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Abstract

This paper develops a framework to measure �tipping��the increase in a �rm's market
share dominance caused by indirect network e�ects. Our measure compares the expected
concentration in a market to the hypothetical expected concentration that would arise
in the absence of indirect network e�ects. In practice, this measure requires a model
that can predict the counter-factual market concentration under di�erent parameter val-
ues capturing the strength of indirect network e�ects. We build such a model for the
case of dynamic standards competition in a market characterized by the classic hard-
ware/software paradigm. To demonstrate its applicability, we calibrate it using demand
estimates and other data from the 32/64-bit generation of video game consoles, a canon-
ical example of standards competition with indirect network e�ects. In our example, we
�nd that indirect network e�ects can lead to a strong, economically signi�cant increase in
market concentration. We also �nd important roles for beliefs on both the demand side,
as consumer's tend to pick the product they expect to win the standards war, and on the
supply side, as �rms engage in penetration pricing to invest in growing their networks.
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1 Introduction

We study the di�usion of competing durable goods in a market exhibiting indirect network

e�ects due to the classic hardware/software structure (Katz and Shapiro 1985). Of particular

interest is whether such markets are prone to tipping : �the tendency of one system to pull away

from its rivals in popularity once it has gained an initial edge� (Katz and Shapiro 1994) and,

in some instances, to emerge as the de facto industry standard. Thus, tipping can create a

natural form of market concentration in hardware/software markets. The potential for tipping

can also lead to aggressive standards wars between incompatible hardware products as they

compete for market dominance. These standards wars are widely regarded as a ��xture of the

information age� (Shapiro and Varian 1999).

The extant literature has yet to provide an empirically practical measure of tipping. There-

fore, we propose a dynamic framework with which to measure tipping, its relationship to indi-

rect network e�ects and its ability to lead to market concentration in actual markets. We also

use the framework to conduct computational exercises with which to understand the general

role of expectations during a standards war, both on the supply and demand sides, and to

see how they can push a market to tip in favor of one standard. We expect the analysis of

tipping and its natural tendency towards market concentration to be of general importance

both to practitioners and to policy makers.1

The potential for tipping �gures prominently in current antitrust discussions about hard-

ware/software markets, as highlighted in the recent high-pro�le case surrounding the browser

war between Microsoft and Netscape (United States v. Microsoft, 87 F. Supp. 2d 30 and

Bresnahan 2001). However, existing antitrust policies and tools are often inadequate for ad-

dressing the feedback dynamics in markets with indirect network e�ects (e.g. Evans 2003,

Koski and Kretschmer 2004, Evans and Schmalensee 2007, and Rysman 2007). Since adop-

tion decisions are not instantaneous, an empirically relevant model of a hardware/software

market needs to incorporate dynamics in demand and supply. These dynamics constitute a

methodological challenge and, consequently, much of the extant empirical literature either

estimates the e�ects of indirect network e�ects using demand only, or treats the supply side

of the market as static (Gupta et al. 1999, Basu et al. 2003, Bayus and Shankar 2003, Ohashi

2003, Dranove and Gandal 2003, Nair et al. 2004, Karaca-Mandic 2004, Park 2004, Rysman

2004, Clements and O'Hashi 2005, Ackerberg and Gowrisankaran 2007, and Tucker and Ryan

2007). Gandal et al. (2000) allow for forward-looking consumers; but they assume hardware

sponsors do not have a strategic role. More recently, Liu (2007) and, most closely-related to

1Herein, we focus only on the standardization that may emerge from competition. We do not consider
the role of formal standard-setting committees (e.g. Katz and Shapiro 1994) such as those that ultimately
settled the standards war in the 56K modem market (Augereau et al 2006). We do not consider the role of
compatibility which, in some instances, may eliminate the dominance of one of the hardware standards (Chen,
Doraszelski and Harrington 2007).
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our work, Jenkins, Liu, Matzkin, and McFadden (2004) allow for forward-looking hardware

manufacturers. But, both papers treat consumers as myopic. In contrast, our paper allows

for forward-looking consumer behavior and solves for an equilibrium in which consumers' and

�rms' expectations are mutually consistent. We will demonstrate that the assumption of

static consumer behavior can strongly limit the empirical relevance of a model for measuring

concentration or �bad acts," as forward-looking consumer behavior can strongly exacerbate

tipping.

Before discussing our empirical formulation of tipping, we �rst explain how indirect net-

work e�ects can lead to tipping. In a hardware/software market structure, indirect network

e�ects arise because consumers adopt hardware based on the current availability and their

beliefs about the future availability of software, while the (third-party) supply of software

increases in the installed base of a given hardware standard (Chou and Shy 1992, Church

and Gandal 1993).2 Hence, each standard becomes more valuable to a consumer if it attains

a larger installed base. Due to positive feedback, a small initial market share advantage can

eventually lead to large di�erences in the shares of the competing standards. This process

is exacerbated by rational, self-ful�lling expectations, which allow consumers to coordinate

on a standard that is widely adopted based on mutually consistent beliefs about the current

and future adoption decisions of other consumers.3 In an extreme case, two standards A

and B could be identical ex-ante, but due to self-ful�lling expectations either �all consumers

adopt A� or �all consumers adopt B� could be an equilibrium. Hence, due to the emergence

of positive feedback and the role of expectations, markets with indirect network e�ects may

become concentrated, i.e. tip towards one of the competing standards.

We now explain why the formulation of an empirically relevant de�nition of tipping is

di�cult. Consider �rst the case of an ex-ante symmetric market where �rms face identical

demand functions, have the same production costs, etc. In this case, we could measure tipping

by comparing the ex-post asymmetry in market shares with the perfectly symmetric outcome

where all �rms share the market equally.4 In actual markets, however, product di�erentiation,

di�erences in costs, and other di�erences between standards frequently lead to asymmetric

market outcomes, even in the absence of indirect network e�ects. Hence, we propose a measure

of tipping that compares the expected concentration in a market to the hypothetical expected

2Rochet and Tirole (2003) argue that most network e�ects arise in an indirect manner.
3The role of coordination and expectations in driving adoption decisions has been a central theme in the

theoretical literature on network e�ects since the seminal work of Katz and Shapiro (1985). For excellent
surveys, see Farrell and Klemperer (2006) and Katz and Shapiro (1994).

4Note that we focus herein on tipping and market dominance during a speci�c hardware generation. A
related theoretical literature has also studied whether tipping can create inertia across hardware generations
when there are innovations (e.g. Farrell and Saloner 1986, Katz and Shapiro 1992 and Markovitch 2004).
Therein, tipping, or �excess inertia,� is de�ned by the willingness of consumers to trade-o� the scale bene�ts
of a current standard with a large installed base in favor of a new technology without an installed base.
Interestingly, in this type of environment, network e�ects may also serve as a potential barrier to entry
(Cabral 2007).
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concentration that would arise if the sources of indirect network e�ects were reduced or

eliminated. The key insight is that tipping generally needs to be measured relative to a well-

de�ned, counter-factual market outcome. For an empirical implementation of this measure,

we need a model that captures indirect network e�ects, can be calibrated from actual data,

and allows us to make predictions about the equilibrium adoption of the competing standards

under various di�erent parameter values capturing the strength of indirect network e�ects.

To implement the proposed measure of tipping, we build a dynamic model that captures

indirect network e�ects and gives consumer expectations a central role. Our model involves

three types of players: consumers, hardware manufacturers, and software developers. The

demand side of our model extends the framework of Nair et al. (2004) and allows for dynamic

adoption decisions. Consumers are assumed to �single-home,� meaning they adopt at most

one of the competing hardware standards.5 The utility of each hardware standard increases in

the availability and variety of complementary software. Consumers form beliefs about future

hardware prices and software availability. These beliefs in�uence when consumers adopt (the

rate of di�usion) and which standard they adopt (the size of each installed base). On the

supply side, forward-looking hardware �rms compete in prices while anticipating the impact of

hardware sales on the future provision of software and, hence, future hardware sales. Software

�rms provide a variety of titles that is increasing in the installed base of a hardware standard.

Our solution concept for this model is Markov perfect Bayesian equilibrium. The complexity

of the model makes analytical solution methods intractable, and hence we solve the model

numerically.

To demonstrate our model and how it can be used to measure tipping, we calibrate it with

demand parameter estimates and other market data from the 32/64-bit generation of video

game consoles.6 The video game console market is a canonical example of indirect network

e�ects. Furthermore, from previous empirical research, the 32/64-bit generation is known to

exhibit indirect network e�ects (Venkatesh and Bayus 2003, Clements and Ohashi 2005).

Demand estimation per se is not the main point of this paper. But we do need to overcome

some econometric challenges to obtain preference estimates that can be used to calibrate our

model. These challenges arise from the incorporation of forward-looking consumer behavior.

A nested �xed point approach (Rust 1987) would impose a formidable computational burden

that is exacerbated by the presence of indirect network e�ects in the model. Instead, we adapt

the two-step procedures of Bajari, Benkard and Levin (2007) (hereafter BBL) and Pesendorfer

and Schmidt-Dengler (2006) (hereafter PS-D) to solve our demand estimation problem. A

5Recent literature has begun to study the theoretical implications of multi-homing whereby consumers may
adopt multiple standards and software �rms may create versions for multiple standards (Armstrong 2005).

