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A Theory of Peer-induced Fairness in Games

Abstract

A long-standing assumption in economics is that people are purely self-interested. This

assumption has been challenged recently by accumulating experimental evidence based

on the so-called ultimatum game. Behavioral economists propose several models of dis-

tributional fairness to relax the self-interest assumption. In this paper we introduce the

concept of peer-induced fairness because people have a drive to make social comparison.

That is, they look to similar others as a reference in order to form their opinions and

evaluate their endowments. We investigate peer-induced fairness by considering two in-

dependent ultimatum games played in sequence by a leader and two followers. In the

first ultimatum game, the leader makes a take-it-or-leave-it offer to the first follower.

Before the next ultimatum game is played, the second follower obtains a public signal of

this offer. Then, in the second game, the leader makes an offer to the second follower.

The second follower infers what the first follower receives, uses this inference to form a

reference point, and is averse to accepting offers that falls short of this benchmark. This

generalized model nests the standard and several existing models of fairness.

This model makes two sharp predictions. First, the leader’s offer to the second follower

should be non-decreasing in the common belief of what the first offer is. Second, condi-

tion on an offer, the second follower’s likelihood of acceptance is inversely proportional

to the reference point derived from the signal. We test both predictions experimentally

and find strong support for them. We structurally estimate the model and show that

peer-induced fairness is 2.5 times larger than distributional fairness. We incorporate

heterogeneity by allowing subjects to be either purely self-interested or fairness-minded.

Our estimation results suggest that half of the subjects exhibit peer-induced fairness. We

show how peer-induced fairness might influence the occurrence of labor strikes, explain

low variability in CEO compensation, and limit the extent of price discrimination.

Keywords: Social Comparison, Peer-induced Fairness, Distributional Fairness, Behav-

ioral and Experimental Economics
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1 Introduction

Standard theories in economics generate predictions of market behavior by invoking two

fundamental assumptions. First, agents are self-interested in that their utility function

depends only on their own material payoffs. Second, market behavior is at equilibrium so

that no individual can achieve a higher payoff by unilaterally deviating from the equilib-

rium. Recent advances in behavioral economics relax both assumptions by, for example,

allowing agents to care about others’ payoffs and to make mistakes (see Camerer, 2003,

and Ho, Lim, and Camerer, 2006a for comprehensive reviews). This paper focuses on

the self-interested assumption and provides a new perspective to incorporate concerns

for fairness.

A simple and powerful way to demonstrate that people are not purely self-interested

is to study their behavior in the so-called ultimatum game. In this game, a leader and

a follower divide a fixed pie. The leader moves first and offers a division of the pie to

the follower. The follower can accept or reject. If the follower accepts, the pie is distrib-

uted according to the proposal. If the follower rejects, both players earn nothing. The

subgame perfect equilibrium predicts that the leader should offer a small amount (e.g., a

dime) to the follower and the follower should accept (since a dime is strictly preferred to

receiving nothing) if players care only about their own material payoffs. However, many

experiments (where subjects are motivated by substantial financial incentives) contra-

dict this sharp prediction. Typically, there are almost no offers below 20% of the pie. A

majority of offers are between 30% to 40%. Low offers are frequently rejected and the

probability of rejection decreases with the offer. These findings are robust to stake size

(Slonim and Roth, 1998), persist with repeated trials (Roth et. al, 1991), and prevail

across diverse cultures (Henrich, 2000; Camerer et. al, 2001).

Several solutions have been proposed to resolve this anomaly. These solutions modify

a player’s utility function by allowing it to depend on the payoffs of other players in the

game (for a review see Fehr and Fischbacher, 2002). In the ultimatum example, each

player’s utility function now depends on what both players receive. Fehr and Schmidt



2

(1999) propose the so-called “inequity aversion” model in which each player has a disu-

tility of receiving a payoff that is different from the other players. The extent of disutility

depends on the player’s relative payoff position; players exhibit a stronger disutility from

“being behind” than from “being ahead.” Charness and Rabin (2002) extend the in-

equity aversion model to incorporate reciprocity in the utility function (see also Rabin,

1993 and Fehr and Gachter, 2000). The generalized utility function allows players to

reciprocate when others have been nice or misbehaved towards them. Bolton and Ocken-

fels (2000) propose the so-called Equity-Reciprocity-Competition (ERC) model in which

each agent’s utility depends on her absolute payoff as well as her relative share of the

total payoff. Under ERC, given an absolute payoff, an agent’s utility is maximized when

her share is equal to the average share. Note that all three models assume that fairness

concerns are integral in that agents’ social preferences depend only on payoffs of other

players in the game. We call this distributional fairness concerns.2

However, in many real-life situations, people are also driven by social comparison

(Festinger, 1954). They have a drive to look to others who are in similar situations (i.e.,

their peers) to evaluate their endowments and judge whether they are treated fairly. We

call this phenomenon peer-induced fairness concerns. We posit that the peer-induced

fairness concerns can be more salient than distributional fairness concerns when agents

engage in social comparison. This is so because social comparison creates a powerful

reference point or benchmark for players to compare their well-being with other peer

groups. Note that this social comparison process is “outside” the game in that the ac-

tions of peer groups do not directly affect the material payoffs of the players.

In this paper, we study peer-induced fairness in a social situation involving 3 economic

agents. There is one leader and 2 followers. The followers have a similar endowment and

the leader plays an ultimatum game with each follower in sequence. Each game involves

the leader making a take-it-or-leave-it offer to a follower. The two games are identical

2Cui et. al (2007) provides an application of distributional fairness in a business-to-business channel

setting. They show that the channel can be efficient even if linear pricing contract is used as long as

channel partners are sufficiently fair-minded.
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and independent in that each leader-follower pair plays the same game and actions of one

game have no bearing on the material payoffs of the other game. However, in between

the two games, the second follower obtains an informative but imperfect public signal

of the first offer, and uses this signal to form a belief of the first follower’s payoff. We

analyze this social situation but allow all agents to have distributional fairness concerns

and the second follower to have peer-induced fairness concerns by comparing against the

first follower. The equilibrium prediction indicates that, other things being equal, the

second follower’s likelihood of accepting an offer is decreasing in the signal, suggesting

a same offer can become less attractive as the second follower’s belief of the first offer

increases. In addition, the leader’s offer to the second follower is contingent on the signal.

The higher the signal the more attractive the offer will be.

Let’s consider three classes of examples of the above game. First, consider a seller

that interacts with multiple buyers (e.g., a manufacturer and multiple retailers, a firm

and multiple customers). Each seller-buyer transaction is independent in that actions

within a transaction do not influence material outcomes of other transactions. As distri-

butional fairness would suggest, each individual buyer may care about the seller’s payoff

in their own respective transaction (in addition to their own material payoffs). On top of

that, peer-induced fairness suggests that each individual buyer may care a lot about what

other buyers receive in their interactions with the same seller. For example, a customer

cares about what other customers pay for the same product. Similarly, a retailer cares

about what terms other retailers receive from the same manufacturer. The buyer will

treat any differences in price and terms to be entirely unfair. Second, consider a boss

that hires multiple workers with the same skills. Clearly, workers care not only about

their own wages but also about how much other peer workers receive. In fact, bosses

often pay their workers similar wage despite wide differences in productivity in order

to avoid demoralizing less productive workers.3 Third, consider a family with multiple

children. Sibling’s rivalry is common and it suggests that children want their parents to

3Akerlof and Yellen (1990) shows that if workers proportionately withdraw their effort because of

peer-induced fairness concerns, this behavioral tendency can cause unemployment. Similarly, Fehr et.

al (1993) shows that sellers respond to higher prices from buyers by offering superior quality products.
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treat them without favoritism. Clearly, this phenomenon implies that each child’s utility

function depends also on other children’s payoffs.

