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Abstract 
 

 
The role that social interactions play in the purchase decisions of consumers is of growing 
interest to marketers.  Consumers’ decisions not only depend on information they receive 
from others, but also on the decisions made by other members of their social group.  
However, the extension of choice models to incorporate a peer’s choice forces the modeler 
to confront a variety of empirical challenges in separating out correlated behavior within a 
group from actual causal social interactions within a group.  Furthermore, even if causal 
social interactions exist, estimation of the effect of a peer’s decision on a consumer is 
complicated by the fact that peers often coordinate decisions.  This paper defines an 
empirical equilibrium model with a flexible heterogeneity structure to confront these 
challenges of modeling demand from groups of consumers.  To validate the model and 
explore implications for marketing mix decisions, we apply it to a data set of golfers who 
frequently play together.  We find that more than 50 percent of the demand from the 
consumers is attributable to the social interaction.  In addition, we find that marketing to one 
consumer actually increases the returns to marketing to a peer, such that the firm will not 
focus all of its marketing effort on a single group member unless there is a strong 
asymmetry between the individuals within a group.   
 
 
Keywords: decision-making, interdependent preferences, consumption, discrete choice, 
social interactions, targeted marketing, customer relationships. 
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Demand Estimation with Social Interactions and the  
Implications for Targeted Marketing 

 

1 Introduction 

There are many contexts where individuals make decisions in groups.  For example, 

individuals may coordinate to eat together, watch a movie together, or choose the same 

cellular phone company to take advantage of in-network calling discounts.  In these 

examples, coordination requires customers to weigh both their personal preferences and 

their partners’ to find a choice with which all individuals are comfortable.  In other 

words, they are seeking an equilibrium solution to a coordination game. 

This paper incorporates a coordination game directly into an econometric model to 

estimate demand from groups of customers as well as analyze the marketing implications 

of these social interactions.  This falls within the broad class of empirical models of 

discrete games defined by Bresnahan and Reiss (1991).  The structural model assists the 

estimation of causal effects and enables the analysis of counterfactual scenarios in which 

a firm may wish to alter the marketing mix variables to all, or some subset, of customers.3  

With regard to estimation, the game explicitly defines the endogenous relationship 

between partners’ choices and uses this relationship to form the likelihood.  After 

estimation, the game allows us to quantify the demand complementarities between 

                                                 
 
3 See Chintagunta et.al. (2006) and related commentaries for a general discussion of how structural models 
in marketing facilitate both estimation and counterfactual analyses. 
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individuals and analyze policies that may target either specific groups or specific 

individuals within groups. 

It is important to contrast our estimation approach with others in the marketing and 

economics literature.  Marketing academics have used a statistical approach to estimate 

correlations in parameters and unobservables across participants with interrelated 

decisions.4  For instance, Yang and Allenby (2003) uses a spatial autoregressive mixture 

model and data augmentation to allow for a flexible set of correlations in a Bayesian 

MCMC approach.  While this approach is very effective in fitting data and characterizing 

the joint distribution of agents’ choices, it is not well suited to extracting the causal effect 

of one agent’s decision on another’s.  The primary reason is that estimated correlations 

may be driven by either causal effects or confounding factors that may also lead to 

correlations in individuals’ choices.   

The economics literature has focused specifically on the identification of causal effects in 

the presence of other confounding factors. Manski (1993) and Moffitt (2001) describe 

three primary factors that hamper identification of causal peer effects.  One confound is 

endogenous group formation.  This arises when individuals that form a group share 

common characteristics that create a correlation in choices.  Correlated unobservables 

confound identification of causal effects between agents by generating related choices 

even when two agents do not affect one another.  Simultaneity bias creates an 

endogeneity between partners’ decisions that exaggerates estimated effects.  It arises 

                                                 
4 Most studies of joint decision-making in marketing focus on spouses providing input into a single 
decision, rather than coordinating their respective decisions.  These are typically conjoint studies that first 
survey individuals separately, then resurvey them jointly (e.g. Krishnamurthi (1988), Arora and Allenby 
(1999) and Aribarg et.al. (2002)) 
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because a given individual, A, may choose an option because his partner, B, is also 

choosing that option.  However, B’s choice is also influenced by A’s, so econometrically, 

an unobservable in A’s choice will not be independent of B’s affect on A.  Statistical 

approaches in marketing have been designed to directly address the simultaneity problem, 

but they have been unable to separate the sources of correlations into endogenously 

determined group characteristics, correlated unobservables and causal effects.  This 

literature in economics argues for the use of exclusion restrictions between individuals’ 

structural outcome equations to non-parametrically identify the causal peer effect. Within 

marketing, Nair, Manchanda and Bhatia (2006) provide a nice description of these issues 

and show how reduced-form estimation of a linear model with fixed effects and exclusion 

restrictions can be used to uncover causal effects in these contexts.5 

Our estimation approach addresses these issues as follows.  First, the simultaneity issue is 

addressed through the inclusion of the simultaneous move coordination game in the 

econometric model.  This allows us to remove the bias arising when the endogeneity of a 

partner’s decision is ignored.  Second, we account for endogenous group formation biases 

by estimating individual-level heterogeneity in preference parameters that are allowed to 

be correlated across individuals.  Finally, we argue that scanner panel data can be used to 

explicitly separate a joint decision from one that may appear to be joint because of 

correlated time varying unobservables. 

                                                 
5 Yang et.al. (2006) also use an exclusion restriction together with the statistical approach of Yang and 
Allenby (2003), but they do not describe how it overcomes these confounds.  In addition, the excluded 
variable from a wife’s demand for a television show is the fact that she is not male.  There are two potential 
problems with this.  First, sex is a binary variable, so including her sex in her demand equation is actually 
including the husband’s variable.   Second, demographics describe heterogeneity and are not exogenous 
policy variables that enter the structural equation. 
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After estimation, we illustrate how the estimated parameters of the coordination game 

can be used.  The estimated coefficients and their marginal effects can be used to 

determine the magnitude of the effect of one individual’s choice on another’s, but the 

model allows this complementarity to be quantified as a percent of overall demand.  This 

can assist a marketer in assessing the importance of demand complementarities.  If these 

complementarities are in fact important, a different set of marketing policies may be 

necessary.  For example, an advertisement can be expected to have a direct effect on an 

individual that sees it, but if the individual cares about his partner’s decision, it also has 

an indirect effect if the partner sees it.  Furthermore, even if the partner does not see the 

ad, there is also a multiplier effect arising because the ad increases his utility, which in 

turn increases his partner’s utility, which in turn increases his utility even more.  The 

equilibrium model allows the total effect to be quantified.   