6This approach follows in the tradition of Benkard (2004), Dubé, Hitsch, and Manchanda (2005), and Dubé,
Hitsch, and Rossi (2007) by conducting counter-factual simulations of the market outcomes using empirically
obtained parameters.
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similar approach has recently been employed by Ryan and Tucker (2007).7

The calibrated model reveals that the 32/64 bit video game console market can exhibit

economically signi�cant tipping e�ects, given our model assumptions and the estimated pa-

rameter values. The market concentration, as measured by the 1-�rm concentration ratio in

the installed based after 25 periods, increases by at least 23 percentage points due to indirect

network e�ects. We con�rm the importance of consumer expectations as an important source

of indirect network e�ects; in particular, we �nd that tipping occurs at a (monthly) discount

factor of 0.9, but not for smaller discount factors. Our model also predicts penetration pricing

(for small levels of the installed base) if indirect network e�ects are su�ciently strong. In

markets with strong network e�ects, �rms literally price below cost during the initial periods

of the di�usion to invest in network growth.

2 Model

We consider a market with competing hardware platforms. A consumer who has adopted

one of the available technologies derives utility from the available software for that platform.

Software titles are incompatible across platforms. Consumers are assumed to choose at most

one of the competing hardware platforms and to purchase software compatible with the chosen

hardware, a behavior Rochet and Tirole (2003) term �single-homing.� There are indirect

network e�ects in this market, which are due to the dependence of the number of available

software titles for a given platform on that platform's installed based. The consumers in this

market have expectations about the evolution of hardware prices and the future availability of

software when making their adoption decisions. Correspondingly, the hardware manufacturers

anticipate the consumer's adoption decisions, and set prices for their platforms accordingly.

The software market is monopolistically competitive, and the supply of software titles for any

given platform is increasing in the platform's installed base.

Time is discrete, t = 0, 1, . . . The market is populated by a mass M = 1 of consumers.

There are J = 2 competing �rms, each o�ering one distinct hardware platform. yjt ∈ [0, 1]
denotes the installed base of platform j in period t, i.e., the fraction of consumers who have

adopted j in any period previous to t. yt = (y1t, y2t) describes the state of the market.

In each period, platform-speci�c demand shocks ξjt are realized. ξjt is private information

to �rm j, i.e., �rm j learns the value of ξjt before setting its price, but learns the demand shock

of its competitor only once sales are realized. As we shall see later, ξjt can strongly in�uence

the �nal distribution of shares in the installed base. In particular, the realizations of ξjt in the

7An interesting di�erence is that Ryan and Tucker (2007) use individual level adoption data, which enables
them to accommodate a richer treatment of `observed' consumer heterogeneity. The trade-o� from incorpo-
rating more heterogeneity is that they are unable to solve the corresponding dynamic hardware pricing game
on the supply side.
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initial periods of competition can lead the market to �tip� in favor of one standard. Also, ξjt

will typically ensure that the best response of each �rm is unique, and thus the existence of

a pure strategy equilibrium.8 We assume that the demand shocks are independent and i.i.d.

through time. φj(·) denotes the pdf of ξj , and φ(·) denotes the pdf of ξ = (ξ1, ξ2).
The timing of the game is as follows:

1. Firms learn their demand shock ξjt and set a product price, pjt.

2. Consumers adopt one of the available platforms or delay their purchase decisions.

3. For each platform j, software �rms supply a given number of titles, njt.

4. Sales are realized, and �rms receive their pro�ts. Consumers derive utility from the

available software titles and�in the case of new adopters�from the chosen platform.

Software Market

The number of available software titles for platform j in each period is a function of the

installed base of platform j : njt = hj(yj,t+1). To see why njt is a function of yj,t+1 and

not yjt, note that yjt denotes the installed base at the beginning of period t, while yj,t+1

denotes the total installed base after the potential adopters have made a purchase decision.

The software producers observe this total installed base before they supply a given number

of titles.

While this derivation may seem ad hoc, in Appendix A we show how this relationship

between njt and yj,t+1 can be derived from a structural model of monopolistic competition and

CES software demand in the software market. These assumptions abstract away from some

of the dynamic aspects of game demand (e.g. Nair 2006), but they retain the fundamental

inter-dependence between software and hardware.

Consumer Decisions

Consumers make their adoption decisions based on current prices and their expectation of

future prices and the availability of compatible software titles. Consumers expect that the

installed hardware evolves according to yt+1 = fe(yt, ξt), and that �rms set prices according

to the policy function pjt = σej (yt,ξjt). Consumers observe both ξt and the current price vector

pt before making their decisions.

Consumer who have already adopted one of the platforms receive utility from the available

software in each period. As the supply of software is a function of the installed base at the

8We are not able to prove this statement in general, but could easily verify it across all versions of our
model that we solved on a computer. In general, the right hand side of the �rm's Bellman equation, regarded
as a function of pjt, has two local maxima. The realization of ξjt ensures that these local maxima are not
equal.
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end of a period, we can denote this utility as uj(yj,t+1) = γnjt = γhj(yj,t+1). The present

discounted software value is then de�ned as

ωj(yt+1) = E

[ ∞∑
k=0

βkuj(yj,t+1+k)|yt+1

]
.

This value follows the recursion

ωj(yt+1) = uj(yj,t+1) + β

∫
ωj(fe(yt+1, ξ))φ(ξ)dξ.

Consumers who have not yet adopted either buy one of the hardware platforms or delay

adoption. The choice-speci�c value of adopting hardware platform j is given by

vj(yt, ξt, pt) = δj + ωj(fe(yt, ξt))− αpjt + ξjt. (1)

Here, δj is the value of owning a speci�c hardware platform, or the value of bundled software.

α is the marginal utility of income. The realized utility from adopting j also includes a

random utility component εjt, which introduces horizontal product di�erentiation among the

competing standards. That is, the total utility from the choice of j is given by vj(yt, ξt, pt)+εjt.
We assume that εj is i.i.d. Type I Extreme Value distributed.

The value of waiting is given by

v0(yt, ξt) = β

∫
max

{
v0(yt+1, ξ) + ε0,max

j
{vj(yt+1, ξ, σ

e(yt+1, ξ)) + εj}
}
φε(ε)φ(ξ)d(ε, ξ).

(2)

In this equation, yt+1 = fe(yt, ξt).
Consumers choose the option that yields the highest choice-speci�c value, including εjt.

That is, option j is chosen if and only if for all k 6= j, vj(yt, ξt, pt) + εjt ≥ vk(yt, ξt, pt) + εkt.
9

Given the distributional assumption on the random utility component, the market share of

option j is

sj(yt, ξt, pt) =
exp(vj(yt, ξt, pt))

exp(v0(yt, ξt)) +
∑J

k=1 exp(vk(yt, ξt, pt))
. (3)

Furthermore, the installed base of platform j evolves according to

yj,t+1 = yjt +

(
1−

J∑
k=1

ykt

)
sj(yt, ξt, pt) = fj(yt, ξt, pt). (4)

9These inequalities involve some slight abuse of notation, as v0(y, ξ) is not a function of p.
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Firms

Firms set prices according to the Markovian strategies pj = σj(y, ξj), i.e., prices depend

only on the current payo�-relevant information observed to each competitor. Firms expect

that the consumers make adoption decisions according to the value functions v0, . . . , vJ , and

accordingly that market shares are realized according to equation (3) and that the installed

base evolves according to (4).

The marginal cost of hardware production is cj , which we assume to be constant through

time. The �rms also collect royalty fees from the software manufacturers at the rate of rj per

unit of software. The per-period expected pro�t function is then given by

πj(y, ξj , pj) = (pj − cj) ·
(

1−
∑J

k=1ykt

)∫
sj (y, ξj , ξ−j , pj , σ−j(y, ξ−j))φj(ξ−j)dξ−j

+ rj

∫
hj (fj(y, ξj , ξ−j , pj , σ−j(y, ξ−j)))φj(ξ−j)dξ−j .

Each competitor maximizes the expected present discounted value of pro�ts. Associated

with the solution of the inter-temporal pricing problem is the Bellman equation

Vj(y, ξj) = sup
pj≥0

{
πj(y, ξj , pj) + β

∫
Vj(f(y, ξj , ξ−j , pj , σ−j(y, ξ−j)), ξ′j)φ(ξ−j)φ(ξ′j)d(ξ−j , ξ′j)

}
.

(5)

Equilibrium

We seek a Markov perfect Bayesian equilibrium, where �rms and consumers base their de-

cision only on the current payo�-relevant information. Consumers have expectations about

future hardware prices and the evolution of the installed base of platform and the associated

supply of software. The adoption decisions are dependent on these expectations. Firms have

expectations about the adoption decisions of the consumers, the evolution of the installed

base, and the pricing decisions of their competitors. Pricing decisions are made accordingly.

In equilibrium, these expectations need to be mutually consistent.

Formally, a Markov perfect Bayesian equilibrium in pure strategies of the network game

consists of consumer expectations fe and σe, consumer value functions vk, pricing policies σj ,

and the �rm's value function Vj such that:

1. The consumer's choice-speci�c value functions v1, . . . vJ satisfy (1), and the value of

waiting, v0, satis�es (2).

2. The �rm's value functions V1, . . . , VJ satisfy the Bellman equations (5).

3. pj = σj(y, ξj) maximizes the right-hand side of the Bellman equation (5) for each

j = 1, . . . , J.
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4. The consumer's expectations are rational: σej ≡ σj for j = 1, . . . , J, and fe(y, ξ) =
f(y, ξ, σ(y, ξ)), where f is as de�ned by equation (4).

In the Markov perfect equilibrium, all players��rms and consumers�act rationally given

their expectations about the strategies of the other market participants. Furthermore, expec-

tations and actually realized actions are consistent.

