows larger stores to o�er greater

quality (e.g. because of a better selection of products), and quarter and year dummies Tt, which

allow for seasonal and year e�ects.22 The remaining terms in (9) are four random taste components

(each iid N(0, 1)): a consumer e�ect νµi , a consumer-time e�ect νµit, a category-speci�c e�ect νµik,

and a store-category e�ect νµijk. These are scaled by parameters (σ1, . . . , σ4). The last of these intro-

duces (horizontal) product di�erentiation at store-category level, allowing each consumer to view

stores di�erently for any category. Thus store-category di�erentiation is partly vertical, re�ecting

di�erences in the average quality of stores for any category, and partly horizontal, re�ecting vari-

ation in individual consumer preferences. With the exception of νµit the unobserved heterogeneity

through the ν-terms in utility are constant across time, capturing permanent unobserved e�ects.

The price coe�cient αi is speci�ed to allow heterogeneity in price sensitivity

αi = (α1 + α2/ (yi/hzi)) ν
α
i (10)

where yi is household i's income, hzi is household size. ναi is a Rayleigh(1) random shock which

introduces heterogeneity in a parsimonious way while ensuring positive price sensitivity αi > 0 for

all i, as long as α1 and α2 are positive.

Finally, shopping costs are given by

Γit(c) =
(
γ11 + γ12ν

Γ
i1

)
1[n(c)=2] +

(
γ21 + γ22ν

Γ
i2

)
distic (11)

where n(c) is the number of stores in c and distic = 2
∑

j∈c distij is the total distance of traveling

to each store and back. νΓ
i1 and ν

Γ
i2 are each iid N(0, 1).

We note that our model allows for correlation in unobserved utility between alternative shopping

choices c with stores in common through the νijk terms that enter (9), as well as through the

unobserved components of the shopping cost term (11). The idiosyncratic term (εitc) in equation

(2) is iid for each (i, t, c) combination and captures any residual unobserved utility that arises from

the shopping choice.23

22The use of a �rm dummy with a store size variable to pick up the quality on o�er at a store is consistent with
the following quotation from CC(2008): �Product range for many retailers is also, in large part, uniform across
stores with variations for the most part being a function of store size [...]� (para. 6.33).

23The scale of the parameters is determined by normalizing the parameter on the random shopping cost dis-
turbance ε to unity so that it is a Type-1 Extreme Value draw. Note from (7) that conditional demands
are homogeneous of degree zero in parameters (µ, α,Λ), i.e., writing demand as a function of parameters,
q(d, p;κµ∗, κα∗, κΛ∗) = q(d, p;µ∗, α∗,Λ∗), where (µ∗, α∗,Λ∗) represents some arbitrary value. This does not how-
ever allow another normalization because variable utility (4) is homogeneous of degree one in the same parameters,
i.e. w(c, p;κµ∗, κα∗, κΛ∗) = κw(c, p;µ∗, α∗,Λ∗), so that their scale κ determines the relative importance of variable
utility as compared to shopping costs in the consumer shopping choice problem (3). Since we have not normalized
(µ, α,Λ) we do not need a further parameter to multiply w(c, p) in (3).
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4 Estimation and Identi�cation

We denote the full set of parameters to be estimated θ = (θw, γ) where the parameters are in two

groups: those in variable utility θw = (β, ξ, σ, α,Λ), and those in shopping costs γ. Observables and

taste shocks can be similarly grouped: let xwitc = (xwitj)j∈c and ν
w
itc = (νµi , ν

µ
it, ν

µ
ik, ν

µ
ijk, ν

α
i )j∈c,k=1,..,K be

observables (including prices) and taste shocks in variable utility, and let (xΓ
itc,ν

Γ
i ) be the observables

and taste draws (excluding εitc) entering �xed shopping costs.

We make use of two core demand expressions in estimation. These are based on the expressions

for w(c, p), d(c, p) and q(d, p) given in (4), (5) and (6), now with i and t subscripts added to indicate

dependence on consumers and time as described in 3.4. The �rst is the quantity of category k that

consumer i in week t demands in store j conditional on shopping choice c:

qcjk(θ
w, xwitc, ν

w
itc) = qitk(dit(c, pt), pt)× 1(j = ditk(c, pt)). (12)

Since this conditions on the shopping choice the arguments (θw, xwitc, ν
w
itc) of this function relate

to variable utility but not shopping costs. The second demand expression is the probability that

consumer i in week t chooses shopping choice c:

Pc(θ, xit, νit) =
exp[wit(c, pt)− Γit(c)]∑

c′∈Cit exp[wit(c′, pt)− Γit(c′)]
. (13)

where the multinomial logit form on the right hand side is implied by the Type-1 EV assumption.

The arguments (θ, xit, νit) of this function relate to both variable utility and shopping costs: we

de�ne xit = (xwitc, x
Γ
itc)c∈Cit and νit = [(νwict)c∈Cit , ν

Γ
i ].

Two issues arise when estimating the type of demand model proposed here. First, we need

to deal with the presence of corner solutions in continuous demand, where a consumer does not

buy a given category. Second, we cannot estimate the quantity choice relationship (12) separately

without taking store choice into account due to the fact that consumers self-select into which store

to visit and a common set of parameters drives both store and quantity choice. We deal with the

�rst issue by explicitly modeling the consumer's optimization subject to non-negativity constraints.

We address the second issue by jointly modeling and estimating quantity and shopping choice.

We use a generalized method of moments (GMM) approach. In subsection 4.1 we discuss

the moments that match predicted and observed category demands, and predicted and observed

shopping choices, within each period. These moments are of particular use for identifying the coef-

�cients that are common across consumers. To help identify the spread parameters (for unobserved

heterogeneity) we add cross-period and cross-category moments, which use the multi-period, multi-

category aspect of the data. These moments are discussed in subsections 4.2 and 4.3. Subsection

4.4 details the estimator, which combines the three types of moments.
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4.1 Within-period moment conditions

Let Q∗itcjk, D
∗
itcjk and P

∗
itc be the observed counterparts of the following quantities

Qcjk(θ, xit) =

∫
qcjk(θ

w, xwitc, ν
w
itc)Pc(θ, xit, νit)dF (νit) (14)

Dcjk(θ, xit) =

∫
1[qcjk(θ

w, xwitc, ν
w
itc) > 0]Pc(θ, xit, νit)dF (νit) (15)

Pc(θ, xit) =

∫
Pc(θ, xit, νit)dF (νit) (16)

where (14) are continuous demands for each category, (15) are purchase incidence indicators for

each category, and (16) are shopping choices. F denotes the distribution of νit. None of these

predictions condition on the observed shopping choice. We assume that the following conditions

for prediction errors hold at the true parameter values:

E
[
Q∗itcjk −Qcjk(θ, xit)|ZQ

itcjk

]
= 0, for k = 1, . . . , K, (17)

E
[
D∗itcjk −Dcjk(θ, xit)|ZD

itcjk

]
= 0, for k = 1, . . . , K, (18)

E
[
P ∗itc − Pc(θ, xit)|ZP

itc

]
= 0, (19)

where the vectors ZQ
itcjk, Z

D
itcjk and Z

P
itc are functions of the explanatory variables. The empirical

moments based on (17)-(19) are:

g
(1)
i (θ) =



∑T
t=1

∑
c∈Cit

∑
j∈c Z

Q
itcj1(Q∗itcj1 −Qcj1(θ, xit))

. . .∑T
t=1

∑
c∈Cit

∑
j∈c Z

Q
itcjK(Q∗itcjK −QcjK(θ, xit))∑T

t=1

∑
c∈Cit

∑
j∈c Z

D
itcj1(D∗itcj1 −Dcj1(θ, xit))

. . .∑T
t=1

∑
c∈Cit

∑
j∈c Z

D
itcjK(D∗itcjK −DcjK(θ, xit))∑T

t=1

∑
c∈Cit Z

P
itc(P

∗
itc − Pc(θ, xit))


. (20)

Except where otherwise stated the subscript t refers to the tth time period (week) in the estimation

sample for consumer i. As noted in Section 2 we draw three weeks at quarterly intervals for each

consumer (so that T=3) where the weeks di�er across consumers.

We now discuss the instruments used in ZP
itc, Z

Q
itcjk and ZD

itcjk and how they identify the pa-

rameters. We �rst discuss the identi�cation of parameters (ξ, β) that enter the store-category

taste e�ects µ. The instrument vectors ZQ
itcjk and Z

D
itcjk contain log of store size, household size,

eight �rm dummies and a constant. The moment conditions involving these variables are useful

for identifying the parameters β1, β2 and the �rm-category �xed e�ects ξfk, respectively. Since

these moment conditions are category speci�c, they also contribute to the identi�cation of the

category-speci�c scaling terms β0k (normalized to one for k = K). ZQ
itcjk also includes quarter and

year time dummies, which help to identify βT .

Next we discuss the matrix of second-order parameters Λ in quadratic utility. To identify these
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parameters the vectors ZQ
itcjk and Z

D
itcjk contain the price of category k at store j and a price for

each of the other categories k′ with which k has an interaction term Λkk′ . (When n(c) = 1 we

use the price of k′ in store j and when n(c) = 2 we use the average price of k′ in the two stores

in c). We assume variation in prices is exogenous after controlling for unobserved demand-side

e�ects through time dummies and �rm-category �xed e�ects. In Section 6 we check that our

results are robust to replacing prices with a price instrument based on cost-shifters. Consider �rst

the identi�cation of the same-category (diagonal) terms in Λ which are written Λkk. As shown

in equation (7) 1/Λkk scales the demand for category k (conditional on store-category choice).

Since the store-category taste e�ects µ in that equation are scaled by a category-speci�c term β0k,

while the price coe�cient α is not, Λkk determines the category-speci�c price e�ect (conditional on

store-category choice) for any given α. (We turn to the identi�cation of α below). Orthogonality

between the price of k and the prediction error in the quantity or purchase indicator of k therefore

identi�es the Λkk parameter for each k.

Now consider the identi�cation of the cross-category terms Λkk′ . Here the price of k′ (which,

as mentioned above, is also included in ZQ
itcjk and ZD

itcjk) is useful. Gentzkow (2007) discusses

the challenge of separately identifying correlation in tastes and cross-category e�ects (such as

complementarity and substitutability) that arise from cross-category terms in utility. For instance,

observing that consumers tend to demand either a lot of both k and k′ or little of both is consistent

with complementarity as well as correlation in tastes. A shock to the price of k′ is a natural

experiment that allows us to distinguish between these two possibilities: if correlation in demand

for k and k′ is due entirely to correlation in unobservable tastes, the price shock to k′ should have

no e�ect on the demand for k (since k′ is in this case excluded from the utility of k), but if there

is complementarity the price shock to k′ will reduce demand for both k′ and k.

Now consider the price coe�cient α. As we have just noted the speci�cation in (7) implies that

Λkk parameters are free to adjust to generate any category-speci�c price response (conditional on

store-category choice) for any given value of α. This does not imply that we can normalize variable

utility by �xing α. While this would leave conditional demands una�ected, it would change the

scale of the continuous part of utility, (µ − αp)q − 0.5q′Λq, relative to shopping costs, Γ (see the

discussion in footnote 23). Of the two parameters in α, the �rst one, α1, determines the e�ect of

price on shopping choice c. Therefore, it is identi�ed by the changes in shopping choice associated

with variation in the price levels across shopping choices c. The shopping choice moments in (19)

are useful here. Concretely, we include in ZP
itc the average value of the price at each shopping choice

c (a simple average across store-category prices for stores j ∈ c). The second price parameter, α2,

determines the e�ect of per-capita household income on price responses. To identify this parameter,

ZP
itc contains the average price in c divided by per-capita household income of consumer i.

Comparing the two main parameters that determine the overall price response, Λkk is identi�ed

by observing how much less consumers buy of k conditional on store choice when its price changes

(using continuous-choice moments (17)), whereas α1 is identi�ed by observing how much less likely

consumers are to visit a store when its prices change (using discrete-choice moments (19)).

Finally, we identify the shopping cost parameters (γ11, γ21) using the discrete-choice moments in
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(19). ZP
itc contains the observable variables in the shopping cost term (11): a dummy for whether c

is a two-store shopping choice, and the total distance of traveling to each store and back. To further

help with identi�cation of shopping costs we also include distance squared (distitc)
2 and interaction

of distance and the dummy for whether c is a two-store choice. The category instruments ZQ
itcjk

and ZD
itcjk also include a dummy for whether c is a two-store choice. A summary of the instruments

in ZP
itc, Z

Q
itcjk and Z

D
itcjk is provided in Appendix D.

