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Agent-based modeling can illuminate how complex marketing phenomena emerge from simple decision
rules. Marketing phenomena that are too complex for conventional analytical or empirical approaches can
often be modeled using this approach. Agent-based modeling investigates aggregate phenomena by
simulating the behavior of individual “agents,” such as consumers or organizations. Some useful examples of
agent-based modeling have been published in marketing journals, but widespread acceptance of the agent-
based modeling method and publication of this method in the highest-level marketing journals have been
slowed by the lack of widely accepted standards of how to do agent-based modeling rigorously. We address
this need by proposing guidelines for rigorous agent-based modeling. We demonstrate these guidelines, and
the value of agent-based modeling for marketing research, through the use of an example. We use an agent-
based modeling approach to replicate the Bass model of the diffusion of innovations, illustrating the use of the
proposed guidelines to ensure the rigor of the analysis. We also show how extensions of the Bass model that
would be difficult to carry out using traditional marketing research techniques are possible to implement
using a rigorous agent-based approach.
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1. Introduction

Marketing phenomena are often complex because they are the
emergent result of many individual agents (e.g., consumers, sellers,
distributors) whose motivations and actions combine so that even
simple behavioral rules can result in surprising patterns. Moreover,
these aggregate patterns feed back to affect individual choices. For
example, consumers often make buying decisions based on their
friends' advice or their social network, which affects product diffusion
and influences the dominance of a brand in a market. However, the
current dominant brand also affects an individual's decision as to
which product to purchase. The diffusion pattern that results from the
interaction of many consumers may in fact be much more complex
than the adoption rules of the individuals. Thus, simple rules of
behavior can give rise to complex, emergent patterns.

Agent-based modeling (ABM) is a tool that can help researchers
understand and analyze these complex patterns (Epstein & Axtell,
1996; Gilbert & Troitzsch, 2005; Holland, 1995; LeBaron, 2000; Miller
& Page, 2007). The basic concept of ABM is that by describing simple
rules of behavior for individual agents and then aggregating these
rules, researchers can model complex systems, such as the procure-
ment of services in a marketplace, the purchase of tickets for events,
or the adoption of innovations. An agent in an agent-based model is
any autonomous entity with its own properties and behaviors; to
develop an agent-based model, a researcher writes a description for
each type of agent that details the agent's behaviors, properties, and
the way the agent interacts with other agents and the environment.
The power of ABM is that none of these descriptions requires
knowledge of macro-dynamics; instead, the researcher encodes
micro-rules of behavior and then measures the emergent macro-
level results.

Despite the power of ABM, widespread acceptance and publication
of this method in the highest-level journals has been slow. This is due
in large part to the lack of commonly accepted standards of how to use
ABM rigorously. Guidelines are needed for the proper use of ABM so
that researchers, reviewers and editors who are unfamiliar with the
methodology can still ascertain whether the approach was rigorously
undertaken. In this paper, we address this need by proposing a set of
guidelines for the rigorous development and analysis of agent-based
models. It is important to establish these guidelines now because
computational methods will become increasingly powerful and easier
to implement as time goes on.

Thus, this paper is written in the spirit of the other methodological
reviews often cited within the marketing literature that attempt to
establish rigorous guidelines for a particular method. For instance,
Anderson and Gerbing (1988) proposed guidelines for developing
structural equationmodels along with a testingmethod to ensure that
a model is as generalizable as possible. Similarly, Churchill (1979) and
Gerbing and Anderson (1988) developed guidelines for the proper use
idelines for rigor, Intern. J. of Research in Marketing
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of scales. Similar to the approaches used in these papers, we not only
discuss how ABM can be applied to marketing, but we also provide
guidelines for how to rigorously apply ABM.

2. Previous applications of agent-based modeling in marketing

ABM has been used in a wide-range of fields of business-related
research, from organizational science (Cohen, March, & Olsen, 1972)
to supply-chainmanagement (Walsh &Wellman, 1999). Several large
firms, such as Procter & Gamble, have successfully applied ABM to
improve revenues (North et al., 2010; Siebel & Kellam, 2003).
Recently, there have also been special issues of the Journal of Business
Research (Gilbert, Jager, Geffuant, & Adjali, 2007) and the Journal of
Product Innovation Management (Garcia & Jager, 2011) focused on
ABM.

With respect tomarketing, ABMhas often been applied tomodel the
diffusion of innovations. For instance, several researchers (Goldenberg,
Han, Lehmann, & Hong, 2009; Rahmandad & Sterman, 2008; Stephen,
Dover, & Goldenberg, 2010; Watts, 2002; Watts & Dodds, 2007) have
used an agent-based approach integrated with network science to
model the role of influentials in diffusion. Goldenberg, Libai, Moldovan,
and Muller (2007) and Goldenberg, Libai, and Muller (2010) have used
ABM to explore network effects in product adoption. Garcia (2005)
provides a good review of how ABM had been used in innovation
research through 2005. Other researchers have used ABM to explore
how both interaction networks and competitive forces affect firm
positioning (Lusch & Tay, 2004; Tay & Lusch, 2002; 2005; Wilkinson &
Young, 2002). Marks, Midgley and Cooper (1997) investigate adaptive
firms using evolutionary algorithms in combination with an agent-
basedmodel (Marks, Midgley, & Cooper, 2006;Marks, Midgley, Cooper,
& Shiraz, 1999), and Hill and Watkins (2007, 2009) have built upon
established models (Axelrod, 1984) to examine moral behavior in
marketing exchange relationships (Watkins & Hill, 2009).

A restricted form of ABM, known as cellular automata (CA), has also
provenuseful. For instance, Garber, Goldenberg, Libai, andMuller (2004);
Goldenberg, Libai, Solomon, Jan, and Stauffer (2000); Goldenberg, Libai,
and Muller (2001a,b); Libai, Muller, and Peres (2005, 2009); and
Moldovan and Goldenberg (2003) use CA to model the diffusion of
innovations. Goldenberg, Libai, and Muller (2002) use CA to examine
cross-market communications, and Frels, Heisler, Reggia, and Schuetze
(2006) use CA to examine network effects.

Toubia, Goldenberg, and Garcia (2008) use ABM to explore
network effects on diffusion, as did Shaikh, Ragaswamy, and
Balakrishnan (2005) and Delre, Jager, Bijmolt, and Janssen (2010).
In this paper, we will also explore networks and agent-based models,
but our work differs in that our goal is to establish general guidelines
for the rigorous development and analysis of agent-based models. It
should be noted that much of the previous work that hasmade its way
into top tier journals has done so because it does use ABM in a
rigorous manner; therefore, the goal of this current study is not to
point to mistakes that have been made, but rather to establish
guidelines that will help promote the expanded use of ABM in the
future among researchers who otherwise might not know the most
rigorous way to use ABM.

3. Why use agent-based modeling?

Before we describe the guidelines for implementing a rigorous
agent-based model, we must take a step back and examine the
reasons to use agent-based modeling. Because ABM models the
individual, it can incorporate characteristics that are difficult to
include in traditional models. For instance, consumers modeled with
ABM can be boundedly rational (Arthur, 1994), heterogeneous in their
properties and actions, adaptive and sensitive to history in their
decisions (Rand, 2006), and located within social networks (Watts,
1999) or geographical locations (Brown, Riolo, Robinson, North, &
Please cite this article as: Rand, W., & Rust, R.T., Agent-based modeling
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Rand, 2005). ABM is most useful when the rules of behavior are easily
written at the individual level; then the behavior of the system
emerges (often referred to as an emergent property of the system).

Critiques of agent-based modeling often come from two points of
view: one viewpoint is that ABM does not deal with real data and is
therefore only for “toy problems”, while another viewpoint is that
most agent-based models have so many parameters that they can fit
any data and are thus nothing more than “computer games.” With
regard to the first claim, it is definitely possible to create agent-based
models that do not correspond to real-world phenomena, but as we
will illustrate in this paper, ABM also provides a natural way to
integrate real-world data and complexities into a model. Moreover,
this critique is true of many modeling techniques. With any model, it
is the researcher's burden of proof to show how the model
corresponds to reality. We will examine how to ensure that an
agent-based model is empirically valid in Section 7. As for the critique
that ABM can fit any data set, this is not true if the model process,
inputs and outputs are shown to be valid (i.e., they correspond to the
real world). It is also possible to fit almost any data using regression if
you are free to choose the functional form, but once the functional
form has been selected and the dependent and independent variables
have been chosen, there are rigorous methods by which to determine
if the model fits the data. The same is true of ABM, and the goal of this
paper is to explain these methods.

