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Abstract

Casino gambling is a hugely popular activity around the world, but there are still

very few models of why people go to casinos or of how they behave when they get

there. In this paper, we show that prospect theory can offer a surprisingly rich theory

of gambling, one that captures many features of actual gambling behavior. First,

we demonstrate that, for a wide range of parameter values, a prospect theory agent

would be willing to gamble in a casino, even if the casino only offers bets with zero

or negative expected value. Second, we show that prospect theory predicts a plausible

time inconsistency: at the moment he enters a casino, a prospect theory agent plans

to follow one particular gambling strategy; but after he enters, he wants to switch to

a different strategy. The model therefore predicts heterogeneity in gambling behavior:

how a gambler behaves depends on whether he is aware of the time-inconsistency; and,

if he is aware of it, on whether he is able to commit, in advance, to his initial plan of

action.
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1 Introduction

Casino gambling is a hugely popular activity. The American Gaming Association reports

that, in 2007, 54 million people made 376 million trips to casinos in the United States alone.

U.S. casino revenues that year totalled almost $60 billion.

In order to fully understand how people think about risk, we need to make sense of the

existence and popularity of casino gambling. Unfortunately, there are still very few models of

why people go to casinos or of how they behave when they get there. The challenge is clear.

The standard economic model of risk attitudes couples the expected utility framework with

a concave utility function. This model is helpful for understanding a range of phenomena.

It cannot, however, explain casino gambling: an agent with a concave utility function will

always turn down a wealth bet with a negative expected value.

While casino gambling is hard to reconcile with the standard model of risk attitudes,

researchers have made some progress in understanding it better. One approach is to introduce

non-concave segments into the utility function. A second approach argues that people derive

a separate component of utility from gambling. This utility may be only indirectly related

to the bets themselves – for example, it may stem from the social pleasure of going to a

casino with friends; or it may be directly related to the bets, in that the gambler enjoys the

feeling of suspense as he waits for the bets to play out (see Conlisk (1993) for a model of

this last idea). A third approach suggests that gamblers simply overestimate their ability

to predict the outcome of a bet; in short, they think that the odds are more favorable than

they actually are.

In this paper, we present a new model of casino gambling based on Tversky and Kah-

neman’s (1992) cumulative prospect theory. Cumulative prospect theory, one of the most

prominent theories of decision-making under risk, is a modified version of Kahneman and

Tversky’s (1979) prospect theory. It posits that people evaluate risk using a value function

that is defined over gains and losses, that is concave over gains and convex over losses, and

that is kinked at the origin, so that people are more sensitive to losses than to gains, a fea-

ture known as loss aversion. It also posits that people use transformed rather than objective

probabilities, where the transformed probabilities are obtained from objective probabilities
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by applying a weighting function. The main effect of the weighting function is to overweight

the tails of the distribution it is applied to. The overweighting of tails does not represent

a bias in beliefs; it is simply a modeling device for capturing the common preference for a

lottery-like, or positively skewed, wealth distribution.

We choose prospect theory as the basis for a possible explanation of casino gambling

because we would like to understand gambling in a framework that also explains other

evidence on risk attitudes. Prospect theory can explain a wide range of experimental evidence

on attitudes to risk – indeed, it was designed to – and it can also shed light on much field

evidence on risk-taking: for example, it can address a number of facts about risk premia in

asset markets (Benartzi and Thaler, 1995; Barberis and Huang, 2008). By offering a prospect

theory model of casino gambling, our paper suggests that gambling is not necessarily an

isolated phenomenon requiring its own unique explanation, but may instead be one of a

family of facts that can be understood using a single model of risk attitudes.

The idea that prospect theory might explain casino gambling is initially surprising.

Through the overweighting of the tails of distributions, prospect theory can easily explain

why people buy lottery tickets. Casinos, however, offer gambles that, aside from their low

expected values, are also much less skewed than a lottery ticket. Since prospect theory

agents are more sensitive to losses than to gains, one would think that they would find these

gambles very unappealing. Initially, then, prospect theory does not seem to be a promising

starting point for a model of casino gambling. Indeed, it has long been thought that casino

gambling is the one major risk-taking phenomenon that prospect theory is not well-suited

to explain.

In this paper, we show that, in fact, prospect theory can offer a rich theory of casino

gambling, one that captures many features of actual gambling behavior. First, we demon-

strate that, for a wide range of preference parameter values, a prospect theory agent would

be willing to gamble in a casino, even if the casino only offers bets with zero or negative

expected value. Second, we show that prospect theory – in particular, its probability weight-

ing feature – predicts a plausible time inconsistency : at the moment he enters a casino, a

prospect theory agent plans to follow one particular gambling strategy; but after he enters,

he wants to switch to a different strategy. How a gambler behaves therefore depends on
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whether he is aware of this time inconsistency; and, if he is aware of it, on whether he is

able to commit in advance to his initial plan of action.

What is the intuition for why, in spite of loss aversion, a prospect theory agent might

still be willing to enter a casino? Consider a casino that offers only zero expected value bets

– specifically, 50:50 bets to win or lose some fixed amount $h – and suppose that the agent

makes decisions by maximizing the cumulative prospect theory utility of his accumulated

winnings or losses at the moment he leaves the casino. We show that, if the agent enters

the casino, his preferred plan is to gamble as long as possible if he is winning, but to stop

gambling and leave the casino if he starts accumulating losses. An important property of this

plan is that, even though the casino offers only 50:50 bets, the distribution of the agent’s

perceived overall casino winnings becomes positively skewed: by stopping once he starts

accumulating losses, the agent limits his downside; and by continuing to gamble when he is

winning, he retains substantial upside.

At this point, the probability weighting feature of prospect theory plays an important

role. Under probability weighting, the agent overweights the tails of probability distribu-

tions. With sufficient probability weighting, then, the agent may like the positively skewed

distribution generated by his planned gambling strategy. We show that, for a wide range of

parameter values, the probability weighting effect indeed outweighs the loss-aversion effect

and the agent is willing to enter the casino. In other words, while the prospect theory agent

would always turn down the basic 50:50 bet if it were offered in isolation, he is nonetheless

willing to enter the casino because, through a clever choice of exit strategy, he gives his over-

all casino experience a positively skewed distribution, one which, with sufficient probability

weighting, he finds attractive.

Prospect theory offers more than just an explanation of why people go to casinos.

Through the probability weighting function, it also predicts a time inconsistency. At the

moment he enters a casino, the agent’s preferred plan is to keep gambling if he is winning

but to stop gambling if he starts accumulating losses. We show, however, that once he starts

gambling, he wants to do the opposite: to keep gambling if he is losing and to stop gambling

if he accumulates a significant gain.

As a result of this time inconsistency, our model predicts significant heterogeneity in
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gambling behavior. How a gambler behaves depends on whether he is aware of the time

inconsistency. A gambler who is aware of the time inconsistency has an incentive to try to

commit to his initial plan of action. For gamblers who are aware of the time inconsistency,

then, their behavior further depends on whether they are indeed able to find a commitment

device.

To study these distinctions, we consider three types of agents. The first type is “naive”:

he is unaware that he will exhibit a time inconsistency. This gambler plans to keep gambling

as long as possible if he is winning and to exit only if he starts accumulating losses. After

entering the casino, however, he deviates from this plan and instead gambles as long as

possible when he is losing and stops only after making some gains.

The second type of agent is “sophisticated” but unable to commit: he recognizes that, if

he enters the casino, he will deviate from his initial plan; but he is unable to find a way of

committing to his initial plan. He therefore knows that, if he enters the casino, he will keep

gambling when he is losing and will stop gambling after making some gains, a strategy that

will give his overall casino experience a negatively skewed distribution. Since he overweights

the tails of probability distributions, he finds this unattractive and therefore refuses to enter

the casino in the first place.

The third type of agent is sophisticated and able to commit: he also recognizes that, if

he enters the casino, he will want to deviate from his initial plan; but he is able to find a

way of committing to his initial plan. Just like the naive agent then, this agent plans, on

entering the casino, to keep gambling as long as possible when winning and to exit only if he

starts accumulating losses. Unlike the naive agent, however, he is able, through the use of a

commitment device, to stick to this plan. For example, he may bring only a small amount

of cash to the casino while also leaving his ATM card at home; this guarantees that he will

indeed leave the casino if he starts accumulating losses. According to our model, we should

observe some actual gamblers behaving in this way. Anecdotally, at least, some gamblers do

use techniques of this kind.

In summary, under the view proposed in this paper, casinos are popular because they

cater to two aspects of our psychological make-up. First, they cater to the tendency to

overweight the tails of distributions, which makes even the small chance of a large win at the
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casino seem very alluring. And second, they cater to what we could call “naivete,” namely

the failure to recognize that, after entering a casino, we may deviate from our initial plan of

action.