4.2 Cross-period moment conditions

We use the panel aspect of the data to identify the spread parameters on taste shocks that are

constant across time. For a given draw of the vector νit, a consumer's overall spending, category-

speci�c quantities, usage incidence of a given store j for category k, one-stop shopping, and total

distance traveled are de�ned as follows

r(θ, νit, xit) = Σc∈CitΣj∈cΣ
K
k=1 [ptjkqcjk(θ

w, xwitc, ν
w
itc)]Pc(θ, xit, νit) (21)

qk(θ, νit, xit) = Σc∈CitΣj∈cqcjk(θ
w, xwitc, ν

w
itc)Pc(θ, xit, νit) (22)

djk(θ, νit, xit) = Σc∈Citj1[qcjk(θ
w, xwitc, ν

w
itc) > 0]Pc(θ, xit, νit) (23)

os(θ, νit, xit) = Σc∈Cit1[n(c)=1]Pc(θ, xit, νit) (24)

dist(θ, νit, xit) = Σc∈CitdisticPc(θ, xit, νit) (25)

where Citj in (23) is the set of shopping choices that include store j for consumer i in period t and

ptjk is the price of category k at store j and time t. Let upper case letters indicate the expectation

of the product of the respective quantities in adjacent time periods, e.g. for (21) we write

Rit(θ) =

∫
r(θ, νit, xit)r(θ, νi(t−1), xi(t−1))dF (νit, νi(t−1)) (26)

where we now use F for the joint distribution of (νit, νi(t−1)). The corresponding observed quantities

are denoted R∗it etc. We assume that the following conditions hold at the true parameter values:

E
[
R∗it −Rit(θ)

]
= 0 (27)

E
[
Q∗itk −Qitk(θ)

]
= 0 (28)

E
[
D∗itjk −Ditjk(θ)

]
= 0 (29)

E
[
OS∗it −OSit(θ)

]
= 0 (30)

E
[
DIST ∗it −DISTit(θ)

]
= 0. (31)

These moment conditions are similar to those on the covariance between the characteristics of a

consumer's �rst- and second-choice vehicles in Berry, Levinsohn and Pakes (2004), which are used

to identify the random coe�cients on vehicle characteristics. In our case distance etc. play the role

of vehicle characteristics, and adjacent time periods that of �rst and second choice (see Ackerberg

et al. (2007) for a discussion).
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Consider �rst condition (27), which concerns the covariance between overall spending across

adjacent time periods. This condition identi�es the variance σ1 of the shock ν
µ
i that is consumer-

speci�c but �xed across time periods (t), categories (k) and stores (j). A large value of σ1 implies

that some consumers will tend to spend more in all time periods, whereas others will tend to spend

less in all time periods. Therefore, σ1 is identi�ed by matching the predicted covariance (across

adjacent time periods) in overall spending to that observed in the data.

In the same way, the spread parameters on the category-speci�c (σ3) and store-category-speci�c

(σ4) random shocks are identi�ed by matching the covariance between time periods of (non-store-

speci�c) category quantities and of store-category purchase indicators, respectively, as required by

(28) and (29). Concretely, σ3 is identi�ed by the correlation in quantity purchased of k across

periods and σ4 by the extent to which consumers tend to use the same store for k across time

periods. Finally, the spread parameters on unobserved heterogeneity in shopping cost (γ12) and

distance traveled (γ22) are identi�ed by matching the observed and predicted covariances (between

adjacent time periods) of one-stop shopping and distance traveled, respectively. The empirical

moments are

g
(2)
i (θ) =



∑T
t=2(R∗it −Rit(θ))∑T
t=2

∑K
k=1(Q∗itk −Qitk(θ))∑T

t=2

∑
j∈Jit,(t−1)

∑K
k=1(D∗itjk −Ditjk(θ))∑T

t=2(OS∗it −OSit(θ))∑T
t=2(DIST ∗it −DISTit(θ))

 (32)

where Jit,(t−1) = Jit∩J i(t−1) is the set of stores that are in i's choice set in both period t and

period t− 1.

4.3 Cross-category moment conditions

We use cross-category moment conditions to distinguish between the time-invariant shock (with

spread parameter σ1) and the time-varying shock (with spread parameter σ2). Both types of shock

impact all categories. However, the time-varying shock generates correlation between spending

on k and k′ in the same period, but�contrary to the time-invariant shock�not between k in

one period and k′ in another period (see Gentzkow (2007) for a related argument). We therefore

use separate moment conditions for within-period and cross-period covariances in spending across

categories. Let consumer i's spending in week t for category k be written

Ritk = Σc∈CitΣj∈cptjkqcjk(θ
w, xwitc, ν

w
itc)Pc(θ, xit, νit)
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and de�ne the following average covariances between spending on k and k′ within (�in�) and across

(�cr�) adjacent time periods:

Rin
itkk′(θ) =

∫
1

2
(RitkRitk′ +Ri(t−1)kRi(t−1)k′) dF (νit, νi(t−1)) (33)

Rcr
itkk′(θ) =

∫
1

2
(RitkRi(t−1)k′ +Ri(t−1)kRitk′) dF (νit, νi(t−1)). (34)

We assume that at the true parameter values

E[Rin∗
itkk′ −Rin

itkk′(θ)] = 0, for k < k′ (35)

E[Rcr∗
itkk′ −Rcr

itkk′(θ)] = 0, for k < k′, (36)

and use these assumptions to form the following empirical moments:

g
(3)
i (θ) =

[ ∑T
t=2

∑K
k=1

∑K
k′=k+1(Rin∗

itkk′ −Rin
itkk′(θ))∑T

t=2

∑K
k=1

∑K
k′=k+1(Rcr∗

itkk′ −Rcr
itkk′(θ))

]
. (37)

4.4 Estimation

To estimate the parameters we write g(θ) = N−1
∑N

i=1 gi(θ), where gi(θ) vertically stacks the three

sets of moments g
(1)
i (θ), g

(2)
i (θ), and g

(3)
i (θ). The GMM estimator is

θ̂ = arg min
θ
g(θ)′W−1g(θ) (38)

where the weighting matrix is the inverse of the covariance matrix W = N−1
∑N

i=1 gi(θ̃)gi(θ̃)
′ and

θ̃ are �rst-stage estimates.24

5 Estimates and Model Fit

In this section we discuss parameter estimates and model �t. We present estimates for two speci�-

cations in Table 3. As a starting point Model 1 assumes independence between product categories

in variable utility, so that the cross-category terms Λkk′ are set to zero. Model 2 relaxes this

assumption.

Panel A shows the parameters that enter the store-category taste e�ects µitjk as speci�ed in

equation (9). The e�ect of household and store size have intuitive signs: β1 and β2 are both positive.

The spread parameters (σ1, . . . ,σ4) are precisely estimated. Panel B reports the parameters in the

matrix Λ of second-order terms in quadratic utility. The diagonal parameters Λkk are all positive

24We �rst obtain preliminary estimates by using only the moments g
(1)
i , with the inverse of the covariance of the

instruments as weighting matrix. Then (N−1
∑N
i=1 gig

′
i)
−1 evaluated at these preliminary estimates is the weighting

matrix used to obtain the �rst-stage estimates θ̃. We use a simple frequency simulator with one draw per observation
and a standard estimator for the asymptotic variance of θ̂ (see Wooldridge (2001), p. 527, eq. 14.14). To correct
for simulation noise we multiply this variance by a factor of 1 + 1

r = 2, where r = 1 is the number of simulation
draws per observation (see McFadden (1989) p. 1006).
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Table 3: Estimated Parameters

Model 1 Model 2

Estimate Std. Error Estimate Std. Error

A: Store-category Taste E�ects

Bakery β01 2.374 0.074 2.085 0.037

Dairy β02 1.643 0.032 1.418 0.106

Drink β03 0.943 0.016 1.096 0.013

Dry Grocery β04 2.063 0.067 1.901 0.105

Fruit & vegetable β05 2.968 0.100 2.665 0.192

Household goods β06 1.252 0.022 1.115 0.028

Meat β07 2.733 0.128 2.309 0.135

ln(�oor space) β1 0.425 0.005 0.456 0.006

Household size β2 0.383 0.008 0.477 0.024

Year & Quarter e�ects Yes Yes

Scale of Taste Draws (ν):

Fixed across category/store σ1 0.197 0.024 0.208 0.012

Time-varying σ2 0.790 0.019 0.920 0.046

Category speci�c σ3 0.748 0.017 0.677 0.023

Store/category speci�c σ4 1.033 0.019 1.129 0.015

Firm-Category e�ects ξfk Yes Yes

B: Second-Order Quadratic Parameters Λkk′

Bakery Λ11 22.209 1.127 19.852 2.090

Dairy Λ22 12.308 0.383 11.239 1.404

Drink Λ33 3.261 0.173 3.802 0.192

Dry Grocery Λ44 11.332 0.582 10.536 0.916

Fruit & vegetable Λ55 16.113 0.739 15.952 2.138

Household goods Λ66 4.387 0.163 4.360 0.219

Meat Λ77 9.882 0.613 8.901 0.883

Milk Λ88 14.081 0.330 14.062 1.257

Drink - Dry Grocery Λ57 � � 1.742 0.163

Milk - Dairy Λ18 � � 1.368 0.555

Bakery - Fruit & Veg Λ23 � � 0.269 0.890

Bakery-Meat Λ23 � � 0.572 0.363

Fruit & Veg - Meat Λ23 � � 0.076 0.926

C: Price Parameters

Constant α1 1.936 0.047 1.839 0.037

Income Per Capita α2 0.183 0.030 0.329 0.037

D: Shopping Costs

Shopping Cost γ11 9.665 1.385 7.528 0.917

Standard Deviation γ12 14.375 2.553 10.269 1.657

Distance Cost γ21 0.430 0.026 0.440 0.027

Standard Deviation γ22 0.396 0.030 0.394 0.028

Notes: Parameters are estimated by GMM using 6000 consumer-week observations. Standard
errors are corrected for simulation noise as detailed in Section 4. Year, quarter, and �rm-category
�xed e�ects are not reported.
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Table 4: In-Sample and Out-of-Sample Fit

In-Sample Out-of-Sample

Quantity Shoppers Quantity Shoppers

A: Correlation between predicted & observed demands

ρ(Qfk, Q
∗
fk),ρ(Dfk, D

∗
fk) 0.994 0.994 0.986 0.991

B: Mean absolute prediction errors

B1: Firm share of category demand (all �rms and categories)

|sfk − s∗fk| 0.008 0.008 0.011 0.009

B2: 1-stop shopper share of category demand (all categories)

|s1ss,k − s∗1ss,k| 0.004 0.020 0.007 0.028

C: Firm-Level Demand Market shares of Firms

In-Sample Out-of-Sample

Revenues Shoppers Revenues Shoppers

Pred Obs Pred Obs Pred Obs Pred Obs

ASDA 0.209 0.214 0.180 0.170 0.204 0.230 0.177 0.176

Morrisons 0.128 0.113 0.115 0.096 0.134 0.111 0.117 0.092

Sainsbury 0.159 0.153 0.127 0.127 0.157 0.152 0.128 0.123

Tesco 0.327 0.329 0.266 0.256 0.315 0.317 0.256 0.255

M&S 0.005 0.011 0.009 0.026 0.007 0.012 0.010 0.029

Waitrose 0.021 0.016 0.019 0.020 0.017 0.018 0.017 0.021

Iceland 0.008 0.015 0.026 0.036 0.012 0.017 0.030 0.035

Discounter 0.025 0.029 0.052 0.055 0.031 0.028 0.056 0.053

Other 0.118 0.120 0.207 0.214 0.123 0.115 0.210 0.216

Notes: In-sample predictions use the estimation sample of 6000 consumer-weeks (and the taste draws) used in
estimation. Out-of-sample statistics use a new sample of 6000 consumer-weeks and new taste draws. Panel A:
Correlation coe�cients are for number of �rm-category shoppers Dfk and quantities Qfk. Correlation statistics
are for the 72 �rm-category predictions. Panel B: Mean absolute prediction errors are given by |s− s∗| where s is
predicted and s∗ is observed market shares as de�ned in text. B1 uses 72 �rm-category market shares while B2
uses 8 category shares (the proportion of 1-stop shoppers in category demand). Panel C: All columns sum to 1.

so that own-price e�ects are negative. The o�-diagonal parameters Λkk′ (in Model 2) are also

positive, which implies that categories are intrinsic substitutes (i.e. substitutes in terms of the

variable utility function), but the estimated parameters are small and insigni�cant for three of the

�ve parameters. In the interest of parsimony we estimate only the interaction parameters that

we believed a priori to be the most important. (In Section 6.7 we discuss results from a model

with alternative interactions and we �nd that our main results are robust to this alternative). The

parameters in the price sensitivity coe�cient (10), reported in Panel C, are of the expected sign:

α1 and α2 are positive so that consumers prefer lower prices and price sensitivity is decreasing in

per capita household income. Finally, Panel D reports the parameters γ that enter the consumer's

shopping costs Γ(c). The mean and spread parameters for both shopping cost variables are precisely

estimated.

Model 1 is a restricted version of Model 2, in which the �ve o�-diagonal elements of Λ are all

set to zero. We reject this restriction at a signi�cance level of less than 1%. (The χ2
5-distributed

GMM distance statistic comparing Model 1 and Model 2 is 19.2). We use Model 2 as the baseline

model for the results in Section 6. In the rest of this section we discuss the �t of this model.
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Figure 1: Predicted and Observed Category Market Shares (in terms of Shoppers)

Notes: This �gure shows observed (+) and predicted (o) market shares by category in terms of shoppers using the
6000 consumer-weeks in the estimation sample (and their taste draws).