We test our model’s predictions experimentally by engaging subjects in two indepen-

dent ultimatum games as described above. Using this set up, we find strong support for

our model predictions. The responder in the second ultimatum game is more likely to

reject an offer as the obtained signal increases. The leader’s offer is strategic in that he

exploits the second follower when the signal is low (even if he has made a good offer to

the first follower) and concedes more when the signal is high. In addition, we estimate

the model parameters using the data. The estimated peer-induced fairness parameter is

2.5 times stronger than the distributional fairness parameter suggesting that the former

is more salient in such social settings. We also incorporate heterogeneity in subjects’

taste for fairness by using a latent-class approach. We allow for two different segments,

one that is purely self-interested and another that has distributional and peer-induced

fairness concerns. Our estimation results suggest that half of the subjects are purely

self-interested.

The concept of peer-induced fairness has wide economic implications. We briefly

discuss three applications in this paper. First, we show how peer-induced fairness can

constrain a monopoly’s ability to price discriminate. Without peer comparisons, firms

have the complete freedom to maximize profits in separate markets that have different

economic characteristics. However, when consumers are averse to paying more than oth-

ers, firms may have to charge the same price in different markets. Second, we show

that peer-induced fairness can lead to wage compression. In particular, we show that

the low variability in CEO compensation packages is necessary in order to prevent dis-

satisfaction resulting from peer comparisons (i.e., with other CEOs). Third, we show

that peer-induced fairness can severely restrict the set of feasible negotiation outcomes.

Specifically, under peer-induced fairness, any mutually agreeable outcome cannot devi-

ate too much from the outcomes of comparable negotiations in the past. In fact, when

negotiating parties select different comparison benchmarks, it may become impossible to

reach an agreement. This may explain the widespread occurrence of labor strikes.
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The rest of the paper is organized as follows. The next section formulates the model

and presents the main equilibrium results. Section 3 describes the experimental design

and procedure. Section 4 presents the main experimental results and calibrates the model

using the data. Section 5 studies the model with heterogeneity. Section 6 describes three

economic applications of peer-induced fairness. Section 7 concludes.

2 Basic Model

2.1 Model Setup

There are 3 players, one leader and 2 followers. The leader plays an identical ultimatum

game with each of the followers in sequence. In each game, there is a fixed pie π to be

divided between the leader and one of the followers. The leader moves first and offers s1

to the first follower. The first follower’s decision a1 can either be accept (a1 = 1) or reject

(a1 = 0). If a1 = 1, the leader receives π − s1 and the follower receives s1. Otherwise,

both receive 0. The second follower obtains a signal z = s1 + ε where ε is a random noise

term with any arbitrary distribution function F (.) where F (.) has a mean of zero. The

second follower infers a reference point ŝ1 of what the first offer is from signal z. This

same signal is observed by the leader before the second game begins. Similarly, the leader

makes a offer s2 to the second follower. Again, the follower’s decision a2 can be accept

(a2 = 1) or reject (a2 = 0). If a2 = 1, the leader receives π − s2 and the follower re-

ceives s2. Otherwise, both receive nothing. Note that the leader receives material payoff

in both games while each of the follower receives material payoff in their respective game.

Let us define the agents’ utility functions. Consider the utility function of the first

follower UF1(s1, a1). The follower’s utility function has two components. The first com-

ponent is the agent’s material payoff from the game and the second component reflects

the first follower’s disutility from receiving a payoff that is behind that of the leader.

Hence, the second component captures distributional fairness concerns.
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UF1(s1, a1) =

{
s1 − δB ·max{0, (π − s1)− s1}, if a1 = 1,

0, if a1 = 0.
(2.1)

Here δB is the parameter capturing the degree of aversion from being distributionally

behind.4

The second follower’s utility UF2(s2, a2) is defined similarly except that it also con-

tains an additional component that reflects the disutility from being behind arising from

the drive of comparing oneself to a similar peer (i.e., the first follower). It is given below:

UF2(s2, a2|z) =





s2 − δB ·max{0, (π − s2)− s2}
−ρB ·max{0, ŝ1(z)− s2} if a2 = 1,

0 , if a2 = 0.

(2.2)

where ρB is the degree of aversion from being behind in a social comparison with a peer

and z = s1 + ε is the signal observed by the second follower and the leader. Note that

the disutility associated with social comparison requires oneself to be in a similar social

situation with a peer. In other words, the second follower assumes that the first follower

receives ŝ when considering acceptance and assumes that the first follower receives 0

when considering rejection.5

4Our model can be extended to include an additional disutility term resulting from being ahead.

This is in the spirit of Charness and Rabin (2002) and Fehr and Schmidt (1999). For example, the

first follower’s utility function can additionally include the negative term −δA · max{0, s1 − (π − s1)}.
However, we shall show below that distributional fairness concerns associated with being ahead is absent

in our experimental data. We choose to use the simplest possible model to demonstrate the effect of

peer-induced fairness concerns because it allows us to generate some sharp predictions about subjects’

behaviors (see Ho, Lim, and Camerer, 2006b for other rationales for using the simplest possible model).
5The aversion of being behind is similar to the notion of loss aversion (Kahnemann and Tversky,

1979; Camerer, 2001). People have a negative transaction utility when receiving a payoff that is below a

well-defined reference point. This same idea has been applied to a business-to-business channel setting

to show why nonlinear pricing contracts may not work as well as promised by the standard models

because these pricing contracts yield negative transaction utility (Lim and Ho, 2007 and Ho and Zhang,

in press).
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The leader receives payoffs from both ultimatum games. In the second game, the

leader receives the utility UL,II(s2, a2|z) given as:

UL,II(s2, a2|z) =

{
π − s2 − δB ·max{0, s2 − (π − s2)}, if a2 = 1,

0, if a2 = 0.
(2.3)

Recall that the signal z = s1 + ε. In the first game, the leader receives the utility

UL,I(s1, a1) as given below:

UL,I(s1, a1) =

{
π − s1 − δB ·max{0, s1 − (π − s1)}, if a1 = 1,

0, if a1 = 0.
(2.4)

In the second game, the leader chooses s2 to maximize UL,II(s2, a2|z). In the first game,

the leader chooses s1 to maximize UL,I(s1, a1)+UL,II(s2, a2|z). This follows from standard

backward induction.

2.2 Second Follower’s Inference of the First Offer, ŝ1(z)

The model assumes that the second follower has a prior belief about what the first follower

receives and denotes the distribution of this prior by G(.). The second follower has a

noisy rational expectation in that G(.) has a mean of s1 and a standard deviation of σ1.