3 Estimation

To make our computational results more realistic, we calibrate them with data from the

video game console market. While demand estimation per se is not the main objective of

the paper, it is nevertheless helpful to discuss brie�y some of the challenges involved in

estimating preference parameters for a dynamic discrete choice model. The main di�culty

arises from the incorporation of consumer beliefs, a crucial element for durable goods demand

in general (Horsky 1990, Melnikov 2000, Song and Chintagunta 2003, Nair 2005, Prince

2005, Carranza 2006, Gowrisankaran and Rysman 2006, and Gordon 2006). Once we include

consumer beliefs in our console demand function, the derivation of the market shares, equation

(3), requires us to compute the choice-speci�c value functions. Nesting the corresponding

dynamic programming problem into the estimation problem is prohibitive due to the high

dimension of the state space (yt, ξt and other exogenous states included in the empirical

speci�cation). In addition, the derivation of the density of market shares (or moments of the

density) requires inverting the demand shocks, ξ, out of the market share function numerically.

This step is also computationally costly since ξ enters the utility function non-linearly through

the value functions ωj(fe(yt, ξt)) and v0(yt, ξt).10

Instead, we follow a recent tradition in the empirical literature on dynamic games and

estimate the structural parameters of our model in two stages (e.g. BBL, PS-D, and Aguir-

regabira and Mira 2002, 2006). The goal is to construct moment conditions that match the

observed consumer choices in the data with those predicted by our model. Rather than com-

puting the choice-speci�c value functions needed to evaluate demand, we instead devise a

two-step approach to simulate them.

Stage 1

In the �rst stage, we estimate the consumer choice strategies along with the �rms' pricing

strategies and the software supply function. The supply function of software variety is speci�ed

as follows

10As discussed in Gowrisankaran and Rysman (2006), since we do not know the shape of these value functions
a priori, it is unclear whether the market share function is invertible in ξ, let alone whether a computationally
fast contraction-mapping can be used to compute the inverse.
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log(njt) = Hj(yj,t+1; θn) + ηjt. (6)

where ηjt ∼ N
(
0, σ2

η

)
captures random measurement. This speci�cation is consistent with

the equilibrium software supply function derived in the Appendix, equation (9). The pricing

strategies are speci�ed as follows

log (pjt) = Pj (yt, z
p
t ; θp) + λξjt, (7)

where ξjt ∼ N (0, 1). In equation (7) we let Pj be a �exible functional form of the state

variables. For the empirical model, we include exogenous state variables, zpt , that are observed

by console �rms in addition to yt and ξt, the state variables in the model of Section 2. These

additional states are discussed in Section 4. In equation (7), we assume that the video game

console manufacturers use only payo�-relevant information to set their prices. But we do

not assume that their pricing strategies are necessarily optimal. This speci�cation has the

advantage that it is consistent with the Bayesian Markov perfect equilibrium concept used in

our model, but does not explicitly impose it.

Conditional on the model parameters, there is a deterministic relationship between the

price and installed base data and the demand unobservable, ξjt = Xj(yjt, pjt, zpt )11. Then,

conditional on yt and pt, we can estimate the consumers' optimal choice strategy in log-odds:

µjt ≡ log (sjt)− log (s0t)

= vj

(
yt, ξt, pt, z

d
t

)
− v0

(
yt, ξt, z

d
t

)
+ ζjt

= Lj
(
yt,X (yt, pt, z

p
t ), zdt ; θµ

)
+ ζjt, (8)

where ζjt ∼ N(0, σ2
ζ ) is random measurement error and zdt denotes exogenous state variables

observed by the consumer. By including the control function X (yt, pt, z
p
t ) in the demand

equation, we also resolve any potential endogeneity bias that would arise due to the correlation

between prices and demand shocks (this is the control function approach used in . The �rst

stage consists then of estimating the vector of parameters Θ = (θn, θp, θµ, λ) via maximum

likelihood using the equations (6), (7), and (8).

Stage 2

In the second stage, we estimate the consumers' structural taste parameters, Λ, by construct-
ing a minimum distance procedure that matches the simulated optimal choice rule for the

11We can trivially invert ξ out of the price equation because of the additivity assumption in (7). This is
a stronger condition than in BBL, but it is analogous to other previous work such as Villas-Boas and Winer
(1999) and Petrin and Train (2005).
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consumers to the observed choices in the data. The idea is to use the estimated consumer

choice strategies, (8) and the laws of motion for prices and software variety, (7) and (6),

to forward-simulate the consumers' choice-speci�c value functions, Vj
(
yt, ξt, pt; Λ, Θ̂

)
and

V0(y, ξ; Λ, Θ̂). The details for the forward-simulation are provided in the Appendix. Note

that while our two-step approach does not require us to assume that �rms play the Markov

Perfect equilibrium strategies explicitly, we do need to assume that consumers maximize the

net present value of their utilities.

The minimum distance procedure forces the following moment condition to hold approxi-

mately:

Qjt(Λ0, Θ̂) ≡ µjt −
(
Vj(y, ξ, p; Λ0, Θ̂)− V0(y, ξ; Λ0, Θ̂)

)
= 0.

That is, at the true parameter values, Λ0, and given a consistent estimate of Θ, the simulated
log-odds ratios should be approximately equal to the observed log-odds ratios for each of the

observed states in the data. The minimum distance estimator, ΛMD, is obtained by solving

the following minimization problem:

ΛMD = min
Λ

{
Q(Λ, Θ̂)′WQ(Λ, Θ̂)

}
,

where W is a positive semi-de�nite weight matrix.12 Wooldridge (2002) shows that the

minimum distance estimator has an asymptotically normal distribution with the covariance

matrix

Avar(ΛMD) =
(
∇ΛQ

′W∇ΛQ
)−1∇ΛQ

′W∇ΘQΩ̂∇ΘQ
′W∇ΛQ

(
∇ΛQ

′W∇ΛQ
)−1

,

where Ω̂ = Avar(Θ̂), and ∇ΛQ and ∇ΘQ denote gradients of Q with respect to Λ and Θ
respectively.

The approach is closest to PS-D. But, our implementation di�ers in two ways. First, we

examine a model with continuous states (PS-D look at a model with discrete states). Second,

we adapt the approach to estimation of aggregate dynamic discrete choice demand, whereas

PS-D focus on discrete choice at the individual level.

4 Data

For our calibration, we use data from the 32/64-bit generation of video game consoles, one of

the canonical examples of indirect network e�ects. To understand the relevance of this case

study to our model and our more general point about tipping in two-sided markets, we brie�y

outline some of the institutional details of the industry. We then discuss the data.

12We just set W equal to the identity matrix since it is unclear how to derive the e�cient W in closed form
for our speci�c problem.
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The US Videogame Console Industry

The market for home video game systems has exhibited a two-sided structure since the launch

of Atari's popular 2600 VCS console in 1977 (Williams 2002). Much like the systems today,

the VCS consisted of a console capable of playing multiple games, each on interchangeable

cartridges. While Atari initially developed its own proprietary games, ultimately more than

100 independent developers produced games for Atari and more than 1,000 games were re-

leased for Atari 2600 VCS (Coughlan 2001A). This same two-sided market structure has

characterized all subsequent console generations, including the 32/64-bit generation we study

herein.

The 32/64-bit generation was novel in several ways. None of the consoles were backward-

compatible, eliminating concerns about a previously-existing installed base of consumers

which might have given a �rm an advantage. This was also the �rst generation to adopt

CD-ROM technology; although early entrants, Philips and 3DO, failed due to their high con-

sole prices of $1000 and $700 respectively. In contrast, the September 1995 US launch of

Sony's 32-bit CD-ROM console, Playstation, was an instant success. So much so, that its

competitors, Sega's 32-bit Saturn console and later, Nintendo's 64-bit N64 cartridge console,

failed to recapture Sony's lead. In fact, Sega's early exit from the market implied a duopoly

console market between Sony's �rst-generation Playstation and Nintendo's N64.

Playstation's success re�ected several changes in the management of the console side of

the market. From the start, Sony's strategy was to supply as many games as possible, a lesson

it learned from its experience with Betamax video technology:

Sony's primary goal with respect to Playstation was to maximize the number and

variety of games... Sony was willing to license any Playstation software that didn't

cause the hardware to �crash.� � Coughlan (2001b)

To stimulate independent game development, Sony charged substantially lower game royalties

of $9, in contrast with Nintendo's $18 (Coughlan 2001c). Sony's CD-based platform also

lowered game development costs, in contrast with Nintendo's cartridge based system. While

the Playstation console failed to produce any truly blockbuster games during its �rst year

(Kirkpatrick 1996), after three months, Playstation's games outnumbered those of Sega's

Saturn by three-to-one. By 1998, more than 400 Playstation titles were available in the US.

In addition, Sony engaged in aggressive penetration pricing of the console early on, hoping to

make its money back on game royalties (Cobb 2003).

In contrast, Nintendo maintained very stringent conditions over its game licensees, a

legacy from its management of game licensees during earlier generations when Nintendo was

dominant.13 By Christmas of 1996, N64 only had eight games in contrast with roughly 200

13The dominance of Nintendo's 8-bit NES console, during the 1980s, allowed it to command 20% royalties
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Playstation titles (Rigdon 1996). By June 1997, N64 still had only 17 games while Playstation

had 285. Nintendo insisted that it competed on quality, rather than quantity and in 1997 its

CEO claimed, �Sony could kill o� the industry with all of `its garbage� ' (Kunii 1998). In the

end, the dominance of Sony Playstation in the 32/64-bit console generation was attributed

primarily to its vast library of games, rather than to speci�c game content.