The model generates choice outcomes at three levels: continuous and discrete demands at

store-category level and a discrete choice of store(s) at the shopping choice level. In the rest of

this section we check the �t of the model to ensure it is �exible enough to match these choice

predictions accurately. For example �rm-speci�c taste parameters appear only in variable utility

(entering as �rm-category e�ects ξfk) and they serve the joint purpose of �tting (continuous and

discrete) category demands for each �rm, and discrete shopping choices that include stores of

each �rm, so it is informative to check whether the model �ts the data at these di�erent levels.

Along with the in-sample �t on the estimation sample of 6000 consumer-weeks, we consider the

out-of-sample �t on a validation sample of 6000 consumer-weeks (with new random taste draws).

We begin at the category level. To check the �t of both demand intensity and demand incidence

we consider a continuous and a discrete measure of category demand. The continuous prediction

at the �rm category level, given estimated parameters θ̂, is the total quantity of category k sold

by the �rm, i.e.

Qfk(p) = ΣN
i=1ΣT

t=1Σj∈JfΣc∈CitjQcjk(θ̂, xit) (39)

where Qcjk(θ̂, xit) is i's category demand at store j in shopping choice c de�ned in (14). The

innermost sum is over the set Citj of shopping choices c that include store j. Jf is the set of stores
owned by �rm f . The discrete demand measure, which we refer to as the number of shoppers, is

the total number of consumers who buy a positive quantity of category k from �rm f , i.e.

Dfk(p) = ΣN
i=1ΣT

t=1Σj∈JfΣc∈CitjDcjk(θ̂, xit) (40)

where Dcjk(θ̂, xit) is the probability consumer i buys a positive quantity of k in store j in shopping

choice c, de�ned in (15).

Panel A of Table 4 presents correlation coe�cients which show that the predicted and observed
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Table 5: Observed and Predicted Market Shares by Firm Pair

ASDA Morr Sains Tesco M&S Wait Icel Disc Other

ASDA Pred 0.144 0.011 0.011 0.024 0.002 0.001 0.004 0.008 0.025

Obs 0.131 0.012 0.012 0.022 0.008 0.001 0.007 0.011 0.029

Morrisons Pred 0.087 0.008 0.017 0.001 0.001 0.002 0.005 0.016

Obs 0.073 0.004 0.012 0.001 0.001 0.002 0.009 0.018

Sainsbury Pred 0.098 0.023 0.001 0.002 0.001 0.004 0.014

Obs 0.088 0.027 0.008 0.004 0.005 0.005 0.021

Tesco Pred 0.209 0.002 0.005 0.006 0.010 0.045

Obs 0.206 0.008 0.006 0.012 0.013 0.045

M&S Pred 0.004 0.000 0.000 0.000 0.001

Obs 0.004 0.002 0.001 0.001 0.004

Waitrose Pred 0.011 0.000 0.000 0.003

Obs 0.009 0.001 0.001 0.003

Iceland Pred 0.013 0.001 0.004

Obs 0.008 0.004 0.011

Discounters Pred 0.029 0.008

Obs 0.020 0.014

Other Pred 0.149

Obs 0.148

Notes: Predicted and observed market shares (in terms of shoppers) for each �rm pair. The diagonal
shows the proportion of consumers using the indicated �rm only. Predictions and observations are for the
6000 consumer-weeks (and taste draws) used in estimation.

�rm-category demands from the model are highly correlated. This is also true for the out-of-sample

predictions. A high correlation is found both for the discrete and the continuous demand measures.

Panel B of Table 4 checks how close the observed and predicted demands are to each other. In

B1 we consider how well the model predicts each �rm f 's share of category k, written sfk, in terms

of quantities (Qfk(p)/Σf ′Qf ′k(p)) and shoppers (Dfk(p)/Σf ′Df ′k(p)). The absolute prediction error

is the magnitude of the di�erence between the predicted and observed shares. There are 72 such

prediction errors - one for each �rm and category combination. We �nd that the average of these

prediction errors is 0.008 for in-sample predictions (for both quantities and shoppers)�i.e. on

average a �rm's market share is predicted to be within about one percentage point of its observed

value. A similarly small error is found for out-of-sample predictions. Figure 1 visualizes the

predicted and observed market shares sfk of each category for each �rm in terms of number of

shoppers (for the estimation sample).

The consumer's category demand is associated with a shopping choice c which may have either

one or two stores. Substitution patterns between categories depend on this dimension of the

model, as we saw in section 3.1. We therefore check the proportion of demand in each category

from one-stop shopping choices, written s1ss
k , in terms of quantities (ΣfQ

1ss
fk /ΣfQfk) and shoppers

(ΣfD
1ss
fk /ΣfDfk). There are 8 such prediction errors: one for each category. Panel B2 of Table

4 shows that the average of these prediction errors is 0.004 in terms of quantities and 0.020 in

terms of shoppers for in-sample predictions. A similar level of �t is found for the out-of-sample
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Figure 2: Predicted and Observed Distances

Notes: The graphs display histograms of predicted (left) and observed (right) total shopping distances traveled (to
and from stores) in kilometers for the 6000 consumer-weeks (and taste draws) used in estimation. The height of
each bar is the relative number of observations (number of observations in bin / total number of observations). The
sum of the bar heights is 1.

predictions.

Panel C of Table 4 moves from the category level to the �rm level and considers the aggregate

(across categories) market shares for the main �rms in the market. This allows us to check that

the model predicts the market share accurately for each �rm both in-sample and out-of-sample.

We now check how well the model predicts some other aspects of the shopping choices c. Table

5 looks at the in-sample �t for the market share of each possible combination of �rms. Note that

there is no direct parameter to capture this (like a ��rm pair� dummy), so it is interesting to see

whether the model �ts this aspect of the data well. The diagonal gives the proportion of shoppers

that shop only at one �rm and the upper triangle gives the proportion that combine each pair of

�rms. Finally we provide a visual check of the spatial �t of the model. Figure 2 presents histograms

of observed and predicted total shopping travel distances (to and from consumers' chosen stores)

for the 6000 consumer-weeks in the estimation sample. The histograms indicate that relatively

few travel more than 30km to and from their home. As well as being consistent with the observed

data, these predictions are consistent with external survey evidence from CC (2000, 4.129), which

found 91% of shoppers had a travel time of 20 minutes or less to their supermarket�a distance of

about 15km (30km to and from) at standard driving speeds of 45km/hour.

6 Analysis of Supermarket Pricing

We now use the estimated model to analyze supermarket pricing. We �rst outline the pricing

problem under two alternative organizational assumptions: supermarket pricing and independent

category sellers. In 6.2 we report the own- and cross-category demand elasticities implied by the

estimated parameters. In 6.3 we solve for the Nash equilibrium pro�t margins implied under the

alternative organizational assumptions and compare them to external data on pro�t margins. We

�nd that supermarket pricing �ts the external data better. In the rest of the section we assume

supermarket pricing and consider the two main policy-relevant questions of interest: we measure

cross-category externalities and discuss their impact on market power, and we compare the impact

of one-stop and two-stop shopper types on �rms' pricing incentives.
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Throughout this section we use the model's predictions of �rm-category demands in a given

week

Qfk(p) = ΣN
i=1Σj∈JfΣc∈CitjQcjk(θ̂, xit) (41)

for the N consumers in the estimation sample, where Qcjk(θ̂, xit) is given by (14), and Citj is the
set of shopping choice alternatives that include store j.25 As we use only one period we suppress

the t subscript in the rest of this section.

6.1 Supermarket Pricing and Equilibrium Pro�t Margins

We compare two forms of organization: supermarkets, which set prices to maximize pro�t across

all categories (internalizing cross-category e�ects), solving

max
pf1,...,pfK

ΣK
k=1Qfk(p)(pfk −mcfk),

and independent category sellers, which set prices to maximize category pro�t, solving

max
pfk

Qfk(p)(pfk −mcfk)

for k = 1, . . . , K. Here pfk is the �rm's (national) price and mcfk the marginal cost. (The �rms

have a policy of national rather than storewise pricing, see footnote 13).

We assume Nash equilibrium prices, which implies the following set of �rst-order conditions for

each f and k:

Qfk

∂Qfk
∂pfk

+ pfk︸ ︷︷ ︸
marginal category revenue (mrfk)

+ χfΣk′ 6=k

 ∂Qfk′

∂pfk

∂Qfk
∂pfk

(pfk′ −mcfk′)


︸ ︷︷ ︸

marginal externality (mefk)

= mcfk (42)

where χf is 1 for supermarket pricing and 0 for independent category sellers. This condition states

that the marginal bene�t of inducing an extra unit of demand for category k (by means of a

price change)�i.e. the marginal revenue mrfk plus the marginal externality on other categories

mefk�is equal to marginal cost mcfk. Note that the marginal externality imposed on any category

k′ 6= k is the product of its markup (pfk′ −mcfk′) and the cross-category diversion ratio

∂Qfk′

∂pfk

/
∂Qfk
∂pfk

(43)

which is the change in category k′ demand at �rm f for every unit of demand it loses on category

k as a result of an increase in pfk. Letting πfk = Qfk(p)(pfk −mcfk) and dividing (42) by price

25 For all consumers t is week 78 (the midpoint of the 156-week sample period). We use the same taste draws as
in estimation. If week 78 is not in the estimation sample for consumer i we draw a new time-speci�c taste νµit.
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we obtain the following expression for the Lerner index

pfk −mcfk
pfk

=
1∣∣∣∂Qfk∂pfk

pfk
Qfk

∣∣∣ − χf
pfk

Σk′ 6=k

 ∂πfk′

∂pfk
∂Qfk
∂pfk

 . (44)

This shows the relationship between market power and the cross-category externality: an inde-

pendent category seller has a Lerner index that is equal to the inverse of its own-price elasticity,

while a supermarket's Lerner index is lower than this by the extent of the marginal externality (as

a proportion of pfk).
26

6.2 Estimated Own- and Cross-Category Elasticities

The elasticities implied by the estimates are presented in Table 6 for six categories and three �rms.

The table consists of nine blocks of 6 × 6 sub-matrices. The three 6 × 6 within-�rm elasticity

matrices, along the principal block diagonal of the overall matrix, give own- and cross-elasticities

for the categories of a given �rm. Note that all the elasticities in these blocks are negative, so

that any pair of categories at the same �rm are pricing complements. This in turn implies that

the diversion ratio (43) and the cross-category externality in (42) are positive. Some categories

(e.g. meat) generate a much larger cross-elasticity than others (e.g. milk), which is likely to be a

consequence of their relative size in the consumer's budget.

To decompose the cross-category complementarity e�ects into the consumer's discrete and

continuous responses, Table 7 presents the 3 × 3 submatrix of overall cross-category within-�rm

elasticities (for two �rms, ASDA and Tesco) alongside the corresponding conditional elasticities

that hold (discrete) store-category choices d and shopping choices c constant and only allow con-

tinuous quantity choices to change. The cross-elasticities conditional on store choices are positive

in sign. This shows that the cross-category complementarity derives from the consumer's shopping

costs rather than from any intrinsic complementarity between the categories captured by Λkk′ .

Returning to Table 6 note that the principal diagonal in each of the within-�rm elasticity

matrices gives own-price elasticities�i.e. same-�rm same-category price elasticities. These are

generally larger in magnitude than the cross-category same-�rm price elasticities (which are on

the o�-diagonals). This di�erence is a consequence of two consumer responses that are allowed

in the consumer model (shown in equation (8)): (i) a reduction (at the intensive margin) in the

continuous demand for the category holding store choices �xed and (ii) a change of store for the

category but not for other categories, which is possible for two-stop shoppers (response class (2b)

in subsection 3.1).

Two further features of the own-price elasticities are noteworthy. First, they have less than

unit magnitude in some cases. Elasticities of less than unit magnitude are inconsistent with

positive marginal costs for a single-category seller (see (44) for the case of χf = 0). Elasticities of

this magnitude are however consistent with positive marginal costs when the �rm internalizes a

26In Appendix E.1 we derive (44) from product-level �rst-order conditions. In Appendix E.2 we show how group-
speci�c prices (discussed in Section 2) result in the same expression as in (44) where pfk is a weighted average of
the group-speci�c prices. For simplicity we ignore group speci�c prices in the notation in this section.
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Table 7: Within-Firm Cross-Category Elasticity Decomposition

ASDA: Conditional ASDA: Unconditional Tesco: Conditional Tesco: Unconditional

Bakery Fr,veg Meat Bakery Fr,veg Meat Bakery Fr,veg Meat Bakery Fr,veg Meat

Bk -0.373 0.005 0.020 -0.674 -0.282 -0.379 -0.367 0.006 0.019 -0.622 -0.268 -0.342

Fv 0.003 -0.232 0.002 -0.136 -0.646 -0.370 0.003 -0.274 0.002 -0.137 -0.700 -0.337

Mt 0.007 0.001 -0.261 -0.124 -0.173 -0.836 0.007 0.001 -0.271 -0.130 -0.250 -0.832

Notes: All elasticities are within-�rm. Each cell is elasticity of row demand with respect to column price. Condi-
tional elasticities hold discrete choices (d, c) constant and allow only continuous choices to change. Unconditional
elasticities allow the consumer to change shopping choice c and the store j ∈ c used for each category.

positive externality on other categories (see (44) for χf = 1), which results in the �rm setting prices

at a lower level than otherwise. Second, the own-price elasticities vary across �rms in a plausible

way: they are higher for the discounter (Aldi) than for the Big Four �rms, which may re�ect

(i) the relatively high share of two-stop shoppers among the discounter's customers (with their

greater ease of substituting a category between stores) and (ii) the relatively high price-sensitivity

of consumers attracted to discounter �rms.