Before deciding to employ any modeling technique, it is important
for the researcher to examine the strengths and weaknesses of
differentmethods. Analytical modeling, for instance, gives researchers
the ability to investigate the impact of various theories of firm and
consumer behavior but can often be difficult to compare to real-world
data and sometimes require assumptions that are overly simplistic.
Empirical and statistical modeling, on the other hand, is a useful
approach for describing extant data sets and making predictions
about future statistical relationships, but such models rarely contain a
theory of consumer behavior. Most consumer behavior experiments
are useful for understanding the individual decisions that people
make when confronted with marketing actions, but in most cases it is
cost prohibitive or not possible to examine these effects on a large
scale. System dynamics modeling (Sterman, 2000) requires the rules
of behavior to be written at a higher level, such as how the whole
population of consumers will respond to a marketing activity rather
than how a particular individual will respond.

The strongest benefit of using an ABM approach within marketing
is that the actions of firms and consumers within the model can be
constructed based upon strong theories of behavior, but at the same
time, the results can be validated against empirical data and themodel
can then be used to make predictions. The advantages and
disadvantages of these various techniques, as well as a description
of how ABM complements them, are summarized in Table 1.

As Table 1 shows, ABM is a natural complement to many other
approaches. For instance, the trade-off between analytical modeling
and ABM is explored in Fig. 1. The results of analytical modeling,
unlike the results of ABM, are generalizable (i.e., the results are true
for all parameters within the constraints of the assumptions). The
results of ABM are only generalizable to the extent to which themodel
parameter space has been fully explored. However, analytical
modeling often builds in simplifying assumptions about agent
behavior (e.g., risk neutral, perfect information), while ABM allows
researchers to relax many of these restrictive assumptions and build a
model with more realism and complexity.

ABM is not just a solution to intractable analytical models. When
agent-based models are properly validated, they add a layer of
realism that is not captured by many analytical models. Moreover,
the ABM model is built from the ground up to generate results, so
instead of modeling aggregate patterns, those patterns are observed
from a large number of individual decisions. Even when a closed
form solution exists, an agent-based representation provides a
in marketing: Guidelines for rigor, Intern. J. of Research in Marketing
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Table 1
Comparison of marketing research methods.

Name Advantage Disadvantage Complementary role of ABM

Analytical modeling Generalizable, creates actionable insights
into firm level strategic decisions

Difficult to compare to real-world data,
sometimes requires overly simplistic
assumptions

Agent-based models can be built from
analytical models that include more
realistic assumptions and can be
compared to real-world data.

Empirical modeling and statistical
modeling

Useful for finding patterns of behavior in
extant data sets, and for making
predictions about future behavior

Rarely linked to a behavioral theory at
the level of the individual consumer or
firm. Requires the right kind of data to
exist showing relationships

If a theory of individual-level behavior can be
generated, then agent-based models can be
created that can be compared to empirical
and statistical models.

Consumer behavior experiments Provide theoretical insight into consumer
decisions and reactions to marketing actions

Rarely scale up to large groups or
examine complex consumer–consumer
interactions

Agent-based models can be built upon
consumer behavior theories and then
scaled up to larger populations.

System dynamics modeling
and other computational
modeling forms

Allow a systematic examination of an
entire complex system of interactions

Rules of behavior must be written at the
system level and examination of
individual-level heterogeneity can be
difficult.

Agent-based models can complement larger
scale models with a fine-grained resolution
when necessary.

ABM Allows the exploration of individual-level
theories of behavior, but the results can be
used to examine larger scale phenomenon.

Computationally intensive, not
generalizable beyond the instances
examined

TRADEOFF BETWEEN ANALYTICAL MODELING AND ABM

Analytical
Modeling
Analytical
Modeling
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comparison to real-world data or an instantiation of consumer-
level behavior theories.

When confronted with this trade-off, researchers can use both
ABM and analytical modeling as complements and thus generate
results that are both generalizable (if the restrictive assumptions
hold) and built on a rich set of assumptions (if the restrictive
assumptions do not hold). ABM works well within a multi-method
context because the assumptions and parameters of ABM can be tied
to the findings of other methods. This is important because it gives the
researcher the ability to triangulate the models' findings. As Table 1
illustrates, ABM is useful in a context where behavioral rules,
processes, and parameters are drawn from other methods. In these
cases, ABM not only provides solutions to models that might have an
intractable closed-form solution, but it also provides an additional
level of realism.

More traditional analytical and regression models have often
proven useful because they are computationally efficient.2 However, as
computational power becomes increasingly inexpensive, it becomes
more efficient to employ computational modeling to understand
complex systems. One way to think about this is as a usage problem
with twosubstitutable goods (in this case, computationalmethods, such
as ABM, vs. more traditional methods, such as analytical modeling)
(Fig. 2). The cost of computation is steadily decreasing,while the costs of
less computational methods (e.g., analytical modeling) are remaining
constant.

Referring to Fig. 2, the line segment AB represents an isocost curve
at time 1. In other words, each point on the line represents a
combination of computational methods and analytical methods that
costs the same as any other point on the curve. The researcher will
seek to maximize utility, given a cost. The dotted lines show isoutility
curves. Utility is maximized where AB is a tangent to the furthest
possible isoutility curve. Thus, at time 1, the user chooses to use X1

units of computational methods and Y1 units of traditional methods.
Now consider time 2. The cost of computational methods has

decreased, resulting in a new isocost curve AC. As a result, the user is
now able to utilize more computation for the same cost. The user now
chooses X2 units of computational methods and Y2 units of traditional
methods. The relative mix has thus shifted in favor of computational
methods (X2NX1 and Y2bY1), which suggests that as computational
costs decline over time, ABM and other computational methods will
inevitably attract more use.
2 A solution is computationally efficient if the time it takes to solve the problem
scales as a polynomial or less with the size of the problem. By using assumptions to fix
the input length of the problem, most analytical models are usually computationally
efficient.

Please cite this article as: Rand, W., & Rust, R.T., Agent-based modeling
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The benefit of this decreased computational cost has paid off in a
number of research areas. As discussed in Section 2, ABM has been
used substantially in the past to understand the diffusion of new
products, for example, to explore the role of “hubs” (Goldenberg et al.,
2009), but there are many other areas where ABM would be useful.

Table 2 illustrates a selected number of marketing application
research areas that ABM is useful in exploring, along with example
references of ABM research from marketing and non-marketing
contexts. For instance, Heppenstall, Evans, and Birkin (2006) have
constructed amodel to explore retail location decisions using ABM. By
combining ABM and geographic information systems (GIS), this
model was uniquely able to show that small historical changes in local
interactions can give rise to different global patterns; a phenomenon
often referred to as path dependence. ABM has also been used in the
past to examine inter-firm relationships, strategy and competition
(Hill & Watkins, 2009; Lusch & Tay, 2004; Marks et al., 2006;
Wilkinson & Young, 2002). ABM is useful in this application domain
because as many firms as necessary can be modeled simultaneously
and because the firms can incorporate complex learning models like
genetic algorithms and q-learning, which facilitates the exploration of
a richer space of firm strategies than is normally possible. This has
allowed researchers to highlight the effects of those strategies on
long-term competition and trust between firms.

Recently, there has been practitioner interest in using agent-based
modeling to explore marketing mix models (North et al., 2010;
ThinkVine, 2010). Though there has been some work in this area
(Delre, Jager, Bijmolt, & Janssen, 2007), it is generally an area that could
bemore thoroughly explored using ABM. ABM is a powerful tool in this
area because it has allowed researchers to include consumer-level
Agent-Based
Modeling

Agent-Based
Modeling

Fig. 1. Tradeoff between analytical modeling and ABM.
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COST AND USE OF COMPUTATIONAL METHODS OVER TIME

AB = Isocost Curve (Time 1)
AC = Isocost Curve (Time 2)

Dashed lines show isoutility curves 

Fig. 2. Cost and use of computational methods over time.
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behavior models of richer fidelity that have been used to examine the
robustness of various marketing strategies. This research has produced
substantial cost savings for at least one company (Procter & Gamble, in
North et al., 2010). Finally, ABM could also be applied to retail and
servicescape design. Though there is not yet any published research
using ABM in this area, ABM would be useful because the movement
patterns and behavioral decisions of each and every consumer can be
modeled separately. Potential insights that could be gained in this area
could relate to the examination of the interconnected role of service
points and queuing, the ability to examine hundreds of thousands of
retail location layouts in a small amount of time, and the discovery of
unknown interactions between purchase decisions and consumer
movement. The application of ABM to pedestrian modeling has proven
useful in a number of other domain areas (Batty, 2005; Schelhorn,
O'Sullivan, Haklay, & Thurstain-Goodwin, 1999; Torrens, in press), and
this work could be applied within the context of marketing. These are
just a few of the areas besides diffusion modeling where ABM could be
applied within marketing.
4. Introduction to the illustrative example

Throughout this paper, we will illustrate the guidelines for
rigorous use of ABM with one example. Our discussion of this
example will be less detailed than usual due to space constraints and
because it is only meant to be illustrative. Moreover, it is written from
the perspective of the researcher who is developing a new agent-
basedmodel and not from the perspective of a final communication of
the results of the model.3

The model that we will be developing is a model of consumer
adoption—a version of the Bass (1969)model. The original Bass model
of innovation diffusion was an aggregate model of diffusion; however,
even in this aggregate model, two (p and q) of the three parameters
(p, q, andm) are related to individual-level characteristics. The rates of
adoption are based on mass media (p) and word-of-mouth (q). In the
original Bass model, the decision to adopt at the population level is
modeled as a hazard rate, but it would be interesting to examine how
local social networks affect an individual's decision to adopt (Valente,
1995). To examine this idea, we first build an agent-based model that
produces similar results to the original Bass model. We then
investigate what happens in a network version of the model.
3 A standard protocol for publication of ABM results (Grimm et al., 2006; Parker et
al., 2008) enhances communication and reproducibility (Polhill, Parker, Brown, &
Grimm, 2008) but has been examined elsewhere.