Recall that our case study focuses only on the 32/64-bit console generation. The success

of Playstation's game proliferation strategy makes us comfortable with the assumption that

game variety proxies meaningfully for the indirect network e�ects. This assumption would be

more tenuous for more recent console generations now that blockbuster games have become

more substantial. For example, the blockbuster game Halo 3, for Microsoft's Xbox 360,

generated $300 million in sales during its �rst week (Blakely 2007) and, by November 2007,

it represented over 17% of Xbox 360's worldwide game sales according to NPD. At the same

time, monthly Xbox 360 console sales nearly doubled in contrast with two months previously,

selling 527, 800 units in October 2007 (Gallagher 2007). Similarly, Playstation 3's Spiderman

3 grossed $151 million during its �rst week (Blakely 2007). The blockbuster games of the

32/64-bit generation were smaller in magnitude. Only three N64 games garnered over 4% of

total US game unit sales on the N64 platform, Goldeneye 007, Mario Kart 64 and Super Mario

64, while an additional 21 games captured over 1% of total game sales. Only �ve Playstation

titles captured over 1% of total Playstation game sales, none capturing over 2%.14 Nair

(2007) tests for Blockbuster game e�ects during this generation. He �nds no material impact

on sales or prices of games in the months leading-up to the launch of a best-selling game.

Therefore, Nair (2007) ignores competitive e�ects in his analysis of video game pricing during

this generation.

Data

Our data are obtained from NPD Techworld's �Point of Sale� database. The database consists

of a monthly report of total sales and average prices for each video game consoles across a

sample of participating US retailers from September 1995 to September 2002. NPD states

that the sheer size of the participating �rms represent about 84% of the US retail market. We

also observe the monthly number of game titles available during the same period. We de�ne

the potential market size as the 97 million US households as reported by the US Census.

In the data, we observe a steady decline in console prices over time. At �rst glance, this

pattern seems inconsistent with the penetration-pricing motive one would expect from our

in addition to a manufacturing fee of $14 per game cartridge. Licensees were also restricted to 5 new NES
titles per year. Nevertheless, by 1991, less than 10% of titles were produced by Nintendo and the system
had over 450 titles in the US. In addition, one in three US households had an NES console by 1991, with the
average console owner purchasing 8 or 9 games (Coughlan 2001B).

14These numbers are based on US game sales data collected by NPD.
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model. However, Playstation is estimated to have launched at a price roughly $40 below

marginal cost (Coughlan 2001) and console prices have been documented to have fallen more

slowly than costs over time, the latter due to falling costs of chips (Liu 2006). The rising

margins over time are consistent with penetration pricing. Although we do not observe

marginal costs, we control for falling costs by including a time trend as a state in the empirical

model. Thus, our empirical model is consistent with a richer game in which �rms face falling

marginal costs. We include this time trend in both zpt and z
d
t , which treats it as a commonly-

observed state. In addition, we experiment with producer price indices (PPI's), from the BLS,

for computers, computer storage devices and audio/video equipment to control for technology

costs associated with a console. Finally, we also experiment with the inclusion of the exchange

rate (Japanese Yen per US dollar) to control for the fact that parts of the console are sourced

from Japan. These two sets of cost-shifting variables, PPI's and exchange rates, are included

in zpt . However, since we do not expect these costs to be observed by consumers when they

make console purchase decisions, we exclude them from zdt .

The empirical model also includes monthly �xed-e�ects to control for the fact that there

are peak periods in console demand (e.g. around Christmas). These states are observed by

both �rms and consumers and, hence, enter both zpt and z
d
t . For the policy simulations, we will

ignore the e�ects of time, month and cost-shifters since they are incidental to our theoretical

interest in tipping.

Descriptive statistics of the data are provided in Table 1. The descriptive statistics indicate

a striking fact about competition between Sony Playstation and Nintendo 64. On average,

the two consoles charged roughly the same prices. However, Sony outsold Nintendo by almost

50%. At the same time, over 3.5 times as many software titles were available for Sony than

for Nintendo. Of interest is whether Sony's share advantage can be attributed to its large

pool of software titles.

Identi�cation

Like most of the extant literature estimating structural models of durable goods demand, our

di�usion data contain only a single time-series for the US market15. The use of a single time-

series creates several generic identi�cation concerns for durable goods demand estimation

in general16. The �rst and most critical concern is the potential for sales di�usion data

to exhibit dependence over time as well as inter-dependence in the outcome variables. In

15An interesting exception is Gupta et al (1999), who use panel data on individual HDTV adoption choices
obtained from a conjoint experiment.

16Some argue that data containing multiple independent markets resolves some of the identi�cation issues.
Pooling markets would certainly resolve some of our identi�cation concerns; however, it also raises others.
Pooling markets requires the strong assumptions that all markets are in the same long-run equilibrium and
that all markets have the same parameters (e.g. consumer tastes are the same across markets) in order to
estimate beliefs.
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addition, the di�usion implies that any given state is observed at most once, a property that

could complicate the estimation of beliefs. Finally, we also face the usual potential for price

endogeneity to bias demand parameters if prices are correlated with the demand shocks, ξ

(Berry 1994). We now brie�y discuss the intuition of our empirical identi�cation strategy.

Di�usion data may naturally exhibit dependence over time in prices, pt, and an inter-

dependence between prices and the other outcome variables, yt and nt. A concern is whether

we can separately identify the price coe�cient, α, and the software taste (i.e. the indirect

network e�ect), γ. Our solution consists of adding console cost-shifting variables, PPI's and

exchange rates, that vary prices but that are excluded from demand and from software supply.

The exclusion restrictions introduce independent variation in prices and, hence, in the term

αpt in the utility function. The exchange rates are particularly helpful in this regard because

they introduce independent variation over time � past research has documented that short-

run exchange rate innovations follow a random walk (e.g. Meese and Rogo� 1982 and Rogo�

2007). The exclusion restrictions embody a plausible assumption that consumers do not

observe the PPI's and exchange rates and, hence, they do not adjust their expectations in

response to them.

A related concern is whether we can separately identify the role of product di�erentiation,

δj (i.e. one standard has a higher share due to its superior technology), and the indirect

network e�ects, γ (i.e. one standard has a higher share due to its larger installed base which

in turn stimulates more software variety) on demand. Our assumption of �single-homing� (i.e.

discrete choice), a reasonable assumption for this generation of video game consoles, enables

us to infer preferences from aggregate market shares. In addition, we hold each console's

quality �xed over time. Thus, we can identify the current utility of software (i.e. the indirect

network e�ect) using variation in the beginning-of-period installed base, yt.

Finally, we face the usual concerns about endogeneity bias due to prices (e.g. Berry 1994).

We do not have a speci�c console attribute or macro taste shock in mind when we include ξ in

the speci�cation; but we include it as a precautionary measure. We are reasonably con�dent

ξ is not capturing the impact of unmeasured blockbuster games17. Nevertheless, to the ex-

tent that ξ captures demand information that is observed by �rms, any resulting correlation

between prices and ξ could introduce endogeneity bias. Our joint-likelihood approach to the

�rst stage does provide a parametric solution to the endogeneity problem through functional

form assumptions. We have imposed a structure on the joint-distribution of the data which

provides us with the relationship between prices and demand shocks, ξ. However, we can

relax this strong parametric condition by using our console cost-shifters. Both the exchange

rate and the PPI's provide sources of exogenous variation in prices that are excluded from

17We checked the correlation between the ξ estimates from our �rst stage and the 1-�rm concentration ratio
of video game sales for each console (based on NPD data). Game concentration explains less than 1% of the
variation in Playstation's ξ, versus 11% of N64's ξ.
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demand and that are unlikely to be correlated with consumer tastes for video game consoles,

i.e. ξ. In essence, the endogeneity is resolved by including the control function, X(yjt, pjt, z
p
t ),

in the log-odds of choices, equation (8) (e.g. Villas-Boas and Winer 1999 and Petrin and Train

2007).

5 Estimation Results

5.1 First Stage

During the �rst stage, we experiment with several speci�cations. In Table 2, we report the

log-likelihood and Bayesian information criterion (BIC) associated with each speci�cation.

Our �ndings indicate that allowing the states to enter hj both linearly and quadratically

improves �t substantially based on the BIC predictive �t criterion (model 3 versus model

2). Allowing for a time trend also improves �t moderately (model 2 versus model 1). We

use a time-trend that is truncated after 65 periods since prices roughly level o� after that

point (i.e. we do not expect costs to decline inde�nitely). We also experimented with a more

�exible distributional assumption for the demand shocks, ξ. We use a mixture-of-normals

speci�cation to check whether the assumption of normality potentially biases our MLE's.

However, we �nd little change in �t from the 2-component mixture (model 4 versus model

3). Moving to the last three rows, models 5, 6 and 7, we look at the implications of including

additional cost proxies into the pricing function that are excluded from the game supply and

from the consumer choices. Recall these are terms we include in zpt , but we do not include in

zdt . We use a 3-month lag and 7-month lag in the exchange rate as they were found to explain

more price variation than the contemporaneous exchange rate, which is likely due to the fact

that production is sourced in advance of sales. Overall, the inclusion of these terms in the

price equation improves the overall likelihood of the �rst stage (as seen by the BIC for model

7).

Although not reported in the Tables, a regression of log-prices on the various price-shifters,

including the PPI's and the exchange rate, generates an R2 of 0.9. Similarly, the OLS re-

gression for the game titles generates an R2 of 0.98. In the case of log-odds, the inclusion of

ξ makes it hard to interpret an R2. Instead, we construct a distribution of ξ using a para-

metric bootstrap from the asymptotic distribution of the parameters in the price regressions.

The mean R2 of a regression of log-odds on the observed states and the simulated ξ is 0.95.

Overall, the �rst-stage model appears to �t the data well.