The o�-diagonal 6 × 6 blocks give inter-�rm elasticities. These are asymmetric in magnitude

because of the di�erences in �rm market shares: the e�ect of prices at Aldi (which has small market

share) on demands at ASDA or Tesco (which have large market shares) is small (e.g. see the top-

right 6× 6 block) compared to the opposite price elasticities. Note that the pattern of elasticities

within these o�-diagonal blocks suggests there is a signi�cant number of two-stop consumers that

switch �rms only for the category a�ected by the price change (the �middle� response in the

decomposition in equation (8))�e.g. in the top-middle block a change in the price of Tesco Meat

has a higher proportional e�ect on ASDA Meat (0.21) than ASDA Drink (0.14) because of two-stop

shoppers that switch stores for Meat only.

6.3 Predicted and Observed Pro�t Margins

In this section we compare the margins (i.e. the Lerner index) implied by the model with bounds

to pro�t margins calculated using external accounting data from competition inquiries CC (2000,

2008). This allows us to check whether the assumption of supermarket pricing is validated by

external data. We do this comparison at an overall level (across all categories) as well as for a

speci�c category (milk) for which there is relatively accurate margin data.

The margins reported by the CC are based on �rms' accounting data and cannot be unambigu-

ously mapped to our theoretical margin concept for two reasons. (The issues here are common

when dealing with accounting data on costs and revenues. For instance Nevo (2001) discusses

similar challenges when validating estimated margins with external data.) First, the CC only re-

ports total revenues and total wholesale costs at the retailer level. Hence we do not observe the

marginal wholesale price and need to make an assumption about the vertical contract that led to
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the reported payments to manufacturers.27 Second, it is ambiguous what fraction of labor costs

should be considered marginal. We therefore provide bounds based on alternative assumptions

about vertical contracts and the fraction of labor costs that are marginal. Further details on how

we derive the bounds on margins are in Appendix F.

To obtain the pro�t margins implied by the model we solve the system of �rst-order conditions

(42) at estimated demand parameters under two alternative assumptions: supermarket pricing

(χf = 1 in (42)) and independent category pricing (χf = 0). This gives a marginal cost mcfk for

each of the combinations of f and k. Based on these marginal costs a simple preliminary check on

the two organizational assumptions is to ask whether either of them imply that marginal costs are

negative. We �nd that all �rm-category marginal costs are positive when we assume supermarket

organization but 14.8% of them are negative when we assume independent category sellers.

To assess the two organizational assumptions more formally, we present con�dence intervals

for the pro�t margins implied when χf = 1 and χf = 0, respectively, and compare them with the

external bounds to pro�t margins from the CC report. Panels B and C report 95% con�dence

intervals: the �rst column for the median margin in the milk category across �rms, and the second

column for the median margin across all categories and �rms. Since each external margin is an

industry-wide number, in Panel C we weight the medians by �rm-category revenue to re�ect vari-

ation in �rm and category sizes. The weighted median is higher because �rms with larger market

shares (such as the Big Four) tend to have greater market power. To calculate con�dence intervals,

we take 2000 draws of the parameter vector from the (estimated asymptotic) distribution of our

estimator where for each draw we compute margins using equation (44). The con�dence intervals

are then given by the 2.5th and 97.5th percentiles of the resulting distribution of medians.28 If all

the margins permitted by the external bounds fall outside the 95% con�dence interval for one of

the pricing assumptions, then this pricing assumption can be rejected at the 5% signi�cance level

(for all margins permitted by the external bounds).

Consider �rst the milk category. Here external bounds to margins are 0.20 and 0.34. Under the

assumption of supermarket pricing the con�dence intervals for margins�unweighted (0.22, 0.28),

weighted (0.23, 0.33)�fall within the external bounds. Thus we cannot reject (at the 5% level) the

null hypothesis of supermarket pricing (for all margins within the permitted bounds). Under the

assumption of independent category pricing, on the other hand, the con�dence intervals�(0.65,

0.80) unweighted, (0.69, 1.01) weighted�fall outside the margins permitted by external bounds.

Thus we can reject (at the 5% level) the null hypothesis of independent category pricing.

Now consider all categories. Here the external bounds to margins are 0.16 and 0.52. Under the

27We do not explicitly model the interaction between manufacturers and retailers (as for example in Sudhir (2001)
Besanko et al. (2003)). The external bounds that we calculate adopt an agnostic position as to whether there is
double marginalization or e�cient pricing. There is relatively little direct evidence that discriminates between these
two alternative models of vertical contracting. Villas-Boas (2007) and Bonnet and Dubois (2010) use a structural
model of demand to compare the implications of the two modeling assumptions and reject double marginalization
in favor of e�cient pricing (where the retailer optimizes against true vertical marginal costs).

28The same 2000 draws are used to generate the CIs in Tables 9 and 10. As a robustness check on the number of
draws we calculated the CIs in Table 8 using 5000 draws and found the CIs were almost unchanged: for example
the con�dence intervals for weighted margins were (0.23, 0.33) for milk and (0.37, 0.43) for all categories under
supermarket pricing, and (0.71, 1.01) for milk and (0.92, 1.09) for all categories under independent category sellers.
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Table 8: Predicted Pro�t Margins and Observed Bounds to Margins

Milk All Categories

A: Bounds to margins from external data

A1 [Lower bound]: Retail margin; labor included in marginal cost 0.20 0.16

A2 [Upper bound]: Full vertical margin; labor excl. from marginal cost 0.34 0.52

B: Median predicted margins (95% con�dence intervals)

B1: Supermarket Pricing, χf = 1 in equation (44) (0.22, 0.28) (0.28, 0.31)

B2: Independent Category Sellers, χf = 0 in equation (44) (0.65, 0.80) (0.71, 0.80)

C: Weighted Median predicted margins (95% con�dence intervals)

C1: Supermarket Pricing, χf = 1 in equation (44) (0.22, 0.33) (0.37, 0.43)

C2: Independent Category Sellers, χf = 0 in equation (44) (0.68, 1.01) (0.91, 1.09)

Notes: Panel A gives bounds to pro�t margins using external data in CC inquiries. See Appendix F for details.
Panel B reports predicted median pro�t margins; medians are across categories and �rms (All Categories) across
�rms (Milk). Weighted medians are weighted by �rm-category revenues from the estimation sample to allow
for heterogeneity in �rm market shares.

assumption of supermarket pricing the con�dence intervals�(0.28, 0.31) unweighted, (0.37, 0.43)

weighted�fall within the external bounds so we cannot reject the null hypothesis of supermarket

pricing. Under the assumption of independent category sellers the con�dence intervals�(0.71,

0.80) unweighted, (0.91, 1.08) weighted�fall outside the margins permitted by the external data

and we can reject the hypothesis of independent category pricing (at the 5% level). Thus, even

though the external data have quite wide bounds, we can reject the null hypothesis of independent

category sellers. We cannot reject the null hypothesis of supermarket pricing. In the rest of this

section we use marginal costs under the assumption of supermarket pricing.

6.4 Market Power and Cross-Category Externalities

With elasticities and marginal costs in hand we now analyze the extent to which cross-category

externalities abate market power. Panel A of Table 9 reports pro�t margins for each category for

alternative �rm types. Recall from equation (44) that the pro�t margin may be decomposed as the

category's inverse elasticity minus its marginal externality on other categories (as a fraction of pfk).

We report these two components in Table 9: the inverse elasticity in Panel B and the marginal

cross-category externality in Panel C. To preserve the adding-up property of equation (44), we

report means rather than medians (medians are reported for All Categories for comparison). Panel

A is thus the corresponding �gure in Panel B minus its counterpart in Panel C.

The overall mean (across all categories and �rms) is 0.31 as reported in the top cell of the

second column. Pro�t margins are highest for the Big Four �rms, which is not surprising given

their large market shares. The inverse elasticities in Panel B are the pro�t margins that we would

have obtained if we had assumed that observed category prices are generated by independent

category sellers rather than supermarkets (i.e. if we had set χf = 0 in (44) to back out marginal

costs).29 For the mean across all categories, pro�t margins under independent category pricing

29The 95% con�dence intervals presented in this table di�er from those in Table 8 because they uses means rather
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Table 9: Pro�t Margins and Cross-Category Externalities

Median Mean (95% CI) Mean

All Categories Bakery Dairy Drink Dry Fr,Veg Hhold Meat Milk

A: Pro�t Margins

All Firms 0.30 0.31 (0.30, 0.33) 0.31 0.26 0.25 0.33 0.44 0.24 0.42 0.25

Big Four 0.37 0.38 (0.36, 0.41) 0.37 0.20 0.31 0.43 0.56 0.29 0.59 0.26

Discounter 0.28 0.29 (0.27, 0.31) 0.14 0.28 0.22 0.32 0.51 0.23 0.39 0.19

B: Inverse Own-Category Elasticity (Absolute Value)

All Firms 0.75 0.78 (0.73, 0.84) 1.02 0.75 0.57 0.81 0.93 0.67 0.79 0.75

Big Four 0.98 1.04 (0.97, 1.14) 1.46 0.75 0.72 1.15 1.34 0.86 1.11 0.89

Discounter 0.80 0.83 (0.76, 0.90) 1.10 1.00 0.61 0.78 0.97 0.72 0.84 0.58

C: Marginal Externality mefk/pfk

All Firms 0.42 0.47 (0.43, 0.52) 0.71 0.49 0.32 0.48 0.49 0.43 0.36 0.49

Big Four 0.61 0.66 (0.60, 0.74) 1.09 0.55 0.41 0.72 0.78 0.57 0.52 0.63

Discounter 0.46 0.54 (0.48, 0.60) 0.96 0.72 0.39 0.46 0.46 0.49 0.45 0.39

Notes: Pro�t margins and externalities implied by the model in Nash equilibrium (with supermarket pricing).
Figures in column All Categories average across categories and �gures in rows All Firms, Big Four, and Dis-
counter average across �rms of the stated type. By equation (44) �gures in Panel A equal those in B minus those
in C. We focus on means (as opposed to medians) in this table in order to preserve this adding-up property.

are more than double those with supermarket pricing (given in the �rst row of panel A). This

shows that cross-category e�ects play an important role in correctly assessing market power in the

supermarket industry.

The marginal externality reported in the table is a measure of the extent to which competition

is intensi�ed by supermarket organization. It can be interpreted as the (Pigouvian) marginal

subsidy that must be o�ered to an independent seller to induce him to set prices that maximize

the pro�ts of the supermarket as a whole. The marginal externality is analogous to the concept of

�upward pricing pressure� (see Farrell and Shapiro (2010)) used in antitrust policy to measure the

anti-competitive e�ects from a merger of two substitute products. Supermarket organization is

analogous to the merger of category sellers selling complementary goods; the marginal externality

measures the downward pricing pressure implied.

As Panel C reports, the marginal externality as a fraction of price, i.e. mefk/pfk, is 0.47 on av-

erage across �rms and categories. The positive sign of the externality indicates that in supermarket

mode �rms set prices closer to the competitive level than would be the case under independent cat-

egory sellers. Its magnitude indicates that this pro-competitive e�ect is economically signi�cant.

As a benchmark we note that it is greater than the magnitudes conventionally used to identify

problematic merger cases (see CC (2011, Chapter 4) for a discussion).

The table shows the variation in externalities by category. The externality for category k on

any other category k′ is given by the product of (i) the pro�t margin of category k′ and (ii) the

than medians. By comparing the con�dence interval for �A: All Firms� with the second column of Panel A of Table
8, we see that supermarket pricing is not rejected when using means, while the interval for �B: All Firms� shows
that category pricing is rejected for all external margins when using means. That is, the conclusions in subsection
6.3 remain unchanged when using means instead of medians.
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Table 10: Pro�t E�ect of a Firm-Category Price Increase: Analysis by Shopper Types

Partition by: (µ, α,Γ) (Γ)

All Firms Big Four Discounters All

Median 95% CI Median 95% CI Median 95% CI Median

A: Derivative of Pro�t wrt Price
∂π

g
f

∂pfk

(i) All shoppers g = all 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.00

(ii) 1-stop types g = 1 -0.59 (-0.88, -0.47) -3.69 (-5.40, -2.41) -1.02 (-1.37, -0.71) -0.19

[proportion negative] [0.89] (0.82, 0.94) [0.84] (0.75, 1.00) [1.00] (0.92, 1.00) [0.67]

(iii) 2-stop types g = 2 0.59 (0.47, 0.88) 3.69 (2.41, 5.40) 1.02 (0.71, 1.37) 0.19

[proportion positive] [0.89] (0.82, 0.94) [0.84] (0.75, 1.00) [1.00] (0.92, 1.00) [0.67]

B: Category Own-Price Shopper Elasticity
∂D

g
fk

∂pfk

pfk

D
g
fk

(i) All shoppers g = all -0.50 (-0.57, -0.45) -0.42 (-0.45, -0.35) -0.57 (-0.63, -0.51) -0.50

(ii) 1-stop types g = 1 -0.39 (-0.45, -0.37) -0.31 (-0.37, -0.29) -0.51 (-0.56, -0.43) -0.37

(iii) 2-stop types g = 2 -0.64 (-0.68, -0.56) -0.51 (-0.54, -0.44) -0.66 (-0.71, -0.59) -0.59

C: Cross-category Shopper Diversion ratio:

Σk′ 6=k
∂D

g

fk′
∂pfk

/
∂D

g
fk

∂pfk

(i) All shoppers g = all 3.76 (3.51, 3.89) 4.55 (4.39, 4.67) 4.02 (3.78, 4.20) 3.76

(ii) 1-stop types g = 1 5.11 (4.79, 5.21) 5.64 (5.39, 5.74) 5.29 (4.99, 5.43) 5.43

(iii) 2-stop types g = 2 2.31 (2.23, 2.44) 3.06 (2.99, 3.17) 2.53 (2.39, 2.72) 2.79

Notes: All �gures are medians across �rm-category combinations for �rms within stated type.