Please cite this article as: Rand, W., & Rust, R.T., Agent-based modeling
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5. When is agent-based modeling appropriate?

Before we get to the model development itself, we should discuss
when ABM is appropriate because this is really the first step in
creating an agent-based model. The decision to use ABM should be
based primarily on the question under investigation. If the question
emphasizes groups of autonomous, heterogeneous entities that
operate in a dynamic environment and if the measure of interest is
an emergent result of these entities' interactions, then ABM is usually
one of the tools that should be considered. Below, we present
guidelines for when to apply ABM. However, these are not rules;
instead they describe characteristics of problems that are amenable to
using an ABM approach. These guidelines are specific to ABM and do
not necessarily apply to other forms of computational modeling
because they emphasize the individual-level modeling approach of
ABM.4 As we list these guidelines, we will specify whether they are
indicative (the benefit of using ABM is increased if the problem
exhibits this property), necessary (ABM is not appropriate if the
problem does not exhibit this property) or sufficient (ABM is one of
very few approaches that will work if the problem exhibits this
property) for an ABM approach to be useful. The key indicators to
consider in applying an ABM approach are the following:

1. Medium numbers (indicative)— ABM is not the appropriate tool to
use when a system is composed of only one or two agents because,
in that case, game theory often provides a better modeling tool. If
the number of agents is very large and if the agents themselves can
be modeled using a representative agent, then ABM becomes
inefficient compared to statistical regression. The exact number of
agents is relatively unimportant; medium numbers is a shorthand
way of saying that though the system has a population of agents,
this population can be affected by a few important individual
interactions (Casti, 1995). Consumer adoption modeling, as in the
Bass model, does exhibit the medium numbers property because
most markets feature a group of consumers (i.e., influentials) that
substantially affects the market's purchasing decisions.

2. Local and potentially complex interactions (indicative) — ABM
becomes more useful as the interactions between individuals
becomemore complex and local (Casti, 1995; Holland, 1995). Local
information and complex interactions can be modeled using game
theory, but often these models break down when the number of
agents reaches above a small set. At this point, ABM becomes an
appropriate framework to consider. Within consumer adoption,
most consumers make local decisions based on their immediate
social network, and the number of agents is large enough to
warrant the use of ABM.

3. Heterogeneity (indicative) — Because the focus of ABM is on the
individual, each individual can be modeled as differently from
other individuals as necessary. For instance, agents can have
different levels of willingness-to-buy, budgets, and demographic
properties. Beyond different values, the agents can be of different
types, such as consumers, companies, and the media. Types can
even be divided into different types of organizations and
consumers. For instance, risk-averse and risk-seeking organiza-
tions may appear identical according to their financial properties,
but they will behave in different ways. Alternatively, if a system
contains many homogenous agents, system dynamics modeling
may be more useful because it efficiently tracks populations of
identical agents and examines how they change over time. Within
consumer adoption, most consumers have different local networks
and different thresholds to innovation, which almost requires the
use of an ABM approach.
4 Computational models that also employ an individual-level modeling approach,
such as some dynamic game simulations, can in fact be thought of as examples of ABM.
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Table 2
Some marketing research application areas suitable for ABM.

Name Advantage of ABM Selected ABM marketing
references

Relevant ABM references
from other fields

Insights to gain/gained from ABM

Diffusion of information
and innovations

Allows individual-level heterogeneity
within both adoption decisions and
social networks

Watts and Dodds (2007),
Garcia (2005), Goldenberg et al.
(2010), Stephen, Dover and
Goldenberg (2010) and others
in Section 2

Berger (2001) and Deffuant,
Huet and Amblard (2005)

The structure of social networks and the
role of hubs substantially affect
diffusion.

Retail location decisions Enables integration of individual-level
behavior patterns with geographic
information systems

Heppenstall et al. (2006) Brown et al. (2005), Irwin
and Geoghegan (2001) and
Parker, Brown, Polhill,
Deadman, and Manson
(2008)

Local interactions can dramatically
affect emergent outcomes (path
dependence).

Inter-firm relationships,
strategy and competition

Facilitates as many firms as necessary,
each with firm-level characteristics,
and the ability for firms to adapt their
strategies over time

Hill and Watkins (2009),
Wilkinson and Young (2002),
Lusch and Tay (2004), Marks et
al. (2006) and others in
Section 2

Axelrod (1997), Barr and
Saraceno (2002) and
Prietula, Carley, and Gasser
(1998)

The role of heterogeneous strategies in
complex networks of firm relationships

Marketing mix models Allows the examination of individual-
level behavior patterns and reactions
to the various elements of the
marketing mix

Delre et al. (2007), ThinkVine
(2010) and North and Macal
(2010)

Specific to marketing but
relevant simulations have
been explored in supply
networks: Parunak, Savit,
and Riolo (1998)

Richer fidelity of models, incorporation
of consumer-level behavior models,
ability to test robustness of strategies

Retail and servicescape
design

Can be used to model individuals
moving about and making decisions in
a complex retail environment

None as of yet Batty (2005), Torrens (in
press) and Schelhorn et al.
(1999)

The interrelation of service points and
queuing, examination of a large number
of shop layouts, relationships between
consumer movement and purchase
behavior
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4. Rich environments (indicative) — ABM facilitates the representa-
tion of rich and even dynamic environments (Gilbert, 2008). These
environments can be as simple as two-dimensional abstract spaces
or as realistic as a space derived from data contained in a
geographic information system (GIS; Brown et al., 2005a) or a
networked-based space derived with data from social network
analysis (SNA; Carley, 2002). This allows ABM to capture the
complexity of consumer adoption, from the influence of a
convenience store's location on a consumer's decision to the effect
of a consumer's peer network.

5. Temporal aspects (necessary) — ABM is a technique for modeling
processes and is well suited for examining how complex systems
change over time. Therefore, temporal aspects are almost a
necessary condition for the ABM approach. Many modeling
approaches allow you to examine the equilibrium states of
dynamic games, but ABM is one of the few that allows you to
examine the dynamics that give rise to those equilibria. To allocate
resources within consumer adoption, it is often necessary to
consider when people are likely to buy a product; therefore, the
temporal nature of the process is central to the research question.

6. Adaptive agents (sufficient) — One of the promises of ABM is its
ability to include adaptive agents within simulations (Holland,
1995). If an agent takes an action that produces a negative result,
then that agent may try other actions in the future. An agent that
changes its strategy (i.e., which actions to take in a given
environment as a result of past information) is an adaptive agent.
Because ABM is a computational method, it is possible to embed a
machine learning approach within each agent that allows that
agent to dynamically adopt the rules under which it operates
(Rand, 2006). For instance, a retailer may alter its price setting and
quantity-ordering actions, even when the state of the market is
unchanged, due to previous experiences with different strategies
(Marks, Midgley, & Cooper, 1997). There are few modeling
techniques besides ABM that are able to robustly represent
adaptation. Within consumer adoption, agents often make de-
cisions to purchase a product based on previous recommendations
from their social network. They dynamically adjust their confi-
dence in their friends' opinions based on their own experiences
Please cite this article as: Rand, W., & Rust, R.T., Agent-based modeling
(2011), doi:10.1016/j.ijresmar.2011.04.002
with these products, and make future decisions based on this new
trust network (Sharara, Rand, & Getoor, 2011).

6. Guidelines for model development

In general, building an agent-basedmodel can be broken down into
four large-scale steps: (1) decide if ABM is appropriate; (2) design the
model; (3) construct the model; and (4) analyze the model.

Step 1. Decide if ABM is appropriate
Before building any agent-based model, it is important to first
decide if ABM is in fact an appropriate approach. This is the
premise of Section 5 and Table 1, where we explored the
specific questions that should be analyzed to determine if
ABM is appropriate and where we also determined that for
our Bass model, ABM would be appropriate.