A critical aspect of the 2-step method is that the �rst-stage model captures the relationship

between the outcome variables and the state variables. To assess the �t of the �rst-stage

estimates, in Tables 3, 4, and 5, we report all the �rst-stage estimates and their standard

errors. Most of the estimates are found to be signi�cant at the 95% level. In Table 5, we
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�nd a positive relationship between software variety and the installed base of each standard.

Analogous �ndings are reported in Clements and O'Hashi (2005).

In the Figures 1, 2, and 3, we plot the true prices, log-odds and games under each standard.

In each case, we plot the outcome variable for a standard against its own installed base

(reported as a fraction of the total potential market, M = 97, 000, 000). In addition, we

report a 95% prediction interval for each outcome variables based on a parametric bootstrap

from the asymptotic distribution of our parameter estimates18. In several instances, the

observed outcome variable lies slightly outside the prediction interval. But, overall, our �rst-

stage estimates appear to do a reasonably good job preserving the relationship between the

outcome variables and the installed base.

5.2 Second Stage

We report the structural parameters from the second-stage in Table 6. Results are reported

for two speci�cations: models 3 and 7 from the previous section. Recall that model 3 does

not have any exclusion restrictions across equations in the �rst stage. Model 7, the best-

�tting model overall in stage 1, includes PPI's and exchange rates in the price equations. To

estimate the second stage of the model, we maintain the assumption that consumers do not

observe realizations of these costs. Instead, we assume they observe prices each period and

can integrate the innovations to prices out of their expected value functions19. The results

are based on an assumed consumer discount factor of β = 0.9 and 60 simulated histories20

of length 500 periods each. Although not reported, we also included monthly �xed-e�ects in

tastes.

First, both model speci�cations each appear to yield qualitatively similar results. While

the point estimates suggest a slight preference for the Sony PlayStation console, the di�erence

in tastes between the two consoles is statistically insigni�cant. This �nding is consistent with

industry observers who noted that the improvements from 32 to 64 bit technology were much

less dramatic than in previous generations (Coughlan 2002). Rather, the variety of availability

of games tended to be the main di�erentiator. Indeed, the taste for software variety, γ, is

positive and signi�cant. In both speci�cations, γis roughly 0.1. The e�ective �network e�ect�

in the model arises from the positive (and signi�cant) software taste on the demand side, γ,

and the positive (and signi�cant) elasticity of each standard's supply of software titles with

18The prediction intervals are constructed as follows. 5000 draws are generated from the asymptotic
distribution of the �rst-stage parameter estimates. We then compute the predicted log-price, log-odds and
log of game titles corresponding to each parameter draw. We then plot the 5th and 95th percentiles of these
values.

19To estimate the distributions of these various costs, we assume they all follow a random walk distribution
with drift. Thus, we regress each cost on its 1-period lag along with an intercept and an i.i.d. shock. For the
PPI's, we obtain an R2of 0.99, whereas for the exchange rates, we obtain an R2of 0.89.

20Since the second-stage estimator is linear in the simulation error, the choice of the number of draws only
in�uences e�ciency.
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respect to its installed base, λSony and λNintendo (as in Table 5). The qualitative implications

of these estimates are best understood in the context of our simulations in the following

section.

6 Model Predictions

We now return to the main questions addressed in this paper regarding the ability to quan-

tify �tipping� using our empirical estimates from the 32/64-bit video game console market.

Throughout this section, we will base our simulations on Model 7, which was the best-�tting

speci�cation in stage 1. We de�ne tipping as the extent to which the economic mechanism of

indirect network e�ects leads to market concentration. Indirect network e�ects in our model

arise both through the consumers' current marginal utility of complementary software, γ, and

through their discount factor, β, which determines how the consumers' expectations about the

future availability of software for each standard impact on current adoption decisions. Using

our empirical example, we examine how γ and β lead to market concentration and tipping.

Our model abstracts from certain aspects of the 32/64 hardware market, in particu-

lar learning-by-doing (declining production costs) and persistent heterogeneity in consumer

tastes. In this respect, we caution that our predictions should not be interpreted as attempts

to explain literally the observed, historic evolution of the market.

In the special case of a market with two symmetric competitors, we can de�ne a measure of

tipping by comparing the expected installed base share of the larger standard T periods after

the product launch to a market share of 50% (i.e. to the the share in a �symmetric� outcome).

That is, we measure tipping as the extent to which the cumulative 1-�rm concentration

ratio in period T exceeds 50%. In most actual markets, however, the expected share of

the larger standard will exceed 50% even in the absence of indirect network e�ects, due to

product di�erentiation, cost di�erences across the standards, etc. To assess tipping, we need

to compare the expected share in the installed base to the hypothetical share that would arise

if one or more economic factors that cause indirect network e�ects were absent or smaller in

size. Therefore, we need a model to predict counter-factual market outcomes, and de�ne the

(counter-factual) baseline case relative to which tipping is measured.21

We now provide a formal de�nition of our tipping measure. Let ρjt be the share of standard

j in the installed base t periods after product launch:

ρjt ≡
yj,t+1

y1,t+1 + y2,t+1
.

21Note that due to demand shocks, the expected cumulative 1-�rm concentration ratio could signi�cantly
exceed 50% in a market with symmetric competitors even if there are no indirect network e�ects. In this
situation, the di�erence between the cumulative 1-�rm concentration ratio and 50% would not provide a
meaningful measure of tipping even in the symmetric case.

18



Here, remember that yj,t+1 is the installed base of standard j at the end of period t and

thus includes the sales of j during period t. The cumulative 1-�rm concentration ratio after

T periods is then given by

C(yT ) = max{ρ1T , ρ2T }.

The realization of C(yT ) depends on the model parameters, Θ, an equilibrium that exists

for these parameters, E(Θ), and a sequence of demand shocks, ξt. Given Θ and E(Θ), the
distribution of (yt)Tt=0 is well de�ned, and we can thus calculate the expected cumulative

1-�rm concentration ratio

C1(Θ, E(Θ)) ≡ E (C(yT )|Θ, E(Θ)) .

Let Θ′ be a variation of the model where one or more parameters that govern the strength of

indirect network e�ects are changed compared to the model described by Θ, and let E(Θ′) be a
corresponding equilibrium. We can thus measure tipping, the increase in market concentration

due to indirect network e�ects, as

∆C1 = C1(Θ, E(Θ))− C1(Θ′, E(Θ′)).

If we knew that the market under investigation was symmetric, then C1 ≈ 0.5 in the absence

of indirect network e�ects, and we could measure tipping by ∆C1 = C1(Θ, E(Θ))− 0.5.
To implement the tipping measure, we calibrate the model developed in Section 2 and use

it to predict the evolution of the market. The parameters consist of the demand estimates and

software supply function estimates presented in section 5, along with industry estimates of

hardware console production costs and royalty fees.22 For a given set of parameter values, we

solve for a Markov perfect Bayesian equilibrium of the model, and then simulate the resulting

equilibrium price and adoption paths.

Preliminaries

We �rst summarize speci�c aspects of the model solutions and simulations. Firms and con-

sumers make decisions at the monthly level. Throughout, we assume that �rms discount

future pro�ts using the factor β = 0.9923. However, we will consider various consumer dis-

count factors across the di�erent simulations. To simplify the analysis, we also normalize the

market size to M = 124.
We summarize the �rms' equilibrium pricing strategies by the expected pricing policies

22Cost and royalty data are reported in Liu (2007) and based on various industry reports. The marginal
production costs are $147 (Sony) and $122 (Nintendo), and correspond to Liu's cost estimates 20 months after
the launch of Nintendo 64. The royalty fees per game sold are $9 (Sony) and $18 (Nintendo).

23This discount factor corresponds to an annual interest rate of 12.8%.
24Note that this normalization also requires re-scaling the parameters in the supply equation accordingly.
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E(pjt|yt) = Eξj (σj(yt, ξj)|yt). Here, the expectation is taken over the �rm's private informa-

tion, the transitory demand component ξj . The equilibrium evolution of the state vector is

summarized by a vector �eld, where each state is associated with the expected state in the

next period.25 Thus, for a given current state yt, we calculate (and plot) a vector describing

the expected movement of the state between periods:

−→
ζt = E(yt+1|yt)− yt = Eξ (f(yt, ξ, σ(yt, ξ)|yt)− yt.

Using the equilibrium policies and equilibrium state transitions, we can simulate a path of

prices, sales, and installed base values given an initial condition y0 and a sequence of demand

shocks, ξt. For each set of parameter values, we generate 5, 000 simulations of the evolution of

the market. Using the simulated values, we can then examine the distribution of prices over

time, and the distribution of shares in the total installed base at the end of each period, ρjt.

Measuring Tipping: Symmetric Competition

We �rst analyze a case of symmetric competition, where both competitors have identical de-

mand functions, production costs, and royalty fee structures. In the symmetric case, it is easy

to compare the predicted market concentration relative to the benchmark case, where both

competitors share the market equally. We assume that both competitors are characterized

by the parameter estimates that we obtained for Sony. As there are no ex ante di�erences

left between Sony and Nintendo apart from the name, we refer to the two competitors as

�Standard 1� and �Standard 2.�

We �rst examine how market outcomes are in�uenced by the consumers' marginal utility

of software, γ. We use the parameter estimates obtained for the consumer discount factor

β = 0.9 and then scale the estimated software utility coe�cient by the factors 0.25, 0.5, 0.75,

and 1. Figure 4 displays the resulting equilibrium pricing policies and predicted expected

price paths for the di�erent software utility values. The expected price paths are conditional

on cases where Standard 1 sells at least as many consoles as Standard 2 by the end of period

T = 25, yT1 ≥ yT2. The marginal production costs are indicated by horizontal lines. Figure 5

shows the vector �eld describing the expected evolution of the state, and the distribution of

shares in the installed base, ρjt, T = 25 months after both standards were launched.26

For the scale factors 0.25, 0.5, and 0.75, the results are similar. Prices rise over time,

as �rms compete more aggressively when they have not yet obtained a substantial share of

the market. After 25 months, both �rms have an approximately equal share of all adopters.