�diversion ratio� between k and k′�i.e. the demand lost to the store on category k′ per unit of

demand lost on category k. A category has a large externality if these two factors are relatively

high. Note that marginal externalities can be high even for categories (such as Bakery) that are a

small share of consumer budgets (as shown in Table 2). This suggests that cross-category e�ects

can be important even when measuring market power for a category that is a small fraction of the

retailer's sales.

Now compare externalities by �rm. The Big Four �rms have larger externalities than average.

This is in part a consequence of their higher pro�t margins (as reported in Panel A) and in part

a consequence of their shoppers having larger cross-category diversion ratios (as seen in the next

subsection).

6.5 Competitive Implications of Alternative Shopper Taste Types

We now partition consumers into two groups based on their tendency to visit one or two stores and

compare their impact on market power. Each consumer in the model is characterized by a given

(µ, α,Γ)-type which fully describes his tastes for the shopping choices in his choice set, up to the

idiosyncratic term ε (which is iid across shopping choices). A consumer's choice between one- and

two-stop shopping depends on his (µ, α,Γ)-type: for instance, high shopping costs (Γ) and/or a

high utility (µ−αp) at the same store for all categories are conducive to one-stop shopping. After

integrating out ε we calculate the probability, for each (µ, α,Γ)-type, that the consumer makes a
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one-stop shopping choice.30 If this probability is greater than or equal to 0.5 at the observed prices

we place the (µ, α,Γ)-type in the one-stop group. Otherwise he is in the two-stop group. We refer

to these two groups as one-stop shopper types and two-stop shopper types respectively. Our goal

is to assess which group abates market power to the greater extent. At the end of this subsection

we consider an alternative partition based on Γ only.

To compare the impact of the two consumer groups on market power we consider how they

respond to a marginal price change for one �rm-category combination at a time. These e�ects are

shown in Table 10. Note that the grouping into one-stop and two-stop shopper types is based on

consumers' behavior at observed prices and is therefore exogenous to these price changes.

We �rst calculate pro�t e�ects. Let πf = Σkπfk denote �rm f 's pro�ts (from all categories).

Row A(i) of Table 10 shows that the partial derivative of �rm f 's pro�t with respect to its price

for category k is approximately zero for each (f, k)-combination. This is true by construction since

marginal cost has been calculated under the assumption that �rms set each price to maximize

pro�t. We now decompose the pro�t e�ect by shopper group g. Let g = 1 for one-stop shopper

types (de�ned above), and g = 2 for two-stop shopper types. Let the pro�t derived from shopper

group g be written πgf . Then the change in the �rm's pro�ts from the �rm-category price increase

can be decomposed
∂πf
∂pfk

=
∂π1

f

∂pfk
+
∂π2

f

∂pfk
= 0

so that the e�ects for the two groups must be equal in magnitude and (if non-zero) opposite in

sign. Rows A(ii) - A(iii) present the median group-speci�c pro�t e�ects along with 95% con�dence

intervals for these e�ects. The median e�ect is negative for one-stop shopper types and positive for

two-stop shopper types. This pattern is seen for almost 90% of category store combinations. (The

e�ects are larger for the Big Four because of their larger market shares). The con�dence intervals

imply that one-sided tests at the 2.5% signi�cance level reject the null hypotheses that median

pro�t e�ects are positive for the one-stop types and that they are negative for the two-stop types,

respectively. The same is true if tests are performed separately for Big Four and Discounters.

Together the results indicate that one-stop shopper types constrain supermarket prices (and hence

abate market power) more than two-stop shopper types.

The next two panels in the table explore the factors underlying this �nding. The �rst-order

condition (44) implies that the impact of a �rm-category (f, k) price change on pro�t hinges on two

main factors: (i) the own-price elasticity of category k demand and (ii) the marginal cross-category

externality for �rm f . Indicators for these two factors are presented for each consumer type in

Panels B and C of Table 10. We measure demand responses in these panels using the number

of shoppers Dfk for each category (de�ned analogously to (41) using (15)) which gives a simple

count measure of category demand that is easy to interpret and can be added across categories.

We decompose Dfk by consumer group as follows Dfk = D1
fk+D2

fk where D
g
fk denotes the number

of shoppers of group g.

Panel B of Table 10 considers own-price e�ects in terms of shoppers. Two-stop shopper types

30The probability is
∑
c:n(c)=1 Pc(µ, α,Γ) where Pc(µ, α,Γ) is given by (13) and wit(c, pt) depends on (µ, α) as

discussed in subsection 3.2.
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Table 11: Price Discrimination by Shopping Choice

Firm Type: Big Four Discounter

Shopper group with 1% price increase (g): 1ss 2ss 1ss 2ss

A: Change cat-�rm shoppers

A1: Proportion of group g lost 100× Σk∆Dgfk/ΣkD
g
fk -2.79 -3.04 -3.60 -2.77

A2: Proportion of A1 regained as other group g′ Σk∆Dg
′

fk/
∣∣∣Σk∆Dgfk

∣∣∣ 0.14 0.35 0.04 0.08

B: E�ect on Pro�t

B1: Firm wide percentage e�ect 100×∆πf/πf -0.71 0.42 -1.32 0.81

B2: [proportion positive] 1[∆πf > 0] [0.00] [1.00] [0.00] [1.00]

Notes: 1ss and 2ss indicates consumers that select one and two stores respectively. For each �rm all category
prices are jointly increased by 1% to either 1ss or 2ss shoppers (but not both). The �gures are medians of the
demand responses for �rms of the indicated type (Big Four and Discounter).

have higher own-price demand elasticities. This is consistent with the intuition that shoppers that

tend to visit two stores can swap stores for a given category at relatively little cost.

Panel C turns to cross-category demand e�ects. To measure these we use the cross-category

diversion ratio in terms of shoppers, i.e.

∑
k′ 6=k

∂Dg
fk′

∂pfk

/
∂Dg

fk

∂pfk
, (45)

where the numerator and denominator of this ratio are both negative. In the case of the numerator

this is because the categories for a given �rm f are complements. The ratio (45) is the total number

of shoppers lost by �rm f for categories other than k for every shopper (in group g) that stops

buying category k. We �nd a strong di�erence between shopper types: the median diversion ratio

for one-stop shopper types (5.11) is more than double that of two-stop shopper types (2.31).

Taken together the own- and cross-category e�ects of a price change, shown in Panels B and C,

explain why one-stop shopper types constrain the market power of the �rms more than the average

shopper: such shoppers (i) generate much larger than average cross-category demand e�ects per

marginal consumer (Panel C), and (ii) this e�ect is strong enough to outweigh the di�erences

between one- and two-stop shopper types in terms of own-category demand elasticity (Panel B).

In the last column we consider an alternative partition of consumer types by shopping costs (Γ)

only. Types with above-median shopping costs (for this classi�cation de�ned as the cost of visiting

a second store and traveling 10km) are now classi�ed in group g = 1 and the remaining consumers

in group g = 2. The results are similar despite this partition being less strongly associated with

one-stop / two-stop shopping behavior than that based on the full set of tastes (µ, α,Γ).

6.6 Price Discrimination by Shopping Choice

The results in the previous subsection imply that if �rms were able to engage in (third-degree) price

discrimination based on exogenous one-stop and two-stop taste types, they would reduce prices to

the former and increase them to the latter. In contrast with this, we now ask whether �rms have
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Table 12: Robustness

(All Firms, All Categories) Baseline Price IV Indiv. pjk Alt. distij Alt. Λkk′ Indiv. Λkk′

A: Margins and Externalities

Margin (pfk −mcfk)/pfk 0.30 0.31 0.32 0.30 0.30 0.29

Externality mefk/pfk 0.42 0.43 0.43 0.43 0.44 0.42

B: E�ect of Firm-Category Increase

1-stop shopper types -0.59 -0.69 -0.51 -0.66 -0.62 -0.58

[proportion negative] [0.89] [0.88] [0.89] [0.89] [0.88] [0.83]

2-stop shopper types 0.59 0.69 0.51 0.66 0.62 0.58

[proportion positive] [0.89] [0.88] [0.89] [0.89] [0.88] [0.83]

Notes: Entries are medians for All Firms and All Categories and therefore can be compared to the
corresponding medians in Table 9 for Panel A and Table 10 for Panel B. The Baseline model is the model
used elsewhere in Section 6 (Model 2 in Section 5). Parameters for the other models are in Appendix G.

an incentive to engage in (second-degree) price discrimination based on consumers' self-selection

into one-stop or two-stop shopping. Unlike price discrimination based on exogenous types, this

kind of price discrimination, sometimes known as nonlinear pricing or bundling, gives consumers

an incentive to change their behavior in order to avoid the premium, or, equivalently, obtain

the discount. (See Armstrong and Vickers (2010) for a theoretical treatment in a multi-category

multi-store framework.)

In Table 11 we report the e�ect of 1% price increases (for all category prices in a given �rm)

that are limited to either one-stop shoppers or two-stop shoppers. Consumers that buy products

exclusively from one �rm thus pay prices p1ss
fk while those that cross-shop at di�erent �rms pay a

di�erent set of prices p2ss
fk . Starting at observed (uniform) prices consider a discriminatory price

change of 1% to all category prices at �rm f so that either ∆p1ss
fk /pfk = 0.01 or ∆p2ss

fk /pfk = 0.01

for all k. The �rst row of Panel A shows the total number of �rm-category shoppers of the a�ected

group lost by the �rm. The next row shows the proportion of these �lost� shoppers that are regained

by the �rm because they convert type (e.g. from one-stop to two-stop shopping or vice versa) as a

result of the price discrimination. Panel B shows that �rms gain pro�ts when they increase prices

for two-stop shoppers (relative to equilibrium uniform prices). Part of the pro�t gain in this case

is because some of the two-stop shoppers are induced to become one-stop shoppers, which in turn

results in the shopper buying more categories in total from the �rm. The �rm would, however,

not gain by instead increasing prices to one-stop shoppers.

6.7 Robustness

The results in Section 6 used Model 2 from Section 5. In this section we refer to this as the

baseline model. We now consider �ve alternative speci�cations of the model. We discuss these

speci�cations before showing that main �ndings of the paper are robust.

Model Price IV uses an instrument for price in place of the observed price in the moment

conditions of the model. This allows for the possibility that prices are correlated with prediction

errors. To instrument for prices we use a vector of category-speci�c cost-shifter variables: input
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prices, retail prices in a neighboring country (Ireland), and the GBP/EUR exchange rate (see

Appendix D for further details). These variables may a�ect each �rm's prices di�erently because

of di�erences in the inputs used in their products or the proportion of products that are imported.

In order to simplify computation we use a category-speci�c linear combination of the cost-shifters

as our price instrument: the �tted value from a reduced form regression of category prices on

cost-shifters interacted with �rm dummies. To obtain this �tted value we do a separate regression

for each category so that there are K reduced form regressions in total. We observe a price for

each category for every combination of the demographic group m, week t, and �rm f . We use

these prices to estimate the category k equation

pmtfk = ρ
(1)
k Xf + ρ

(2)
k Xtfk

where Xf is a vector of �rm dummies (which are included in the demand model) and Xtfk is

a vector of �rm dummies interacted with category k cost-shifters (which are excluded from the

demand model).31 The reduced form price regressions all have F-statistics for excluded variables

Xtfk that are signi�cant at the 1% level. R-squared statistics are (0.991, 0.968, 0.922, 0.989, 0.986,

0.974, 0.915) and F-statistics for excluded variables (Xtfk) are (142.06, 28.46, 10.96, 35.27, 27.82,

18.13, 72.53), for price regressions listed in alphabetical order of category.

The model labeled Indiv. pjk changes the variable used for prices. It has price indices using

weights that are computed using individual budget shares rather than budget shares for speci�c

demographic groups (as done in the baseline model). The construction of these individual-speci�c

price indices is described in the second section of Appendix C.2.

The model labeled Alt. distij uses an alternative variable for distance. Instead of the sum of the

distances from the consumer to each store and back we use the minimum distance the consumer

would travel if he went in a triangle between home, store j, and store j′. This only makes a

di�erence to the distance variable when the consumer is a two-stop shopper. Thus distance when

n(c) = 2 is now given by distic = (distij +distjj′ +distij′) instead of 2(distij +distij′). This allows

for the possibility that the consumer takes advantage of geographic synergies when visiting the

two stores.