Given the signal z = s1 + ε, the second follower forms a posterior belief of the first offer,

with distribution H(.), given by:

h(x|z) =
g(x) · f(z − x)∫ −∞

∞ g(x) · f(z − x)dx
. (2.5)

The second follower’s inference of the first offer ŝ1(z) is the expected value of H(.|z) and

is given by6:

ŝ1(z) =

∫ ∞

−∞
x · h(x|z)dx. (2.6)

We add an information inference process by the second follower for 3 reasons:

6There are at least 2 ways to develop an inference for s1. First, one can use the expected value of

the posterior belief to infer s1. Second, one can use the mode as a surrogate for s1. Both are possible

and we have chosen the former because it provides an unbiased estimate for s1.
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• This information inference process makes our model more realistic. In many real-

life situations, the negotiation outcomes are often kept confidential so as to avoid

social comparison (e.g., employees are told not reveal their raises to their peers).

By allowing for this process, we make our model applicable to more social settings.

• By introducing imperfect information, we allow the leader to change his behavior

as a result of the signal realization. Had the second follower perfectly known the

offer to the first follower, the leader’s offers in the two games will be the same in

equilibrium. Hence, imperfect information provides an extra degree of freedom to

test the model and to quantify the degree of peer-induced fairness due to social

comparison.

• The information inference process also allows us to separate two fundamentally

different kinds of peer-induced fairness from the leader’s perspective. The leader

may inherently want to treat both followers the same way (e.g., parents showing no

favoritism among their children).7 In contrast, the leader may care about treating

the two followers the same way only to the extent that the second follower is averse

to being behind. In the former, the leader will divide the pie the same way in the

two games independent of the signal. If the latter is true, the leader will in fact

condition the offer to the second follower on her belief of what the first follower

received (the higher the belief the higher the offer).

As a simple example, consider the special case where the observation noise ε follows

some uniform distribution over [−k, k]. That is, f(u) = 1
2k

for u ∈ [−k, k] and f(u) = 0

otherwise. This uniform special case is used in our experimental test below. The following

lemma states the relationship between the signal and the inference.

7One can extend the basic model by allowing the leader to have an intrinsic preference for treating

the two followers similarly (e.g., parents may not want to show favoritism among their children). For

example, this can be accomplished by adding an extra term −β · (|s1 − s2|) to the leader’s utility

function. However, our experimental data indicates that the leader tends to condition the second offer

on the second follower’s inference of the first offer, which may be different from the actual first offer. Such

behavior suggests that the leader does not have a strong intrinsic preference to treat the two followers

the same way.
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Lemma 1 The inference on the first offer, ŝ1(z), is increasing in the signal z.

Proof: See Appendix.

2.3 Equilibrium Analysis

We work backward to derive the equilibrium predictions. In the second game, the leader

makes an offer s2 to the second follower, who then decides whether to accept or reject it

(i.e., a2 = 1 or 0). Recall that the signal of the first offer is z and the utility function of

the second follower is:

UF2(s2, a2|z) =





s2 − δB ·max{0, (π − s2)− s2}
−ρB ·max{0, ŝ1(z)− s2} if a2 = 1,

0 , if a2 = 0.

(2.7)

Thus, the second follower accepts the offer s2 if and only if UF2(s2, 1|z) ≥ 0. The leader’s

utility function is

UL,II(s2, a2|z) =

{
π − s2 − δB ·max{0, s2 − (π − s2)}, if a2 = 1,

0, if a2 = 0.
(2.8)

The leader faces two alternatives. First, he may offer zero, which induces the follower to

reject, and this leaves the leader with zero utility. Second, he may choose the optimal

offer, among all the offers that are acceptable to the second follower. In other words, the

leader solves the following problem:

maxs2 UL,II(s2, 1|z) (2.9)

s.t. UF2(s2, 1|z) ≥ 0. (2.10)

Note that this problem is equivalent to finding the smallest offer s2 satisfying UF2(s2, 1|z) ≥
0, since the leader’s utility UL,II(s2, 1|z)) always increases as s2 decreases. Let us denote

this s0
2 ≡ min{s2 : UF2(s2, 1|z) ≥ 0}. In general, if this optimal offer s0

2 leaves the leader

with non-negative utility, the leader will make this offer and the second follower will

accept. Otherwise, the leader will offer zero and the second follower will reject. The

following proposition characterizes the optimal offer s∗2.
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Proposition 1 The leader’s optimal offer to the second follower s∗2 as a function of the

follower’s inference ŝ1, is

s∗2(ŝ1) = min

{
max

{
π · δB

1 + 2 · δB

,
π · δB + ρB · ŝ1

1 + 2 · δB + ρB

,
ρB · ŝ1

1 + ρB

}
,
π(1 + δB)

1 + 2δB

}
. (2.11)

Proof: See Appendix.

Note that the optimal offer is the minimum of two terms: 1) max
{

π·δB

1+2·δB
, π·δB+ρB ·ŝ1

1+2·δB+ρB
, ρB ·ŝ1

1+ρB

}

and 2) π(1+δB)
1+2δB

. The first term yields the leader’s most preferred offer while satisfying the

incentive compatibility constraint (i.e., it is the smallest offer that induces the second

follower to accept). The second term provides an upper bound of the offer beyond which

the leader will make a negative utility, even if accepted by the follower. The first term

derives from taking the maximum of three fractions of which one of them is not a func-

tion of ŝ1. The first/second/third fraction is dominant when ŝ1 is small/moderate/large.

Note that the follower cares only about distributional fairness when ŝ1 is small (i.e., the

first fraction is independent of ρB) and only about peer-induced fairness when ŝ1 is large

(i.e., the third fraction is independent of δB). The follower cares about both kinds of

fairness when ŝ1 is moderate (i.e., the second fraction depends on both δB and ρB).

As Proposition 1 demonstrates, the equilibrium offer s∗2 in the second game is non-

decreasing in the second follower’s inference ŝ1. In fact, when ŝ1 is sufficiently large, s∗2 is

strictly increasing in a piecewise linear manner. This provides a sharp prediction on the

leader’s behavior. If the second follower has peer-induced fairness concerns (i.e., ρB > 0)

and the leader strategically anticipates such preferences, the leader should contingent the

offer on the inference ŝ1. We provide an experimental test of this prediction below.

In the first game, the leader makes the offer s1 to the first follower. Recall that the

first follower’s utility function is

UF1(s1, a1) =

{
s1 − δB ·max{0, (π − s1)− s1}, if a1 = 1,

0, if a1 = 0.
(2.12)
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Therefore, the first follower accepts the offer s1 if and only if UF1(s1, 1) ≥ 0, which can

be shown to be equivalent to s1 ≥ π·δB

1+2·δB
.

How much should the leader offer to the first follower? This decision influences the

leader’s payoffs in both the first and the second games. That is, the leader chooses s1 to

maximize UL,I(s1, a1) + UL,II(s2, a2|z).

Condition on s1 in the first game and along the equilibrium path in the second, the

term UL,II(s2, a2|z) can be written in terms of the signal z as

U∗
L,II(z) = UL,II(s

∗
2(z), a∗2(z)|z). (2.13)

Since the signal z = s1 + ε, the expected value of the above utility given a first offer s1 is

EU∗
L,II(s1) =

∫ ∞

−∞
U∗

L,II(s1 + ε)dF (ε). (2.14)

Therefore, the leader chooses the first offer s1 to maximize UL,I(s1, a1) + EU∗
L,II(s1).

Recall that the leader may either offer zero (which induces the first follower to reject)

or make the optimal offer that is acceptable to the follower. The following lemma states

the relationship between the first offer s1 and the leader’s expected utility in the second

game at equilibrium.

Lemma 2 Condition on s1 and along the equilibrium path, the leader’s expected utility

in the second game, EU∗
L,II(s1), is decreasing in s1.