According to the framework we present in this paper, people go to casinos because they

think that, through a particular choice of exit strategy, they can give their overall casino

experience a positively skewed distribution. How, then, do casinos manage to compete with

another, perhaps more convenient source of positive skewness, namely one-shot lotteries? In

Section 4 and in the Appendix, we use a simple equilibrium model to show that, in fact,

casinos and lotteries can coexist in a competitive economy. In the equilibrium we describe,

lottery providers attract the sophisticated agents who are unable to commit, casinos attract

the naive agents and the sophisticated agents who are able to commit, and all casinos and

lottery providers break even. In particular, while the casinos lose money on the sophisticated

agents who are able to commit, they make these losses up by exploiting the time inconsistency

of the naive agents.

Our model is a complement to existing theories of gambling, not a replacement. In

particular, we suspect that the concept of “utility of gambling” plays at least as large a role

in casinos as does prospect theory. At the same time, we think that prospect theory can add

significantly to our understanding of casino gambling. As noted above, one attractive feature

of the prospect theory approach is that it not only explains why people go to casinos, but

also offers a rich description of what they do once they get there. In particular, it explains

a number of features of casino gambling that have not emerged from earlier models: for

example, the tendency to gamble longer than planned in the region of losses, the strategy

of leaving one’s ATM card at home, and casinos’ practice of issuing free vouchers to people

who are winning.1

In recent years, there has been a surge of interest in the time inconsistency that stems

from hyperbolic discounting.2 While it has long been understood that probability weighting

can also lead to a time inconsistency, there is very little research linking this idea to real-

1It is straightforward to incorporate an explicit utility of gambling into the model we present below. The
only reason we do not do so is because we want to understand the predictions of prospect theory, taken
alone.

2See, for example, Laibson (1997), O’Donoghue and Rabin (1999), Della Vigna and Malmendier (2006),
and the references therein.
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world applications. In this paper, we not only analyze this second type of inconsistency in

detail, but also make a case that it may be important in practice. While casino gambling

is its most obvious application, it may also play a significant role in other contexts. For

example, in the conclusion, we briefly mention an application to stock market trading.

In Section 2, we review the elements of cumulative prospect theory. In Section 3, we

present a model of casino gambling. Section 4 discusses the model further and Section 5

concludes.

2 Cumulative Prospect Theory

In this section, we describe cumulative prospect theory. Readers who are already familiar

with this theory may prefer to jump directly to Section 3.

Consider the gamble

(x−m, p−m; . . . ; x−1, p−1; x0, p0; x1, p1; . . . ; xn, pn), (1)

to be read as “gain x−m with probability p−m, x−m+1 with probability p−m+1, and so on,

independent of other risks,” where xi < xj for i < j, x0 = 0, and
∑n

i=−m pi = 1. In the

expected utility framework, an agent with utility function U(·) evaluates this gamble by

computing
n∑

i=−m

piU(W + xi), (2)

where W is his current wealth. Under cumulative prospect theory, the agent assigns the

gamble the value
n∑

i=−m

πiv(xi), (3)

where3

πi =

⎧⎪⎨⎪⎩
w(pi + . . . + pn) − w(pi+1 + . . . + pn)

w(p−m + . . . + pi) − w(p−m + . . . + pi−1)
for

0 ≤ i ≤ n

−m ≤ i < 0
, (4)

and where v(·) and w(·) are known as the value function and the probability weighting

3When i = n and i = −m, equation (4) reduces to πn = w(pn) and π−m = w(p−m), respectively.
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function, respectively. Tversky and Kahneman (1992) propose the functional forms

v(x) =

⎧⎪⎨⎪⎩
xα

−λ(−x)α
for

x ≥ 0

x < 0
(5)

and

w(P ) =
P δ

(P δ + (1 − P )δ)1/δ
, (6)

where α, δ ∈ (0, 1) and λ > 1. The left panel in Figure 1 plots the value function in (5) for

α = 0.5 and λ = 2.5. The right panel in the figure plots the weighting function in (6) for

δ = 0.4 (the dashed line), for δ = 0.65 (the solid line), and for δ = 1, which corresponds to no

probability weighting at all (the dotted line). Note that v(0) = 0, w(0) = 0, and w(1) = 1.

There are four important differences between (2) and (3). First, the carriers of value in

cumulative prospect theory are gains and losses, not final wealth levels: the argument of v(·)
in (3) is xi, not W + xi. Second, while U(·) is typically concave everywhere, v(·) is concave

only over gains; over losses, it is convex. This captures the experimental finding that people

tend to be risk averse over moderate-probability gains – they prefer a certain gain of $500 to

($1000, 1
2
) – but risk-seeking over moderate-probability losses, in that they prefer (−$1000, 1

2
)

to a certain loss of $500.4 The degree of concavity over gains and of convexity over losses are

both governed by the parameter α; a lower value of α means greater concavity over gains

and greater convexity over losses. Using experimental data, Tversky and Kahneman (1992)

estimate α = 0.88 for their median subject.

Third, while U(·) is typically differentiable everywhere, the value function v(·) is kinked

at the origin so that the agent is more sensitive to losses – even small losses – than to gains

of the same magnitude. As noted in the Introduction, this element of cumulative prospect

theory is known as loss aversion and is designed to capture the widespread aversion to bets

such as ($110, 1
2
;−$100, 1

2
). The severity of the kink is determined by the parameter λ;

a higher value of λ implies greater sensitivity to losses. Tversky and Kahneman (1992)

estimate λ = 2.25 for their median subject.

Finally, under cumulative prospect theory, the agent does not use objective probabilities

4We abbreviate (x, p; 0, q) to (x, p).
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when evaluating a gamble, but rather, transformed probabilities obtained from objective

probabilities via the weighting function w(·). Equation (4) shows that, to obtain the proba-

bility weight πi for a positive outcome xi ≥ 0, we take the total probability of all outcomes

equal to or better than xi, namely pi + . . .+ pn, the total probability of all outcomes strictly

better than xi, namely pi+1 + . . .+pn, apply the weighting function to each, and compute the

difference. To obtain the probability weight for a negative outcome xi < 0, we take the total

probability of all outcomes equal to or worse than xi, the total probability of all outcomes

strictly worse than xi, apply the weighting function to each, and compute the difference.5

The main effect of the probability weighting in (4) is to make the agent overweight

the tails of any distribution he faces. In equations (3)-(4), the most extreme outcomes,

x−m and xn, are assigned the probability weights w(p−m) and w(pn), respectively. For the

functional form in (6) and for δ ∈ (0, 1), w(P ) > P for low, positive P ; the right panel in

Figure 1 illustrates this for δ = 0.4 and δ = 0.65. If p−m and pn are small, then, we have

w(p−m) > p−m and w(pn) > pn, so that the most extreme outcomes – the outcomes in the

tails – are overweighted.

The overweighting of tails in (4) and (6) is designed to capture the simultaneous de-

mand many people have both lotteries and insurance. For example, subjects typically prefer

($5000, 0.001) over a certain $5, but also prefer a certain loss of $5 over (−$5000, 0.001).

By overweighting the tail probability of 0.001 sufficiently, cumulative prospect theory can

capture both of these choices. The degree to which the agent overweights tails is governed

by the parameter δ; a lower value of δ implies more overweighting of tails. Tversky and

Kahneman (1992) estimate δ = 0.65 for their median subject. To ensure the monotonicity

of w(·), we require δ ∈ (0.28, 1).

The transformed probabilities in (3)-(4) should not be thought of as beliefs, but as deci-

sion weights which help us capture the experimental evidence on risk attitudes. In Tverksy

and Kahneman’s framework, an agent evaluating the lottery-like ($5000, 0.001) gamble un-

5The main difference between cumulative prospect theory and the original prospect theory in Kahneman
and Tversky (1979) is that, in the original version, the weighting function w(·) is applied to the probability
density function rather than to the cumulative probability distribution. By applying the weighting function to
the cumulative distribution, Tversky and Kahneman (1992) ensure that cumulative prospect theory satisfies
the first-order stochastic dominance property. This corrects a weakness of the original prospect theory,
namely that it does not satisfy this property.
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derstands that he will only receive the $5000 with probability 0.001. The overweighting of

0.001 introduced by cumulative prospect theory is simply a modeling device which captures

the agent’s preference for the lottery over a certain $5.

3 A Model of Casino Gambling

In the United States, the term “gambling” typically refers to one of four things: (i) casino

gambling, of which the most popular forms are slot machines and the card game of blackjack;

(ii) the buying of lottery tickets; (iii) pari-mutuel betting on horses at racetracks; and (iv)

fixed-odds betting through bookmakers on sports such as football, baseball, basketball, and

hockey. The American Gaming Association estimates the 2007 revenues from each type of

gambling at $59 billion, $24 billion, $4 billion, and $200 million, respectively.6

While the four types of gambling listed above have some common characteristics, they

also differ in some ways. Casino gambling differs from playing the lottery in that the payoff

of a casino game is typically much less positively skewed than that of a lottery ticket. And

it differs from racetrack-betting and sports-betting in that casino games usually require less

skill: while some casino games have an element of skill, many are purely games of chance.

In this paper, we focus our attention on casino gambling, largely because, from the

perspective of prospect theory, it is particularly hard to explain. The buying of lottery

tickets is already directly captured by prospect theory through the overweighting of tail

probabilities. Casino games are much less positively skewed than a lottery ticket, however.

It is therefore not at all clear that we can use the overweighting of tails to explain the

popularity of casinos.