Hence, market outcomes are approximately symmetric.

25As before, the expectation is taken over the demand shock ξ.
26The red bar at the abscissa value ρ depicts the percent of all model simulations, i.e., approximately the

probability that Standard 1 accounts for a fraction ρ of all adopters at the end of T = 25.
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Now compare these results to the model solution obtained for the estimated software

utility coe�cient (scale factor equals 1), indicating a larger indirect network e�ect than in

the previous three model variations. Now, the equilibrium changes not only quantitatively

but also qualitatively. First, unlike in the previous cases, we are no longer able to �nd a

symmetric equilibrium in pure strategies. However, there are at least two asymmetric pure

strategy equilibria. The graphs at the bottom of Figure 5 display one of these equilibria, which

�favors� Standard 1. In this equilibrium, before any consoles have been sold (y0 = (0, 0)),
consumers expect that Standard 1 will obtain a larger market share than Standard 2 (note

the direction of the arrow at the origin). These expectations are self-ful�lling, and due to the

impact of the expected future value of software on adoption decisions, Standard 1 will, on

average, achieve a larger share of the installed base than Standard 2. If, on the other hand,

Standard 2 ever obtains a share of the installed base that is su�ciently larger than the share

of Standard 1 (due to a sequence of favorable demand shocks, for example), then consumers'

expectations �ip and Standard 2 is expected to win. The advantage due to self-ful�lling

expectations is increasing in the di�erence of shares in the installed base, yjt − y−j,t.
As a consequence of this equilibrium behavior, the market becomes concentrated, even

though the standards are identical ex ante. The expected cumulative one-�rm concentration

ratio increases from C1 = 0.502 for the scale factor 0.25 to C1 = 0.833 for the scale factor 1

(see Table 7). The distribution of shares in the installed base not only becomes disperse, but

also asymmetric: in about 55% of all simulations, Standard 1 �wins� the market, i.e. obtains a

larger share of the installed base than Standard 2. Note that there is also another asymmetric

equilibrium which �favors� Standard 2. This equilibrium exactly mirrors the one which favors

Standard 1; for example, Standard 2 has a 55% chance of �winning� the market, etc.

Another interesting aspect of the equilibrium is the impact of the magnitude of the

marginal utility of software on �rms' pricing strategies. As can be seen at the bottom of

Figure 4, for a scale factor of 1, pricing becomes substantially more aggressive than under the

smaller scale factors. For small values of yjt, the �rms engage in penetration pricing whereby

prices are set below costs (the per-console production cost in the simulations is $147).

Next, we examine how market outcomes change under di�erent values of the consumers'

discount factor, β. The discount factor in�uences how consumers value software that they

expect to become available in the future, and thus determines the importance of expectations

in driving adoption decisions. We choose several discount factors (β = 0.6, 0.7, 0.8, 0.9) and
solve the model for each β, holding the other parameters that were estimated for the discount

factor β = 0.9 constant. Figure 6 shows that the equilibria obtained and the expected

concentration of the market is highly sensitive to the magnitude of β. For the smaller discount

factors (β < 0.9), corresponding to relatively small indirect network e�ects, we obtain a

symmetric equilibrium where the expected one-�rm concentration ratio C1 is just slightly

larger than 0.5 (Table 7). For β = 0.9, however, we are unable to compute a symmetric
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equilibrium, and the expected market concentration increases to C1 = 0.833, as already

discussed above.

Alternatively, we derive comparative static result for the same discount factors (β =
0.6, 0.7, 0.8, 0.9), but solve the model at the parameter values that were estimated for each

corresponding β. The results from this exercise are informative on how sensitive the predicted

market outcomes are to the choice of the consumers' discount factor, a parameter that is

typically assumed and not estimated in applied work. The results are similar to the previous

ones where we only varied β, but not the other model parameters. In particular, Table 7

shows that the market outcome is almost symmetric for the smaller discount factors, and

then becomes very concentrated for β = 0.9.

Measuring Tipping: The General Case

The symmetric case discussed in the previous section establishes the intuition for the model

predictions. We now turn to the measurement of tipping due to indirect network e�ects in the

general case where �rms are asymmetric ex ante. With heterogeneous competitors, markets

can obviously become concentrated even if indirect network e�ects are entirely absent. Hence,

we measure tipping relative to a speci�c, counter-factual outcome where one or all mechanisms

leading to indirect network e�ects are absent or small in size.

We �rst focus on the consumers' software utility parameter, γ. As before in the symmetric

case, we scale this parameter by the factors 0.25, 0.5, 0.75, and 1.27 Figure 7 shows the

expected market evolution and distribution of shares in the installed base for the di�erent

scale factors. Unlike in the case of symmetric competition, one standard, Nintendo, has a

persistent advantage for all of the smaller scale factors (0.25, 0.5, and 0.75). In all 5,000 model

simulations, Nintendo obtains a larger installed base share than Sony by the end of period

T = 25, and the expected one-�rm concentration ratio, C1, ranges from 0.552 and 0.594

(Table 7). At the estimated parameter values (scale factor = 1), however, we once again

see a big qualitative and quantitative change in the equilibrium. First, the market becomes

signi�cantly more concentrated, C1 = 0.827. Second, Sony is now predicted to obtain a larger

installed base share than Nintendo in 84% of all cases. That is, indirect network e�ects

strongly increase the concentration of the market, and furthermore, the identity of the larger

standard changes. The reason for this di�erence in outcomes for di�erent magnitudes of the

indirect network e�ect is that, according to our estimates, Sony dominates Nintendo in terms

of the quantity of software titles supplied at any given value of the installed base. On the

other hand, Nintendo has a lower console production cost ($122 versus $147). For small values

of the software utility, Nintendo's cost advantage results in lower equilibrium prices and thus

a market share advantage over Sony. Once the software utility gives rise to su�ciently large

27The consumer discount factor is set to β = 0.9.
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network e�ects, however, Sony's advantage in the supply of games becomes important and

helps it to �win� the standards war against Nintendo. The same argument also explains why

initially, for the scale factors 0.25, 0.50, and 0.75, the concentration ratio C1 slightly decreases:

Sony obtains a larger market share as its relative advantage due to indirect network e�ects

becomes more pronounced.

Next, we examine the market outcomes under di�erent consumer discount factors (β = 0.6,
0.7, 0.8, 0.9). First, we vary β, but hold all other parameters constant at their estimated

values, which were obtained for a discount factor of 0.9. The results (Table 7 and Figure 8)

show that the market concentration increases from C1 ≈ 0.59 for β < 0.9 to C1 = 0.827 for

β = 0.9. Furthermore, while�as we already discussed�Sony has a larger share of the installed

base than Nintendo in 84% of all cases when β = 0.9, Nintendo is always predicted to �win�

for the smaller discount factors. These predictions remain qualitatively and quantitatively

similar when we re-estimate all parameters for each separate consumer discount factor.

Finally, Table 8 shows our measure of tipping, ∆C1, for the model predictions at the

estimated parameter values relative to several counter-factual models characterized by lower

values of the software utility parameter, γ, or smaller values of the consumers' discount factor,

β. For example, compared to a market where the consumers' �ow utility from software is only

25% of the estimated value, indirect network e�ects are predicted to increase the market

concentration by 23 percentage points. Furthermore, relative to a market where consumers

discount the future using β = 0.6, the increase in the market concentration is between 23

and 26 percentage points, depending on the exact counter-factual chosen. Hence, for this

particular market, we predict a large, quantitatively signi�cant degree of tipping.

7 Conclusions

We provide a framework for studying the dynamics of hardware/software markets. The

framework enables us to construct an empirically practical de�nition of tipping: the level

of concentration relative to a counter-factual in which indirect network e�ects are reduced

or eliminated. Computational results using this framework also provide several important

insights into tipping. Using the demand parameters from the video game industry, we �nd

that consumer expectations play an important role for tipping. In particular, tipping emerges

as we strengthen the indirect network either by increasing the utility from software or by

increasing the degree of consumer patience. In some instances, this can lead to an increase

in market concentration by 23 percentage points or more. Interestingly, tipping is not a nec-

essary outcome of forward-looking behavior. For discount factors as high as 0.8, we observe

market concentration falling to roughly the level that would emerge in the absence of any

indirect network e�ects.

Studying other aspects of the equilibrium sheds some interesting managerial insights into
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the pricing and di�usion. In particular, strengthening the indirect network e�ect toughens

price competition early on during the di�usion, leading �rms to engage in penetration-pricing

(pricing below marginal cost) to invest in the growth of their networks. When tipping arises,

the market di�uses relatively quickly. Thus, an interesting �nding is that increasing consumer

patience to the point of tipping leads to a more rapid di�usion of consoles.

Our approach to measuring tipping and its role as a source of market concentration should

be of interest to antitrust economists, academics and practitioners. For policy workers, our

counter-factual approach provides an important method for assessing damages to �bad acts�

in markets with indirect network e�ects. Our results relating consumer and �rm beliefs and

patience to tipping should also be of interest to academics studying dynamic oligopoly out-

comes in markets with durable goods, in particular with indirect network e�ects. Finally, for

the modeling framework constitutes a state-of-the-art quantitative paradigm for practition-

ers to assess the long-run market share of new durable goods, in particular those exhibiting

network e�ects.