The model labeled Alt. Λkk′ estimates a di�erent set of variable utility interaction parameters

than in the baseline model. (These are bakery and dry, dairy and meat, and drink and milk).

Cross-price instruments, discussed in 4.1, are modi�ed to re�ect the changes in interactions.

Finally the model labeled Indiv. Λkk′ allows for individual (observed and unobserved) consumer

heterogeneity in the quadratic second-order terms (for k′ 6= k). As household size is one of the

most important forms of heterogeneity we use the speci�cation

Λikk′ = Λkk′(1 + λ11[hzi = 2] + λ21[hzi > 2] + σ5ν
Λ
ikk′)

where (λ1, λ2, σ5) are additional parameters and the terms 1[hzi = 2] and 1[hzi > 2] are indicator

31Subscript t here refers to the tth week in the three year period (i.e. t = 1, . . . , 156) rather than the tth week
(out of 3) in the consumer's estimation sample. For the �rm dummies in this regression we use the same grouping
of �rms as used for ξ in the demand model (see footnote 21).
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variables for household size. νΛ
ikk′ is an iid random draw from a standard normal distribution. In

addition to the instruments in the baseline speci�cation, ZQ
itcjk and Z

D
itcjk include, for each category,

the following two instruments: indicators for whether household size is 2, and for whether it is

greater than 2, each interacted with the mean price of all categories other than k in the stores in

the relevant shopping choice.

We check for robustness to these alternatives by comparing their implications for the main

results discussed in Sections 6.4 and 6.5 of the paper. This is done in Table 12. Panel A of the

table presents the median pro�t margins and externalities, across all �rms and categories, which we

use in Table 9 to assess the pro-competitive e�ects of supermarket organization. Panel B compares

the marginal pro�t e�ects of one-stop and two-stop shopper types as we did in Table 10. The table

shows these alternative speci�cations give results that are very similar to those we found for our

baseline model. The parameters for the alternative speci�cations are given in Appendix G.

7 Conclusions

In many important competitive settings, such as retailing, customers buy multiple categories and

many prefer to do so from the same location or �rm. We develop a multi-store multi-category

model for estimation of consumer demand, relevant for the analysis of pricing in such settings. We

estimate the model using data from the supermarket industry in the UK. We use the estimated

model to analyze two policy-relevant questions: (i) the implications of the internalization of cross-

category externalities for the market power of supermarkets and (ii) the relative impact on market

power of shopper types inclined to one-stop and two-stop shopping.

The cross-category elasticities we estimate imply that supermarket organization substantially

mitigates market power. This has implications for the analysis of retail pricing at two levels. First,

at a single-category level of analysis, it indicates a role for considering cross-category e�ects when

using demand elasticities to analyze prices for a given category of interest. In our application we

found that accounting for cross-category e�ects implies a Lerner index typically less than half as

large as the Lerner index that would be implied with independent category sellers, so that ignoring

cross-category e�ects can result in market power being overestimated signi�cantly.

Second, at a broader level, the results are relevant for analysis of the organization of the retail

industry. Supermarket competition has received much attention�in part because of the large size

of �rms such as Walmart, Carrefour and Tesco�and policies are sometimes introduced with the

aim of protecting or promoting alternative ways of organizing the industry: e.g. planning laws in

the UK were tightened in the 1990s to protect town centre retailing, while in France a law (Loi

Ra�arin, 1996) imposed �oor space limits on supermarkets with the objective of protecting small

traditional retailers. Our empirical results highlight the pro-competitive nature of supermarket

pricing relative to alternative ways of organizing retail supply in which pricing is decentralized to

independent category sellers.

Comparing one-stop and two-stop shopping types we �nd that when supermarkets increase

the price of a category marginally they lose pro�ts earned on one-stop shopper types and gain

40



pro�ts from two-stop shopper types, which implies that the former constrain supermarket prices

more than the latter. This �nding suggests it can be appropriate for antitrust authorities to focus

on competition for a �rm's one-stop (or core) shoppers even where there are many multi-stop

shoppers in the �rm's customer mix. This is consistent with the position adopted by the FTC in

the recent Whole Foods/Wild Oats antitrust case where the question was whether to allow the

merger of �rms that compete for the same group of one-stop (or core) shoppers, when the �rms

also sell to two-stop (or cross-) shoppers. More generally the �nding indicates that the presence

of consumers inclined toward two-stop shopping (e.g. those with low shopping costs) does not

necessarily enhance competitive pricing incentives.
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A Online Appendix: Category De�nitions

TNS assigns to each transaction the variable �Retailer Share Track (RST) Market Code� that

correspond to 269 narrowly de�ned product groups. We de�ne our eight categories as follows

where the names of product groups (including abbreviations) are those of TNS.

1. Bakery : Ambient Pizza Bases, Ambient Cakes and Pastries, Ambient Christmas Pudding,

Ambient Sponge Puddings, Canned Rice Puddings, Childrens Biscuits, Chilled Breads,

Chilled Cakes, Chilled Desserts, Chilled Pizza and Bases, Crackers & Crispbreads, Every-

day Biscuits, Fresh/Chilled Pastry, Frozen Bread, Frozen Savoury Bakery, Healthier Biscuits,

Morning Goods, Savoury Biscuits, Seasonal Biscuits, Tinned Sponge Puddings, Toaster Pas-

tries, Total Bread.

2. Dairy : Butter, De�ned Milk and Cream Products, Fresh Cream, Fromage Frais, Instant

Milk, Margarine, Total Cheese, Total Ice Cream, Yoghurt, Yoghurt Drinks And Juices.

3. Drink : Ambient One Shot Drinks, Ambient Fruit or Yoghurt Juice and Drnk, Beer and

Lager, Bottled Colas, Bottled Lemonade, Bottled Other Flavours, Bottled Shandies, Canned

Colas, Canned Lemonade, Canned Other Flavours, Canned Shandies, Chilled One Shot

Drinks, Cider, Fabs, Food Drinks, Forti�ed Wines, Ginger Ale, Lemon and Lime Juices,

Mineral Water, Soda Water, Sparkling Wine, Spirits, Tonic Water, Wine.

4. Dry : Ambient Condiments, Ambient Slimming Products, Ambient Vegetarian Products,

Arti�cial Sweetners, Breakfast Cereals, Chocolate Biscuit Bars, Chocolate Confectionery,

Chocolate Spread, Confectionary. & Other Exclusions, Cooking Oils, Crisps, Dry Meat

Substitutes, Dry Pasta, Dry Pulses and Cereal, Ethnic Ingredients, Everyday Treats, Flour,

Frozen Confectionery, Gum Confectionery, Herbal Tea, Herbs and Spices, Home Baking,

Honey, Instant Co�ee, Lards and Compounds, Liquid and Ground Co�ee and Beans,

Mincemeat (Sweet), Mustard, Packet Stu�ng, Peanut Butter, Pickles Chutneys & Relish,

Powder Desserts & Custard, Preserves, RTS. Custard, Ready To Use Icing, RTS Desserts

Long Life, Salt, Savoury Snacks, Sour and Speciality Pickles, Special Treats, Suet, Sugar,

Sugar Confectionery, Sweet and Savoury Mixes, Syrup & Treacle, Table Sauces, Table and

Quick Set Jellies, Tea, Vinegar.

5. Fruit and Vegetables : Ambient Olives, Ambient Rice and Savoury Noodles, Ambient Salad

Accompaniment, Baked Bean, Bitter Lemon, Canned Fish, Canned Hot Meats, Canned

Salads, Canned Vegetables, Chilled Fruit Juice and Drink, Chilled Olives, Chilled Prepared

Fruit and Veg, Chilled Prepared Salad, Chilled Rice, Chilled Salad Accompaniment, Chilled

Vegetarian, Cous Cous, Frozen Potato Products, Frozen Vegetables, Frozen Vegetarian Prods,

Fruit, Instant Mashed Potato, Nuts, Prepared Peas & Beans, Tinned Fruit, Tomato Products,

Total Fruit Squash, Vegetable.

6. Household : Air Fresheners, Anti-Diarrhoeals, Antiseptics & Liq. Disinfectant, Bath Ad-

ditives, Batteries, Bin Liners, Bleaches & Lavatory Cleaners, Body Sprays, Carpet Clean-
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ers/Stain Removers, Cat Litter, Cat and Dog Treats, Cleaning Accessories, Cold Sore Treat-

ment, Cold Treatments, Conditioners and Creme Rinses, Contact Lens Cleaners, Cotton

Wool, Cough Liquids, Cough Lozenges, Decongestants, Dental Floss or Sticks, Dentifrice,

Denture Cleaners/Fixature, Deodorants, Depilatories, Dog Food, Electric Light Bulbs, Eye

Care, Fabric Conditioners, Facial Tissues, First Aid Dressings, Foot Preparations, Furniture

Polish, Hair Colourants, Hairsprays, Hand Wash Products, Hayfever Remedies, Home Perms,

Household Cleaners, Household Food Wraps, Household Insecticides, Incontinence Products,

Indigestion Remedies, Kitchen Towels, Laxatives, Liquid Soap, Machine Wash Products,

Mens Hairsprays, Mens Mass Fragrances, Mens Skincare, Moist Wipes, Mouthwashes, Oral

Analgesics, Oral Lesion/teething, Pot Pourri and Scented Candles and Oils, Razor Blades,

Sanpro, Shampoo, Shaving Soaps, Shoe Care Products, Skincare, Sleeping Aids, Sun Prepa-

rations, Talcum Powder, Toilet Soap inc. Mens, Toilet Tissues, Topical Analgesics, Topical

Antiseptics, Total Cat Food inc. Bulk, Total Dry Dog Food, Total Male and Female Styling,

Total Toothbrushes, Upset Stomach Remedies, Vitamin and Mineral supplements, Wash

Additives, Washing Up Products.

7. Meat : Ambient Cooking Sauces, Ambient Dips, Ambient Pastes and Spreads, Ambient

Sandwich Fillers, Ambient Soup, Canned Pasta Products, Chilled Black and White Pud-

ding, Chilled Burgers and Grills, Chilled Cooking Sauces, Chilled Dips, Chilled Gravy and

Stock, Chilled Pate and Paste and Spread, Chilled Prepared Fish, Chilled Processed Poul-

try, Chilled Ready Meals, Chilled Sausage Meat, Chilled Frankfurter/Continental Sausages,

Chilled Sandwich Fillers, Cold Canned Meats, Complete Dry/Ambient Meals, Cooked Meats,

Cooked Poultry, Fresh Bacon Joint, Fresh Bacon Rashers, Fresh Bacon Steaks, Fresh Beef,

Fresh Flavoured Meats, Fresh Lamb, Fresh Other Meat & O�al, Fresh Pasta, Fresh Pork,

Fresh Poultry, Fresh Sausages, Fresh Soup, Frozen Bacon, Frozen Beef, Frozen Cooked Poul-

try, Frozen Fish, Frozen Flavoured Meats, Frozen Lamb, Frozen Meat Products, Frozen Other

Meat & O�al, Frozen Pizzas, Frozen Pork, Frozen Poultry, Frozen Processed Poultry, Frozen

Ready Meals, Frozen Sausage Meat, Frozen Sausages, Hens Eggs, Instant Hot Snacks, Loose

Fresh Meat & Pastry, Meat Extract, Other Chilled Convenience, Other Frozen Foods, P/P

Fresh Meat and Veg and Pastry, Packet Soup, Shell�sh, Wet or Smoked Fish.

8. Milk : Total Milk.

B Estimation Sample: Construction & Representativeness

We implement the sample selection by drawing a week at random for each consumer to represent

his third (and �nal) week in the estimation sample (this must be drawn from outside his �rst two

quarters in the sample). To obtain the second and �rst weeks in the estimation sample we use the

weeks that are one quarter-year and two quarter-years before the third week. When these exact

weeks are not available we substitute the most recent available week (that is at least one quarter or

two quarters before the �nal week). We drop consumers for whom three weeks cannot be obtained
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using this method because they do not participate long enough to be in the data for three successive

quarters, which results in a loss of 23% of the initial sample of 26,191. We then draw 2000 of the

remaining consumers at random to form an estimation sample of 6000 consumer-weeks.

Sample selection problems could arise either because the TNS sample is not representative

for the UK population or because the subsample we select is not representative for the full TNS

sample. Regarding the latter issue, note that we select consumers almost randomly subject to the

constraint that they are in the sample long enough so that we observe each consumer in 3 di�erent

quarters. Regarding the former issue, TNS claims to survey a representative sample of consumers

and has a commercial interest in making the sample representative.32 Nevertheless, we analyze

explicitly whether the sample is representative by comparing demographics across our sample, the

full TNS sample and census data. In Table 13 Full Sample refers to the consumers in the raw

sample, Estimation Sample refers to the 2000 consumers selected for estimation, and Validation

Sample refers to the 2000 consumers used in the out-of-sample analysis in Section 5. A comparison

of sample moments shows that they are similar. The column Great Britain refers to data from

2001 census and allows comparison between the TNS sample means and those of the population.