We model a casino in the following way. There are T + 1 dates, t = 0, 1, . . . , T . At time

0, the casino offers the agent a 50:50 bet to win or lose a fixed amount $h. If the agent turns

the gamble down, the game is over: he is offered no more gambles and we say that he has

declined to enter the casino. If the agent accepts the 50:50 bet, we say that he has agreed to

enter the casino. The gamble is then played out and, at time 1, the outcome is announced.

6The $200 million figure refers to sports-betting through legal bookmakers. It it widely believed that
this figure is dwarfed by the revenues from illegal sports-betting. Also excluded from these figures are the
revenues from online gambling.
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At that time, the casino offers the agent another 50:50 bet to win or lose $h. If he turns it

down, the game is over: the agent settles his account and leaves the casino. If he accepts the

gamble, it is played out and, at time 2, the outcome is announced. The game then continues

in the same way. If, at time t ∈ [0, T − 2], the agent agrees to play a 50:50 bet to win or lose

$h, then, at time t+ 1, he is offered another such bet and must either accept it or decline it.

If he declines it, the game is over: he settles his account and leaves the casino. At time T ,

the agent must leave the casino if he has not already done so. We think of the interval from

0 to T as an evening of play at a casino.

By assuming an exogeneous date, date T , at which the agent must leave the casino if

he has not already done so, we make our model somewhat easier to solve. This is not,

however, the reason we impose the assumption. Rather, we impose it because we think that

it makes the model more realistic: whether because of fatigue or because of work and family

commitments, most people simply cannot stay in a casino indefinitely.

Of the major casino games, our model most closely resembles blackjack: under optimal

play, the odds of winning a round of blackjack are close to 0.5, which matches the 50:50 bet

offered by our casino. Slot machines offer a positively skewed payoff and therefore, at first

sight, do not appear to fit the model as neatly. Later, however, we argue that the model

may be able to shed as much light on slot machines as it does on blackjack.

In the discussion that follows, it will be helpful to think of the casino as a binomial

tree. Figure 2 illustrates this for T = 5 – ignore the arrows, for now. Each column of

nodes corresponds to a particular time: the left-most node corresponds to time 0 and the

right-most column to time T . At time 0, then, the agent starts in the left-most node. If he

takes the time 0 bet and wins, he moves one step up and to the right; if he takes the time

0 bet and loses, he moves one step down and to the right, and so on. Whenever the agent

wins a bet, he moves up a step in the tree, and whenever he loses, he moves down a step.

The various nodes within a column therefore represent the different possible accumulated

winnings or losses at that time.

We refer to the nodes in the tree by a pair of numbers (t, j). The first number, t, which

ranges from 0 to T , indicates the time that the node corresponds to. The second number, j,

which, for given t, can range from 1 to t + 1, indicates how far down the node is within the
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column of t + 1 nodes for that time: the highest node in the column corresponds to j = 1

and the lowest node to j = t+1. The left-most node in the tree is therefore node (0, 1). The

two nodes in the column immediately to the right, starting from the top, are nodes (1, 1)

and (1, 2); and so on.

Throughout the paper, we use a simple color scheme to represent the agent’s behavior.

If a node is colored white, this means that, at that node, the agent agrees to play a 50:50

bet. If the node is black, this means that the agent does not play a 50:50 bet at that node,

either because he leaves the casino when he arrives at that node, or because he has already

left the casino in an earlier round and therefore never even reaches the node. For example,

the interpretation of Figure 2 is that the agent agrees to enter the casino at time 0 and then

keeps gambling until time T = 5 or until he hits node (3, 1), whichever comes first. Clearly,

a node that can only be reached by passing through a black node must itself be black. In

Figure 2, the fact that node (3, 1) has a black color immediately implies that node (4, 1)

must also have a black color.

As noted above, the basic gamble offered by the casino in our model is a 50:50 bet to

win or lose $h. We assume that the gain and the loss are equally likely only because this

simplifies the exposition, not because it is necessary for our analysis. In fact, our analysis

can easily be extended to the case in which the probability of winning $h is different from

0.5. Indeed, we find that the results we obtain below continue to hold even if, as in actual

casinos, the basic gamble has a somewhat negative expected value: even if it entails a 0.46

chance of winning $h, say, and a 0.54 chance of losing $h. We discuss this issue again in

Section 4.1.

Now that we have described the structure of the casino, we are ready to present the

behavioral assumption that drives our analysis. Specifically, we assume that the agent in

our model maximizes the cumulative prospect theory utility of his accumulated winnings or

losses at the moment he leaves the casino, where the cumulative prospect theory value of a

distribution is given by (3)-(6). In making this assumption, we recognize that we are almost

certainly leaving out other factors that also affect the agent’s decision-making. Nonetheless,

we hope to show in this and subsequent sections that our assumption is not only parsimonious

but also leads to a rich theory of gambling.
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Our behavioral assumption immediately raises an important issue, one that plays a central

role in our analysis. This is the fact that cumulative prospect theory – in particular, its

probability weighting feature – introduces a time inconsistency: the agent’s plan, at time t,

as to what he would do if he reached some later node is not necessarily what he actually

does when he reaches that node.

To see the intuition, consider the node indicated by an arrow in the upper part of the

tree in Figure 2, namely node (4, 1) – and ignore the specific black or white node colorations.

We will see later that, from the perspective of time 0, the agent’s preferred plan, conditional

on entering the casino at all, is to gamble in node (4, 1), should he arrive in that node. The

reason is that, by gambling in node (4, 1), he gives himself a chance of winning the $50 prize

in node (5, 1). From the perspective of time 0, this prize has low probability, namely 1
32

,

but under cumulative prospect theory, this low tail probability is overweighted, making node

(5, 1) very appealing to the agent. In spite of the concavity of the value function v(·) in the

region of gains, then, his preferred plan, as of time 0, is to gamble in node (4,1), should he

reach that node.

While the agent’s preferred plan, as of time 0, is to gamble in node (4, 1), it is easy to

see that, if he actually arrives in node (4, 1), he will instead stop gambling, contrary to his

initial plan. If he stops gambling in node (4, 1), he leaves the casino with an accumulated

gain of $40. If he continues gambling, he has a 0.5 chance of an accumulated gain of $50 and

a 0.5 chance of an accumulated gain of $30. He therefore leaves the casino in node (4, 1) if

v(40) > v(50)w(
1

2
) + v(30)(1 − w(

1

2
)); (7)

in words, if the cumulative prospect theory utility of leaving exceeds the cumulative prospect

theory utility of staying. Condition (7) simplifies to

v(40) − v(30) > (v(50) − v(30))w(
1

2
). (8)

It is straightforward to check that condition (8) holds for all α, δ ∈ (0, 1), so that the

agent indeed leaves the casino in node (4, 1), contrary to his initial plan. What is the

intuition? From the perspective of time 0, node (5, 1) was unlikely, overweighted, and hence
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appealing. From the time 4 perspective, however, it is no longer unlikely: once the agent

is at node (4, 1), node (5, 1) can be reached with probability 0.5. The probability weighting

function w(·) underweights moderate probabilities like 0.5. This, together with the concavity

of v(·) in the region of gains, means that, from the perspective of time 4, node (5,1) is no

longer as appealing. The agent therefore leaves the casino in node (4, 1).

The time inconsistency in the upper part of the tree, then, is that, while the agent plans

to keep gambling after accumulating some gains, he instead, if he actually makes some gains,

stops gambling. There is an analogous and potentially more important time inconsistency in

the bottom part of the tree: we will see later that, while the agent’s initial plan, conditional

on entering the casino at all, is to stop gambling after accumulating a loss, he instead, if

he actually accumulates a loss, continues to gamble. For example, from the perspective of

time 0, the agent would like to stop gambling if he were to arrive at node (4, 5), the node

indicated by an arrow in the bottom part of the tree in Figure 2. However, if he actually

arrives in node (4, 5), he keeps gambling, contrary to his initial plan. The intuition for this

inconsistency parallels the intuition for the inconsistency in the upper part of the tree.

Given the time inconsistency, the agent’s behavior depends on two things. First, it

depends on whether he is aware of the time inconsistency. An agent who is aware of the

time inconsistency has an incentive to try to commit to his initial plan of action. For this

agent, then, his behavior further depends on whether he is indeed able to commit. To explore

these distinctions, we consider three types of agents. Our classification parallels the one used

in the related literature on hyperbolic discounting.

The first type of agent is “naive”. An agent of this type does not realize that, at time

t > 0, he will deviate from his initial plan. We analyze his behavior in Section 3.1.

The second type of agent is “sophisticated” but unable to commit. An agent of this type

recognizes that, at time t > 0, he will deviate from his initial plan. He would therefore like

to commit to his initial plan – but is unable to find a way to do so. We analyze his behavior

in Section 3.2.

The third and final type of agent is sophisticated and able to commit. An agent of

this type also recognizes that, at time t > 0, he will want to deviate from his initial plan.