Our main goal herein is to study the role of consumer beliefs and expectations for tipping,

not to explain the empirical di�usion of video game consoles per se. Therefore, even though we

calibrate the model with data from the 32/64-bit video game console market, we abstract from

certain aspects of the industry. For instance, we do not account for declining production costs

and persistent consumer heterogeneity when we simulate the market outcomes. Therefore,

we caution that our model predictions should not be seen as an attempt to �explain� directly

the historical market outcome in the 32/64 bit video game console industry. Nevertheless,

studying learning-by-doing, on the supply side, and consumer segmentation, on the demand

side, are two interesting directions for future research in this area.

Another area for future research is the role of the game content for console adoption. We

intentionally chose the 32/64-bit generation of consoles to allow us to work with a simpler

model of the game side of the market. However, during subsequent generations, blockbuster

games have become crucial for console adoption decisions. A very interesting direction for

future research would be to extend the framework we provide herein to study the role of

market power and dynamics on the software side of the model. Similarly, as more recent

generations of game consoles become increasingly targeted (e.g. Nintendo Wii appeals to

families while Xbox 360 appeals more narrowly to adult males), households may begin to

purchase multiple consoles. Thus, multi-homing may also be an interesting future extension

of our framework.
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Appendix A: Equilibrium Provision of Software

In this appendix, we illustrate how we can derive the hardware demand model based on tastes

for variety of software. We use a CES model of preferences for software and assume a spot

market of monopolistically competitive software suppliers.

After purchasing a hardware platform j, a consumer i purchases an assortment of com-

patible software each period, xit =
(
xi1t, ..., xinjt

)′
, by maximizing her software utility subject

to the budget constraint:

max
{x1,...,xnjt}

USWij
(
xi1, ..., xinjt , zi

)
s.t.

njt∑
k=1

ρkxik + zi = Ii − pjtQijt

where pjt is the price of hardware standard j in period t, and Qijt indicates whether the

consumer also purchases hardware that period (it is zero if they adopted hardware at some

time period prior to t). The term zi is a numeraire capturing expenditures on other goods,

and ρk is the price of software k. We use CES preferences to model the consumer's utility for

software:

USWij
(
xi1, ..., xinjt , zi

)
=

( njt∑
k=1

x
1
b
ik

) 1
a

+ αzi, a ≥ 1, b > 1.

The corresponding individual demand for software k is:

x∗kt = (abα)
ab

1−ab ρ
b

1−b
k

( njt∑
l=1

ρ
1

1−b
l

) ab−b
1−ab

.

Turning to the software supply side, we assume that consumers dervive utility from soft-

ware for only one period. Hence, a software �rm earns pro�ts on a software product for only

one period. Let yjt+1 represent the installed base of consumers that have adopted hardware

standard j prior to period (t+ 1). This installed base represents the potential demand at

time t for a manufacturer of software compatible with hardware standard j. Each software

title is treated as a separate �rm. The pro�t function for a software �rm k active in period t

producing a software title compatible with hardware j is:

πkt = (ρk − c) yjt+1x
∗
kt − F

where F is the �xed development cost and c is the marginal cost. The marginal costs consist

of both royalties to the manufacturer and physical production costs (e.g. CDs and cartridges

for Sony and Nintendo respectively). Since software �rms are assumed to be ex ante identical,
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there exists a symmetric price equilibrium in which each �rm sets prices as follows:

ρ = αc.

This symmetry also allows us to simplify the demand function:

x∗kt = (abαρ)
ab

1−ab n
ab−b
1−ab
jtt

.

Under free entry, the equilibrium number of software �rms, njt can be characterized by the

installed base as follows:

log (njt) = κ+ λ log (yjt+1) (9)

where κ = ab−1
ab−b

log(ρ−c)

F (abαρ)
ab
ab−1

= ab−1
ab−b

log(c(α−1))

F (abα2c)
ab
ab−1

and λ = ab−1
ab−b .

We now derive the aggregate sales of software for each standard. Total software sales will

be important in determining the software royalties that accrue to each hardware �rm. We

can substitute (9) to express individual demand for software k as follows:

x∗kt = (abαρ)
ab

1−ab n
ab−b
1−ab
jt

=
(
abα2c

) ab
1−ab

(
exp (κ) yλjt+1

)−1
λ

=
(
abα2c

) ab
1−ab

(
exp

(
−κ
λ

))
y−1
jt+1

We then obtain the corresponding Aggregate Demand for software k:

X∗kt = x∗ktyt

=
(
abα2c

) ab
1−ab exp

(
−κ
λ

)
Finally, we obtain total software sales for the standard j:

Qjt =
njt∑
k=1

X∗kt

= Njt

[(
abα2c

) ab
1−ab exp

(
−κ
λ

)]
=
[
exp (κ) yλjt+1

] [(
abα2c

) ab
1−ab exp

(
−κ
λ

)]
= exp

(
κ (1− λ)

λ

)(
abα2c

) ab
1−ab
jt

yλjt+1.

We can therefore estimate the elasticity of total software sales with respect to the installed
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base as follows:

log (Qjt) = φ+ λ log (yjt+1) .
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Appendix B: Forward-Simulation of the Consumers' Choice-Speci�c

Value Functions

We outline the procedure for using the �rst-stage estimates of the consumers's choice strategy,

(8), the console �rms' pricing strategies, (7), and the software supply, (6), to forward-simulate

the consumers' choice-speci�c value functions.

Conditional on the �rst-stage estimates and some initial state, y0, we can simulate histories

of all variables a�ecting the consumers' payo�s. For any period t with beginning-of-period

installed base yt, we draw recursively as follows:

ξjt ∼ N(0, 1), (j = 1, . . . , J)

pjt|yt, ξt = exp(Pj(yt; θ̂p) + λ̂ξjt),

µjt|yt, ξt = Lj(yt, ξt; θ̂µ),

sjt|µt =
exp(µjt)

1 +
∑J

k=1 exp(µkt)
,

yj,t+1|yt, st = fj(yt, ξt) = yjt +
(

1−
∑J

k=1ykt

)
sjt,

njt|yj,t+1 = exp(Hj(yj,t+1; θ̂n)).

In this manner, we can draw a sequence of states, {yt, ξt}Tt=0, and corresponding prices, number

of software titles, and market shares.

Choice-speci�c value functions We �rst compute the software value functions. We as-

sume the current software utility is given by

uj(yj,t+1) = γ exp(Hj(yj,t+1; θ̂n)) = γnjt.

For any initial installed base y0, we draw a sequence of states {y(r)
t , ξ

(r)
t }Tt=0 and a sequence

of corresponding software titles, {n(r)
t }Tt=0. Repeating this process R times, we calculate the

simulated expected PDV of software at state y = y
(r)
0 ,

Wj(y; Λ, Θ̂) =
1
R

R∑
r=1

(
T∑
t=0

βtγn
(r)
jt

)
.

The consumers' choice-speci�c value functions from adopting standard j can then be calcu-

lated as

Vj(y, ξ, p; Λ, Θ̂) = δj +Wj(f(y, ξ); Λ, Θ̂)− αpj + ψξj .

Here, Λ = (δ, α, γ, ψ) is a vector containing all the stage 2 preference parameters to be

estimated. Note that T needs to be chosen large enough such that βT is su�ciently small.
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Value of waiting First, we de�ne the expected per-period utility of a consumer who has

not adopted at the beginning of period t, conditional on yt, pt, and ξt :

U(yt, ξt) = s0tE(ε0t|0) +
J∑
j=1

sjt(δj + γnjt − αpjt + ξjt + E(εjt|j)).

In this equation, st, pt, and nt are the choice probabilities, prices, and number of software

titles as implied by the �rst-stage estimates, conditional on the current states yt and ξt.

Furthermore, E(εjt|j) = − log(sjt) is the expected value of the Type I Extreme Value random

utility component, given that choice j is optimal.

Next, we de�nem0t as the probability that a consumer has not adopted one of the hardware

standards prior to period t. Note that m01 = 1, because we want to calculate the value of

waiting in period t = 0. Thereafter (t > 1), m0t evolves according to

m0t = s0,t−1m0,t−1.

mjt denotes the probability that a consumer has adopted standard j prior to period t. mj1 = 0,
and for t > 1,

mjt = mj,t−1 + sj,t−1m0,t−1.

We now draw some sequence of states, {y(r)
t , ξ

(r)
t }Tt=0, with initial conditions (y, ξ) =

(y(r)
0 , ξ

(r)
0 ). Given a corresponding sequence of m

(r)
0t and m

(r)
jt , de�ne

J (r) =
T∑
t=1

βt

m(r)
0t U(y(r)

t , ξ
(r)
t ) +

J∑
j=1

m
(r)
jt (γn(r)

jt )

 .

J (r) is the expected present discounted value from waiting, given that the market evolves

according to {y(r)
t , ξ

(r)
t }Tt=0. Averaging over R draws, we obtain the expected value from

waiting, conditional on (y, ξ) = (y(r)
0 , ξ

(r)
0 ) :

V0(y, ξ; Λ, Θ̂) =
1
R

R∑
r=1

J (r).