Step 2. Design the model
There are several decisions to be made when designing a
model using the ABM approach (see Fig. 3):
(1) Scope of the model —What part of the complex system is
the focus of the modeling effort and what aspects can be
ignored? Within our current model, the scope will
initially be defined based on the original Bass (1969)
model. The model should be able to approximately
reproduce the original results, and then it should be
expandable to enable agents to possess a social network.

(2) Agents— The goal here is not to list every individual agent
to be modeled, but rather to identify the general classes of
agents and the approximate quantity of each agent type.
The only agents in our current model are consumers.

(3) Properties — Each agent will need a list of properties that
describe that agent. The properties of the agents in our
model are initially based on the original macro-level
model (Bass, 1969). Each agent will have a p, which is the
probability of adopting due to mass media, and a q, which
is the probability of adopting due to word-of-mouth
effects. In the network version, each agent will also have a
set of neighboring agents.
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DESIGN CHOICES FOR AGENT-BASED MODELING 

1. Scope of the Model – What aspects of the complex system under examination will be described in the
model? 

2. Agents – What agent types exist in the model? 

3. Properties – What properties does each agent have? 

4. Behaviors –What behaviors / actions does each agent possess?  

5. Environment– What external forces act on each agent, including other agents and the external  
environment? 

6. Input and Output –What inputs to the model exist?  What outputs can be collected from the model?  

7. Time Step –What is the order of events in the model?  

Fig. 3. Design choices for agent-based modeling.

6 Our model differs from the original Bass model in that each agent individually
determines if they will adopt the innovation or not. The agents in this model act
synchronously; in other words, each agent determines whether to adopt separately
from other agents and then updates its status at the end of an iteration after all other
agents have had a chance. This differs from the Bass model because it is equivalent to
assuming that the number of innovators at time t is dependent on the number of
innovators at time t−1 and not on the instantaneous number of innovators at time t.
This assumption could be relaxed in the future by allowing the model to update
asynchronously. The agents could then decide whether to adopt based on their
neighbors who have adopted, including any changes in adoption status since the
beginning of the time step. This would still not be a continuous model, but it would be
closer.

7 There are many different ways to create scale-free networks because scale-free
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(4) Behaviors — Each agent exhibits a set of behaviors. In our
model, each agent makes a decision to adopt on the basis
of a probability, p+q(na/n), where na is the number of
innovators who are neighbors and n is the total number of
neighbors of the agent.5

(5) Environment— This can be a physical environment (e.g., a
city), a social environment (e.g., an email network), or a
conceptual environment (e.g., a brand space). The
environment defines the interaction topology of the
agents. In our model, the agent's social neighbors define
its environment.

(6) Input and output— It is also necessary to define the inputs
to the model, and the output measures that will be
gathered. In the original Bass (1969) model, the main
inputs are p, q, and m. These parameters are input
parameters for the agent-based model as well. In the
network version, the network topology (i.e., how in-
dividuals are connected) is another input. The output
measure of interest is the number of adopters per time
step.

(7) Time step — Almost all agent-based models have an
initialization step and then an iteration time step, and
these two “phases” must be described. In our model, the
initialization step creates the agents and the network, if
necessary. In each iteration step, each agent determines if it
will innovate due tomedia effects or word-of-mouth or if it
will not innovate. If the agent decides to adopt, then the
appropriate properties areupdated and theprocess repeats.
When all agents have adopted, the model terminates.

Step 3. Construct the model
Model construction is a software engineering process. The goal
is to create an implemented version of the model that can be
executed computationally and that corresponds with the
conceptual model. There are two alternatives to model
implementation. The first is to write the model in a general
purpose programming language, such as C, Java, or Python. The
second is to make use of an extant ABM language/library.
There are fourwidely used ABM toolkits in existence: NetLogo,
Repast, Mason, and Swarm. Railsback, Lytinen, and Jackson
(2006) provide a detailed review of all four of these platforms.
The initial implementation of our model was straightforward
based on the design documentation described in Step 2. The
model follows the following steps:
networks are networks that have a scale-free degree distribution. However, being
scale-free says nothing about how the network was created or how the nodes are
connected (i.e., assortativity). The mechanism that we use for the networks in this
study is the preferential attachment mechanism of Barabási and Albert (1999). All
1. Initialization — The number of agents is created according
to the input parameter m. Each agent is given the same p
and q values, according to the input parameters. All agents
are set to the default state of not having adopted the
5 When replicating the original Bass results, each agent is assumed to neighbor
every other agent.
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innovation (i.e., adoptedi= false). The agents are then
connected to each other on the basis of the specified
network (preferential vs. random) and with the given
network density or connection parameter (k).

2. Adoption decision6 — Any agent i who has not yet adopted
the innovation (i.e., adoptedi= false) decides whether to
adopt the innovation. This is done by generating two
random variables each time step (x1,i, x2,i~U(0,1)) and
comparing them to the p and q values, after which the
adoptedi state variable is updated appropriately. Specifi-
cally, adoptedi= true if:

x1;i < p or x2;i < q⁎
na;i

ni

where ni is the number of neighbors of agent i and na,I is
the number of neighbors of agent i who are in the
adopted= true state.

3. Statistics collection — The number of agents who have
adopted is recorded.

4. Repeat — If there are still agents who can adopt the
innovation, then go to Step 2; otherwise, terminate the
simulation.
To reproduce the results of the Bass (1969) model, the
agents were assumed to neighbor all other agents in Step 2.
Once these results were implemented and verified, the
specific case of examining agents who only observed
network neighbors was investigated.
We implemented two standard network structures in the
network-based version of our model: (i) a random network
(Erdos & Renyi, 1959) and (ii) a preferential attachment-
based (Barabási & Albert, 1999) network.7 In the random
networks generated using preferential attachment must be scale-free, but not all scale-
free networks are generated using preferential attachment. Therefore, for the sake of
brevity, we will refer to the network as a preferential attachment or preferential
network throughout the paper.
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network, the parameter of control is the network density,
i.e., the percentage of all agents that each agent is
connected to. If the network density is 100%, then this
network topology is similar to the interaction structure in the
original Bass model.8 In the preferential attachment model,
the network is based on the Barabási and Albert (1999)
model. In thismodel, some consumers in the network have a
disproportionately large number of neighbors, while other
consumers have a small number of neighbors. Specifically,
the fraction of nodes P(d) in the network that have d
connections to other nodes is P(d)~d−γ, where γ=3 when
using the Barabási–Albert network-generating model.9 This
typeof networkhas been shown tobe representativeof some
real-world social networks (Barabási & Albert, 1999).
The controlling parameter of the preferential model is k,
which describes the minimum number of neighbors of any
node in the network. If k=m−1, then themodel reduces to
the original model in which every agent interacts with every
other agent.10

We implemented the model in NetLogo (Wilensky, 1999).
Pseudo-code (a high-level formal description of the model)
and complete source code for the model is freely available
from the authors upon request.

Step 4. Analyze the model
Once an ABM has been built, verified, and validated, it can be
used as an experimental tool. This is discussed in detail in
Section 8, but it involves running the model over a range of
parameters and analyzing the results. The results can be
examined using statistical tests, such as the Pearson correla-
tion, Student's t-test, the Kolmogorov–Smirnov test, or even
regressions across the input and output variables. We
conducted a number of experiments on the agent-based
Bass model, but before we describe those, wewill discuss how
we ensured that the model had been constructed rigorously.

7. Guidelines for a rigorous model

Two processes fundamentally define the rigor of an agent-based
model: verification and validation. It has been said that before amodel
undergoes verification and validation, it is just a toy; after a model
undergoes verification and validation, it is a tool (North & Macal,
2007). Verification is the process by which the implemented model is
shown to correspond to the conceptual model, and it is carried out
during the design and construction steps of the model development.
Validation is the process by which the implemented model is shown
to correspond to the real world, and it usually occurs during themodel
analysis. Both verification and validation provide the possibility of
falsifying the proposed model. Models are like hypotheses; a model
presents a possible explanation of the way the world works, but the
explanation must be tested. Proving a model to be false can be as
simple as showing that it rests on an invalid assumption. It is
impossible to completely validate or verify a model (Grimm &
Railsback, 2005), but this is true for all models and not just for ABM.
For instance, though the Bass model of innovation diffusion has been
shown to correspond to many real-world scenarios, it is impossible to
8 It should be noted that it is computationally more efficient to not create a network
and just have each agent count the aggregate number of agents that have adopted,
rather than actually query each network linkage and determine if that neighbor has
adopted the innovation. In fact, that is what we do in the results presented below.

9 Other scale-free networks generated using alternative mechanisms may have
different exponents. In fact, the exponent of the Barabási–Albert model is 2+1/k,
where k is the number of connections added by each new node that enters the
network, and this is the same k value that we will discuss in this paper.
10 A fully-connected network, such as the one described, is sometimes called a
panmictic model, which literally means “all mixing.”
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say it has been fully validated because there are many innovations
that it has not been used to model. Validation and verification are
carried out to the extent necessary to convince the target audience of
the rigor of the model. An agent-based model may not convince many
researchers unless they can access the original model and data.
Therefore, when using the ABM approach, both the original source
code and all data used to validate the model should be made publicly
available. Top-quality research journals can facilitate this practice by
providing permanent, publicly available repositories for computa-
tional models and data.