Proof: See Appendix.

The lemma suggests that the leader incurs two costs of making a high offer s1. First, a

high s1 will lower the leader’s material payoffs in Game I. Second, the same high offer

also leads to a lower expected utility for the leader in Game II. This is because a high

s1 sets a high reference point for social comparison by the second follower and this effect

forces the leader to make a more generous offer s2 to induce the follower to accept. Con-

sequently, to mitigate peer-induced fairness concerns in Game II, the leader will make
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the smallest possible offer in Game I. This offer is however constrained by the follower’s

distributional fairness concerns.

The following proposition states that the optimal s∗1 is precisely the lower bound

imposed by considering the first follower’s distributional fairness concerns.

Proposition 2 The leader’s optimal offer to the first follower s∗2 is

s∗1 =
π · δB

1 + 2 · δB

. (2.15)

Proof: See Appendix.

Let’s consider a numerical example. Suppose that δB = 0.5, ρB = 1.5, π = 100. Sup-

pose that the noise term ε has distribution F that is uniform over {−20,−10, 0, 10, 20},
and suppose that the second follower’s prior belief of the first offer is normally distrib-

uted with mean s∗1 and variance 20. With these parameters, the equilibrium first offer

is s∗1 = 25. Given the offer the first follower will accept (i.e., a∗1 = 1). Condition on

the first offer and the distribution of the noise term (ε), the possible signal values are

{5, 15, 25, 35, 45}. The equilibrium second offers condition on the signal are given in Ta-

ble 1 below.

Signal (z) Equilibrium Second Offer (s∗2)

5 25

15 25

25 25

35 27.54

45 30.25

Table 1: Equilibrium Second Offers in a Numerical Example

The second follower always accepts the offer at equilibrium. Note the following about

the relationship between the second offer and the signal:
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1. The second offer s∗2 is non-decreasing in the signal. At the highest possible signal,

the offer is 20% above the first offer s∗1.

2. The second offer s∗2 is always greater than or equal to s∗1 = 25, a constraint imposed

by distributional fairness concerns. This result implies that the leader is more

generous to the second follower in general.

3 Experimental Procedure

Fifty-seven undergraduate students at a western university participated in the experi-

ment.8 There were three experimental sessions. Each session had between 15 and 21

subjects and always consisted of 24 decision rounds. Each subject played the game 24

times. The matching protocol was such that subjects were randomly matched with others

in each round and they never knew the identities of other players. Each session lasted

for one and a half hours. Subjects earned an average payment of about $19. Before the

experiment began, subjects were read the instructions aloud and were given a chance

to ask question in private. A copy of the instructions is given in Appendix B. The en-

tire experiment was computerized to facilitate information passing and random matching.

We simplified the decision task as much as possible. For example, in the instructions,

a table was given to depict the possible first offers given a signal value. The anonymous

matching of subjects was intended to avoid any communication between subjects. Since a

random matching protocol is used in each round, we controlled for collusion, reciprocity,

and reputation building behaviors. Therefore, each round could be framed as a one-shot

game with new partners. In each round, subjects were randomly grouped in triples.

In each triple, the three subjects were randomly assigned the roles of RED (leader) or

BLUE1 (the first follower) or BLUE2 (the second follower). The three players played

8It is common to use undergraduates to test theories of industrial organization (see Holt, 1995). The

results could in principle be replicated with managers. Several previous studies comparing professionals

and students find little difference between the two groups (see Plott, 1987, and Ball and Cech 1996).

Alternatively, one could use student subjects with different levels of experience with the task to assess

whether experts behave differently from novices (e.g., Jung, Kagel, and Levin 1994).
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two independent ultimatum games each with a pie size of 100 points in sequence.

RED and BLUE1 played Game I first. RED moved first and chose the first offer s1

(an integer between 0 and 100) at which she wished to divide the pie between herself

and the first follower. The computer routed the information on s1 to BLUE1. BLUE1

must decide whether or not to accept the offer. If the BLUE1 chose to accept, RED

and BLUE1 received the allocated amount accordingly. If BLUE1 rejected, both players

earned 0 point.

To construct the signal z, we drew a number from a discrete uniform distribution

over the set {−20,−10, 0, 10, 20} and added it to the first offer. Consequently, given a

signal z, the subjects could infer what the possible first offers are. To measure ŝ1 di-

rectly, we asked BLUE2 to make a guess of what the first offer was and rewarded the

player a modest sum of 10 points for making a correct guess. All outcomes, including

whether BLUE2 guessed correctly, were revealed only at the end of each decision round

comprising of both Games I and II.

Finally, RED and BLUE2 played Game II. RED moved first and made an offer s2 to

BLUE2. BLUE could either accept or reject. If BLUE2 chose to accept, both players

received payoffs as allocated. Otherwise, both received nothing. The outcomes of both

Games I and II were given to all players at the end of each round.

Each player’s total point earnings for a decision round were recorded. Note that the

leader received point earnings from both Games I and II. At the end of the session, point

earnings for all rounds were summed up and redeemed for cash payment at the rate of

$0.01 per point (i.e., each ultimatum game involved dividing a pie of $1).
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4 Estimation

4.1 Basic Results

Table 2 shows the basic results. Note that few offers are above 50% of the pie. Across the

two games, less than 4.2% of the offers are within this range. The modal offer is between

30% and 35% for both games. Few offers are below 15% of the pie. No more than 4.6%

of the offers fall into this range across the games. Hence the subgame perfect equilibrium

prediction of a very low offer is strongly rejected. There is a clear pattern of a higher

rate of rejection as the offer decreases. For example, there is no single offer in the range

of 45% to 50% that was rejected, while the rate of rejection ranges from 24.4% to 27.1%

when the offers are within the range of 25% to 30%. The overall results suggest that sub-

jects are not purely self-interested. In general our results are comparable to those of prior

studies except that the offers are slightly lower and followers tend to reject less frequently.

Game I Game II

Offer Range Offers (%) Rejected (%) Offers (%) Rejected (%)

> 50 19 (4.2) 0 (0) 18 (3.9) 0 (0)

50 23 (5.0) 0 (0) 25 (5.5) 2 (8.0)

45− 49.5 10 (2.2) 0 (0) 15 (3.3) 0 (0)

40− 44.5 73 (16.0) 1 (1.4) 79 (17.3) 1 (1.3)

35− 39.5 66 (14.5) 4 (6.1) 53 (11.6) 3 (5.7)

30− 34.5 113 (24.8) 12 (10.6) 119 (26.1) 9 (7.6)

25− 29.5 45 (9.9) 11 (24.4) 48 (10.5) 13 (27.1)

20− 24.5 69 (15.1) 13 (18.8) 68 (14.9) 8 (11.8)

15− 19.5 17 (3.7) 6 (35.3) 12 (2.6) 5 (41.7)

10− 14.5 14 (3.1) 7 (50.0) 16 (3.5) 10 (62.5)

< 10 7 (1.5) 6 (85.7) 3 (0.7) 2 (66.7)

All 456 (100.0) 60 (13.2) 456 (100.0) 53 (11.6)

Table 2: The distribution of offers and the rate of rejection
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4.2 Does Peer-Induced Fairness Exist?