33



Table 1: Descriptive Statistics

Console Mean SD Min Max

Sales Playstation 275,409 288,675 26,938 1,608,967
Nintendo 192,488 201,669 1,795 1,005,166

Price Playstation 119.9 30.3 55.7 200.6
Nintendo 117.6 33.9 50.3 199.9

Game Titles Playstation 594.2 381.1 3 1,095
Nintendo 151.2 109.9 1 281

Table 2: Model Fit for Di�erent Speci�cations

Model Log-Likelihood BIC

1) Linear, ξ, 1-comp -187.88 679.40
2) Linear, time (t < 60), 1-comp -150.11 620.97
3) Quadratic, time (t < 60), 1-comp -79.38 514.01
4) Quadratic, time (t < 60), 2-comp -79.38 522.28
5) Quadratic, time (t < 60), 1-comp,

PPIs in prices -63.54 507.69
6) Quadratic, time (t < 60), 1-comp,

exchange rate in prices -25.43 422.94
7) Quadratic, time (t < 60), 1-comp,

exchange rate and PPI's in prices -7.53 412.79
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Table 3: First Stage Estimates: Pricing Policies Pj

Sony Nintendo

Estimate SE Estimate SE
Intercept 2.653 1.523 -1.592 4.051
ySony -3.266 1.785 -0.861 2.490
yN64 1.889 1.499 0.666 0.813
y2
Sony -0.320 0.218 -0.142 0.282

y2
N64 0.186 0.130 0.077 0.070
Time (< 64) 0.005 0.003 0.000 0.002
Jan 0.102 0.040 -0.054 0.016
Feb 0.132 0.119 0.005 0.104
Mar 0.118 0.053 -0.082 0.214
Apr 0.136 0.057 -0.046 0.046
May 0.045 0.032 -0.055 0.037
Jun -0.012 0.003 -0.011 0.028
Jul 0.000 0.026 -0.052 0.037
Aug -0.001 0.012 -0.032 0.021
Sep -0.049 0.074 -0.088 0.021
Oct 0.011 0.048 -0.015 0.039
Nov -0.026 0.019 -0.002 0.025
PPI 1 -0.432 0.070 -0.285 0.154
PPI 2 -0.546 0.351 -0.608 0.816
PPI 3 -0.471 0.769 0.227 0.807
Exchange rate (3 month lag) 0.434 0.509 0.397 0.159
Exchange rate (7 month lag) -4.493 1.118 1.390 8.096
log (λ) -4.511 0.123 -4.511 0.123
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Table 4: First Stage Estimates: Log-odds of Market Shares, Lj

Sony Nintendo

Estimate SE Estimate SE
Intercept -13.826 2.539 -1.141 0.744
ySony 1.456 4.669 0.065 0.012
yN64 -7.670 5.884 -1.740 0.196
y2
Sony -0.334 0.432 -1.304 0.305

y2
N64 -0.684 0.571 -1.820 0.335
Time (< 64) -0.003 0.008 -2.176 0.469
Jan -1.367 0.154 -1.950 0.528
Feb -1.345 0.159 -1.625 0.495
Mar -1.813 0.475 -1.682 0.525
Apr -2.442 0.351 -1.674 0.397
May -2.596 0.463 -1.268 0.402
Jun -1.947 0.395 -1.713 0.215
Jul -1.805 0.470 -0.789 0.335
Aug -1.871 0.392 -0.288 0.070
Sep -1.496 0.426 0.085 0.135
Oct -1.644 0.199 -0.406 0.150
Nov -0.781 0.120 0.084 0.173
ξSony -27.656 5.216 0.103 0.061
ξN64 0.844 4.936 -0.220 0.083
ξ2
Sony -13.383 7.554 0.547 0.107

ξ2
N64 -0.660 0.416 -0.545 0.119

Table 5: First Stage Estimates: Equilibrium Game Provision, Hj

Estimate SE

κSony -16.220 2.042
κNintendo -24.349 1.992
λSony 1.369 0.126
λNintendo 1.810 0.126
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Table 6: Second Stage Parameter Estimates

Model 3 Model 7

Estimate SE Estimate SE

δSony -1.21 0.89 -1.119 0.971
δN64 -1.34 0.87 -1.119 1.093
α -1.94 0.52 -1.923 0.46
Time (< 60) -0.04 0.01 -0.049 0.028
γ (njt/1000) 0.09 0.04 0.09 0.04
ψ (s.d. of ξjt) 0.05 0.09 0.028 1.95

Notes: Model 7 uses PPI's and exchange rates as IV's in �rst stage.
β = 0.9, no. simulations = 60

Table 7: Predicted One-Firm Concentration Ratios

Model Predictions:

Symmetric Case (Parameter Estimates for Sony)

Scale Factor for γ 0.25 0.50 0.75 1.00

C1 0.502 0.503 0.506 0.833

Discount Factor (β) 0.6 0.7 0.8 0.9

C1
a 0.502 0.502 0.502 0.833

C1
b 0.501 0.501 0.503 0.833

Model Predictions:

Estimated Parameter Values

Scale Factor for γ 0.25 0.50 0.75 1.00

C1 0.594 0.581 0.552 0.827

Discount Factor (β) 0.6 0.7 0.8 0.9

C1
a 0.597 0.594 0.587 0.827

C1
b 0.566 0.564 0.553 0.827

Note: (a) All estimated model parameters were obtained for
β = 0.9. (b) Predictions where the model parameters were
re-estimated for each consumer discount factor, β.
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Table 8: Predicted Degree of Tipping at Estimated Parameter Values (β = 0.9)

Scale Factor for γ 0.25 0.50 0.75

∆C1 0.233 0.246 0.275

Discount Factor (β) 0.6 0.7 0.8

∆C1
a 0.230 0.233 0.240

∆C1
b 0.261 0.263 0.274

Note: The table displays the increase in market concentration
relative to a speci�c counter-factual model, where either the
marginal utility of software, γ, is scaled, or a di�erent con-
sumer discount factor β is chosen. (a) All estimated model
parameters were obtained for β = 0.9. (b) Predictions where
the model parameters were re-estimated for each consumer
discount factor, β.

0 0.05 0.1 0.15 0.2 0.25
0

50

100

150

200

Sony Playstation

P
ric

e 
($

)

installed base (1/M)

0 0.05 0.1 0.15 0.2 0.25
0

50

100

150

200

Nintendo 64

P
ric

e 
($

)

installed base (1/M)

true price
5th Pctl
95th Pctl

Figure 1: In-Sample Fit: Prices

38



0 0.05 0.1 0.15 0.2 0.25
−8

−7

−6

−5

−4

−3
Sony Playstation

Lo
g−

O
dd

s

installed base (1/M)

0 0.05 0.1 0.15 0.2 0.25
−8

−7

−6

−5

−4

−3
Nintendo 64

Lo
g−

O
dd

s

installed base (1/M)

true log−odds
5th Pctl
95th Pctl

Figure 2: In-Sample Fit: Log-Odds Ratios

0 0.05 0.1 0.15 0.2 0.25
0

200

400

600

800

1000

1200
Sony Playstation

G
am

es
 (

#)

installed base (1/M)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

50

100

150

200

250

300
Nintendo 64

G
am

es
 (

#)

installed base (1/M)

true games
5th Pctl
95th Pctl

Figure 3: In-Sample Fit: Provision of Games

39



0
0.25

0.5
0.75

1

0
0.25

0.5
0.75
1
0

100

200

y
Standard 2

Standard 1, Scale Factor = 0.25

y
Standard 1

P
ric

e

0
0.25

0.5
0.75

1

0
0.25

0.5
0.75
1
0

100

200

y
Standard 2

Standard 2, Scale Factor = 0.25

y
Standard 1

P
ric

e

5 10 15 20
0

50

100

150

200

Month

P
ric

e

Scale Factor = 0.25

 

 

Standard 1
Standard 2

0
0.25

0.5
0.75

1

0
0.25

0.5
0.75
1
0

100

200

y
Standard 2

Standard 1, Scale Factor = 0.50

y
Standard 1

P
ric

e

0
0.25

0.5
0.75

1

0
0.25

0.5
0.75
1
0

100

200

y
Standard 2

Standard 2, Scale Factor = 0.50

y
Standard 1

P
ric

e

5 10 15 20
0

50

100

150

200

Month

P
ric

e

Scale Factor = 0.50

 

 

Standard 1
Standard 2

0
0.25

0.5
0.75

1

0
0.25

0.5
0.75
1
0

100

200

y
Standard 2

Standard 1, Scale Factor = 0.75

y
Standard 1

P
ric

e

0
0.25

0.5
0.75

1

0
0.25

0.5
0.75
1
0

100

200

y
Standard 2

Standard 2, Scale Factor = 0.75

y
Standard 1

P
ric

e

5 10 15 20
0

50

100

150

200

Month

P
ric

e
Scale Factor = 0.75

 

 

Standard 1
Standard 2

0
0.25

0.5
0.75

1

0
0.25

0.5
0.75
1
0

100

200

y
Standard 2

Standard 1, Scale Factor = 1.00

y
Standard 1

P
ric

e

0
0.25

0.5
0.75

1

0
0.25

0.5
0.75
1
0

100

200

y
Standard 2

Standard 2, Scale Factor = 1.00

y
Standard 1

P
ric

e

5 10 15 20
0

50

100

150

200

Month

P
ric

e

Scale Factor = 1.00

 

 

Standard 1
Standard 2

Figure 4: Symmetric competition: Equilibrium pricing policies and price paths. Consumer's
software utility coe�cient is scaled by di�erent factors. The expected price paths are shown
conditional on yT1 ≥ yT2 at the end of period T = 25.Marginal production costs are indicated
by horizontal lines.
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Figure 5: Symmetric competition: Expected state evolution and distribution of shares in the
installed base after 25 months. Consumer's software coe�cient is scaled by di�erent factors.
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Figure 6: Symmetric competition: Equilibrium pricing policies and price paths for di�erent
consumer discount factors (β).
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Figure 7: Predictions from estimated parameter values: Expected state evolution and dis-
tribution of shares in the installed base after 25 months. Consumer's software coe�cient is
scaled by di�erent factors.
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Figure 8: Predictions from estimated parameter values: Equilibrium pricing policies and price
paths for di�erent consumer discount factors (β).
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