The equilibrium model also allows us to assess the effectiveness of targeting policies.  

Rossi, McCulloch and Allenby (1996) illustrate that targeting policies can be very 

effective, but in the context of groups, it is unclear whether a firm should target specific 

groups, or specific individuals within groups.  If demand complementarities exist and 

individuals are homogenous within groups, we illustrate that a firm would be best off to 

target all individuals within a selected set of groups.  However, if there are asymmetries 

within groups, it may only be optimal to target a subset of the members of the group.   

We follow the hierarchical Bayesian MCMC approach of Rossi, McCulloch and Allenby 

(1996) to enable targeting, but the group choice context requires us to devise a unique 

approach for estimating the covariance matrix of the heterogeneity distribution.  Off-

diagonal elements of the heterogeneity matrix are essential for properly accounting for 
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endogenous group formation characteristics, but restrictions between off-diagonal 

elements are also necessary.  We follow Barnard, McCulloch and Meng (2000) by 

decomposing the covariance matrix into a correlation matrix and matrix of standard 

deviations, but are unable to directly apply their approach.  The reason is that restrictions 

in the covariance matrix imply that its determinant is not a quadratic function of the 

unknown correlation in the “one at a time” Gibbs sampler.  We therefore show how their 

Griddy Gibbs approach can be adapted to accommodate restrictions causing the 

determinant to be a higher order polynomial. 

To validate our model and illustrate how our model can be used to explore unique 

features of marketing to groups of customers, we apply it to a data set of pairs of golfers.  

We focus on pairs, because this is the most common group size in which individuals 

coordinate decisions to golf, see a movie or eat a meal.  Coordination in larger groups 

occurs but is less common, more difficult to manage and can require different modeling 

assumptions.6  In this application, we find that the equilibrium model does in fact resolve 

a significant simultaneity bias.   

Next, we use the individual-level parameter estimates to illustrate the targeting 

implications.  For some pairs, targeting one partner greatly increases the incentive to 

target the other, while for other pairs the effect is small.  In an exercise where we allow 

the firm to allocate a scarce demand shifter to half the customers in the data, we show 

that it is optimal to allocate it to both partners in 41 percent of the pairs, and that for 

                                                 
6 We deal with pairs in which it is reasonable to assume that they know each others preferences or can 
easily communicate them to one another.  When groups grow larger, decisions are more likely to be made 
based on expected choices of partners, rather than coordinated decisions of partners.  In these cases, the 
models defined by Brock and Durlauf (2001 and 2003) are betters suited. 
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another 19 percent of pairs, it is optimal to only allocate the scare demand shifter to one 

partner.  This approach of allocating a scarce number of potential demand increases 

across customers is common in service industries such as restaurants, hotels or golf 

courses.  Employees often face tradeoffs in which increasing service to one customer 

comes at the cost of another customer.  Airlines also frequently face the problem of 

allocating a scarce number of upgrades.  Should priorities rest with one particular partner 

from each group or should firms make only some top percentile of groups a priority and 

treat both members of these groups equally?  Our analysis suggests this is an empirical 

question.   

To summarize, our paper makes the following contributions to the empirical analysis of 

marketing to groups of customers.  We specify an equilibrium model that allows us to 

overcome an important simultaneity bias that arises when trying to estimate the effect of 

partners’ decisions.  We also show that our model allows measurement of demand 

complementarities within groups and enables the evaluation of counterfactual marketing 

policies that may or may not be targeted.  We describe how scanner panel data can be 

used to identify literally joint decisions as opposed to decisions which appear joint 

because of correlated unobservables.  Finally, we devise a method for imposing 

correlations in the covariance of the heterogeneity distribution in Bayesian MCMC 

models.  This is important for how we control for endogenously formed group 

characteristics, but can be applied generally to any research where the heterogeneity 

distribution in a Bayesian MCMC model is restricted. 

The paper proceeds as follows.  In the next section we specify an equilibrium model for 

consumers that coordinate decisions.  In section 3, we define the econometric 
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specification of the model and discuss identification of our model and compare it to other 

approaches in the literature.  Section 4 describes our empirical application and details of 

the data.  Section 5 presents model estimates and their implications.  Section 6 conducts 

counterfactual analyses evaluating the prospects of targeting when individuals make joint 

decisions.  Section 7 concludes. 

2 An Equilibrium Model of Joint Decision-Making 

This section specifies a random utility model for an individual’s choice when the choice 

is affected by whether or not a partner also makes the same choice.  For illustration 

purposes, we restrict our analysis to the case of two individuals in the group; however the 

model can be extended to larger groups. 

The utility that individual A  in group g  receives at time t , conditional on preferences 

Agγ , is: 

 ( )
0 0

1 1

if 0
( , , ; )

; if 1
Agt Agt

Agt Bgt Agt Ag
Agt Bgt Ag Agt Agt

v y
u y y

v y y

ε
ε γ

γ ε

+ =⎧⎪= ⎨
+ =⎪⎩

                   

      
 (1) 

where 1Agtv  represents the non-stochastic portion of the indirect utility from choosing a 

firm’s good or service.  0v  is the utility of the outside good, which is normalized to 0 .  

Agtε  is an extreme value distributed individual- and time-specific shock to preferences.  

We assume this is independent across individuals and time.  B  is A ’s partner, and igty  is 

an indicator equal to one, when individual { },i A B∈  chooses the firm’s good or service.  
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Agty  is chosen to maximize ( , , ; )Agt Bgt Agt Agu y y ε γ .  From this point forward, we will 

suppress the subscripts g  and t .  

The endogeneity of the partner’s choice can be recognized by noting that By  is also a 

function of Ay .  This implies that Aε  is correlated with By . 

One assumption we will impose in the model is that partners do in fact prefer to consume 

together.  If this were not the case, we would not expect them to be partners unless the 

group formation was truly exogenous to consumption.  We therefore assume:  

 
( ) ( ){ }

( ) ( ){ }

1 1

1 1

1; 0;

1; 0;

A B A A B A

B A B B A Bt

v y v y

and

v y v y

γ γ

γ γ

= ≥ =

= ≥ =

(2) 

2.1 Joint Decision-Making 

Given the interdependencies in partners’ choices, we model an equilibrium joint decision.  

We assume actions are simultaneous and that the game involves complete information.7  

Specifically, partners know each others preferences, γ , and the realizations of the 

preferences shocks, ε .  Depending on the information, there are four possible outcomes 

in this simple two-by-two game: ( ) ( ) ( ) ( ) ( ){ }, 1,1 , 1,0 , 0,1 , 0,0A By y ∈ . 