In our experiment, we induce the second follower to make social comparisons by asking

her to guess the offer received by the first follower. To check whether this inference is

accurate, we regress the second follower’s guess (ŝ1) of the first offer against the actual

first offer. Formally, we have:

ŝ1 = ω0 + ω1 × s1 (4.1)

The best fitted regression line yields ω̂0 = 20.1% (p-value < 1 × 10−16) and ω̂1 = 0.40

(p-value = 3.93× 10−16). This suggests that the second follower is responsive to the first

offer and exhibit some biases. They tend to over-estimate the first offer when it is less

than 33% and over-estimate when it is above 33%.

The central hypothesis of this paper is that the second follower has peer-induced fair-

ness concerns. The second follower’s utility function (equation 2.2) implies that, other

things being equal, the second follower is less likely to accept an offer if the difference

between ŝ1 and the offer s2 is high. Table 3 below shows how the rate of rejection varies

depending on whether the second follower believes she is ahead (s2 − ŝ1 > 0), on par

(s2 − ŝ1 = 0), or behind (s2 − ŝ1 < 0).

Being Ahead (s2 − ŝ1 > 0) On Par (s2 − ŝ1 = 0) Being Behind (s2 − ŝ1 < 0)

N Number of Rejection N Number of Rejection N Number of Rejection

166 6 (3.6%) 110 5 (4.5%) 180 42 (23.3%)

Table 3: Different Rates of Rejection when Follower 2 is Ahead or Behind

The results are clear: The second follower rejects a lot more frequently when they are

behind than otherwise (23.3% versus 4%). We test this formally by running a simple

logistic regression with BLUE2’s decision a2 against the second offer s2 and how much it

differs from BLUE2’s guess (which is an estimate for ŝ1). Formally, we have:

P (a2 = 1) =
eω0+ω1·s2+ω2·(ŝ1−s2)

1 + eω0+ω1·s2+ω2·(ŝ1−s2)
(4.2)
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If BLUE2 has peer-induced preferences, we would expect ω2 to be negative. The esti-

mation results show that ω̂2 = −0.02463 (p-value = 0.0213), suggesting that the second

follower is indeed reluctant to accept an offer that is inferior to that of a peer. This find-

ing rejects the self-interested assumption and theories that ignore peer-induced fairness

concerns.

4.3 Did the Leader Respond to Peer-Induced Fairness?

Proposition 1 suggests that the leader’s offer in Game II is non-decreasing in ŝ1. Indeed,

it is piecewise linear in ŝ1 if the latter is sufficiently high. Figure 1 shows the observed

frequencies of the difference between the second offer and the guess (s2 − ŝ1) . Note

that this difference centers around zero and drops quickly as the difference gets larger

suggesting that the offer may be influenced by the guess.

A simple test for this prediction is to regress s2 against ŝ1. Formally, we have:

s2 = ω0 + ω1 · ŝ1 (4.3)

If the prediction is right, we expect ω1 to be positive. The regression results suggest that

ω1 is indeed positive and highly significantly (ω̂1 = 0.197 and p-value = 4.75 × 10−7).

This result implies that the leader is strategic and aligns her second offer with the second

follower’s inference of what the first offer is.

4.4 Parameter Estimation

To formally estimate the relative importance of peer-induced and distributional fairness

concerns, we structurally estimate the model parameters. The proposed model has 2

parameters δB and ρB. The model involves 4 decisions, s1, s2, a1, and a2. We assume

normal error terms for the leader’s decisions.

s1 = s∗1 + η1 (4.4)

s2 = s∗2 + η2 (4.5)

where η1 and η2 are normally distributed with mean of 0 and variances of σ2
1 and σ2

2

respectively. The followers’ utilities have an extreme value error term so that their
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Figure 1: Observed Frequencies of s2 − ŝ1

acceptance probability has a logistic form with parameters λ1 and λ2 given below:

P1(δB, λ1) =
eUF1(δB)/λ1

1 + eUF1(δB)/λ1
(4.6)

P2(δB, ρB, λ2) =
eUF2(δB ,ρB)/λ2

1 + eUF2(δB ,ρB)/λ2
(4.7)

In summary, the likelihood function for a set of decisions s1, s2, a1, and a2 is:

φ(s1) · φ(s2) · (P1)
a1 · (1− P1)

(1−a1) · P a2
2 · (1− P2)

(1−a2) (4.8)

which we maximize over the parameters δB, ρB, σ1, σ2, λ1, λ2.

Table 4 shows the estimation results. We estimate the full model and two nested

models. The first column presents the nested model without any fairness concerns (i.e.,
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δB = ρB = 0 or agents are purely self-interested). The second column gives the re-

sults when players have only distributional fairness concerns (i.e., ρB = 0). The third

column presents the full model. Both nested models are strongly rejected when com-

pared to the full model indicating that subjects care about both distributional and peer-

induced fairness. The self-interested hypothesis is clearly rejected (χ2 = 1372.2, p-value

< 1.0 × 10−16). The nested model where the second follower has only distributional

fairness is also strongly rejected (χ2 = 64.2, p-value = 1.11 × 10−15), suggesting that

the second follower clearly has peer-induced fairness concerns. In the full model, the

estimated peer-induced fairness parameter is ρ̂B = 1.327, which is two 2.5 times larger

than the estimated distributional fairness parameter of δ̂B = 0.492. This suggests that

peer-induced fairness weighs more heavily than distributional fairness in the second fol-

lower’s behavior.9

Parameter No Fairness Distributional Fairness Only Full Model

δB - 0.535 0.492

ρB - - 1.327

λ1 13.811 15.692 13.586

λ2 13.402 15.721 22.446

σ1 34.292 14.132 14.869

σ2 34.158 13.356 11.810

LL= -4807.2 -4153.2 -4121.1

Table 4: Estimation Results

9We capture distributional fairness concerns by incorporating people’s aversion to being behind others

in material payoffs. When people are altruistic or have charitable intent (Charness and Rabin, 2002), they

may also have an intrinsic aversion to being ahead of others in material payoffs, which can be captured

by an additional disutility term −δA ·max{(π − si)− si, 0} for the leader or −δA ·max{si − (π − si), 0}
for the follower. The parameter δA represents the degree of aversion to being ahead. However, in Table

4, for both the nested model with only distributional fairness (second column) and the full model (third

column), additionally allowing for this parameter yields the estimate δ̂A = 0. This suggests that subjects

in our experiment are not altruistic and do not have distributional fairness concerns when they are ahead.
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5 Incorporating Heterogeneity

Our basic model adopts a representative-agent approach and assumes that all players have

identical fairness concerns. In this section, we incorporate heterogeneity by analyzing a

2-segment model in which one segment is purely self-interested and the other segment has

both distributional and peer-induced fairness concerns. This extension is useful because

a fraction of players is likely to be purely self-interested and we can then determine

how self-interested players’ behaviors are influenced by the existence of fairness-minded

players. We structurally estimate this model using our experimental data. About one half

of the subjects are estimated to be purely self-interested when the representative-agent

assumption is relaxed.

In the two-segment model, let θ denote the fraction of the self-interested segment (i.e.,

the segment that has ρB = δB = 0). The remaining segment has distributional and peer-

induced fairness concerns, represented by the parameters δB and ρB as before. We shall

derive the equilibrium using backward induction. The next proposition characterizes the

leader’s optimal offer s∗2 in the second game. The key observation is that the leader

may either make the same offer characterized in Proposition 1 (which induces both types

to accept) or simply offer zero (in which case only the purely self-interested followers

will accept). The former is preferred when the fraction of fairness-minded players is

sufficiently large (i.e., θ sufficiently small).