Verification and validation should be applied to all models, not just
agent-based models; however, in the sections below, we will discuss
specifically how to carry them out in the context of ABM. Many of
these guidelines are applicable to computational modeling in general
(e.g., empirical output validation), but several of them are more
applicable to models built using the ABM approach (e.g., micro-face
validation).

7.1. Verification

Verification determines how well the implemented model
corresponds to the conceptual model. There are three important
steps in rigorous verification: documentation, programmatic testing,
and test cases (Fig. 4). Though verification attempts do not need to be
published, developers of a model should record their efforts and
provide on request both a record of verification and the original
source code so that other researchers can independently verify the
model.

Documentation (Fig. 4, Step 1) is the process of creating records that
describe both the conceptual model and the implemented model at a
level of detail that allows them to be easily compared (North & Macal,
2007). For instance, all of the choices related to amodel's design need to
be documented. In addition, there should be sufficient documentation
within the code of the implemented model that even an unskilled
programmer can compare the documentation of the code to the
conceptual documentation and understand what parts of the code are
responsible for certain parts of the conceptual model (Gilbert, 2008).
The documentation in the code should also be sufficient for a trained
programmer to ascertain how the code implements the comments.
Good documentation can ensure verification by facilitating the
comparison between implemented and conceptual models.

Programmatic testing (Fig. 4, Step 2) involves ensuring that the
implemented model does what the programmer believes it to do.
There are four major ways to carry out programmatic testing: unit
testing, code walkthroughs, debugging walkthroughs, and formal testing.
Unit testing (Beck, 2002) is where every unit or section of code has a
test written for it. For instance, if the code carries out a complex
mathematical equation, there should be a test that makes sure the
code generates the appropriate result for a given input. Code
walkthroughs are when a group of researchers examines the code
and the programmer walks the researchers through each step,
describing what the code is supposed to do (North & Macal, 2007).
The goal is to determine if the logic expresses the concept that the
programmer intended. Debugging walkthroughs are when the code is
run by the programmer and checked at each step to make sure it is
generating the correct results (usually using a debugging tool). Formal
testing uses logic to show that the code must be correct (Dijkstra,
1976). Unfortunately, most agent-based models are sufficiently
complicated that using formal testing is difficult (North & Macal,
2007).

Test cases (Fig. 4, Step 3) involve the use of artificially generated
data to make sure that the model functions as described. There are
four kinds of test cases: corner cases, sampled cases, specific scenarios,
and relative value testing. Corner cases (Gilbert, 2008) are extreme
values of the inputs; by examining corner cases, the researcher can
make sure the model does not exhibit aberrant behavior in these
in marketing: Guidelines for rigor, Intern. J. of Research in Marketing
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STEPS TO ENSURE RIGOR IN VERIFICATION

1.  Documentation  Conceptual design and the implemented model should be documented.

2.  Programmatic Testing  Testing of the code of the model.

Unit Testing  Each unit of functional code is separately tested. 
Code Walkthroughs  The code is examined in a group setting.
Debugging Walkthroughs  Execution of the code is stepped through.
Formal Testing  Proof of verification using formal logic.

3.  Test Cases and Scenarios  Without using data,model functions are examined to see if they  
operate according to the conceptual model.

Corner Cases  Extreme values are examined to make sure the model operates as 
expected.
Sampled Cases  A subset of parameter inputs are examined to discover any aberrant
behavior.
Specific Scenarios  Specific inputs for which the outputs are already known.
Relative Value Testing  Examining the relationship between inputs and outputs.

Fig. 4. Steps to ensure rigor in verification.

11 In the first case, no adoptions should occur because the only effect is social and no
one has adopted in the initial state. In the second case, everyone adopts in the first
time step of the model because the probability of adopting is 1.0.
12 It should be noted that this required the creation of two additional output
variables that recorded the number of adopters due to the two processes at each time
step. Often such debugging outputs must be created to verify a model.
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situations. For example, when running the model with no agents, or
with no interaction between the agents, the results of the model
should be easily predictable, and thus the results can be examined
independent of empirical data. In a model of product adoption, if the
product contains no attributes that appeal to the consumer, then there
should be no product adoptions; if there are adoptions, then there is
usually a mistake or a bug in the code. Sampled cases are a subset of
input values chosen in a variety of ways (e.g., randomly, with the
design of experiments methods, or with a more complex method that
employs an automated exploration tool) (Lambrecht, Ivens, Vandaele,
& Miller, 1998). The output of a sampled case is usually not known,
but the range of possible outputs is known. Thus, the goal of testing a
sampled case is to make sure that the outputs do not exceed these
ranges. For instance, the Bass model will eventually result in 100%
product adoption if pN0. If the model does not produce this result
independent of other parameters, then there is a bug in the code.
Specific scenarios (Gilbert, 2008) are used when there are particular
inputs for which the exact output is known as a result of some insight
into the conceptual model or previous knowledge from a subject
matter expert. For instance, if q=0 in the stochastic Bass model, then
the adoption rate is simply a product of mass media (p) and the
market size (m), and the expected time to full adoption can be
determined. If the model deviates too much from this expected time
(allowing for stochasticity), then the model is unverified. Relative
value testing is a method of verification where a relationship is known
between an input and an output such that changing an input in one
direction will affect the output in a predictable way. For instance,
increasing input parameter x decreases output variable y.

In the agent-based Bass model, we carried out all three steps of
verification. As for documentation, Verification Step 1 (Fig. 4), the
description of the model design within this paper serves as the
conceptual model documentation, and the code is also documented.
In terms of programmatic testing, Verification Step 2 (Fig. 4), a
combination of code walkthroughs, unit testing, and debugging
walkthroughs was employed to ensure that the code was behaving
as expected. The code consists of eight major routines, each of which
was investigated separately to make sure that they work as expected.
Some of the functions require other functions as inputs; thus, to test
them separately, test values were passed so that the expected
behavior from the routine could be predicted and examined. As
confidence was established in each function, they were combined
together in a step-wise fashion and verified again. By building up the
functions in this manner, the growth in the model's complexity is
reduced, which facilitates verification. Finally, with regard to test
cases, Verification Step 3 (Fig. 4), corner cases were examined by
setting {p,q}={0.0,1.0} and {p,q}={1.0,0.0} for all other input
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parameter combinations, and by making sure that the agents adopted
the innovation as expected.11 In addition, several (6) sampled cases
were randomly chosen to make sure that the model did not exhibit
any aberrant behavior, such as a negative adoption rate or a lack of full
adoption despite pN0. Relative value testing was also employed; p
was held constant while q was increased to see if the number of
adopters due to word-of-mouth increased relative to the number of
adopters due to mass media.12 The reverse condition was also
checked, with q held constant and p increased. Because of these
procedures, we can consider the model to be verified to a rigorous
degree.
7.2. Validation

Validation is the process of determining how well the implemen-
ted model corresponds to reality. Validation has a long history within
modeling (Conway, Johnson, & Maxwell, 1959), and specifically
within computational modeling (Carley, 1996; Garcia, Rummel, &
Hauser, 2007; Knepell & Arangno, 1993). There are four major steps
that must occur to consider the model rigorously validated (Fig. 5):
micro-face validation, macro-face validation, empirical input valida-
tion, and empirical output validation.

Micro-face validation (Fig. 5, Step 1) is the process of making sure
that the mechanisms and properties of the model “on face”
correspond to real-world mechanisms and properties. For instance,
do the individuals in the model correspond in a meaningful way to
real-world individuals? Do the actions possessed by a consumer agent
correspond to real-world actions? Do consumer agents possess a
realistic amount of information?

Macro-face validation (Fig. 5, Step 2) is the process of showing that
the aggregate patterns of the model “on face” correspond to real-
world patterns (North & Macal, 2007). For instance, do the dynamics
of the model correspond to the real world? Does the theory of the
model correspond to our current understanding of the real world? In
both micro- and macro-face validation, no data are directly compared
to the model; instead, the focus is on showing that the general
patterns, attributes, and processes have an explainable correspon-
dence to the real world. It is usually sufficient to describe the
relationship between the model and the real world to show that it has
in marketing: Guidelines for rigor, Intern. J. of Research in Marketing
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STEPS TO ENSURE RIGOR IN VALIDATION

1. Micro-Face Validation Elements of the implemented model correspond  to the real  
world.

2. Macro-Face Validation  Processes and patterns of the implemented model cor
to the real world. 

3. Empirical Input Validation The data used as inputs to the model corresponds to the real world.

4. Empirical Output Validation The output of the model corresponds to the real world. 

Stylized Facts / Subject Matter Experts Generally known patterns of behavior that are  
important to reproduce in the model.
Real World Data  Recreating real world results using the model.
Cross-Validation  Comparing the new model to a previous model that has already been 
validated.