We begin by defining, then graphically depicting, the equilibrium conditions for each of 

these outcomes: 

                                                 
7 We also assume consumers are myopic.  Identifying social interactions models of forward-looking agents 
with complete information is complicated by the fact that there is not an analytical expression for the 
integral (expectation) over future realizations of unobservables.  
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( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

11 1 0 11 1 0

10 1 0 11 1 0

11 1 0 10 1 0

10 1 0 10 1 0

1,1

1,0

0,1

0,0

A A A B B B

A A A B Bt Bt

A A A B B Bt

A A A B B Bt

if v and v

if v and v

if v and v

if v and v

ε ε ε ε

ε ε ε ε

ε ε ε ε

ε ε ε ε

+ > + >

+ > + <

+ < + >

+ < + <

 (3) 

   

where 1 By Av  abbreviates ( )1 ;A B Av y γ .  Figure 1 graphically depicts the inequalities that 

form these equilibria over the space defined by 1 0A A Aς ε ε= −  on the horizontal axis and 

1 0B B Bς ε ε= −  on the vertical axis.8  Equilibrium ( )1,1  corresponds to regions II, III, V, 

and VI.  Equilibria ( )1,0  and ( )0,1  correspond to regions IX and I respectively.  

Equilibrium ( )0,0  corresponds to regions IV, V, VII, and VIII. 

Notice that region V arises in both ( )1,1  and ( )0,0 .  This implies that under the specific 

set of ε s defined by region V, there are multiple equilibria.  This creates two problems in 

estimation.  First, each equilibrium involves a distinct likelihood function.  Without a 

way to select between these equilibria, we cannot estimate the model structurally.  

Furthermore, there is not a unique reduced-form of the model, so purely statistical 

estimation will not allow ex-post recovery of structural parameters.  Second, even if we 

were able recover the model parameters, we would be unable to make counterfactual 

predictions if we did not know which equilibrium would be selected. 

                                                 
8 This graphical approach follows that introduced by Bresnahan and Reiss (1991) and has been used in the 
entry literature to illustrate equilibria and the potential for multiple equilibria.  In this case, the 
complementarities between the agents imply that the region of multiple equilibria involves neither or both 
consuming, whereas the competition between firms implies that the region of multiple equilibria involves 
one entrant. 
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Figure 1 

I II III

IV V VI

VII VIII IX

{ }10 0B Bv ς+ >

{ }11 0B Bv ς+ >

1 0A A Aς ε ε= −
 

The horizontal and vertical axes in the figure define the net shock to preferences for consuming, 
1 0i i iς ε ε= − , for an individual A  and  B  respectively.  The dashed lines define indifference 

between consuming and not when an individual’s partner is not consuming.  The solid lines define 
indifference between consuming and not when an individual’s partner is consuming.  Regions II, 
V, and VI represent coordinated consumption in that at least one partner is consuming only 
because the other is consuming.  In region V, it is also possible that neither consume, but this is 
Pareto dominated by both consuming.  Region III defines cases in which partners coincidentally 
consume together.  Regions IV, VII, and VIII correspond to neither consuming.  Regions I and IX 
correspond to only one partner consuming.  

 

Equilibrium selection is therefore required.  In this paper, we assume the players will 

always select the Pareto dominant equilibria.  The inequalities in Equation (2), and the 

inequalities defining region V in Figure 1 imply that 11 1 0A A Av ε ε+ >  and 11 1 0B B Bv ε ε+ > .  

This implies that when the ε s fall in region V, both players will always be better off if 

equilibrium ( )1,1  is selected.  For the remainder of this paper, we will therefore assume 

that when this problem of multiple equilibria arises, the Pareto dominant equilibria is 

always selected.  Such equilibrium selection rules are common.  For example, Berry 
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(1992) uses an assumption that the equilibrium maximizing total surplus is chosen in an 

entry game.  The condition of Pareto dominance is even more plausible because it 

requires that all agents are better off. 

3 Empirical Model and Identification 

3.1 Data Likelihood 

By restricting ourselves to the case of Pareto dominant pure strategy equilibria, we can 

structurally estimate the equilibrium model defined above.  Figure 1 depicts the two-

dimensional space of the preference shocks, ( ) ( ){ }1 0 1 0,A A B Bε ε ε ε− − , which must be 

integrated over to form the likelihood function.  The likelihoods for the four possible 

outcomes, ( ) ( ) ( ) ( ) ( ){ }, 0,0 , 1,0 , 0,1 , 1,1A By y ∈ , can be expressed as function of 

inequalities as follows: 

  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

11 1 0 11 1 0

10 1 0 11 1 0

11 1 0 10 1 0

Pr 1,1 Pr Pr

Pr 1,0 Pr Pr

Pr 0,1 Pr Pr

Pr 0,0 1 Pr 1,1 Pr 1,0 Pr 0,1

A A igt B B igt

A A igt B B igt

A A igt B B igt

v v

v v

v v

ε ε ε ε

ε ε ε ε

ε ε ε ε

−

−

−

= + > + >

= + > + <

= + < + >

= − − −

(4) 

Notice that the primary difference between these probabilities and the equilibrium 

conditions defined above in Equation (3) is that the probability of outcome ( )0,0  

involves integration over a smaller space because this outcome is Pareto dominated in 

region V.  The likelihood function for a given group, g , over the gT  periods that we 

observe it is:  
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 ( ) ( ){ }{ }{ }
1 1

0 01

, ; Pr , ;
gT

g Ag Bg g g Agt Bgt
A Bt

L y y A B y A y Bγ γ
= ==

⎡ ⎤
= = =⎢ ⎥⎣ ⎦

∑∑∏  (5) 

If agents are homogenous, there will only be two parameters to estimate in the simple 

model without covariates: { }11 10,v v .  As depicted in Equation (4) above, there are three 

separate means to identify these two variables.  This implies that exogenous variables are 

not necessary to identify the model parameters.  However, exogenous variables can easily 

be included in Equation (1), and, if there are exclusion restrictions between partners’ 

indirect utilities of consuming, these variables can provide non-parametric identification. 

3.2 Heterogeneity Structure 

In practice, consumers will differ in their utilities both across and within groups.  

Understanding the distribution of this heterogeneity and whether or not individuals within 

a pair are similar or different can assist in specifying marketing policies and targeting 

consumers.  We therefore define the indirect utilities of consuming alone and jointly to be 

drawn from a population distribution defined by: 

 

10 10

11 11

10 10

11 11

11 10

11 10

,

. .