Proposition 3 Suppose the follower’s inference is ŝ1. Denote

k = min

{
max

{
π · δB

1 + 2 · δB

,
π · δB + ρB · ŝ1

1 + 2 · δB + ρB

,
ρB · ŝ1

1 + ρB

}
,
π(1 + δB)

1 + 2δB

}
. (5.1)

The leader’s optimal offer to the second follower is

s∗2 =

{
k, if π − k − δB ·max{0, 2k − π} ≥ θπ,

0, if π − k − δB ·max{0, 2k − π} < θπ.
(5.2)

Proof: See Appendix.

Next, consider the first game when there are both self-interested and fair-minded

types. Similarly as above, the leader faces a choice between making the minimum ac-

ceptable offer to induce the fair-minded types to accept, and offering zero (in which case
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only the self-interested types will accept). As the next proposition shows, the former

is preferred when the fraction of self-interested types θ is sufficiently small. The cutoff

value for θ can be calculated numerically.

Proposition 4 There exists some cutoff θ̃ ∈ [0, 1] such that the leader’s optimal offer to

the first follower is

s∗1 =

{
π·δB

1+2·δB
, if θ ≤ θ̃,

0, if θ > θ̃.
(5.3)

Proof: See Appendix.

We structurally estimate this two-segment model using the experimental data. This

task helps to determine the fraction of the purely self-interested segment. Table 5 shows

the estimation results. The first column, for convenience, replicates the estimation re-

sults from our basic model, while the second column adds one additional parameter that

represents the size of the purely self-interested segment (θ).

Parameter Basic Model Heterogeneity

δB 0.492 0.787

ρB 1.327 2.573

λ1 13.586 10.973

λ2 22.446 10.392

σ1 14.869 12.979

σ2 11.810 10.974

θ - 0.491

LL= -4121.1 -3823.7

Table 5: Estimation Results for Model Extensions

These results suggest that there is substantial heterogeneity in subjects’ preferences for

fairness. Forty-nine percent of the subjects is estimated to be purely self-interested.



22

Consequently, the representative-agent assumption is strongly rejected (χ2 = 594.8, p-

value < 1.0× 10−16). Furthermore, observe that the model estimates for the fair-minded

segment are δ̂B = 0.787 and ρ̂B = 2.573. These estimates are higher than the estimates

from our basic representative-agent model. Nevertheless, as noted previously, the degree

of aversion to being behind a peer (ρB) is still much higher than the degree of aversion

to being distributionally behind (δB). This again suggests that peer-induced fairness

concerns are more significant than distributional fairness concerns.

6 Economic Applications of Peer-Induced Fairness

Many economic models can be substantially enriched by incorporating peer-induced fair-

ness. In this section, we sketch three simple applications in which peer-induced fairness

plays an important role. Specifically, we show how peer-induced fairness can limit the

degree of price discrimination, account for low variability in CEO compensation and lead

to the occurrence of labor strikes.

6.1 Price Discrimination

Many firms charge the same price in different markets even though the opportunity for

price discrimination exists. Peer-induced fairness provides a plausible rational explana-

tion for this phenomenon. Consider a monopoly selling in two separate markets. The

marginal production cost in the markets are denoted c1 and c2, where c1 < c2, so we can

think of Market 1 as the low-cost market and Market 2 as the high-cost market. For

simplicity, assume that the demand function for each market is linear, Di(pi) = 1 − pi

for i = 1, 2. Equivalently, we can think of each market as a unit mass of consumers,

whose valuations are uniformly distributed between 0 and 1. By the standard textbook

analysis, we can calculate the monopoly’s profit-maximizing price in each market to be

p∗i = (1 + ci)/2. Under this result, the monopolist charges a higher price in the high-cost

market than in the low-cost market.

Now, suppose that consumers have peer-induced fairness concerns as described in
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our model. In this case, consumers in Market 2 will be averse to paying a higher price

compared to customers in Market 1 where the price is lower. When a consumer in

Market 2 with valuation v pays price p2 for the product and the price in Market 1 is p1,

the consumer receives utility v − p2 − ρB · (p2 − p1). Consequently, only consumers with

valuations at least p2 + ρB(p2 − p1) are willing to buy. This implies that for each unit

by which p2 increases above p1, the marginal decrease in demand is now larger. In other

words, the impact of peer-induced fairness is to make it more costly for the monopolist

to raise price in the high-cost market beyond that in the low-cost market. Following this

reasoning, it can then be shown that under peer-induced fairness concerns, the optimal

prices satisfy (1 + c1)/2 < p∗1 ≤ p∗2 < (1 + c2)/2. Specifically, whenever it is optimal to

charge a positive price differential (i.e., p∗1 < p∗2), we have

p∗1 =
1 + c1 + 2 · ρB

1+ρB
·
(

1
1+ρB

− c2

)

2 ·
(

1−
(

ρB

1+ρB

)2
) >

1 + c1

2
, (6.1)

p∗2 =

(
1+ρB ·p∗1
1+ρB

)
+ c2

2
<

1 + c2

2
. (6.2)

However, when ρB is sufficiently large, the monopolist prefers to eliminate price discrimi-

nation completely by charging the same price p∗1 = p∗2 = (1+ c̄)/2, where c̄ = (c1+c2)/2 is

the average cost across both markets. This brief analysis clearly indicates that the price

differential over the two markets p∗2 − p∗1 is smaller when there is peer-induced fairness.

6.2 Executive Compensation

Why are CEO salaries so high? With the attractive executive remuneration packages in

practice, the marginal utility gained from the last dollar in a CEO’s pay is likely to be

very small. That is, when the CEO’s utility function u(x) exhibits diminishing marginal

utility, the marginal value of the x-th dollar u′(x) is very small when x is very large. Since

the CEO is not much worse off without that last dollar, the size of the compensation

package does not seem to serve any major economic role. Why, then, are CEO salaries

so high?
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Peer-induced fairness concerns provide a possible explanation. Suppose that CEOs

engage in social comparison with their peers, i.e. other CEOs. In this case, their utility

function can be modeled as v(x) = u(x)− ρB max{0, x̂− x}, where u(x) is the utility for

money as above and x̂ is the average compensation received by the focal set of CEOs.

Since individuals are likely to engage in upward social comparison by selecting individ-

uals who are better as comparison benchmarks, we expect x̂ > x. Then, the marginal

value of the x-th dollar (where x is large and so u′(x) is small) is v′(x) ≈ ρB, which may

be much higher than 0. This discussion suggests that CEO remuneration packages are

high not because of their material value, but because of the need to avoid discomforting

social comparison.

Peer-induced fairness also suggests that the reference or focal CEO set (x̂) can sig-

nificantly influence this social comparison process. For instance, O’Reilly, Main and

Crystal (1988) shows that there is a strong association between CEO compensation and

the compensation level of outside directors who serve on the compensation committee.

This finding can be interpreted by our model if x̂ is the average salary of the members

of the compensation committee.

6.3 Labor Strikes

Many labor contract negotiations end up in a strike. In most cases, there had been ample

time and opportunities for interaction between negotiating parties. This suggests that

agreement is not feasible in the first place. The concept of peer-induced fairness provides

a potential explanation.

Suppose two parties A and B are negotiating over a pie, the size of which is normal-

ized to one unit. Both A and B will receive the outside option of zero if they do not

come to an agreement. If they do, let x and 1− x be the shares of A and B respectively.