Fig. 5. Steps to ensure rigor in validation.
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been validated “on face.” An additional level of validation can be
gained by having subject matter experts review the model “on face.”

Empirical input validation (Fig. 5, Step 3) is the process of
ascertaining that the data being input into the model are accurate
and bear a correspondence to the real world. In this case, it is sufficient
to explain how the data are derived and what correspondence they
have to model inputs. For instance, basing the rate of adoption for a
new product on the rate of adoption of similar products is an example
of empirical input validation. Whenever possible, the inputs of an
agent-based model should be calibrated to actual data from the real
world. Garcia et al. (2007) provide one method of automating this
process for consumer behavior by describing how to validate inputs
on the basis of conjoint analysis. Their method makes it possible to
create empirically-driven rules that govern agent decisions in the
model.

Empirical input validation can extend beyond parameters to the
basic behaviors of the model. For instance, Goldenberg et al. (2010)
examined how network effects could reduce adoption due to a
“chilling effect.” Rust (2010) states that this is because the adoption
rule that was used contains a chilling effect and suggests an
alternative adoption rule. In cases like this, it may be necessary to
empirically validate the adoption rule by examining consumer
behavior patterns or to test different rules and report the model's
sensitivity to this input.

Anotherway to set the input values is to partition the data into two
sets (sometimes called training and test data) and use one set of data
(the training data) to calibrate the model by manipulating the inputs
until the output of the model matches the training set (Grimm &
Railsback, 2005). This can be done manually, but a much better way is
to automate the process using a machine learning technique, such as a
genetic algorithm or neural network. Once the model has been
calibrated, the second set of data (the test data) can be used as a
validation set.

Many other approaches to setting the parameters of a model are
possible, such as ethnographic studies (Agar, 2005; Axtell et al., 2002)
and behavioral experiments (Castella, Trung, & Boissau, 2005), but a
detailed look at all of these methods is beyond the scope of this paper.

Regardless of the method used to calibrate the inputs, a robustness
or sensitivity analysis should be conducted to explore the sensitivity
of the model to a particular set of inputs. This is done by holding some
parameter(s) constant and then varying one or more target
parameters to see how sensitive the model results are to each
parameter. If the outputs of interest are not dramatically affected by
changes in this input, or if they are affected in a predictable way, then
the input can be set to a standard value and the rest of the model can
be explored. If the model is very sensitive to the input under
investigation, then it is necessary to investigate why it is sensitive to
that input and see how that affects the result. In the case of the model
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discussed in this paper, we varied all of the key parameters (m, p, and
q) for a set of the experiments (preferential attachment experiments)
that were of interest to our research question. This gives the
researcher the ability to answer questions like “If m increases, but p
and q are left alone, what is the result?” These results are available
from the authors upon request.

Empirical output validation (Fig. 5, Step 4) involves showing that
the output of the implemented model corresponds to the real world
(North & Macal, 2007). This is the key test of a model's validity.
Empirical output validation tests themodel designer's hypothesis (i.e.,
the implementedmodel). There are three ways to empirically validate
a model's output: stylized facts, real-world data, and cross-validation.
Stylized facts are general concepts of a complex system derived from
the knowledge of subject matter experts (e.g., all technology adoption
curves are s-shaped). If themodel's primary purpose is to be a thought
experiment, then validating the model against a stylized fact is
sufficient to show the validity of the model. Real-world data validation
is necessary if the model is being used as a predictive model. In this
case, there may often be only one real historical data set and many
model runs; thus, empirical output validation involves showing that
the real world is a possible output of this model (i.e., that the real-
world data set lies within the statistical distribution of the model
data). If there are many outputs from the model and the real world
(e.g., a time series of purchases), then real-world data validation
involves showing that the average model results correlate with the
real-world results. Cross-validation is an optional validation process
that compares the newmodel against another model that has already
been validated, even if that other model uses another methodology
(e.g., system dynamics or analytical modeling). If the two models
produce similar results, then the validity of the new model has been
increased.

As described in Section 3, cross-validation is a very important
approach for model validation in a field such as marketing, where
researchers are more familiar with other techniques such as game
theory, statistical regression, and econometric modeling. The ABM
approach can be used to recreate the same results as these other
methods under similar assumptions, and then those assumptions can
be relaxed using ABM in a way that cannot be done using the
traditional approach. For instance, in the illustrative example, we will
show that under certain assumptions (e.g., that consumers observe
the whole population), we can recreate the original Bass (1969)
model results and that under additional assumptions, we can produce
similar results to a more complex closed formmodel (Van den Bulte &
Joshi, 2007). Once this has been demonstrated, it is more credible to
present results that move beyond these simple models, such as the
network-based results that we present in this paper.

For our model, we carried out the four steps of validation as
described above. At the micro-face level, Validation Step 1 (Fig. 5), the
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Table 3
ABM model parameters.

Durable m p q

Refrigerators 40,001 .0026167 .21566
Freezers 21,973 .0181190 .17110
TV 96,717 .0278770 .25105
Softener 5793 .0177030 .29695
AC 16,895 .0103990 .41861
Dryer 15,092 .0172060 .35688
Lawnmowers 44,751 .0091837 .33790
Bed 76,589 .0058760 .24387
Coffee 58,838 .0171350 .30145
Iron 55,696 .0286320 .32791
Player 21,937 .0247960 .65410

Table 4
ABM model correlation with empirical sales data.

Durable Period of interest ABM R2 Bass R2

AC 1950–1961 0.84 0.90
Bed 1950–1961 0.98 0.93
Coffee 1951–1961 0.75 0.69
Dryer 1950–1961 0.88 0.85
Freezers 1947–1961 0.59 0.47
Lawnmowers 1949–1961 0.96 0.89
Refrigerators 1926–1940 0.62 0.76
TV 1949–1961 0.25 0.07
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agents in the model possess a p and a q, which represent their
probability of adopting based on word-of-mouth or mass media;
these factors seem “on face” valid. In addition, in the network model,
the agents possess a local social network that does not allow them to
discover information about the whole population.

At the macro-face level, Validation Step 2 (Fig. 5), the aggregated
patterns seem to suggest typical innovation adoption patterns “on
face”, with at first a few adopters and then more and more until the
whole population has adopted (sigmoid curve). The underlying
theory of the model is based on the classic diffusion of innovation
literature (Rogers, 1962); thus, to the extent that the literature is
valid, the theory of this model is valid.

At the empirical input level, Validation Step 3 (Fig. 5), the input
data are drawn from the original Bass (1969) paper. At first glance,
parameters p and q in the agent-based model do not seem to be the
same as they are in the original Bass model (Garcia et al., 2007). This is
because the original Bass model assumed that p and q were hazard
rates for the whole population, not for individuals. However, if we are
interested in examining how the agent-based model behaves in an
environment where all individuals can observe the state of all other
individuals, then the effects of p and q in the agent-based model are
very similar to their effects in the original Bass model; therefore, we
can use the same values to initiate the agent-based model. As for the
validity of the networks, the random network is not very represen-
tative of real-world networks' structures, but it is more realistic than
the models in which every consumer knows every other consumer.
The preferential attachment model (Barabási & Albert, 1999) has
previously been shown to be representative of some real-world social
networks.

Them value as originally described by Bass (1969) is the size of the
market of potential adopters,whichmustbe knownapriori, determined
by earlymarket analysis, or estimated. This could correspond directly to
the number of agents in the agent-basedmodel, but because decreasing
this value only impacts the variance of the results,13 it is safe tomodel a
smaller number of agents to expedite experimental analysis. This should
be investigated for each model to determine whether the number of
agents substantially alters the results.

As we alluded to above, there are many different ways to set (i.e.,
calibrate) the parameter values of an agent-based model. In our case,
the p, q andm values were drawn directly from the Bass (1969) paper,
which in turn was calibrated from earlier data. In the case of the
network inputs, we used a different approach; because we were less
sure of what inputs to use, we chose to scan a variety of networks that
have been reported to be representative of real-world social networks
and investigate whether the model was sensitive to different
networks.

With regard to empirical output validation, Validation Step 4
(Fig. 5), this model corresponds to certain stylized facts in the
13 The variance of these results with the smaller number of agents is still limited
enough to allow for the creation of accurate adoption curves.