However, he is able to find a way of committing to this initial plan. We analyze his behavior
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in Section 3.3.7

3.1 Case I: The naive agent

We analyze the naive agent’s behavior in two steps. First, we study his behavior at time 0

as he decides whether to enter the casino. If we find that, for some parameter values, he is

willing to enter the casino, we then look, for those parameter values, at his behavior after

entering the casino, in other words, at his behavior for t > 0.

The initial decision

At time 0, the naive agent chooses a plan of action. A “plan” is a mapping from every

node in the binomial tree between t = 1 and t = T − 1 to one of two possible actions:

“exit,” which indicates that the agent plans to leave the casino if he arrives at that node;

and “continue,” which indicates that he plans to keep gambling if he arrives at that node.

We denote the set of all possible plans as S(0,1), with the subscript (0, 1) indicating that this

is the set of plans that is available at node (0, 1), the left-most node in the tree. Even for

low values of T , the number of possible plans is very large.8

For each plan s ∈ S(0,1), there is a random variable G̃s that represents the accumulated

winnings or losses the agent will experience if he exits the casino at the nodes specified by

plan s. For example, if s is the exit strategy shown in Figure 2, then

G̃s ∼ ($30,
7

32
; $10,

9

32
;−$10,

10

32
;−$30,

5

32
;−$50,

1

32
).

With this notation in hand, we can write down the problem that the naive agent solves

at time 0. It is:

max
s∈S(0,1)

V (G̃s), (9)

7In his classic analysis of non-expected utility preferences, Machina (1989) identifies three kinds of non-
expected utility agents: β-types, γ-types, and δ-types. These correspond to our naive agents, commitment-
aided sophisticates, and no-commitment sophisticates, respectively.

8Since, for each of the T (T + 1)/2 − 1 nodes between time 1 and time T − 1, the agent can either exit
or continue, an upper bound on the number of elements of S(0,1) is 2 to the power of T (T + 1)/2 − 1. For
T = 5, this equals 16, 384; for T = 6, it equals 1, 048, 576. The number of distinct plans is lower than 2 to
the power of T (T + 1)/2 − 1, however. For example, for any T ≥ 2, all plans that assign the action “exit”
to nodes (1, 1) and (1, 2) are effectively the same.
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where V (·) computes the cumulative prospect theory value of the gamble that is its argument.

We emphasize that the naive agent chooses a plan at time 0 without regard for the possibility

that he might stray from the plan in future periods. After all, he is naive: he does not realize

that he might later depart from the plan.

The non-concavity and nonlinear probability weighting embedded in V (·) make it very

difficult to solve problem (9) analytically; indeed, the problem has no known analytical

solution. However, we can solve it numerically and find that this approach allows us to

draw out the economic intuition in full. Throughout the paper, we are careful to check the

robustness of our conclusions by solving (9) for a wide range of preference parameter values.

The time inconsistency introduced by probability weighting means that we cannot use

dynamic programming to solve the above problem. Instead, we use the following procedure.

For each plan s ∈ S(0,1) in turn, we compute the gamble G̃s and calculate its cumulative

prospect theory value V (G̃s). We then look for the plan s∗ with the highest cumulative

prospect theory value V ∗ = V (G̃s∗). The naive agent enters the casino – in other words, he

plays a gamble at time 0 – if and only if V ∗ ≥ 0.9

We now present some results from our numerical analysis. We set T = 5 and h = $10.

The shaded areas in Figure 3 show the range of values of the preference parameters α, δ,

and λ for which the naive agent is willing to enter the casino, in other words, the range for

which V ∗ ≥ 0. To understand the figure, recall that, based on experimental data, Tversky

and Kahneman’s (1992) median estimates of the preference parameters are

(α, δ, λ) = (0.88, 0.65, 2.25). (10)

Each of the three panels in the figure fixes one of the three parameters at its median estimate

and shows the range of the other two parameters for which the agent enters the casino. The

small circles correspond to the median estimates in (10).

The key result in Figure 3 is that, even though the agent is loss averse and even though

the casino offers only 50:50 bets with zero expected value, there is still a wide range of

9Recall that the set S(0,1) consists only of plans that involve gambling at node (0, 1). The agent is
therefore willing to gamble at this node if the best plan that involves gambling, plan s∗, offers higher utility
than not gambling; in other words, higher utility than zero.
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parameter values for which the agent is willing to enter the casino. Note that, for Tversky

and Kahneman’s median estimates in (10), the agent is not willing to enter the casino.

Nonetheless, for parameter values that are not far from those in (10), he is willing to gamble.

To understand why, for some parameter values, the agent is willing to gamble, we study

his optimal exit plan s∗. Consider the case of (α, δ, λ) = (0.95, 0.5, 1.5); we find that, for

these parameter values, the agent is willing to enter the casino. The left panel in Figure 4

shows the agent’s optimal exit plan in this case. Recall that, if the agent arrives at a solid

black node, he leaves the casino at that node; otherwise, he continues gambling. The figure

shows that, roughly speaking, the agent’s optimal plan is to keep gambling until time T or

until he starts accumulating losses, whichever comes first. Through extensive checks, we find

that, for almost all the parameter values for which the naive agent is willing to enter the

casino, the optimal exit strategy is similar to that in the left panel of Figure 4.

The exit plan in Figure 4 helps us understand why it is that, even though the agent is

loss averse and even though the casino offers only zero expected value bets, the agent is still

willing to enter the casino. The reason is that, through his choice of exit plan, the agent is

able to give his overall casino experience a positively skewed distribution: by exiting once

he starts accumulating losses, he limits his downside; and by continuing to gamble when he

is winning, he retains substantial upside. Since the agent overweights the tails of probability

distributions, he may like the positively skewed distribution offered by the overall casino

experience. In particular, under probability weighting, the chance, albeit small, of winning

the large jackpot $Th in the top-right node (T, 1) becomes particularly enticing. In summary,

then, while the agent would always turn down the basic 50:50 bet offered by the casino if

that bet were offered in isolation, he is nonetheless able, through a clever choice of exit

strategy, to give his overall casino experience a positively skewed distribution, one which,

with sufficient probability weighting, he finds attractive.10

We suspect that when actual gamblers enter a casino, they often have in mind a plan that

is broadly similar to the one in the left panel of Figure 4 – specifically, a plan under which

10For a very small range of parameter values – a range in which α and λ are much lower than Tversky and
Kahneman’s (1992) estimates and δ much higher – the naive agent enters the casino with a different plan in
mind, namely one in which he keeps gambling if he is losing and stops if he accumulates some gains. This
strategy gives his perceived overall casino experience a negatively skewed distribution; but since α is so low
and δ is so high, he does not find this unappealing.
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they continue to gamble when they are winning but stop gambling once their accumulated

losses reach some cutoff level. However, we also suspect that they may not have in mind the

exact plan in Figure 4. In particular, they may be uncomfortable with a plan under which

they might have to leave the casino after just one bet: it might feel silly to leave the casino

so early if they have just traveled a long time to get there. Instead of solving (9), then, the

agent may prefer to maximize V (G̃s) over a subset of the plans in S(0,1), namely that subset

for which the probability of leaving the casino in the first few rounds is lower than some

given number. We find that the optimal plan in this case is, roughly speaking, one in which

the agent leaves the casino only when his losses reach some cutoff level greater than zero. A

plan of this kind may be more typical of the plans that many actual gamblers have in mind

when they enter a casino.

Figure 3 shows that the agent is more likely to enter the casino for low values of δ, for

low values of λ, and for high values of α. The intuition is straightforward. By adopting

an exit plan under which he rides gains as long as possible but stops gambling once he

starts accumulating losses, the agent gives his overall casino experience a positively skewed

distribution. As δ falls, the agent overweights the tails of probability distributions all the

more heavily. He is therefore all the more likely to find a positively skewed distribution

attractive and hence all the more likely to enter the casino. As λ falls, the agent becomes

less loss averse. He is therefore less scared by the potential losses he could incur at the casino

and therefore more willing to enter. Finally, as α falls, the marginal utility of additional gains

diminishes more rapidly. The agent is therefore less excited about the possibility of a large

win and hence less likely to enter the casino.

We noted above that, due to the convexity of the value function in the region of losses

and the use of transformed probabilities, it is difficult to solve problem (9) analytically. We

are, however, able to derive the follow result, which states a sufficient condition for the naive

agent to be willing to enter the casino. The proof is in the Appendix.

Proposition 1: For given preference parameters (α, δ, λ) and a given number of rounds of

18



gambling T , the naive agent is willing to enter the casino at time 0 if11

T−[T
2 ]∑

j=1

(T + 2 − 2j)α

(
w(2−T

(
T − 1

j − 1

)
) − w(2−T

(
T − 1

j − 2

)
)

)
≥ λw(

1

2
). (11)

To derive condition (11), we take one particular exit strategy which, from extensive

numerical analysis, we know to be either optimal or close to optimal for a wide range of

parameter values – roughly speaking, a strategy in which the agent keeps gambling when

he is winning but stops gambling once he starts accumulating losses – and compute its

cumulative prospect theory value explicitly. Condition (11) checks whether this value is

positive; if it is, we know that the naive agent enters the casino. The condition is useful

because it can shed light on the agent’s behavior when T is high without requiring us to

solve problem (9) explicitly, something which, for high values of T , is computationally very

taxing.