A

A

B

B

A A

B B

v
v

h
v
v

s t
v v
v v

υ
υ
υ
υ

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ Ψ⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

>

>

∼

 (6) 

where the υ s represent the means of these indirect utilities and Ψ  is a covariance matrix.  

The latter expression in (6) restates the restriction that individuals prefer to consume 
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jointly relative to consuming alone.  The easiest way to impose this is to specify the 

difference between these utilities, 1 11 10v vγ = − , to be distributed with a strictly positive 

support, (e.g. log-normal).  The researcher can then estimate the distribution of 1γ  and the 

distribution of a parameter describing either 11v  or 10v .  Typically, one would estimate the 

latter, but in this case it is better to estimate 11v  and infer 10v  from 11v  and 1 11 10v vγ = − .9 

We therefore define the following heterogeneity distribution for individual-level 

parameters: 

 
( )

( )

2
11 0 0 0 01 00 01

2
11 10 1 1 01 1 01 11

2
11 0 0 00 01 0 01

2
11 10 1 1 01 11 01 1

ln ln
,

ln ln

A A

A A A

B B

B B B

v
v v

N
v

v v

γ γ σ σ σ σ
γ γ σ σ σ σ
γ γ σ σ σ σ
γ γ σ σ σ σ

⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= Σ =⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟− ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠

� �
� � �

∼
� �

� � �

 (7) 

With this distribution, we still only have two mean parameters to estimate, but we also 

have a covariance matrix to estimate.  However, notice that there are many restrictions in 

the covariance matrix.  Instead of the typical ten parameters in a four-by-four covariance 

matrix, there are only six.  This occurs because we have to assume both partners are 

drawn from the same distribution (i.e. assignment as partner A  or B  is arbitrary).  To put 

these restrictions in the covariance matrix, we decompose it into a matrix of standard 

deviations and a correlation matrix, such that SRSΣ = , where: 

                                                 
9 Contact the corresponding author for estimates under the alternative assumption. 
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101 01 111 ,

10 00 01 01
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σ ρ ρ ρ
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⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
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� �

� �

� �

� �

 (8) 

 

The standard deviations reflect the different types of agents observed in the data.  They 

are primarily identified across pairs, but taking into account both partners’ parameters.  

One question that arises is whether we have enough restrictions to identify a four-by-four 

correlation matrix despite the fact that we still only have three moments at the group 

level.  To see that the answer is yes, first consider the case where we restrict 

1 1 1A Bγ γ γ= =  (i.e. symmetric “partner effects”).  Under this restriction, we are back to a 

three-by-three and can therefore clearly estimate the upper left correlation matrix 

consisting of parameters 01ρ  and 00ρ� .  01ρ�  is not estimated because under this symmetric 

specification, 01 01ρ ρ=� .  Extending to the full four-by-four correlation matrix R  adds the 

parameter 11ρ�  and 01ρ� .  11ρ�  measures the correlation between the partners’ “partner 

effects.”  In the symmetric “partner effect” case just mentioned, the implicit assumption 

is that 11 1ρ =� .  Allowing  11 1ρ ≠�  therefore allows asymmetric “partner effects” in the 

data.  The existence of only three moments does not allow us to reject the assumption of 

11 1ρ =�  at the group level, however, we can reject this assumption and estimate 11ρ�  and 

01ρ�  at the population (i.e. cross-group) level.  In a hierarchical Bayesian model, the 

identification of this parameter will rely heavily on the estimated priors of the individual-
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level parameters.  We illustrate this in our empirical application below.  This can 

however be relaxed if there are explanatory variables that only affect one partner.     

The heterogeneity structure defined in this section can be estimated using simulated 

maximum likelihood, or it could be used to specify priors on individual-level parameters 

in a hierarchical Bayesian model.  We define the Bayesian model here, but actually use 

both in our empirical application below in section 5. 

3.3 Hierarchical Bayesian MCMC Specification 

To use Bayesian methods to estimate our model, we begin by specifying priors and 

describing the sampling approach for each parameter. 

The heterogeneity distribution defined in Equation (7), will serve as the prior for the 

individual-level parameters.  As is common for logit models, we use a random-walk 

Metropolis-Hastings (MH) algorithm to draw the individual-level parameters. 

The priors over the mean population parameters are assumed to be independent and 

normal/log-normal: 0

1

0 100 0
,

ln 0 0 100
N

γ
γ

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
∝ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎝ ⎠
.  Because the size of this vector 

differs from that of the individual level parameters, { }0 1 0 1, ln , , lnA A B Bγ γ γ γ , we also draw 

these parameters using MH.   

The restrictions in the covariance matrix prevent us from using the conjugacy of the 

typical inverse-Wishart prior for Σ .  We therefore estimate the standard deviations, S , 

and the correlation matrix, R , following the separation strategy defined in Barnard, 

McCulloch and Meng (2000).  We specify the prior over the standard deviations to be 
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independent and log-normal: 0

1

ln 0 100 0
,

ln 0 0 100
s

N
s

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
∝ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎝ ⎠
.  We draw these parameters 

using MH as well.  We specify the prior over R  to be joint uniform, ( ) 1p R ∝ , then 

draw each correlation using a “one-at-a-time” Griddy Gibbs approach. 

The restrictions in the correlation matrix prevent us from directly applying Barnard, 

McCulloch and Meng (2000).  Specifically, we cannot derive the support of correlations 

01ρ  and 01ρ�   by their method because these parameters enter R  twice in the lower-

diagonal.  This implies that ( )R r  will not be a quadratic function in r  for { }01 01,r ρ ρ∈ � .  

Furthermore, checking ( )4 4 0xR r >  is not sufficient to assure positive definiteness of R .  

Each sub-matrix ( )mxmR r  for { }1,.., 4m∈  must satisfy the condition ( ) 0mxmR r > .   

However, the application of Griddy Gibbs provides a convenient way to determine the 

support.  We begin by defining a support G  with equally spaced lengths of GNS  over 

the interval [ ]1,1−  for a given correlation r .  We then calculate ( )R G  element by 

element.  Next, we recover a vector rG G⊆   such that ( ) 0, rR g g G> ∀ ∈ .  Given this 

support, we can directly apply Griddy Gibbs to obtain a draw from the conditional 

( )0 1| , , , ,j rf r y S ρ γ γ≠ , where j rρ ≠  is a vector of all other correlations.    