Then, by standard analysis, it follows that for any x ∈ (0, 1), both parties will strictly

prefer an agreement. In this case, we call (0, 1) the feasible set.
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Now, suppose that both parties exhibit peer-induced fairness concerns. A plausi-

ble benchmark might be the outcome of a similar negotiation in the past between an-

other pair of players (A’ and B’) and suppose this negotiation resulted in A’ receiv-

ing x′ and B’ receiving 1 − x′. Then, in the current negotiation, A’s utility from re-

ceiving x will be x − ρB max{0, x′ − x} and B’s utility from receiving (1 − x) will be

(1 − x) − ρB max{0, x − x′}. It is easy to see that the feasible set of this game is now

smaller, consisting only of allocations x ∈ ( ρBx′
1+ρB

, 1+ρBx′
1+ρB

) ⊂ (0, 1).

Finally, each party in the negotiation may choose a different comparison benchmark.

That is, A may be inclined to be compared with A’ who received x′ whereas B may

prefer to be compared with B” who received 1− x′′. We would expect x′ > x′′ since each

party’s “comparable” outcome is likely to be biased in favor of that party. For instance,

Knez and Camerer (1995) experimentally show that people apply different benchmarks

for comparison when they have different outside options. Babcock, Wang, and Loewen-

stein (1996) provides empirical evidence for such a self-serving bias in teacher contract

negotiations. In this case, the feasible set of the game becomes x ∈ ( ρBx′
1+ρB

, 1+ρBx′′
1+ρB

). In

fact, when x′ − x′′ > 1/ρB, the feasible set is empty. This may occur when the two

reference points diverge too widely (i.e., the gap x′−x′′ is too large), or when the degree

of peer-induced fairness ρB is too large.

7 Conclusions

In this paper, we propose a model of peer-induced preferences in games. This model is

significant in two ways. First, any casual introspection would suggest that peer compari-

son is a pervasive phenomenon and yet it has been largely ignored in economic modeling

and analysis. Second, there is a large literature in social psychology on the topic of social

comparison (e.g., see Suls and Wheeler, 2000 for a comprehensive review). This stream

of literature suggests that people have a drive to make social comparisons with their

peers. Hence we believe it is important to recognize this well-documented behavioral

phenomenon in the analysis of strategic games. This paper provides the first attempt in

capturing this behavioral regularity mathematically.
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We investigate peer-induced fairness in a sequence of two payoff independent ultima-

tum games played by a leader and 2 followers. The leader and the first follower play an

ultimatum game, and then the same leader and the second follower play the same ulti-

matum game. The games are payoff independent in that each follower receives material

payoff only in their respective game. Between the two games, there is an information

collection stage. That is, after the first ultimatum game, the second follower observes an

imperfect signal of the first offer before playing the second ultimatum game. Existing

models of distributional fairness predict that the leader’s offer in the second game and

the second follower’s decision should not be influenced by the signal. In contrast, our

basic model of peer-induced fairness predicts that the second follower’s behavior will be

influenced by her inference of the first offer based on the signal and that the leader will

align the second offer with the second follower’s inference.

We test our model predictions experimentally. Subjects are randomly assigned the

roles of leader and followers and are motivated by substantial financial incentives. We

find strong support for the predictions. Specifically, the second follower’s rate of rejec-

tion increases with the difference between the second offer and her inference of the first

offer. Also, the leader aligns her offer close to the inference of the first offer in order to

avoid rejection by the second follower. In combination, these results strongly suggest the

existence of peer-induced fairness. We also structurally estimate our model using the ex-

perimental data. Our estimation results show that peer-induced fairness is distinct from

distributional fairness and the former is crucial in explaining subjects’ behaviors. The

parameter estimates suggest that the second follower has a preference for peer-induced

fairness that is 2.5 times as strong as her preference for distributional fairness (i.e., the

former weighs more heavily in follower’s decision).

We extend the basic model by allowing a fraction of the subjects to be purely self-

interested. Our structural estimation results indicate that about half of the subjects are

purely self-interested while the other half exhibit fairness concerns. This result suggests

that it is important to incorporate heterogeneity in the strategic analysis of bargaining.
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Finally, we show how peer-induced fairness plays a key role in several economic appli-

cations. For example, peer-induced fairness can restrict a monopoly’s ability to price

discrimination, account for the low variability in CEO compensation, and lead to the

occurrence of labor strikes.

Appendix A: Proofs

Proof of Lemma 1 The posterior distribution of the first offer s1, conditional on the

signal z, is simply the distribution G over the truncated support [z − k, z + k]. As z

increases, the truncated support shifts to the right, so the posterior expectation ŝ1(z)

also increases.

Proof of Proposition 1 Introducing the variables w1 = max{π − 2s2, 0} and w2 =

max{ŝ1 − s2, 0}, we obtain the following problem (the solution of which yields s0
2):

mins2,w1,w2 s2 (7.1)

s.t. s2 − δB · w1 − ρB · w2 ≥ 0 (7.2)

w1 ≥ π − 2s2 (7.3)

w2 ≥ ŝ1 − s2 (7.4)

w1, w2 ≥ 0 (7.5)

Notice that the above feasible region can be expressed in terms of only s2 to yield:

mins2 s2 (7.6)

s.t. s2 − δB(π − 2s2)− ρB(ŝ1 − s2) ≥ 0 ⇔ s2 ≥ πδB + ρB ŝ1

1 + 2δB + ρB

(7.7)

s2 − δB(π − 2s2) ≥ 0 ⇔ s2 ≥ πδB

1 + 2δB

(7.8)

s2 − ρB(ŝ1 − s2) ≥ 0 ⇔ s2 ≥ ρB ŝ1

1 + ρB

(7.9)

s2 ≥ 0 (7.10)
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Therefore, among all the offers that are acceptable to the second follower, the offer that

maximizes the leader’s utility UL,II(s2, a2|z) is

s0
2 = max

{
πδB + βŝ1

1 + 2δB + ρB

,
πδB

1 + 2δB

,
ρB ŝ1

1 + ρB

, 0

}
. (7.11)

Next, notice that the offer s1
2 that leaves the leader with zero utility is

s1
2 = π − πδB

1 + 2δB

=
π(1 + δB)

1 + 2δB

. (7.12)

Finally, we see that the leader’s equilibrium offer in the second game must be min{s0
2, s

1
2},

as given in the proposition.

Proof of Lemma 2 Consider two possible offers s1 and s′1 = s1 + c with c > 0. It

is clear that the set of possible signal realizations z′ corresponding to s′1 is a translation

of the set of possible signal realizations z corresponding to s1. It then follows that

the distribution of inferences ŝ1(z
′) is a translation (to the right) of the distribution of

inferences ŝ1(z). Since s∗2(ŝ1) increases as the estimate ŝ1 increases, along the equilibrium

path, the leader’s expected utility in Game II decreases as s1 increases.

Proof of Proposition 2 By Lemma 2, we know that EU∗
L,II(s1) is decreasing in s1.

Also, note that U∗
L,II(z) ≤ UL,I(

πδB

1+2δB
, 1). This holds because for any z, U∗

L,II(z) =

UL,II(s
∗
2(z), a∗2(z)|z) ≤ UL,II(

πδB

1+2δB
, 1|z) ≤ UL,I(

πδB

1+2δB
, 1).