For four different values of T , Figure 5 sets α = 0.88 and plots the range of values of δ

and λ for which condition (11) holds. We emphasize that the condition is sufficient but not

necessary. If it holds, the naive agent enters the casino; but he may enter the casino even

if it does not hold. Nonetheless, by comparing the top-left panels in Figures 3 and 5, both

of which correspond to T = 5, we see that the parameter values for which condition (11)

holds and the parameter values for which the naive agent actually enters the casino are very

similar. In this sense, condition (11) is very accurate: it is not only sufficient but almost

necessary as well.

The top-right and bottom panels in Figure 5 suggest that, as the number of rounds

of gambling T goes up, the naive agent is willing to enter the casino for a wider range of

preference parameter values. Intuitively, as T goes up, the agent, through a careful choice of

exit strategy, can create an overall casino experience that is all the more positively skewed

and therefore, for someone who overweights tails, all the more attractive.12

11In this expression,
(
T−1
−1

)
is assumed to be equal to 0.

12It is easy to prove that the range of preference parameter values for which the naive agent enters the
casino when T = τ is at least as large as the range for which he enters when T = τ + 1. In particular, this
follows from the fact that any plan that can be implemented in τ rounds of gambling can also be implemented
in τ + 1 rounds of gambling. Figure 5 gives us a sense of how much the range expands as T goes up.
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Figures 3 and 5 show that, for Tversky and Kahneman’s (1992) median estimates of α, δ,

and λ, the prospect theory agent is only willing to enter the casino for high values of T ; and

Figure 5 suggests that even for high values of T , he is just barely willing to enter. There is

a sense in which this fits with the evidence. Although 54 million people visited U.S. casinos

in 2007, this still represents a minority of the U.S. population. The fact that the median

U.S. resident does not gamble is consistent with the fact that, for the median values of the

preference parameters, the prospect theory agent in our model often refuses to gamble. From

the perspective of our model, the people who visit casinos are those with lower values of δ

or λ than the median U.S. resident.

We noted earlier that we are dividing our analysis of the naive agent into two parts. We

have just completed the first part: the analysis of the agent’s time 0 decision as to whether

or not to enter the casino. We now turn to the second part: the analysis of what the agent

does at time t > 0. We know that, at time t > 0, the agent will depart from his initial plan.

Our goal is to understand exactly how he departs from it.

Subsequent behavior

Suppose that, at time 0, the naive agent decides to enter the casino. In node j at some

later time t ≥ 1, he solves

max
s∈S(t,j)

V (G̃s). (12)

Here, S(t,j) is the set of plans the agent could follow subsequent to time t, where, in a similar

way to before, a “plan” is a mapping from every node between time t + 1 and time T − 1 to

one of two actions: “exit,” indicating that the agent plans to leave the casino if he reaches

that node, and “continue,” indicating that the agent plans to keep gambling if he reaches

that node. As before, G̃s is a random variable that represents the accumulated winnings or

losses the agent will experience if he exits the casino at the nodes specified by plan s, and

V (G̃s) is its cumulative prospect theory value. For example, if the agent is in node (3, 1),

the plan under which he leaves at time T = 5, but not before, corresponds to

G̃s ∼ ($50,
1

4
; $30,

1

2
; $10,

1

4
).
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If s∗ is the plan that solves problem (12), the agent gambles in node j at time t if

V (G̃s∗) ≥ v(h(t + 2 − 2j)), (13)

where the right-hand side of condition (13) is the utility of leaving the casino at this node.13

To see how the naive agent actually behaves for t ≥ 1, we return to the example from

earlier in this section in which T = 5, h = $10, and (α, δ, λ) = (0.95, 0.5, 1.5). Recall that,

for these parameter values, the naive agent is willing to enter the casino at time 0. The right

panel of Figure 4 shows what the naive agent does subsequently, at time t ≥ 1. By way of

reminder, the left panel in the figure shows the initial plan of action he constructs at time 0.

Figure 4 shows that, while the naive agent’s initial plan was to keep gambling as long as

possible when winning but to stop gambling once he started accumulating losses, he actually,

roughly speaking, does the opposite: he stops gambling once he accumulates some gains and

instead continues gambling as long as possible when he is losing. We find a similar pattern of

behavior across all parameter values for which the naive agent is willing to enter the casino at

time 0. Our model therefore captures a common intuition, namely that people often gamble

more than they planned to in the region of losses.

Why does the naive agent behave in this way? Suppose that he has accumulated some

gains. Whether he continues to gamble depends on two opposing forces. On the one hand,

since he has accumulated gains, he is in the concave section of the value function. This

induces risk aversion which, in turn, encourages him to stop gambling and to leave the casino.

On the other hand, the probability weighting function encourages him to keep gambling: by

continuing to gamble, he keeps alive the chance of winning a much larger amount of money;

while this is a low probability event, the low probability is overweighted, making it attractive

to keep gambling. As the agent approaches the end of the tree, however, the possibility of

winning a large prize becomes less unlikely; it is therefore overweighted less, and continuing

13The formulation in (12) assumes that the agent’s “reference point” for computing gains and losses is
always fixed at his initial wealth at the moment he enters the casino. We know little about how reference
points move over time. Our strategy is therefore to pick one simple assumption – that the reference point
remains fixed – and to show that this leads to a rich model of gambling. Intuitively, a model in which the
agent updates his reference point over time would have a harder time explaining casino gambling: in such a
model, the agent would often be at the most risk averse point of the value function, the kink.
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to gamble becomes less attractive. In other words, as the agent approaches the end of the

tree, the concavity effect overwhelms the probability weighting effect and the agent stops

gambling.

A similar set of opposing forces is at work in the bottom part of the binomial tree.

Since, here, the agent has accumulated losses, he is in the convex part of the value function.

This induces risk-seeking which encourages him to keep gambling. On the other hand, the

probability weighting function encourages him to stop gambling: if he keeps gambling, he

runs the risk of a large loss; while this is a low probability event, the low probability is

overweighted, making gambling a less attractive option. The right panel in Figure 4 shows

that, at all points in the lower part of the tree, the convexity effect overwhelms the probability

weighting effect and the agent continues to gamble.14

3.2 Case II: The sophisticated agent, without commitment

In section 3.1, we considered the case of a naive agent – an agent who, at time t, does not

realize that, at time t′ > t, he will deviate from his time t plan. In Sections 3.2 and 3.3, we

study sophisticated agents, in other words, agents who do recognize that they will deviate

from their initial plans. A sophisticated agent has an incentive to find a commitment device

that will enable him to stick to his time 0 plan. In this section, we consider the case of a

sophisticated agent who is unable to find a way of committing to his time 0 plan; we label

this agent a “no-commitment sophisticate” for short. In Section 3.3, we study the case of a

sophisticated agent who is able to commit to his initial plan.

To determine a course of action, the no-commitment sophisticate uses dynamic program-

ming, working leftward from the right-most column of the binomial tree. If he has not yet

left the casino at time T , he must necessarily exit at that time. His value function in node j

at time T – here, we mean “value function” in the dynamic programming sense rather than

14The naive agent’s “naivete” can be interpreted in two ways. The agent may fail to realize that, after
he starts gambling, he will be tempted to depart from his initial plan. Alternatively, he may recognize that
he will be tempted to depart from his initial plan, but he may erroneously think that he will be able to
resist the temptation. Over many repeated casino visits, the agent may learn his way out of the first kind
of naivete. It may take much longer, however, for him to learn his way out of the second kind. People often
continue to believe that they will be able to exert self-control in the future even when they have repeatedly
failed to do so in the past.
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in the prospect theory sense – is therefore

JT,j = v(h(T + 2 − 2j)). (14)

The agent then continues the backward iteration from t = T − 1 to t = 0 using

Jt,j = max{v(h(t + 2 − 2j)), V (G̃t,j)}, (15)

where Jt,j is the value function in node j at time t. The term before the comma on the

right-hand side is the agent’s utility if he leaves the casino in node j at time t. The term

after the comma is the utility of continuing to gamble: specifically, it is the cumulative

prospect theory value of the random variable G̃t,j which measures the accumulated winnings

or losses the agent will exit the casino with if he continues gambling at time t. The gamble

G̃t,j is determined by the exit strategy computed in earlier steps of the backward iteration.

Continuing this iteration back to t = 0, the agent can see whether or not it is a good idea

to enter the casino in the first place.

We now return to the example of Section 3.1 in which T = 5, h = $10, and (α, δ, λ) =

(0.95, 0.5, 1.5). We find that, in this case, the no-commitment sophisticate chooses not to

enter the casino at all. The intuition is straightforward. He realizes that, if he does enter the

casino, he will leave as soon as he accumulates some gains but will keep gambling as long

as possible if he is losing. This exit policy gives his overall casino experience a negatively

skewed distribution. Recognizing this in advance, he decides not to enter the casino: since

he overweights the tails of distributions, the negative skewness is unattractive.