3.4 Comparison with Other Approaches to Identifying Social Interactions       

Identifying the influence of one individual on another can be quite challenging.  The 

estimation approach we defined above is designed to extract interdependent preferences 

from revealed preference data.  We focus our discussion of identification on these 
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instances.  However, it is important to note that if the researcher has access to potential 

customers to conduct a survey, interdependent preferences can also be extracted by 

surveying them independently, then jointly as in the case of Arora and Allenby (1999). 

3.4.1 Linear Models 

Perhaps the earliest work to recognize the econometric issues specific to social 

interactions is Manski (1993).  The primary concern was the simultaneity of decisions.  In 

linear models this is problematic because exclusion restrictions are required to identify 

the effects.  Given appropriate restrictions, structural parameters can be recovered from 

estimates of the reduced-form of the model. 

Perhaps the most closely related paper to the present uses this approach.  Yang et.al. 

(2006) define a model of spousal television viewing to recover structural parameters from 

an estimated reduced form.  Their approach differs from the typical linear model in that 

they use a spatial autoregressive mixture model and data augmentation, following Yang 

and Allenby (2003), to obtain posteriors on model parameters. 

The primary difference between their approach and the model specified in this paper is 

that their dependent variable aggregates the consumption of each of the agents, rather 

than considering the discrete decision to consume separately, jointly, or not at all.  This 

prevents them from separating joint decision-making from interdependent preferences.  

This is an important distinction because if individuals influence each other’s preferences 

but do not care about each other’s choices, there will not be indirect effects of marketing 

variables.  For instance, if an advertisement changes a customer A’s preferences, A may 

then influence B’s preferences.  However, if B also sees the ad, it will not have an 
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indirect effect on A and will not be influenced by the fact that A saw the ad.  

Furthermore, the multiplier that additionally increases A’s demand because A’s increased 

desire to purchase increased B’s is not existent in purely interdependent preferences 

without a causal effect of partners’ decisions. 

There are two other econometric issues that can arise when identifying social 

interactions, whether the model is linear or non-linear: endogenous group formation and 

correlated unobservables.  Endogenous group formation arises when individuals share 

common characteristics that lead them to be grouped together in the first place.  In the 

model above, this would be a common preference parameter in the partners’ γ s, or a 

correlation between Aγ  and Bγ .  By specifying a model that applies to panel data, the 

random coefficients specification allows these correlations to be identified, and hence 

separated from the causal effects.  This follows the approach taken in Bhatia, Manchanda, 

and Nair (2006) where fixed effects account for the endogenous group formation. 

Observation of the time of consumption in the panel data also assists identification by 

distinguishing truly joint decisions from apparently joint decisions that arise due to 

correlations in time varying unobservables.  In some cases, the data may report 

observations jointly.  In other cases, the precise timing of purchases allows correlated 

unobservables to be ruled out because there would have to be an unreasonably high 

degree of correlation for individuals to repeatedly make purchases within minutes or 

seconds of one another.  In the golf application we study in section 5 below, 

unobservables would have to be correlated within the short span of time between which 

two golfers swipe membership cards for their round of golf.  Essentially, we could allow 
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unobservables to be correlated at the month, day and even hour levels and still be able to 

assure the decisions really are joint consumption occasions.  

The typical identification approach in linear models has also been applied to a number of 

empirical models of network effects in which the dependent variable is nonlinear, and the 

social interaction variable is linear.  For instance, Tucker (2006) considers individual’s 

adoption of a video conferencing technology as a function of the installed base of other 

workers and managers with the technology.  Similarly, Nam, Manchanda and 

Chintagunta (2006) evaluate the adoption of an on-demand satellite movie technology as 

a function of the number of neighbors that have adopted.  Both these papers use exclusion 

restrictions to instrument for the linear variable summarizing other agents’ decisions.  In 

other cases, researchers have used the decisions of agents in the same geographic region 

to summarize potential network effects (e.g. Manchanda, Xie and Youn (2004) and Bell 

and Song (2004))   

3.4.2 Non-linear Models 

When estimating a non-linear model, exclusion restrictions are not required for non-

parametric identification.  However, estimation is complicated by the multiple equilibria 

problems we describe above. 

Yang and Allenby (2003) developed the Bayesian spatial autoregressive approach that 

enabled the flexible estimation of the reduced-form in Yang et.al. (2006).  Unlike Yang 

et.al. (2006), the model in Yang and Allenby (2003) is designed for discrete choice 

applications and is applied to the decision to buy Japanese or non-Japanese cars.  In their 

case, they do not recover the structural parameters, but use the spatial autoregressive 
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process to pick up correlations arising from each of four possible sources: causal effects, 

simultaneity, endogenous group formation, and correlated unobservables.  They 

consequently identify groups of agents (e.g. geographically and demographically defined 

networks) making similar decisions.  Knowledge of this joint distribution of agents’ 

decisions can be useful in many marketing applications and the methods have already 

been extended and implemented elsewhere.  However, as described in the introduction, 

the respective contributions of each of these factors to the correlations cannot be 

identified. 

Brock and Durlauf (2003 and 2001) consider structural estimation of discrete choice 

models, but do so under an assumption that an individual’s choice is affected by his or 

her belief about others.  They acknowledge that this assumption is “clearly problematic in 

describing interactions between a pair of best friends,” where it is likely that they know 

each others preferences, unobservables and decisions.  In marketing, we are likely to be 

concerned both with interactions in larger communities (as has been the focus of Brock 

and Durlauf’s work) and in small decision-making units such as households or groups of 

friends or associates.  For these latter cases, an assumption of complete information (as 

made in the model in this paper), is more appropriate.        

Bajari, Hong and Ryan (2004) propose an estimator that applies to peer effects models 

when agents have complete information.  Their estimator requires that multiple equilibria 

are observed and that there exists a variable which determines the equilibria, but does not 

affect the payoffs of the agents.  The equilibrium selection equation in their model 

adjoins the estimation of agent payoffs in much the same way that Heckman (1979)’s 
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selection equation adjoins the estimation of an outcome equation.  The authors 

operationalize the approach for a simple website entry game. 

While Bajari, Hong and Ryan (2004) is a significant advance in the estimation of these 

types of games, it is not well suited to the model in this paper.  Specifically, if agents are 

willing to always choose the Pareto dominant equilibria when multiple equilibria may 

arise, there will never be variation in the equilibria chosen to identify the equilibrium 

selection equation. 

4 Empirical Application 

To validate our model, explore how model parameters are derived from data, and 

evaluate potential targeting strategies, we apply our model to a sample of pairs of golfers.  