Now, we evaluate the two alternatives facing the leader: offer zero (and the first fol-

lower rejects) or offer the optimal acceptable offer (and the follower accepts). Recall that

the leader wishes to maximize UL,I(s1, a1) + EU∗
L,II(s1). When the leader offers zero to

the first follower, the first term is zero and the second term is at most UL,I(
πδB

1+2δB
, 1).

Alternatively, the leader may make an offer that is acceptable to the first follower. Recall

that only offers s1 ≥ πδB

1+2δB
are acceptable. Since both UL,I(s1, a1) and EU∗

L,II(s1) are

decreasing in s1, the leader’s optimal offer that is acceptable to the follower is s1 = πδB

1+2δB
.

In this case, the first term is UL,I(
πδB

1+2δB
, 1) and the second term is non-negative. The

proposition thus follows.
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Proof of Proposition 3 It is clear that k is the minimum offer that is acceptable to

the type with fairness concerns. The leader may either: (i) offer k and receive UL,II(k, 1),

or (ii) offer 0 and receive π with probability θ and 0 with probability 1 − θ (i.e., the

expected utility is θπ). The leader thus chooses the better alternative, as characterized

in the proposition.

Proof of Proposition 4 Recall that the leader wishes to maximize UL,I(s1, a1) +

UL,II(s2, a2), where a1 and a2 now refers to the acceptance decisions of the fair-minded

types. Note from Proposition 3 that along the equilibrium path, we have U∗
L,II(s2, a2) =

max{UL,II(k, 1), UL,II(0, 0)} = max{UL,II(k, 1), θπ}. Thus the reasoning in the proof of

Lemma 2 continues to apply to the first term and thus Lemma 2 holds. Therefore, the

only candidates for the first offer s1 are 0 and π·δB

1+2·δB
. We will analyze the increase in the

leader’s utility when he offers s1 = 0, compared to when he offers s1 = π·δB

1+2·δB
; in this

proof, we term this his incremental utility.

In Game I, the leader’s utility from offering π·δB

1+2·δB
does not depend on θ; however,

the leader’s utility from offering 0, which is θπ, has derivative π with respect to θ.

Next, consider the leader’s incremental utility from Game II along the equilibrium

path. When s1 = 0, the leader’s utility is max{UL,II(k, 1|s1 = 0), θπ}. When s1 = π·δB

1+2·δB
,

the leader’s utility is max{UL,II(k, 1|s1 = π·δB

1+2·δB
), θπ}. In both cases, the first term does

not depend on θ and the second term has derivative π with respect to θ. Therefore, the

derivative of the incremental utility (i.e. the difference) with respect to θ must be at

least −π.

Combining the two games, the derivative of the incremental utility with respect to

θ must be non-negative. In other words, as θ increases, offering s1 = 0 always becomes

more attractive. The proposition thus follows.

Appendix B: Instructions

This is an experiment in economic decision making. The instructions are simple and if

you follow them carefully and make good decisions, you could earn a considerable amount

of money which will be paid to you in cash before you leave today. Different subjects may
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earn different amounts of cash. What you earn today partly depends on your decisions,

partly on the decisions of others, and partly on chance.

The experiment consists of 24 decision making rounds. There are 3 subjects in this

room. In each round, we will randomly group you into 1 triplets. In each round and

in each triplet, one subject will be RED player and two subjects will be BLUE players

(BLUE1 and BLUE2). You have an equal chance of playing the role of RED, BLUE1

or BLUE2 in each round. The decision making task of each player will be explained below.

It is important that you do not look at the decisions of others, and that you do not

talk, laugh or exclaim aloud during the experiment. You will be warned if you violate

this rule the first time. If you violate this rule a second time, you will be asked to leave

and you will not be paid. That is, your total earnings will be zero.

Experimental procedure

In each round, the decision making task occurs in 3 stages, namely, I, II, and III. Each

RED player and the 2 matched BLUE players (BLUE1 and BLUE2) undertake the task

as follows. Again the assignment of your role is determined randomly so that each person

in the triplet has an equal chance of playing RED, BLUE1 or BLUE2.

In Stage I, RED and BLUE1 will have a pot of 100 points to divide between them

(BLUE2 will sit still in this stage). RED will make an offer of OFFER1 (ranging from

0 to 100 points) to give it to BLUE1. After receiving the offer OFFER1, BLUE1 must

decide whether or not to accept it. If BLUE1 accepts the offer, RED will receive 100 -

OFFER1 points and BLUE1 will receive OFFER1 points. However, if BLUE1 rejects the

offer, both RED and BLUE1 will receive nothing in that decision making round. Note

that the outcome of Stage I (i.e. whether BLUE1 accepts the offer) will only be revealed

to RED at the end of Stage III.

In Stage II, we randomly draw a number from a set of 5 numbers: -20, -10, 0, 10, 20.
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That is, each number has an equal chance of being drawn. We call the drawn number X.

We generate a signal called SIGNAL1 by adding X to OFFER1. We will use the number

SIGNAL1 in Stage III. Note that each triplet involves a different independent draw in

each decision round. However, each draw is always from the same set consisting of the

same 5 numbers.

Let’s consider two examples to see how this signal generation process works. If SIG-

NAL1=30, then there are five possible scenarios:

Offer 1 X Signal1

50 -20 30

40 -10 30

30 0 30

20 10 30

10 20 30

Note that if SIGNAL1=30, OFFER1 can range from 10 to 50 depending on the value

of the random number X.

Similarly, if SIGNAL1=70, we have the following five possible scenarios:

Offer 1 X Signal1

90 -20 70

80 -10 70

70 0 70

60 10 70

50 20 70

That is, OFFER1 can range from 50 to 90. Note that the above two examples are chosen

purely for illustration purposes. In no way, the shown values are indicative of the optimal

choices.
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BLUE2 will guess what OFFER1 is. If BLUE2 guess correctly, he or she will receive

a total of 10 points. If BLUE2 guess wrongly, he or she will receive nothing. Note that

BLUE2’s guess, and whether it is correct, will be revealed to RED and BLUE2 only at

the end of Stage III.

In Stage III, RED and BLUE2 will have a pot of 100 points to divide between them

(i.e., BLUE1 will sit still). Before RED makes her offer, both RED and BLUE2 will

be informed of the value of SIGNAL1. Note that SIGNAL1 is generated by adding the

random draw X described in Stage II to the OFFER1 made by RED to BLUE1 in Stage

I. Then, RED will make an offer OFFER2 (ranging from 0 to 100 points) to give it to

BLUE2. After receiving the offer OFFER2, BLUE2 must decide whether or not to ac-

cept the offer. If BLUE2 accepts the offer, RED will receive 100 - OFFER2 points and

BLUE2 will receive OFFER2 points. However, if BLUE2 rejects the offer, both RED

and BLUE2 will receive nothing in that decision round.

At the end of Stage III, the RED and both BLUE subjects will be informed of their

respective decision outcomes and point earnings. The above decision task is repeated for

24 times. In each round, 1 triplets will be formed. Each player in the triplet will have

an equal chance playing RED, BLUE1 or BLUE2.

Payoffs

Your dollar earnings for the experiments are determined as follows. First, we will sum up

your total point earnings from all 24 rounds. Then we will multiply your point earnings

by 0.01. This is the amount you will be paid when you leave the experiment. Note that

the more points you earn, the more money you will receive.
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