The result that the no-commitment sophisticate refuses to enter the casino holds for a

wide range of preference parameter values. Indeed, after extensive checks, we have been

unable to find any (α, δ, λ) ∈ (0.5, 1) × (0.28, 0.8) × (1.3,∞) for which the no-commitment

sophisticate is willing to enter the casino at time 0.15

15For a very small range of parameter values – a range in which α and λ are much lower than Tversky
and Kahneman’s (1992) estimates and δ much higher – the no-commitment sophisticate is willing to enter
the casino. While he recognizes that his overall casino experience has a negatively skewed distribution, the
fact that α is so low and δ so high means that he does not find this unappealing.
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3.3 Case III: The sophisticated agent, with commitment

A sophisticated agent – an agent who recognizes that, at time t > 0, he will want to deviate

from his initial plan – has an incentive to find a commitment device that will enable him to

stick to his initial plan. In this section, we study the behavior of a sophisticated agent who

is able to commit. We call this agent a “commitment-aided sophisticate.”

We proceed in the following way. We assume that, at time 0, the agent can find a way

of committing to any exit strategy s ∈ S(0,1). Once we identify the strategy that he would

choose, we then discuss how he might actually commit to this strategy in practice.

At time 0, then, the commitment-aided sophisticate solves exactly the same problem as

the naive agent, namely:

max
s∈S(0,1)

V (G̃s). (16)

In particular, since the agent can commit to any exit strategy, we do not need to restrict

the set of strategies he considers. He searches across all elements of S(0,1) until he finds the

strategy s∗ with the highest cumulative prospect theory value V ∗ = V (G̃s∗). He enters the

casino if and only if V ∗ ≥ 0.

Since the commitment-aided sophisticate and the naive agent solve exactly the same

problem at time 0, they will, for given preference parameter values, choose exactly the same

optimal strategy. Moreover, they will enter the casino for exactly the same range of preference

parameter values. For T = 5 and h = $10, for example, the commitment-aided sophisticate

enters the casino for the parameter values indicated by the shaded areas in Figure 3. And

for (α, δ, λ) = (0.95, 0.5, 1.5), his optimal plan is the one in the left panel of Figure 4, a plan

under which he continues to gamble when he is winning but stops gambling once he starts

accumulating losses.16

The naive agent and the commitment-aided sophisticate solve the same problem at time

0 because they both think that they will be able to maintain any plan they select at that

time. The two types of agents differ, however, in what they do after they enter the casino.

Since he has a commitment device at his disposal, the commitment-aided sophisticate is

able to stick to his initial plan. The naive agent, on the other hand, deviates from his initial

16In the same way, the sufficient condition (11) for the naive agent to be willing to enter the casino is also
a sufficient condition for the commitment-aided sophisticate to be willing to enter the casino.
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plan: after he enters the casino, he continues to gamble when is losing and stops once he

accumulates a significant gain.

Now that we have identified the strategy the commitment-aided sophisticate would like

to commit to, the natural question is: how does he commit to it? For example, in the lower

part of the binomial tree, how does he manage to stop gambling when he is losing even

though he is tempted to continue? And in the upper part of the tree, how does he manage

to continue gambling when he is winning even though he is tempted to stop?

In the lower part of the tree, one simple commitment strategy is for the agent to go to the

casino with only a small amount of cash in his pocket and to leave his ATM card at home. If

he starts losing money, he is sorely tempted to continue gambling, but, since he has run out

of cash, he has no option but to go home. It is a prediction of our model that some casino

gamblers will use a strategy of this kind. Anecdotally, at least, this is a common gambling

strategy, which suggests that at least some of those who go to casinos fit the mold of our

commitment-aided sophisticate.

In the upper part of the tree, it is less easy to think of a common strategy that gamblers

use to solve the commitment problem, in other words, to keep gambling when they are

winning even though they are tempted to go home. In a way, this is not surprising. One

thing our model predicts – something that we have found to be especially true for higher

values of T – is that the time inconsistency is much more severe in the lower part of the tree

than in the upper part. By comparing the two panels in Figure 4, we see that in the lower

part of the tree, the time inconsistency, and hence the commitment problem, is severe: the

agent wants to gamble at every node in the region of losses even though his initial plan was

to gamble at none of them. In the upper part of the tree, however, the time inconsistency,

and hence the commitment problem, is less acute: the agent’s initial plan conflicts with

his subsequent actions at only a few nodes. It therefore makes sense that the commitment

strategies gamblers use in practice seem to be aimed primarily at the time inconsistency in

the lower part of the tree.

Although it is hard to think of ways in which gamblers themselves commit to their initial

plan in the upper part of the tree, note that here, casinos have an incentive to help. In

general, casinos offer bets with negative expected values; it is therefore in their interest that
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gamblers stay on site as long as possible. From the casinos’ perspective, it is alarming that

gamblers are tempted to leave earlier than they originally planned when they are winning.

This may explain the common practice among casinos of offering vouchers for free food and

lodging to people who are winning. In our framework, casinos do this in order to encourage

gamblers who are thinking of leaving with their gains, to stay longer.

In this section, we have identified some important and arguably unique predictions of

our framework. For example, our model predicts the common gambling strategy of bringing

only a fixed amount of money to the casino; and it predicts the common casino tactic of

giving free vouchers to people who are winning. These features of gambling have not been

easy to understand in earlier models but emerge naturally from the one we present here. In

particular, they are a direct consequence of the time inconsistency at the heart of our model.

Of all casino games, our model corresponds most closely to blackjack. Nonetheless, it

may also be able to explain why another casino game, the slot machine, is as popular as

it is. In our framework, an agent who enters the casino does so because he relishes the

positively skewed distribution he perceives it to offer. Since slot machines already offer a

skewed payoff, they may make it easier for the agent to give his overall casino experience

a significant amount of positive skewness. It may therefore make sense that they would

outstrip blackjack in popularity.

Throughout Section 3, we have focused primarily on the case of T = 5. We have also

analyzed the case of T = 10 and find that the results for all three types of agents closely

parallel those for T = 5. We do not use T = 10 as our benchmark case, however, because of

its much greater computational demands. Our analysis of this case is available on request.

4 Discussion

In Section 3, we studied the behavior of three types of agents – naive agents, no-commitment

sophisticates, and commitment-aided sophisticates. We now discuss some of the issues raised

by this analysis: the relative average losses of the two groups that enter the casino, how

casinos compete with lottery providers, and the new predictions of our framework.
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4.1 Average losses

The analysis in Section 3 shows that the set of casino gamblers is made up of two distinct

types: naive agents and commitment-aided sophisticates. Which of these two types loses

more money in the casino, on average?

In the context of the model of Section 3 – a model in which the basic bet offered by

the casino is a 50:50 bet to win or lose $h – the answer is straightforward. Since the basic

bet has an expected value of zero, the average winnings are zero for both naive agents and

commitment-aided sophisticates.

Now suppose, however, that the basic bet has a negative expected value, as in actual

casinos. For example, suppose that the basic bet is now

($h, 0.49;−$h, 0.51). (17)

An agent’s average winnings are the (negative) expected value of the basic bet multiplied

by the average number of rounds the agent gambles. To see which of naive agents and

commitment-aided sophisticates has greater average losses, we therefore need to determine

which of the two groups gambles for longer, on average. The group that gambles for longer

will do worse.

For T = 5, h = $10, and (α, δ, λ) = (0.95, 0.5, 1.5), we compute the gambling behavior of

the two types of agents when the basic bet has the form in (17). We find that the behavior

of the naive agent is still that shown in the right panel in Figure 4 while the behavior of

the commitment-aided sophisticate is still that shown in the left panel in Figure 4. This

allows us to compute that the naive agent stays in the casino almost twice as long as the

sophisticated agent, on average. His average losses are therefore almost twice as large. In

this sense, the naivete of the naive agent – his failure to foresee his time inconsistency – is

costly. We find that this result – that the naive agent stays in the casino longer, on average,

than does the commitment-aided sophisticate – holds for almost all the preference parameter

values for which the agents are willing to enter the casino.17

17In results not reported here but available on request, we find that, for higher values of T , the average
length of stay in a casino for a naive agent is even longer, relative to that for a commitment-aided sophisticate.
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4.2 Competition from lotteries

According to our model, people go to casinos because they think that, through a particular

choice of exit strategy, they can give their overall casino experience a positively skewed

distribution. How, then, can casinos survive competition from lottery providers? After all,

the one-shot gambles offered by lottery providers may be a more convenient source of the

skewness that people are seeking.

One possible reason why, in reality, casinos are able to compete with lotteries – albeit a

reason that lies outside our model – is because there is such a thing as “utility of gambling”:

a thrill, or rush, experienced in the moments before uncertainty is resolved. While a lottery

ticket may be a more convenient source of skewness than a casino, it only offers a one-time

rush. In a casino, however, people may experience a rush every time they play out a bet,

thereby allowing the casino to compete with lottery providers.

Note that, even if we invoke a utility of gambling in this way, the prospect theory frame-

work of Section 3 still makes it much easier to understand why people go to casinos. Given

that casinos offer bets that have low expected values and that are often lacking in skew-

ness, the evidence on loss aversion initially suggests that we would need to appeal to a large

amount of gambling utility in order to explain why casinos exist. One of the insights of

Section 3, however, is that even if the basic bet offered by a casino is unattractive to a loss

averse agent, the agent can, through a particular choice of exit strategy, make his overall

casino experience positively skewed and hence very attractive. We may therefore only need

to appeal to a small amount of gambling utility in order to understand how casinos compete

with lottery providers.