Golf is certainly an activity where many individuals prefer to play with a friend or 

colleague, as opposed to alone or with an unknown partner.  Furthermore, it is a useful 

example because many pairs will not be spouses, so it is less likely that partners will be 

maximizing an identical or related utility function under the same constraints.10     

4.1 Group Definition 

Our model and estimation approach is designed for groups that are known ex-ante.  We 

define the groups ex-ante based on the precise time of golf revealed by them swiping a 

scanner card.  We define golfers to be paired with another golfer if they swiped at least 

four times within 2 minutes of one another between January 1, 2000 and December 31, 
                                                 
10 The empirical example of golf has also been analyzed in a dynamic decision context by Hartmann 
(2006).  As noted previously, it is intractable to include forward-looking behavior in this model.  We 
therefore ignore the dynamic aspects of the data to explore identification of the model presented in this 
paper. 
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2001.11  Over 80 percent of the groups found using this procedure were groups of two, so 

we decided to focus only on these groups.  This left us with 86 mutually exclusive pairs, 

which we observe over time periods ranging from 59 to 730 days.   Note that this group is 

defined as a pair of customers that like to purchase together and therefore coordinate their 

decisions.  When at the course, they may in fact become part of a foursome, but the 

matching of pairs to create foursomes is a decision by the course, not the golfers 

themselves.  Our focus is on the customers’ coordination efforts, so we therefore ignore 

the highly random process by which pairs are grouped together by the course to become 

foursomes.   

For proof of concept, we only use the outcome, or dependent variables, in estimation.  

Once we have estimated pair-specific parameters of the model, we display the data to 

provide intuition for how the parameters are determined.  Additional explanatory 

variables complicate this intuition and are not crucial to illustration of how the model 

works. 

Table 1 presents summary statistics for the pairs.  We observe the pairs an average of 474 

days.  Of the 40,791 pair and day combinations we observe, 5.8 percent of these 

observations involved at least one partner golfing.  Within these 2,353 times a partner 

golfed, approximately 40 percent were instances of joint consumption, while 60 percent 

of the time a golfer was playing without his partner.  This willingness to consume alone, 

as well as with their partner, is what will allow identification of the preference for joint 

consumption. 

                                                 
11 We also tried using 3,4 and 5 minute intervals for defining the groups and found little difference. 
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5 Model Estimates and Implications 

To validate our model and illustrate its advantages, we apply it to the golf data and use 

both Bayesian MCMC estimation and maximum likelihood.  We estimate the full model 

using Bayesian MCMC to obtain individual-level parameters that illustrate the 

importance of our model for targeting decisions.  We also use maximum likelihood to 

validate that priors are not driving our estimates and to analyze the data without our 

model.    

5.1 Bayesian Estimation 

Table 2 reports the estimates of the MCMC implementation of the model.  Table 2 only 

describes the posteriors on population parameters, as there are too many individual-level 

parameters to report.  The table is divided into two sections: symmetric and asymmetric 

partner effects.  As described in section 3.2, the symmetric version of the model is 

cleanly identified at the individual-level, however the version that allows asymmetric 

Table 1

Summary Statistics

Obs. Mean Std. Dev. Min. Max.

At Least One Consumes 40,791 0.058 0.233 0 1
Both Consume 2,353 0.404 0.491 0 1
Only One Consumes 2,353 0.596 0.491 0 1

Number of Time Periods 86 474 196 59 730
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partner effects relies more heavily on the prior (or population distribution of parameters) 

for identification.   

From the means of the population parameters, we can see that individuals get a lower 

utility from golfing with their partner (i.e. Joint Consumption Utility) than from not 

golfing at all.  This is expected because individuals are frequently observed to not golf.  

The parameter describing the “partner effect” suggests that individuals do get a 

substantial disutility from their partner not joining them when golfing.  Examination of 

the 5th and 95th percentiles of these posteriors illustrate that these parameters are in fact 

significantly different from zero.  The standard deviations of the population parameters 

illustrate that there is significant heterogeneity in both the Joint Consumption Utility and 

Partner Effect.   

The mean parameters are similar across both the symmetric and asymmetric cases, but 

the interesting factors lie in the correlation matrices.  Figure 2 illustrates box plots 

extending between the 1st, 5th, 95th and 99th percentiles of the posterior marginal 

distributions of each of the correlation coefficients.  In the symmetric model, there is not 

a significant correlation between a given partner’s Joint Consumption Utility and Partner 

Effect, but there is a significantly negative correlation between the Joint Consumption 

Utilities of the two partners.  This implies that more avid golfers tend to pair up with less 

avid golfers.   

In the version of the model that allows for asymmetric partner effects, none of the 

correlation coefficients is significantly different from zero.  Furthermore, the estimated 

distributions are much wider than those for the model with symmetry imposed for the 
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partner effects.  As described above, this is because the present data is not sufficient to 

non-parametrically identify partner effects at the individual level.  What does this mean?  

Whether symmetric or asymmetric partner effects are allowed, the average partner effects 

and joint consumption utilities can be identified.  This is evident in the nearly identical 

mean parameters.  However, if a researcher wishes to examine asymmetric partner 

effects, the estimates will be highly dependent on the priors.  To relate this back to the 

exclusion restrictions argued for by Manski (1993) and Moffit (2001), while the 

equilibrium model can resolve simultaneity to estimate average peer effects, the 

exclusion restrictions allow for asymmetric peer effects to be identified in the 

heterogeneity distribution. 
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Table 2

Model Estimates Using MCMC

Posteriors of Population Parameters

Mean
5th 
pctl

95th 
pctl

Symmetric Partner Effects
Means

Joint Consumption Utility -1.75 -1.82 -1.67
ln(Partner Effect) 1.00 0.93 1.08

Standard Deviations
Joint Consumption Utility 0.81 0.72 0.89

ln(Partner Effect) 0.38 0.33 0.46

Correlation Matrix
Joint Consumption Utility 1.00 -0.06 -0.47
ln(Partner Effect) -0.06 1.00 -0.06
Joint Consumption Utility -0.47 -0.06 1.00

Asymmetric Partner Effects
Means

Joint Consumption Utility -1.76 -1.84 -1.69
ln(Partner Effect) 0.96 0.88 1.04

Standard Deviations
Joint Consumption Utility 0.64 0.50 0.81
ln(Partner Effect) 0.52 0.44 0.65

Correlation Matrix
Joint Consumption Utility 1.00 0.02 -0.18 -0.16
ln(Partner Effect) 0.02 1.00 -0.16 0.18
Joint Consumption Utility -0.18 -0.16 1.00 0.02
ln(Partner Effect) -0.16 0.18 0.02 1.00

0γ
1lnγ

0γ
1lnγ
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1ln Aγ
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Figure 2
Posterior Marginal Distributions of Correlation Coefficients
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The shaded area represents the 5th to 95th percentiles of the distribution, while the whiskers extend between the 1st and 99th 
percentiles.  