Table 13: Comparison of Sample Moments

Full Sample Estimation Sample Validation Sample Great Britain

Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean

Household-level statistics:

Number of Adults 2.0 0.8 2.0 0.8 2.0 0.8 NA

Number of Children 0.8 1.1 0.8 1.1 0.7 1.0 NA

Household size 2.8 1.4 2.8 1.3 2.7 1.3 2.4

Characteristics of Household Reference Person:

Home owner (0/1) 0.74 0.41 0.78 0.41 0.76 0.43 0.69

Age 45.5 16.0 46.9 15.8 47.0 16.0 49.2

Retired (0/1) 0.17 0.37 0.17 0.38 0.18 0.38 0.17

Employed (0/1) 0.68 0.47 0.69 0.46 0.67 0.47 0.68

Unemployed (0/1) 0.03 0.16 0.03 0.15 0.03 0.16 0.03

Observations: 26,191×67.6 2000×3 2000×3 �

Notes: The Household Reference Person is a senior member of the household identi�ed using criteria
used for the 2001 census in Great Britain. All �gures in the column marked Great Britain are for Great
Britain from the 2001 Census with the following exceptions: (i) the �gure for home ownership is from GB
Housing Statistics, rather than the Census, and (ii) the �gures for Retired, Employed, and Unemployed
status in the last column are for England & Wales only as Scotland does not report this breakdown for the
Household Reference Person (when Scotland is eliminated from the Full Sample, the Estimation Sample and
the Validation Sample, it does not change the moments reported in the table for these variables).

32The commercial value of the data in the form of market analysis for �rms requires a representative sample.
Kantar describes the panel as a �purchase panel consisting of 30,000 demographically representative households in
GB� (http://www.kantarworldpanel.com/en/Consumer-Panels-/alcohol�, retrieved 10/7/2016).
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C Online Appendix: Price Index Construction

C.1 Baseline Price Indices

The prices used in the model are computed at category-week-store-demographic group level for

categories k = 1, .., 8 using the full sample of transactions in the TNS data. (See below for a

description of the demographic groups).

In data there are two levels of aggregation below category k. First, in each category k (e.g.

�Household Goods�), there is a set of narrowly-de�ned product groups g (e.g. �Shampoo�) listed

in Appendix A. We drop some minor product groups that are not sold by all �rms, which leaves

183 (out of 268) product groups that account for 96% of consumer expenditure. We de�ne this set

of product groups Gk for each k.
Second, within each product group g ∈ Gk there is a set of products h, each of which is a unique

product and pack size (e.g. �Herbal Essences Fresh Balance Shampoo 200ml� is a product in the

�Shampoo� group). Products h are numerous and there is a tail of products with low volume. For

each �rm f we select products h that appear in the data at least once in each year (2002 - 2005)

and in more than six quarterly periods. This yields a set of products, Hfg, for each �rm f and

product group g. For each store j product h and week t we compute price pjht as the median

price of product h for week t for stores operated by store j's �rm f(j). As noted in Section 2

the predominant pricing practice is national pricing, in which �rms do not vary prices depending

on the location of their stores. In cases where there are no observed prices for a particular week

we impute the price using the median price for the quarter-year in which week t falls. We obtain

13 �rm-level prices for each t and h: one for each of the following: ASDA, Morrison, Sainsbury,

Tesco, M&S, Waitrose, Aldi, Lidl, Netto, Iceland, Co-op, and Somer�eld, and smaller chains.

The aggregation to category k level thus proceeds in two stages: (i) from product h to product

group g and (ii) from product group g to category k. In each of these stages we weight the prices

to re�ect their importance using information from the transactions data.

To allow for taste variation at an intra-category level we compute weights separately for the

eight demographic types m = 1, .., 8 which are combinations of social class and household size

categories. The TNS household characteristics data has six social class levels (1, ..., 6) based on

occupational group. These social class indicators are used widely in United Kingdom as a measure

of socioeconomic status. A lower number on this scale has a higher average household income. We

combine social class level 1 and 2, and likewise 5 and 6, as there are relatively few households in

these groups, which yields four social class categories. For each of these we divide households into

two size groups�small (one or two people) and large (more than two people)�which yields the

eight demographic types.

In the �rst stage of aggregation the product group g price in store j for week t and demographic

group m is given by pmjgt =
∑

h∈Hgf(j) w
m
hf(j)pjht where w

m
hf(j) are volume weights. We use volume

weights at this stage since there is a common volume unit for products within each g (e.g. volumes

in �Shampoo� are in ml). If each product were sold in each �rm then we could proceed using volume

weights wmhf = Qm
h /Q

m
g where Qm

h is the total volume of product h sold to demographic group m
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over the three year period and Qm
g is the total volume sold in product group g to demographic

group m over the three year period. However each product h is not sold by all �rms so we instead

compute w̃mhf = Qm
h /Q

m
g|h where Q

m
g|h is the volume sold in product group g to demographic groupm

by �rms selling product h and let wmhf = w̃mhf

/∑
h∈Hgf w̃

m
hf in order to ensure that the weights add

up to one for any �rm (i.e.
∑

h∈Hgf w
m
hf = 1 for any f) . This weights products using information

that is not speci�c to �rm f for products that are sold by more than one �rm and uses �rm f

speci�c information otherwise.

In the second stage of aggregation we obtain the category price pmjkt using is a revenue-weighted

average of product group price ratios pmjgt/p
m
bg (where p

m
bg is an arbitrary base price):

pmjkt =
∑
g∈Gk

ωmg

(
pmjgt
pmbg

)
. (46)

The weights ωmg are the total expenditure share (over the three year period) of each product group

g for demographic typem (where
∑

g∈Gk ω
m
g = 1 for eachm). The weights are constant across stores

and over time. Following common practice in price index construction (see for example Chapter

2 in ONS(2014)33) we (i) use sales rather than volume weights at this upper level of aggregation

because the di�erent product groups are often in di�erent units, and (ii) use price ratios in (46) to

ensure that pmjkt is independent of the units chosen within any product group. We set the arbitrary

base price pmbg in the price ratio to be the price in the �rst week (t = 1) in ASDA stores.

C.2 Individual Price Indices

The individual price indices used in subsection 6.7 di�er in the second stage of aggregation by

using an individual-speci�c weighting term�instead of a demographic group weighting term�to

aggregate from product group (g) to category (k) level. (We do the individual weighting at the

product group g level but not the individual product h level because many individual products

such as �private labels� are �rm-speci�c and an individual consumer typically only visits a subset of

the �rms in the data). The category price pijkt for individual consumer i is a budget share-weighted

average of price ratios pmjgt/p
m
bg at product group level (wherepmjgt and p

m
bg are as de�ned above for

the baseline price indices):

pmjkt =
∑
g∈Gk

ωig

(
pmjgt
pmbg

)
(47)

where weights ωig are now the total expenditure share (over the three year period) of each product

group g by consumer i and satisfy
∑

g∈Gk ω
i
g = 1 for each i. The weights are constant across stores

and over time.

33O�ce for National Statistics (2014) �Consumer Price Indices Technical Manual�, available at
http://www.ons.gov.uk
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D Online Appendix: Further Details on the Instruments

D.1 List of Instruments

• Instruments in continuous category-speci�c moments [ZQ
itcjk]: household i size hzi, time dum-

mies Tt (2 years, 3 quarters), price ptjk, price for categories k′ 6= k (for which we estimate

cross e�ects), log store j size (szj), indicator that there are two stores in shopping choice c,

1[n(c)=2], �rm dummies (eight of the nine �rms in footnote (21)) and a constant.

• Instruments in discrete category-speci�c moments [ZD
itcjk]: as Z

Q
itcjk but without time dummies

Tt.

• Instruments in discrete shopping choice moments [ZP
itc]: distance distitc, two-stop shopping

indicator 1[n(c)=2], distance squared (distitc)
2, interaction of distance and the two-stop shop-

ping indicator 1[n(c)=2], mean price across categories and stores for shopping choice c at time

t, and mean price across categories and stores for shopping choice c at time t divided by per

capita income.

• The instruments in the cross-category and cross-period moments are constant terms.

D.2 Category-Speci�c Variables used in Price Instrument

In this Appendix we detail the cost-shifter variables that are included in the category-speci�c

reduced form pricing regressions that are used to construct the price instruments in the robustness

analysis in subsection 6.7. All variables are monthly. We include one common variable in all the

regressions: the Euro-Sterling exchange rate, which a�ects the marginal cost to the retailer of

buying imported products. The remaining (category-speci�c) variables are related to the marginal

costs of products in each category. The category-speci�c variables fall into two broad classes: �rst,

the prices of inputs sold upstream from the retailer that are also traded internationally (so that

their prices are determined by world rather than domestic markets), and, second, retail prices in

Ireland, which we assume are related to retail prices in Great Britain via changes in marginal costs

(similar to instruments used in Hausman et al. (1994)). The variables are from four sources: (i)

The Agricultural Price Index published by the UK's O�ce for National Statistics (ONS) for United

Kingdom agricultural outputs (i,a) and inputs (i,b); (ii) The Producer Price Index published by

the ONS for goods bought and sold by United Kingdom manufacturers; (iii) the Consumer Price

Index in Ireland published by the Central Statistical O�ce, Dublin; and (iv) three commodity

milk price indices (known as IMPE, AMPE, MCVE) from DairyCo that measure the market value

of raw milk in the United Kingdom. The variables used for each category are listed as follows

where we give the variable name and note the source ((i,a) to (iv) as de�ned above).

1. Bakery : (i, a) Cereals, Crop products, Total of all products; (i, b) Feed Barley, Feed Oats,

Feed Wheat; (ii) Food Products, Food Products�EU Imports, Food Products�Non EU

Imports; (iii) Bread. [10 variables]
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2. Dairy (i, a) Eggs, Milk, Total of all products; (i,b) Feed Barley, Feed Oats, Feed Wheat; (ii)

manufacturer milk price; (iv) AMPE, IMPE, MCVE, Bulk Cream, Butter (Unsalted), EU

farmgate milk price, Mature Cheddar Cheese, Mild Cheddar Cheese, Skimmed Milk Powder,

Whey Powder. [17 variables]

3. Drink (ii) Beer, Beverages�non EU imports, Distilled Alcoholic Beverages, Soft drinks min-

eral waters & other bottled waters; (iii) Alcoholic beverages. [5 variables]

4. Dry (ii) Cocoa chocolate & sugar confectionery, Condiments & seasonings, Food Prod-

ucts�EU Imports, Food Products�Non EU Imports, Other food products, Processed &

preserved potatoes, Processed tea & co�ee, Preserved Meat and Meat Products; (iii) Oils,

Sugar, Condiments, Soup. [12 variables]

5. Fruit & Vegetables : (i a) Cabbage, Crop products, Dessert apples, Fresh fruit, Fresh veg-

etables, Lettuce, Oilseed rape, Onions, Other fresh vegetables, Other fresh fruit, Potatoes

for consumption, Total of all products, Other crop products; (iii) Fruit, Vegetables. [15

variables]

6. Household goods : (ii) Basic pharmaceutical products & pharmaceutical preparations�non

EU imports, Basic pharmaceutical products & pharmaceutical preparations�EU imports,

Household & sanitary goods & toilet requisites, Paper stationery�non EU imports, Per-

fumes & toilet preparations, Perfumes & toilet preparations�EU imports, Pharmaceutical

preparations, Prepared pet foods, Soap & detergents; (iii) Laundry goods, Health goods,

Personal hygine goods. [12 variables]

7. Meat : (i a) Animal output, (ii) Meat & poultry meat products, Other food products, Pre-

pared meals & dishes, Preserved meat & meat products, Food products�non EU Imports;

(iii) Meat. [7 variables]

8. Milk: as Dairy.

E Online Appendix: First-Order Condition for Prices

E.1 Pro�t maximization in terms of product prices

This subsection demonstrates that the �rst-order condition (44) can be derived from the assumption

of pro�t maximization at the level of product prices. Let pfh denote the price of product h in �rm

f , where each product belongs to some category k.34 We express this as h ∈ k. The pro�t of �rm
f is πf (p̄), where p̄ = (pfh)∀f,∀h, the vector of all product prices in all �rms.

The usual �rst-order conditions for pro�t maximization by �rm f are that

∂πf (p̄)

∂pfh
= 0 for all h. (48)

34Appendix C discusses the construction of price indices based on store-time speci�c product prices pjht. Since
we look at pro�t maximization at the weekly level, we suppress the t subscript in the current discussion.
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Suppose that we can aggregate the �rm's demand to the category level Qfk and to write it as

a function of category price indices pfk. Category price indices pfk are functions of the product

prices pfh so that we can write the function pfk(p̄fk) where p̄fk = (pfh)h∈k is the subvector of p̄

containing only the prices of products h ∈ k owned by f . Then pro�t can be written

πf (p̄) = ΣK
k=1Qfk(p)(pfk −mcfk), (49)

where p = (pfk)∀f,∀k is the vector of category-speci�c price indices and mcfk is the marginal cost.