There is a second reason, however, why casinos can survive competition from lotteries –

a reason that we can analyze using the framework of Section 3 and that does not rely on any

notion of utility of gambling. We demonstrate the idea formally with the help of a simple

equilibrium model, presented in detail in the Appendix. While we place this analysis in the

Appendix, it is nonetheless an important element of our theory of casinos.

In this model, there is competitive provision of both one-shot lotteries and casinos, and yet

both lottery providers and casinos manage to break even. In equilibrium, lottery providers
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attract the no-commitment sophisticates. These agents prefer lotteries to casinos because

they know that, in a casino, their time inconsistency will lead to a negatively skewed, and

hence unattractive, distribution of accumulated gains and losses.

Casinos compete with lottery providers by offering slightly better odds. This attracts the

commitment-aided sophisticates and the naive agents, both of whom think that, through a

particular choice of exit strategy, they can construct a distribution of accumulated gains and

losses whose utility exceeds the utility offered by one-shot lotteries. The commitment-aided

sophisticates are indeed able to construct such a distribution, and casinos lose money on

these agents. Casinos make these losses up, however, on the naive agents, who, as we saw

in Section 4.1, gamble in casinos longer, on average, than they were planning to. In this

framework, then, casinos compete with lottery providers by taking advantage of the fact that

naive agents gamble in casinos longer, on average, than do commitment-aided sophisticates,

and, in particular, longer than they were initially planning to.

The equilibrium model in the Appendix also answers a closely related question, namely

whether casinos would want to explicitly offer a one-shot version of the gamble their cus-

tomers are trying to construct dynamically. According to the model, casinos would not want

to offer such a one-shot gamble. If they did, naive agents, believing themselves to be in-

different between the one-shot and dynamic gambles, might switch to the one-shot gamble,

thereby effectively converting themselves from naive agents to commitment-aided sophisti-

cates. Casinos would then lose money, however, because it is precisely naive agents’ time

inconsistency that allows them to break even.

4.3 Predictions and other evidence

Researchers have not, as yet, had much success in obtaining large-scale databases on gambling

behavior. While our model matches a range of anecdotal evidence on gambling – for example,

the tendency to gamble longer than planned in the region of losses, the strategy of leaving

one’s ATM card at home, and casinos’ practice of giving free vouchers to people who are

winning – there is, unfortunately, little systematic evidence by which to judge our model.

Our model does, however, make a number of novel predictions – predictions that, we

hope, can eventually be tested. Perhaps the clearest prediction is that gamblers’ planned
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behavior will differ from their actual behavior in systematic ways. Specifically, if we survey

people when they first enter a casino as to what they plan to do and then look at what they

actually do, we should find that, on average, they exit sooner than planned in the region of

gains and later than planned in the region of losses. Moreover, if gamblers who are more

sophisticated in the real-world sense of the word – in terms of education or income, say –

are also more sophisticated in terms of recognizing their time inconsistency, we should see a

larger difference between planned and actual behavior among the less sophisticated.

Some recent experimental evidence gives us hope that these predictions will be confirmed

in the field. Andrade and Iyer (2008) offer subjects a sequence of 50:50 bets in a laboratory

setting; but before playing the gambles, subjects are asked how they plan to gamble in

each round. Andrade and Iyer find that, consistent with our model, subjects systematically

gamble more than planned after an early loss.

Another prediction comes from Figure 3, which shows that people are more likely to enter

a casino if they have low values of δ and λ – in other words, if they overweight the tails of

distributions more and if they are less loss averse. If we estimate δ and λ for casino goers

– perhaps with the help of gambles like those used by Tversky and Kahneman (1992) – we

should obtain lower values than for non-casino goers.18

5 Conclusion

In this paper, we present a dynamic model of probability weighting and use it to shed light

on casino gambling: on why people go to casinos at all, and on how they behave when they

get there.

Our framework can be applied in contexts other than casino gambling – in the context of

stock trading, for example. If we think of the binomial tree of Section 3 as capturing not the

accumulated gains and losses in a casino but rather the evolution of a stock price, we can

18A commonly heard term in the context of casino gambling is the “house money effect,” the idea that
people are more willing to take risk after winning some money than they were before. There is very little
direct evidence of this effect from casinos, but Thaler and Johnson (1990) document it in an experimental
setting. The naive agent in our model exhibits a house money effect, and he does so for the reason proposed
by Thaler and Johnson (1990), namely that, after a gain, the agent moves away from the kink, the most risk
averse point of the value function.
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reinterpret the basic decision problem as that of a cumulative prospect theory investor who is

thinking about how to trade a stock over time. As for the casino, there will be three types of

traders – naive traders, no-commitment sophisticates, and commitment-aided sophisticates

– with three different trading styles.

Such a framework leads to a interesting new idea, namely that some of the trading we

observe in financial markets may be time-inconsistent – in other words, that people sometimes

trade in ways they were not planning to. It also suggests that some of the trading rules used

by asset management firms – for example, rules that require a position to be unwound if it

falls more than 15% in value – may be commitment devices designed to implement trading

plans that were optimal, ex-ante, but hard to stick to, ex-post. We plan to study these issues

in future research.
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Figure 1. The left panel shows the value function proposed by Tversky and Kahneman
(1992) as part of their cumulative prospect theory, namely v(x) = xα for x ≥ 0 and
v(x) = −λ(−x)α for x < 0, for α = 0.5 and λ = 2.5. The right panel shows the
probability weighting function they propose, namely w(P ) = P δ/(P δ + (1 − P )δ)1/δ,
for three different values of δ. The dashed line corresponds to δ = 0.4, the solid line to
δ = 0.65, and the dotted line to δ = 1.
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Figure 2. The figure shows how a casino can be represented as a binomial tree. Each
column of nodes corresponds to a particular moment in time. Within each column, the
various nodes correspond to the different possible accumulated winnings or losses at that
time. A solid black node indicates that, if the agent arrives at that node, he does not
gamble. At the remaining nodes, the agent does gamble.
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Figure 3. The “+” signs in the graphs show the range of values of the preference param-
eters α, δ, and λ for which an agent with prospect theory preferences would be willing to
enter a casino offering 50:50 bets to win or lose a fixed amount $h. The agent is naive:
he does not realize that he will behave in a time-inconsistent way. Each of the three
panels sets one of the three preference parameters to Tversky and Kahneman’s (1992)
median estimate of its value and shows the range of the other two parameters for which
the agent enters the casino. The circles mark the median parameter estimates, namely
(α, δ, λ) = (0.88, 0.65, 2.25).
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Figure 4. The left panel shows the strategy that a prospect theory agent plans to use when
he enters a casino. The agent is naive: he does not realize that he will behave in a time-
inconsistent way. If the agent arrives at a solid black node, he plans not to gamble at
that node. At the remaining nodes, he plans to gamble. The right panel shows the actual
strategy that the agent uses. If the agent arrives at a solid black node, he does not gamble.
At the remaining nodes, he does gamble.
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Figure 5. The “+” signs in the graphs show the range of values of the preference parame-
ters δ and λ that satisfy a sufficient condition for an agent with prospect theory preferences
to be willing to enter a casino offering 50:50 bets to win or lose a fixed amount $h. The
agent is naive: he does not realize that he will behave in a time-inconsistent way. The
four panels correspond to four different values of T, the maximum number of rounds
of gambling. In all four panels, we set the preference parameter α to 0.88. The circles
mark the median parameter estimates computed by Tversky and Kahneman (1992) from
experimental evidence, namely (α, δ, λ) = (0.88, 0.65, 2.25).
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7 Appendix

7.1 Proof of Proposition 1

Through extensive numerical analysis, we find that when the naive agent enters the casino,

he almost always chooses the following strategy or one similar to it: he exits (i) if he loses

in the first round; (ii) if, after the first round, his accumulated winnings ever drop to zero;

and (iii) at time T , if he has not already left by that point. Condition (11) simply checks

whether the cumulative prospect theory value of this exit strategy is positive. If it is, we

know that the agent enters the casino.

If the agent exits because he loses in the first round, then, since the payoff of −$h is

the only negative payoff he can receive under the above exit strategy, its contribution to the

cumulative prospect theory value of the strategy is

−λhαw(
1

2
).

If he exits because, at some point after the first round, his accumulated winnings equal

zero, this contributes nothing to the cumulative prospect theory value of the exit strategy,

precisely because the payoff is zero. All that remains, then, is to compute the component of

the cumulative prospect theory value of the exit strategy that stems from the agent exiting

at date T .