5.2 Maximum Likelihood Estimation 

We use maximum likelihood estimation to compare our model to other specifications to 

demonstrate the model’s ability to account for biases arising from simultaneity and 

endogenous group formation.  We also use maximum likelihood to test for asymmetries 

in the partner effect and verify that the priors in the MCMC specification are not driving 

the estimates.   

The effects of accounting for simultaneity bias can be observed by comparing Table 3 

estimates in the column labeled “Homogenous Equilibrium” with the estimates in the 

column labeled “Homogenous Simple Logit.”  The “Homogenous Equilibrium” estimates 

the model and likelihood defined in Equation (5), without the heterogeneity specification 

defined in Equation (7).  The “Simple Logit Model” assumes that a partner’s choice is 
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exogenous, so the likelihood is just the standard logit probabilities that are independent 

across partners and groups.  We see from the comparison that accounting for the 

simultaneity with the equilibrium model greatly reduces the utility of consuming together 

(“Joint Consumption Utility”) from 0.303 to -1.714.  We expect this type of correction 

because the “Simple Logit Model” does not account for the fact that when Partner A 

decides to golf because B is also golfing, that B is golfing because Partner A had a strong 

intention to golf anyway.  This spurious correlation overstates their desire to golf with 

one another.  It is important to point out that the likelihoods of the first two specifications 

in Table 3 cannot be compared with the others because they estimate a model with a 

single binary dependent variable and an explanatory variable as opposed to our model 

which has four possible outcomes and no explanatory variables. 

Table 3

Model Estimates
Homogenous 
Simple Logit

Heterogeneous 
Simple Logit

Homogenous 
Equilibrium

Heterogeneous 
Equilibrium

Heterogeneous 
Equilibrium

Symmetric Partner 
Effect

Asymmetric Partner 
Effect

Means
Joint Consumption Utility 0.303 0.763 -1.714 -1.664 -1.709

(0.011) (0.096) (0.006) (0.069) (0.068)

ln(Partner Effect) 1.460 1.678 0.771 0.968 0.948
(0.003) (0.036) (0.005) (0.048) (0.075)

Standard Deviations
Joint Consumption Utility 0.763 0.829 0.817

(0.096) (0.056) (0.273)

ln(Partner Effect) 1.678 0.385 0.536
(0.036) (0.033) (0.121)

Correlation Matrices
Joint Consumption Utility 1.00 -0.09 -0.29 1.00 0.53 0.40 -0.11
ln(Partner Effect) -0.09 1.00 -0.09 0.53 1.00 -0.11 -0.21
Joint Consumption Utility -0.29 -0.09 1.00 0.40 -0.11 1.00 0.53
ln(Partner Effect) -0.11 -0.21 0.53 1.00

Log Likelihood -9285 -8,186 -11,556 -10,539.33 -10,535.92

Joint Consumption is the utility of consuming with a partner.  ln(Partner Effect) is the log-normal distribution of the additional utility of consuming with a partner relative to consuming alone.  The 
heading labeled mean reports the mean of the heterogeneity distribution.  The standard errors for the means of the distribution are reported in parentheses.  The Standard Deviations and Correlation 
Matrices are the decomposed Variance-Covariance matrix for the heterogeneity distribution over these parameters.
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The other confound we need to overcome arises from the fact that partnerships are likely 

to be formed by individuals that have similar preferences.  We account for this by 

incorporating the heterogeneity structure defined in Equation (7).  The last two columns 

replicate the Bayesian analysis above.  In the symmetric partner effect model, the 

estimated correlation coefficients are very similar to the Bayesian estimates, and are 

significant.  Once again the negative correlation between Joint Consumption Utilities 

implies that more avid golfer tend to group with less avid golfers.  Because the golfers 

pair up with less similar golfers, the endogenous group characteristics unaccounted for in 

the Homogenous Equilibrium Model bias the Joint Consumption Utilities downward.   

The model allowing for asymmetric partner effects is similar to the Bayesian version 

above as well.  The correlations here are also not significantly different from zero (they 

are not reported in the table).  However, it is useful to point out that this model nests the 

symmetric partner effect model and has a better likelihood.  In fact a likelihood ratio test 

rejects the assumption of symmetric partner effects at a confidence of 97 percent, even 

though the correlation matrix is not as cleanly identified.   

5.3 Assessing Consumption Complementarities 

To quantify the implications of these estimates, it is useful to evaluate the predicted 

probabilities of various outcomes and measure the percent of demand that is attributable 

to preferences for joint consumption.  Table 4 illustrates that just about 93 percent of the 

time, neither partner consumes.  3.9 percent of the time only one consumes.  As expected, 

coincidental joint consumption occurs rarely at 0.1 percent of the time.  Coordinated 

consumption can occur by one partner choosing to consume because he knows the other 
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will consume (regions II and IV in Figure 1) or by both partners consuming when they 

would not have otherwise (region V in Figure 1).  The former occurs 0.7 percent of the 

time and the latter occurs 2.5 percent of the time.  While these numbers may appear 

small, demand from a given pair that is attributable to joint consumption is more than 

56% of expected demand on average.  There is also substantial heterogeneity in this 

multiplier effect across pairs as the standard deviation of 0.23 suggests.  Within-group 

demand complementarities are therefore an important source of demand in this industry. 

Table 4

Demand From Joint Consumption

Mean Std. Dev.

Prob Neither Consumes 0.928 0.059

Prob Only One Consumes 0.039 0.040

Prob. Both Coincidentally Consume Togther 0.001 0.002

Prob One Consumes when would Not have Otherwise 0.007 0.010

Prob Both Consume when would Not have Otherwise 0.025 0.024

Demand Attributable to Joint Consumption 0.057 0.053

Percent of Demand 0.567 0.230

The table reports the mean probabilities of various outcomes.  The last two rows in bold refer to expected demand measures, 
which differ from probabilities as specified in Equation (10).   