(To simplify the notation, we assume χf = 1 in this discussion. See Section 6.1.) Using (48) and

(49) we arrive at a �rst-order condition in terms of the category price index pfk:

0 = Σh∈k
∂πf (p̄)

∂pfh

= Σh∈k
∂

∂pfk

[
ΣK
k′=1Qfk′(p)(pfk′ −mcfk′)

] ∂pfk(p̄fk)

∂pfh

=
[
Qfk(p) + ΣK

k′=1

∂Qfk′ (p)

∂pfk
(pfk′ −mcfk′)

]
Σh∈k

∂pfk(p̄fk)

∂pfh

= Qfk(p) + ΣK
k′=1

∂Qfk′ (p)

∂pfk
(pfk′ −mcfk′) (50)

where the last line follows because Σh∈k
∂pfk(p̄fk)

∂pfh
6= 0. Reintroducing χf , dividing by ∂Qfk/∂pfk

and pfk, and rearranging, we get (44).

E.2 Consumer Group Speci�c Price Indices

This subsection demonstrates that the �rst-order condition (44) holds when we allow price indices

to vary across consumer groups to re�ect di�erent purchasing patterns in households of di�erent

size and social class. For simplicity we use the general case of i-subscripts which allows for price

indices for individual consumers. The price index is a weighted average of product prices (see

Appendix C)

pifk =
∑
h∈k

wihpfh (51)

where
∑

h∈k wih = 1. To allow for a common shift to all product prices given by the scalar ρfk the

price index can be written

pifk =
∑
h∈k

wih(pfh + ρfk) (52)

where ρfk = 0 at equilibrium prices and

Σh∈k
∂pifk
∂pfh

=
∂pifk
∂ρfk

= 1 for all i. (53)

The i-speci�c category demands are Qifk(pi) where pi = (pifk)∀f,∀k is the vector of �rm-category

price indices. Pro�t is

πf (p̄) = ΣiΣ
K
k=1Qifk(pifk)(pifk −mcfk). (54)
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As we saw in the previous subsection, pro�t maximization implies

0 = Σh∈k
∂πf (p̄)

∂pfh

= Σh∈kΣi
∂

∂pifk

[
ΣK
k′=1Qifk(pi)(pifk′ −mcfk′)

] ∂pifk
∂pfh

= Σi
∂

∂pifk

[
ΣK
k′=1Qifk′(pi)(pifk′ −mcfk′)

]
Σh∈k

∂pifk
∂pfh

= Σi

[
Qifk + ΣK

k′=1

∂Qifk′

∂pifk

∂pifk
∂ρfk

(pifk′ −mcfk′)
]

= Qfk + ΣK
k′=1Σi

∂Qifk′

∂ρfk
(pifk′ −mcfk′)

where the �rst line is from (48), the fourth uses (53), and Qfk = ΣiQifk. Dividing by
∂Qfk
∂ρfk

=

Σi
∂Qifk′

∂ρfk
we have

Qfk

(
∂Qfk
∂ρfk

)−1

+ (pfk −mcfk) +
Σk′

∂πfk′

∂ρfk

∂Qfk
∂ρfk

= 0

where pfk=Σiw̃ifkpifk in which w̃ifk =
∂Qifk
∂ρfk

/
∂Qfk
∂ρfk

. Note that
∂pfk
∂ρfk

= 1 which allows us to replace
∂Qfk
∂ρfk

with
∂Qfk
∂pfk

. Rearranging, reintroducing χf , and dividing by pfk, we get expression (44).

F Online Appendix: Pro�t Margin Calculations

In this Appendix we explain how we calculate the pro�t margin �gures which are reported in

Table 8 We begin with the calculations using �rm-level data covering all grocery categories and

then discuss the calculations using data speci�c to the the milk category which uses the same

method.

The Competition Commission (CC) reports two pro�t margin �gures that we use to derive pro�t

margin estimates. The �rst �gure is �gross retail margins� mr de�ned as the di�erence between

the retailer's annual total revenue and its annual total wholesale cost divided by annual revenue

(using the supermarkets' accounts). The CC reports gross retail margins in the range 0.24− 0.25

depending on �rm (CC(2000) Table 8.19). The second �gure is �gross manufacturer margins� mm

de�ned as the di�erence between manufacturer revenues and supplier operating costs (excluding

labour costs) as a proportion of manufacturer revenues. The CC reports gross manufacturer

margins of 0.25 and 0.36 depending on the sample of �rms used (CC(2000) Paragraph 11.108 and

CC(2008) Appendix 9.3 Paragraph 11).

Let us begin by deriving a lower bound to the pro�t margins from these external data. To do this

we assume double marginalilzation, i.e. assume that all payments to manufacturers are of the form

of a marginal (or �linear�) wholesale price and the retailer optimizes against this price plus its own

marginal costs. Under this assumption the manufacturer's marginal costs are not relevant to the

retailer when setting retail prices so that we can ignore the CC's information on the manufacturer's

margins. If linear prices are used in relations between supermarkets and manufacturers (as double

marginalization implies) then the gross retail margin mr is equivalent to the retailers margin over

wholesale prices. To obtain the lower bound to the pro�t margin we combine (i) the assumption of
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double marginalization, with (ii) the assumption that all of the retailer's labour costs are marginal,

and (iii) the lower end of the range of the �gures (noted above) from the CC for mr (i.e. 0.24). The

CC reports that the ratio of labour costs to wholesale price costs is 9:83 (see CC(2000), Paragraph

10.3) which implies labor costs are 9
83

% = 10.8% of wholesale costs. This implies we should adjust

the retail gross margins reported above using the formula m = 1− 1.108(1−mr) which gives 0.16.

This is the lower bound �gure presented in Table 8.

Now we derive an upper bound to pro�t margins using the external data. To do this we assume

that there is e�cient retail pricing so that the manufacturer's marginal cost is relevant to the

retailer when setting prices. To obtain an upper bound to margins we combine (i) the assumption

of e�cient pricing, with (ii) the assumption that none of labour costs are marginal, and (iii)

the upper end of the range of �gures (noted above) from the CC for both mr and mm. With

assumptions (i) and (ii) the overall vertical pro�t margin as a proportion of retail prices is given by

the formula m = mr + (1−mr)mm where m is the overall margin, mr is retail margin and mm is

the manufacturer's margin. Assumption (iii) is that we use the higher of the gross margins �gures

from the CC for both retailers and manufacturers in this formula, i.s. mr = 0.25 and mm = 0.36.

Together this gives the upper bound �gure of m = 0.52 that appears in Table 8.

In the case of the milk category the CC reports gross retail margins in the range 0.28-0.30 and

gross manufacturer margins in the range 0.04-0.05 (see CC (2008) Appendix 9.3, Paragraphs 12

and 15). Using the same method as in the previous two paragraphs these �gures imply margin

estimates for the milk category ranging from 0.20 (using m = 1− 1.108(1−mr) for mr = 0.28) to

0.34 (using m = mr + (1−mr)mm for mr = 0.30 and mm = 0.05).

The lower and upper bounds are conservative because it is likely that some intermediate pro-

portion of labour costs is marginal and because where the CC present a range of �gures for gross

margins we have (under assumption (iii)) selected them to generate the widest bounds.
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G Online Appendix: Alternative Speci�cations

Table 14: Estimated Parameters: Alternative Speci�cations

Price IV Indiv. pjk Alt. distij Indiv. Λkk′ Alt. Λkk′

Est. Std. Er. Est. Std. Er. Est. Std. Er. Est. Std. Er. Est. Std. Er.
A: Store-category Taste E�ects
β01 2.122 0.177 2.228 0.194 2.181 0.080 2.252 0.055 2.195 0.236
β02 1.467 0.036 1.475 0.049 1.456 0.031 1.477 0.052 1.497 0.076
β03 1.154 0.013 1.129 0.040 1.125 0.014 1.215 0.032 1.000 0.023
β04 2.034 0.083 2.035 0.124 1.972 0.047 2.068 0.096 1.891 0.042
β05 2.924 0.191 2.783 0.208 2.731 0.152 2.863 0.226 2.823 0.131
β06 1.168 0.048 1.113 0.033 1.088 0.016 1.129 0.026 1.181 0.038
β07 2.485 0.109 2.359 0.133 2.617 0.113 2.566 0.099 2.419 0.127
β1 0.461 0.004 0.469 0.003 0.437 0.004 0.415 0.004 0.449 0.004
β2 0.486 0.012 0.450 0.011 0.482 0.011 0.469 0.013 0.472 0.018
Scale of Taste Draws (ν):
σ4 0.242 0.026 0.188 0.032 0.320 0.018 0.197 0.039 0.213 0.030
σ3 0.821 0.021 0.977 0.022 1.046 0.027 0.973 0.026 0.894 0.033
σ2 0.729 0.028 0.580 0.016 0.731 0.026 0.751 0.039 0.579 0.037
σ1 1.057 0.023 1.186 0.023 1.091 0.024 1.077 0.020 1.096 0.029
B: Second-Order Quadratic Parameters Λkk′

Λ11 19.049 2.237 22.254 6.828 21.116 3.305 21.542 2.248 20.153 3.019
Λ22 11.147 0.524 11.851 0.655 12.093 0.375 11.996 0.746 11.840 3.499
Λ33 3.833 0.165 3.919 0.286 4.035 0.182 4.330 0.218 3.601 0.198
Λ44 10.756 0.742 11.485 1.087 11.276 0.412 11.651 0.866 10.214 0.420
Λ55 16.805 1.994 16.851 2.558 16.808 1.164 17.219 2.049 16.554 1.060
Λ66 4.312 0.291 4.315 0.204 4.348 0.144 4.369 0.204 4.489 0.241
Λ77 9.155 0.755 9.105 0.902 10.677 0.674 10.094 0.653 9.127 0.792
Λ88 13.592 1.174 13.633 0.392 14.427 0.568 14.395 1.407 15.572 0.775
Λ57 1.788 0.090 1.879 0.121 2.032 0.081 2.070 0.115 � �
Λ18 1.146 0.487 1.558 0.083 1.444 0.182 1.107 0.605 � �
Λ23 0.287 0.189 0.286 2.473 0.201 0.681 0.382 1.269 � �
Λ23 0.525 0.302 0.394 1.709 0.870 0.998 0.554 0.346 � �
Λ23 0.069 0.857 0.061 1.030 0.113 0.152 0.160 0.656 � �
Λ14 � � � � � � � � 0.717 0.426
Λ27 � � � � � � � � -0.033 1.213
Λ38 � � � � � � � � -0.321 0.172
λ1 � � � � � � 0.241 0.052 � �
λ2 � � � � � � -0.033 0.062 � �
σ5 � � � � � � -0.225 0.045 � �
C: Price Parameters
α1 1.699 0.037 1.759 0.056 1.908 0.021 1.967 0.043 1.938 0.033
α2 0.528 0.041 0.344 0.023 0.323 0.025 0.210 0.051 0.376 0.035
D: Shopping Costs
γ11 7.633 1.004 8.477 1.135 8.762 0.849 9.206 1.237 8.660 1.250
γ12 0.472 0.030 0.447 0.028 0.436 0.026 0.402 0.024 0.457 0.029
γ21 10.695 1.802 11.636 2.045 11.188 1.613 13.142 2.273 12.773 2.340
γ22 0.426 0.031 -0.386 0.031 0.385 0.029 0.366 0.028 0.422 0.032

Notes: Parameters are estimated using 6000 consumer-week observations. Standard errors are corrected for simu-
lation noise as detailed in Section 4. Time and �rm-category �xed e�ects are not reported. The speci�cations are
described in subsection 6.7.
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H Online Appendix: A General Multi-store Multi-category

Demand Model

In this Appendix we show how the model we estimate can be derived from a more general framework

of multi-store and multi-category demand. At the most general level, the consumer chooses for

each category k ∈ {1, ..., K} in every store j ∈ {1, ..., J}, how much quantity qjk to purchase,

subject to his budget constraint:

max
q≥0

V (q, θ,X)

s.t. p
′
q ≤ y,

where q = (q11, ..., qJK , q0) denotes the quantity vector for all store/category combinations, and

the outside option is q0. The price vector p = (p11, ..., pJK , 1) is de�ned analogously (the price of

the outside good is normalized to one). θ is a vector of parameters to be estimated and X a vector

of observable store, category and consumer characteristics. y denotes the consumer's income.

In this setting corner solutions in quantity are likely to arise and they can originate from two

sources. Either the consumer does not visit a particular store and hence cannot purchase any

positive quantity there. Or the consumer might visit the store, but decides not purchase any

quantity in a speci�c category. Dealing with the choice over J ∗K quantities with possible corner

solutions for many of the quantities makes this a di�cult demand system to estimate and we

hence impose a set of restrictions based on the data patterns described in Section 2 of the paper.

Speci�cally, we assume that the cost of visiting more than two stores is prohibitively high, so that

no consumer wishes to visit a third store in a given week and that consumers only purchase at one

store within a given category.

With these restrictions on the utility function, we can re-write the optimization problem in the

following way:

max
c

max
d

max
q≥0

V (c, d, q, θ,X)

s.t. p′dq + q0 ≤ y

This formulation allows us to break up the problem into a discrete choice between (pairs of, or

single) stores c, a discrete choice of store for each category d and a continuous quantity choice in

each category q. To derive equation (1) in Section 3 of the paper this formulation also assumes

utility is additively separable in the variable utility derived from purchasing a speci�c basket of

goods and shopping costs and that variable utility is linear in the outside good. Substituting the

budget constraint into the variable utility function for the quantity of the outside option q0 yields

(1).
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