Under the above exit strategy, there are T − [T
2
] date T nodes with positive payoffs at

which the agent might exit, namely nodes (T, j), where j = 1, . . . , T − [T
2
]. The payoff in

node (T, j) is (T + 2 − 2j)h. We need to compute the probability that the agent exits at

node (T, j), in other words, the probability that he moves from the initial node (0, 1) to node

(T, j) without losing in the first round and without his accumulated winnings hitting zero

at any point after that. With the help of the reflection principle – see Feller (1968) – we

compute this probability to be

2−T

[(
T − 1

j − 1

)
−
(
T − 1

j − 2

)]
.
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The probability weight associated with node (T, j) is therefore

w(2−T

(
T − 1

j − 1

)
) − w(2−T

(
T − 1

j − 2

)
).

In summary then, the exit strategy we described above has positive cumulative prospect

theory value – and hence the naive agent is willing to enter the casino – if

T−[T
2 ]∑

j=1

((T + 2 − 2j)h)α

(
w(2−T

(
T − 1

j − 1

)
) − w(2−T

(
T − 1

j − 2

)
)

)
− λhαw(

1

2
) ≥ 0.

This is condition (11).

7.2 A model with competitive provision of both lotteries and casi-

nos

In this section, we show that casinos can survive in an economy with competitive provision

of both lotteries and casinos even if there is no explicit “utility of gambling.” Consider an

economy with two kinds of firms: “casinos” and “lottery providers.” There are many firms

of each kind; we index casinos with the subscript i and lottery providers with the subscript

j.

Each casino has the form described in Section 3, with one exception. As before, each

casino offers T rounds of gambling, but the basic bet in casino i is now ($h, pi;−$h, 1− pi),

where pi is no longer necessarily equal to 0.5 but can instead take any value in the interval

(0, 0.5]. The parameters T and $h are fixed across casinos, but each casino chooses its own

value of pi.

Lottery provider j offers consumers a one-shot gamble L̃j of its own choosing. To keep

the model tractable, we require that L̃j satisfies the following condition: it must be possible

to dynamically construct L̃j , using some exit strategy, in a hypothetical casino that offers T

rounds of gambling and a basic bet of the form ($h, qj;−$h, 1 − qj) for some qj ∈ (0, 0.5].19

19The intuition of this section does not depend on the specific structure we impose on the gambles offered
by lottery providers; we impose this assumption only to simplify the model. It is important, however, that
there be a bound on the maximum loss that a lottery provider or a casino can impose on a consumer;
otherwise, both lottery providers and casinos could offer consumers gambles with negative expected values
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There is a continuum of consumers with a total mass of one. All consumers have the

cumulative prospect theory preferences in (3)-(6) with identical preference parameters α,

δ, and λ. Each consumer must either play in one of the casinos, take one of the one-shot

gambles offered by lottery providers, or do nothing. He chooses the option with the highest

cumulative prospect theory utility. A fraction μN ≥ 0 of consumers are naive about the

time inconsistency they would experience in a casino; a fraction μS,NC ≥ 0 are sophisticated

about the time inconsistency but do not have access to a commitment device; and a fraction

μS,CA = 1−μN −μS,NC ≥ 0 are also sophisticated about the time inconsistency and do have

access to a commitment device. Each casino and each lottery provider incurs a cost C > 0

per unit of consumers it serves. It is straightforward to extend our analysis to the case where

casinos and lottery providers have different cost structures

In this economy, a competitive equilibrium consists of a set {pi}, where pi is the win

probability of the basic bet in casino i, and a set {L̃j}, where L̃j is the one-shot gamble

offered by lottery provider j, such that, after consumers choose between casinos, lotteries,

and doing nothing, all casinos and all lottery providers earn zero average profits; and such

that there are no profitable deviations from equilibrium. Specifically, there is no basic bet

win probability p
′
i �= pi (L̃

′
j �= L̃j) that casino i (lottery provider j) can offer and earn positive

average profits.

We now show that there is a competitive equilibrium in which all lottery providers offer

the same lottery L̃ and all casinos offer the same win probability p and in which lottery

providers attract the no-commitment sophisticates while casinos attract the naive agents

and the commitment-aided sophisticates. To construct such an equilibrium, it is sufficient

to find a lottery L̃ that solves

max V (L̃) (18)

– in words, L̃ has the highest possible cumulative prospect theory value V (L̃) among all

one-shot lotteries that can be dynamically constructed, using some exit strategy, from a

hypothetical casino with T rounds of gambling and a basic bet of ($h, q;−$h, 1−q) for some

but infinite utility. This is a consequence of the fact that the prospect theory value function is convex even
for large losses. In a more general model that imposes risk aversion for large losses, there would be no
need for an exogeneous bound on the size of a loss: consumers would simply turn down gambles with large
potential losses.
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q ∈ (0, 0.5] – subject to the zero profit condition for lottery providers,

−μS,NCE(L̃) = μS,NCC, (19)

the participation constraint V (L̃) ≥ 0, and the incentive compatibility constraint, namely

that the no-commitment sophisticates prefer L̃ to a casino with a basic bet win probability

of p; and a p ∈ (0, 0.5] that solves

max
s∈S(0,1)

V (G̃s) (20)

– in words, it is the value of p that, in a casino with a basic bet win probability of p, allows

agents to dynamically construct a gamble with the highest possible cumulative prospect

theory value – subject to the zero profit condition for casinos,

−μNE(G̃N) − μS,CAE(G̃S,CA) = (μN + μS,CA)C, (21)

where G̃N and G̃S,CA are random variables that measure the accumulated gains and losses

under the naive agent’s exit strategy and the commitment-aided sophisticate’s exit strategy,

respectively, and subject to the participation constraints and incentive compatibility con-

straints for both naive agents and commitment-aided sophisticates. If we can find such L̃

and p, then there is an equilibrium in which all lottery providers offer L̃ and all casinos offer

a basic bet win probability of p. In particular, by construction of L̃ and p, there are no

profitable deviations for either casinos or lottery providers.20

We now construct an equilibrium explicitly. We find that the intuition underlying our

equilibrium is robust, in that we are able to construct an equilibrium of the form described

above for a wide range of model parameters.

Suppose that, as in Section 3, (α, δ, λ) = (0.95, 0.5, 1.5), T = 5, and h = $10; and also

that (μN , μS,NC, μS,CA) = (1
3
, 1

3
, 1

3
) and C = 2. Then there is an equilibrium in which each

20Note that E(G̃N ) is the expected value of the accumulated gains and losses under the naive agent’s
actual exit strategy, not his planned exit strategy. Because of the agent’s naivete, the two strategies are, of
course, different.
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lottery provider offers consumers the one-shot positively skewed gamble

($50, 0.018; $30, 0.068; $10, 0.056; $0, 0.309;−$10, 0.550). (22)

This lottery solves problem (18) subject to the associated conditions. Its expected value is

-2, its cumulative prospect theory value is 1.78, and it can be dynamically constructed from

a hypothetical casino offering a basic bet of ($10, 0.45;−$10, 0.55), so that qj = 0.45 for all

lottery providers. Meanwhile, each casino offers the basic bet ($10, 0.465;−$10, 0.535); in

particular, p = 0.465 solves problem (20). The distribution of accumulated gains and losses

with the highest cumulative prospect theory value that can be constructed out of this casino

is

($50, 0.022; $30, 0.075; $10, 0.058; $0, 0.311;−$10, 0.535). (23)

This gamble has an expected value of -1.43 and a cumulative prospect theory value of 2.15.

Note that, in this equilibrium, the no-commitment sophisticates do indeed prefer the

one-shot gamble (22) offered by the lottery providers to any casino. The lottery has positive

cumulative prospect theory value. If these agents played in a casino, their time inconsistency

would generate a negatively skewed, and hence unattractive, distribution of accumulated

gains and losses. The expected value of the lottery in (22) is exactly equal to the cost, C,

thereby allowing lottery providers to break even.

The commitment-aided sophisticates, however, prefer casinos because they offer better

odds: the basic bet in a casino has a win probability of p = 0.465, while the lottery in

(22) corresponds to a basic bet win probability of q = 0.45. Put differently, in a casino,

the commitment-aided sophisticates can construct the accumulated gains and losses in (23)

whose prospect theory value of 2.15 is higher than the 1.78 prospect theory value of the

lottery in (22).

The naive agents also prefer casinos because they think that, in a casino, they can

dynamically construct the gamble in (23), a gamble with higher prospect theory value than

the lottery in (22). However, because of their time inconsistency, their actual exit strategy

is quite different from their planned exit strategy. In particular, they gamble for longer in

the casino, on average, than they were expecting to. As a result, the expected value of
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their accumulated gains and losses under their actual exit strategy, namely -2.57, is much

lower than the expected value of their accumulated gains and losses under their planned exit

strategy, namely -1.43. Since

−1

3
(−2.57) − 1

3
(−1.43) =

2

3
(2),

the zero profit condition (21) for casinos is satisfied. Intuitively, casinos lose money on the

commitment-aided sophisticates but make these losses up on the naive agents who gamble

longer at casinos, on average, than they were planning to.

In summary, then, we have shown that casinos can survive in an economy with com-

petitive provision of both lotteries and casinos. In equilibrium, lottery providers attract

the no-commitment sophisticates. Casinos offer slightly better odds, and attract the naive

agents and the commitment-aided sophisticates. They lose money on the commitment-aided

sophisticates but make these losses up on the naive agents.
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