6 Application to Targeting Customer Groups 

Our final analysis is to evaluate targeted marketing strategies.  There is a growing 

literature considering how to target individual customers, but no counterfactuals 
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evaluating how to target marketing policies when individuals make joint decisions.  We 

first use estimates from the asymmetric model above to demonstrate the role of 

asymmetries on the marginal effects of shifting golfers’ utilities.  Then we demonstrate 

the role of asymmetries in targeting by evaluating how the firm will optimally allocate a 

scarce number of demand shifters. 

6.1 Asymmetric Responses to Marketing Variables 

In Table 5, we list the partners with the greatest within-pair differences in their reactions 

to changes in marketing variables.  We define the reactions by partner A using the 

following derivative: 

 { }0
0| 1 1, 1 0| 0 1, 0 1| 1 0, 12 Pr Pr Pr Pr Pr Prg A

A B A B A B A B A B A B
Ag gt

dE q d
dx dx

γ
= = = = = = = = = = = =

⎡ ⎤⎣ ⎦ = × + − 12 (9) 

where 

 { }1, 1 1, 0 0, 12 Pr 1 Pr Prgt A B A B A BE q = = = = = =⎡ ⎤ = × + × +⎣ ⎦  (10) 

In all cases, the partner with the greatest derivative has a higher utility of golfing with his 

partner (i.e. the joint consumption utility reported in the estimates above), a lower 

incremental utility for golfing with his partner as reflected in the column labeled “Partner 

Effect” (i.e. the partner effect reported in the estimates above), and a higher utility of 

golfing alone (i.e. the difference between the parameters estimated above). 

                                                 
12 We do not have an x variable, so we cannot measure 0 A

gt

d
dx

γ .  This is actually better for our purposes 

so we can illustrate the general trends without confusing the implications based on differences between 

customers 0 A

gt

d
dx

γ ’s.  When we report derivative, we therefore report the expression in brackets. 
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Table 5

Marketing Effects for Asymmetric Partners

Partner  A Partner B Derivatives
Pair 

Number Alone
With 

Partner
Partner 
Effect Alone

With 
Partner

Partner 
Effect

Partner 
A

Partner 
B Difference

1 8 -1.73 -0.58 1.16 -4.86 -2.60 2.26 0.15 0.04 0.11
2 10 -2.35 -1.07 1.28 -6.39 -2.40 3.99 0.10 0.03 0.07
3 15 -2.58 -1.66 0.92 -1.65 -0.78 0.87 0.11 0.17 -0.06
4 53 -2.56 -1.16 1.40 -6.70 -2.68 4.02 0.09 0.03 0.06
5 42 -4.73 -2.10 2.63 -2.27 -0.79 1.48 0.06 0.12 -0.06
6 29 -4.29 -1.78 2.51 -2.35 -0.82 1.53 0.07 0.13 -0.05
7 23 -4.76 -2.77 1.99 -2.77 -1.45 1.32 0.02 0.07 -0.04
8 73 -4.80 -2.26 2.53 -2.85 -1.32 1.54 0.04 0.08 -0.04

The first column in the table reports the row number of the table.  The second column reports a pair identifier.  Columns titled "Alone" report the expected value of the 
individual's indirect utility of consuming alone.  Columns titled "With Partner" report the expected value of the individual's indirect utility of consuming with a partner.  
Column titled "Partner Effect" report the difference in these parameters, which is the incremental indirect utility of consuming with a partner.  Columns under the heading 
Derivative report either the derivatives derived using Equation (9) or the difference between these derivatives for the partners.  

 
One way to summarize the above information is to note that individuals with a greater 

utility for golfing have a greater responsiveness to marketing activities generally.  We 

explore this more by asking whether increasing a partner’s likelihood of golfing, which 

should increase the individual’s likelihood of golfing, also increases their responsiveness 

to marketing variables.  We explore this by providing a small increase in the intercept of 

each player’s partner (a 0.1 increase) and evaluating how that impacts their 

responsiveness to marketing.  We find that if a partner receives an intercept increase of 

0.1, it increases their responsiveness to a 0.1 intercept increase by 6 percent on average.  

The minimum increase is 1.2 percent and the maximum increase is 9%.  Targeting one 

partner therefore implies that the returns to targeting the other are increased. 

We now consider scenarios where it may be optimal to target both partners in a pair, 

scenarios where it is optimal to target one partner, and others where it is not advisable to 
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target either partner in the pair.  The fact that targeting one partner increases the returns 

to targeting another will be instrumental in this analysis. 

To do this, we suppose that the firm can allocate the intercept increase of 0.1 to each of 

86 of the 172 customers observed in the data.  We allocate it to those customers with the 

greatest resulting increase in expected demand.  If customers within groups were 

identical, the fact that targeting one increases the returns to targeting the other will imply 

that the firm should target both partners in the 43 most profitable groups.  However, if 

asymmetries exist (in either their intercepts or their partner effects as estimated above), it 

may be optimal to only target one customer in some groups. 

To analyze targeting when asymmetries are allowed, we proceed customer by customer, 

and allocate the intercept to the most dominant partner of a given pair first.  That 

customer’s partner may also receive the increase if the incremental value of giving it to 

him is greater than giving it to the more dominant partner of a pair that has not yet 

received an intercept increase.  We will proceed until all 86 have been allocated.   

The result of the above allocation of intercept increases is that both partners were given 

an increase in 35 of the 86 pairs.  In another 16 pairs, only one partner was given an 

increase, leaving 35 pairs in which neither partner received a demand increase. 

As stated in the introduction, allocating scarce demand shifters is fairly common in 

service industries.  As an example, take the well-known case of a casino with a customer 

database providing comps.  Should the casino allocate their scarce comps to both a 

husband and wife, or should it target a particular spouse and provide comps to a greater 

number of couples?  Our preceding analysis suggests there are not obvious rules of thumb 
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and that it really is an empirical question of whether both, one, or neither partner in a pair 

should be targeted. 

7 Conclusions 

This paper develops an estimable equilibrium model of demand for groups of customers.  

We add to the growing literature on interdependent preferences by resolving a significant 

simultaneity bias when agents have complete information.  We find a multiple equilibria 

problem in this model but show that a unique Pareto dominant equilibrium exists.  Our 

model defines complementarities between partners’ decisions and our application reveals 

that these customer-to-customer relationships are an important source of demand.  In 

addition, the model illustrates how targeting incentives change when customers’ purchase 

decisions depend on a partner’s decision.  The model reveals that targeting marketing 

activities to a single member of a group can greatly increase the returns to targeting other 

group members in some cases, but not others.  The model therefore also serves as an 

input to a firm’s decision of whether to target all members in a group or focus on a single 

dominant member.
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