Please cite this article as: Rand, W., & Rust, R.T., Agent-based modeling
(2011), doi:10.1016/j.ijresmar.2011.04.002
diffusion literature. The output always takes on the classic sigmoid
shape of innovation adoption when qN0. To further validate the
model, all 11 cases originally described in the Bass (1969) paper were
recreated. The descriptions of the model inputs are listed in Table 3.
These values are drawn directly from the original Bass model because
in the agent-based model, when the agents can observe the entire
population, the model becomes a discrete (both in time and in the
granularity of the population) version of the Bass model. As a result,
the exact same values of p, q and m are used to allow for comparison
with the original Bass model. For each set of inputs, the model was
executed 30 times using NetLogo's BehaviorSpace (Wilensky, 2003)
tool, and the number of adoptions at each time step was collected in a
text file. The results were imported to R (R Development Core Team,
2008) and averaged within each parameter set across all 30 runs.
Finally, for forecasting accuracy, the empirical data were imported
from the eight datasets still available with sufficient data (http://
www.bassbasement.org) for the same time period that Bass (1969)
used. Using these data, the r2 between the empirical data and the
model data was calculated. These results, as well as Bass' original
results, are illustrated in Table 4. As can be seen, this model achieves
results similar14 to those of the original Bass model, and the ABM r2

exceeded the Bass results in six out of eight cases, indicating that the
model produces a similarly valid description of innovation adoption.

At this point, the model has been sufficiently verified and
validated, so it can accurately serve as a model of innovation adoption
similar to the original Bass model, and we can now explore the results
of the model.

8. Using the model

Once the model has been verified and validated, we are now able
tomove beyond themodel construction to discover new insights from
the model. An agent-based model can be used as a computational
experiment. To postulate an experiment, the researcher specifies a
certain combination of inputs and varies one or more of the inputs to
see how the changes affect the outputs. Once a series of experiments
has been run, the results from the agent-based model can be analyzed
using standard statistical approaches that are applied to any large
dataset of empirical data.

One important caveat is that because almost all models constructed
usingABMare stochastic innature, it is important to run the samemodel
multiple times with the same inputs to capture the distribution over
possible results that can exist due to the model's stochasticity.
Essentially, it is important to observe an event enough times that
statistical inference can be made about the relationship between the
inputs and the outputs. These experiments are usually carried out using
some sort of experimental tool that iterates through all of the inputs
specified by the researcher, runs the model repeatedly for each
treatment, and then aggregates the results so that they can be analyzed
using Excel, R, or another analysis tool.
14 The differences between the two models could be a result of the ABM version's
discrete nature or the fact that the model was implemented as a synchronous model.
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PREFERENTIAL NETWORK MODEL RESULTS FOR k=1 TO k=4, OVER 30 RUNS. THE    
DOTTED LINE IS THE ORIGINAL BASS MODEL RESULTS FOR THE SAME 

PARAMETERS.
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Fig. 6. Preferential network model results for k=1 to k=4, over 30 runs. The dotted line is the original Bass model results for the same parameters.

15 Due to convergence, we do not present any results for kN4.
16 At first glance, this result may appear contrary to Watts and Dodds (2007), but
their results are relative to the size of the hub (i.e., do influentials create proportionally
more adoption given the number of links that they have) and not the absolute rate of
adoption. Moreover, for most of their results they use a deterministic threshold
functional form (Watts, 2002) and not a probability distribution for the adoption
decision, which makes the results difficult to compare directly.
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For instance, in the innovation adoption model, we will explore
how network density and topology affect the adoption of innovations.
For all of these experiments, p and q were set the same as the Bass
(1969) parameters for a typical durable (refrigerators; p=0.0026167
and q=0.21566), but m was decreased from 40,001 to 400 because
analysis of results is facilitated by allowing faster examination of a
large parameter space, and as the variancemeasures indicate, this had
no qualitative influence on the results. In our first experiment, the
network parameter was first set to the random topology, and the
network density parameter was varied from 0% to 100% at 10%
increments. For each increment, the model was executed 30 times
using NetLogo's headless BehaviorSpace (Wilensky, 2003) mode, and
the number of adopters at each time step was collected. The results
were imported into R and averaged across runs.

For the random network, the model results are qualitatively
similar to the original Bass results, except, of course, when the
network density was 0%. A network density of 0% results in agents
having no neighbors and so no adoptions occur. For all other network
densities, the adoption curve is similar to the Bass model results. This
is because the network is relatively dense even at 10%, which results
in the average agent having 40 neighbors. Given the random
distribution of links, this means the average path length (i.e., average
distance between two individuals) across the network is not large
(~1.6 individuals), which results in rapid diffusion.

To examine a more realistic network, we use preferential topology
where the minimal number of neighbors, k, was varied from 1 to 10.
For the preferential model, results for k=1 to k=4 are presented in
Fig. 6 because these results are the most starkly different. To test these
Please cite this article as: Rand, W., & Rust, R.T., Agent-based modeling
(2011), doi:10.1016/j.ijresmar.2011.04.002
differences, we utilized the Kolmogorov–Smirnov pairwise test for
values of k≤4.15

The preferential attachment mechanism generates hub (highly
connected individuals) and spoke (less connected individuals)
structures. As a result, at low levels of network connectivity, if a hub
adopts the innovation, then it spreads quickly due to word-of-mouth.
However, if a hub does not adopt the innovation, then diffusion is
driven more by p than q, which in most cases slows the overall
adoption rate. As k is increased andm is held constant, it is more likely
that any innovation will reach a hub because each increase in kmeans
that all nodes have at least one additional neighbor, and the overall
number of neighbors will scale according to a power law.16

These results indicate that in networks where consumers do not
know many other consumers and relationships are distributed more
unequally, innovation diffusion can occur at a much slower rate than
the results predicted by the traditional Bass model. However, if the
network has a moderately high level of connections, the results of
innovation diffusion on a network structure are qualitatively similar
to the results of the original Bass model. Prior researchwith a different
model supports this conclusion (Stonedahl, Rand, & Wilensky, 2008).
in marketing: Guidelines for rigor, Intern. J. of Research in Marketing
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Table 5
Statistical regression of ρ⁎ on m, p, q, and k.

Estimate Std. error t-value

Intercept −80.54 1.896 −42.47⁎⁎⁎

m .08389 .0003573 234.81⁎⁎⁎

p 11.03 .1799 61.30⁎⁎⁎

q 669.2 23.55 28.41⁎⁎⁎

k 106.7 3.925 27.18⁎⁎⁎

⁎⁎⁎ pb0.01.
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Though the results above are sufficient to answer the question as
to whether social network structures can affect diffusion curves with a
positive answer, the researcher may want to explore the relationship
between a larger variety of inputs and outputs of an agent-based
model. For instance, the results of an agent-based model can be
viewed as a large panel dataset and econometric techniques can be
applied. For instance, one examplewould be to run a regression across
the inputs and the outputs, treating the inputs as independent
variables and the outputs as dependent variables. To briefly illustrate
this possibility, we created a new experiment in which we used only
the preferential attachment network and varied the p (6 levels), q (6
levels), m (4 levels) and k (4 levels) inputs. We also ran each
treatment 10 times for a total of 5760 different elements of our
dataset. We then regressed the peak adoption rate (ρ⁎) in each of
these setups across the input parameters of p, q, m and k using a
generalized linear model similar to the method used by Stephen and
Berger (2009) and Stephen et al. (2010):

ρ� = β0 + β1p + β1q + β3m + β4k:

The results are presented in Table 5. As is clear from the results for
this set of inputs, all of the parameters have a statistically significant
effect on the peak adoption rate. This confirms our findings that
density of the preferential attachment network, as controlled by
parameter k, has a significant effect on the adoption curve and, in this
case, specifically on the peak adoption rate. This is just one example of
how traditional econometric approaches can be applied to better
understand computational methods. Further investigations into this
combination of methods are definitely warranted in future work.

9. Conclusion

We have presented guidelines for the rigorous use of agent-based
modeling (ABM) in marketing along with an illustrative example of
how to use ABM to understand the diffusion of innovations. Despite
the difficulties of building rigorous agent-based models, the benefits
of a modeling approach for marketing that focuses on the individual
level and observes the aggregate results are substantial. ABM provides
an approach that enables the concretization of many theories of
consumer behavior in a way that is measurable and testable, while at
the same time permits the inclusion and comparison of empirical
data. Moreover, the realism of ABM facilitates model comprehension
by managers and stakeholders. As the cost of computational power
continues to decline and the ability to create more andmore elaborate
models continues to increase, ABM and other computationally
intensive methods are likely to assume a larger role in our
understanding of the world. Therefore, it is important for marketing
researchers to understand how to rigorously use this new method.

Acknowledgments

Support for Rand was partially provided by National Science
Foundation IIS Grant #1018361. We also thank the Center for
Complexity in Business at the Robert H. Smith School of Business at
the University of Maryland for its support.
Please cite this article as: Rand, W., & Rust, R.T., Agent-based modeling
(2011), doi:10.1016/j.ijresmar.2011.04.002
References

Agar, M. (2005). Agents in living color: Towards emic agent-based models. Journal of
Artificial Societies and Social Simulation, 8(1), 4.

Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice:
A review and recommended two-step approach. Psychological Review, 103(3),
411–423.

Arthur, W. B. (1994). Inductive reasoning and bounded rationality. American Economic
Review (Papers and Proceedings), 84, 406–411.

Axelrod, R. (1984). The evolution of cooperation. New York: Basic Books.
Axelrod, R. (1997). The complexity of cooperation: Agent-based models of competition and

collaboration. Princeton, NJ: Princeton University Press.
Axtell, R. L., Epstein, J. M., Dean, J. S., Gumerman, G. J., Swedlundx, A. C., Harburger, J.,

et al. (2002). Population growth and collapse in a multiagent model of the Kayenta
Anasazi in Long House Valley. Proceedings of the National Academy of Sciences, 99
(Suppl. 3), 7275–7279.

Barabási, A. -L., & Albert, R. (1999). Emergence of scaling in random networks. Science,
286, 509–512.

Barr, J., & Saraceno, F. (2002). A computational theory of the firm. Journal of Behavior
and Organization, 49(3), 345–361.

Bass, F. M. (1969). A new product growth model for consumer durables. Management
Science, 36(9), 1057–1079.

Batty, M. (2005). Cities and complexity: Understanding cities with cellular automata,
agent-based models and fractals. Cambridge, Massachusetts: MIT Press.

Beck, K. (2002). Test driven development: By example. : Addison-Wesley Professional.
Berger, T. (2001). Agent-based spatial models applied to agriculture: A simulation tool

for technology diffusion, resource use changes and policy analysis. Agricultural
Economics, 25(2), 245–260.

Brown, D. G., Riolo, R., Robinson, D. T., North, M., & Rand, W. (2005). Spatial process and
data models: Toward integration of agent-based models and GIS. Journal of
Geographical Systems, 7(1), 25–47 Special Issue on Space–Time Information
Systems.

Carley, K. M. (1996). Validating computational models. Working Paper. Carnegie Mellon
University.

Castella, J. -C., Trung, T. N., & Boissau, S. (2005). Participatory simulation of land-use
changes in the northern mountains of Vietnam: The combined use of an agent-
based model, a role-playing game and a geographic information system. Ecology
and Society, 10(1), 27.

Casti, J. L. (1995). Seeing the light at El Farol. Complexity, 5(1), 7–10.
Churchill, G. A., Jr. (1979, Februaryy). A paradigm for developing better measures of

marketing constructs. Journal of Marketing Research, XVI, 64–73.
Cohen, M. D., March, J. G., & Olsen, J. P. (1972). A garbage can model of organizational

choice. Administrative Science Quarterly, 17, 1–25.
Conway, R. W., Johnson, B. M., & Maxwell, W. L. (1959 October). Some problems of

digital systems simulation. Management Science, 6(1), 104–105.
Deffuant, G., Huet, S., & Amblard, F. (2005). An individual-based model of innovation

diffusion mixing social value and individual benefit. The American Journal of
Sociology, 110(4), 1041–1069.

Delre, S. A., Jager, W., Bijmolt, T. H. A., & Janssen, M. A. (2007, August). Targeting and
timing promotional activities: An agent-based model for the takeoff of new
products. Special Issue: Complexities inMarkets. Journal of Business Research, 60(8),
826–835.

Delre, S. A., Jager, W., Bijmolt, T. H. A., & Janssen, M. A. (2010, March). Will it spread or
not? The effects of social influences and network topology on innovation diffusion.
Journal of Product Innovation Management, 27(2), 267–282.

Dijkstra, E. (1976). A discipline of programming. Englewood Cliffs, NJ: Prentice-Hall.
Epstein, J. M., & Axtell, R. (1996). Growing artificial societies: Social science from the

bottom up. Boston: MIT Press.
Erdos, P., & Renyi, A. (1959). On random graphs. Publications Math Debrecen(6),

290–297.
Frels, J. K., Heisler, D., Reggia, J. A., & Schuetze, H. -J. (2006, June). Modeling the impact of

customer interactions in technology markets. Journal of Cellular Automata, 91–103.
Garber, T., Goldenberg, J., Libai, B., & Muller, E. (2004). From density to destiny: Using

spatial dimension of sales data for early prediction of new product success.
Marketing Science, 23(3), 419–428.

Garcia, R. (2005). Uses of agent-based modeling in innovation/new product
development research. Journal of Product Innovation Management, 22(5), 380–398.

Garcia, R., & Jager, W. (2011). Agent-based modeling of innovation diffusion. Journal of
Product Innovation Management, 28(2), 148–151.

Garcia, R., Rummel, P., & Hauser, J. (2007, August). Validating agent-based marketing
models using conjoint analysis. Special Issue: Complexities in Markets. Journal of
Business Research, 60(8), 848–857.

Gerbing, D. W., & Anderson, J. C. (1988, May). An updated paradigm for scale
development incorporating unidimensionality and its assessment. Journal of
Marketing Research, XXV, 186–192.

Gilbert, N. (2008). Agent-based models. Sage Publications.
Gilbert, N., Jager, W., Geffuant, G., & Adjali, I. (2007). Complexities in markets:

Introduction to the special issue. Journal of Business Research, 60(8), 813–815.
Gilbert, N., & Troitzsch, K. (2005). Simulation for the social scientist: Second edition. Open

University Press.
Goldenberg, J., Han, S., Lehmann, D. R., & Hong, J. W. (2009). The role of hubs in the

adoption process. Journal of Marketing, 73(2), 1–13.
Goldenberg, J., Libai, B., Moldovan, S., & Muller, E. (2007). The NPV of bad news.

International Journal of Research in Marketing, 24, 186–200.
Goldenberg, J., Libai, B., & Muller, E. (2001a). Using complex systems analysis to

advance marketing theory development: Modeling heterogeneity effects on new
in marketing: Guidelines for rigor, Intern. J. of Research in Marketing

http://dx.doi.org/10.1016/j.ijresmar.2011.04.002


13W. Rand, R.T. Rust / Intern. J. of Research in Marketing xxx (2011) xxx–xxx
product growth through stochastic cellular automata. Academy of Marketing Science
Review, 9 special issue on Emergent and Co-Evolutionary Processes in Marketing.

Goldenberg, J., Libai, B., & Muller, E. (2001b). Talk of the network: A complex systems
look at the underlying process of word-of-mouth. Marketing Letters, 12(3),
209–221.

Goldenberg, J., Libai, B., & Muller, E. (2002, Aprill). Riding the saddle, how cross-market
communications creates a major slump in sales. Journal of Marketing, 66, 1–16.

Goldenberg, J., Libai, B., & Muller, E. (2010). The chilling effect of network externalities.
International Journal of Research in Marketing, 27(1), 4–15.

Goldenberg, J., Libai, B., Solomon, S., Jan, N., & Stauffer, S. (2000). Marketing percolation.
Physica A, 284(1–4), 335–347.

Grimm, Volker, Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., et al. (2006). A
standard protocol for describing individual-based and agent-based models.
Ecological Modelling, 198, 115–126.

Grimm, V., & Railsback, S. F. (2005). Individual-based modeling and ecology. Princeton:
Princeton University Press.

Heppenstall, A., Evans, A., & Birkin, M. (2006). Using hybrid agent-based systems to
model spatially-influenced retail markets. Journal of Artificial Societies and Social
Simulation, 9(3). http://jasss.soc.surrey.ac.uk/9/3/2.html

Hill, R., & Watkins, A. (2007, Septemberr). A simulation of moral behavior within
marketing exchange relationships. Journal of the Academy of Marketing Science, 35,
417–429.

Hill, R., & Watkins, A. (2009). The profit implications of altruistic versus egoistic
orientations for business-to-business exchanges. International Journal of Research in
Marketing, 26(1), 52–59.

Holland, J. H. (1995). Hidden order: How adaptation builds complexity. Reading, MA:
Addison-Wesley.

Irwin, E. G., & Geoghegan, J. (2001). Theory, data, methods: Developing spatially explicit
economic models of land use change. Agriculture, Ecosystems and Environment, 85
(1–3), 7–24.

Knepell, P. L., & Arangno, D. C. (1993). Simulation validation: A confidence assessment
methodology. IEEE Computer Society Press.

Lambrecht, M. R., Ivens, P. L., Vandaele, N. J., & Miller, J. H. (1998). Active nonlinear tests
(ants) of complex simulation models. Management Science, 44(6), 820–830.

LeBaron, B. (2000). Agent-based computational finance: Suggested readings and early
research. Journal of Economic Dynamics and Control, 24(5–7), 679–702.

Libai, B., Muller, E., & Peres, R. (2005). The role of seeding in multi-market entry.
International Journal of Research in Marketing, 22, 375–393.

Libai, B., Muller, E., & Peres, R. (2009). The role of within-brand and cross-brand
communications in competitive growth. Journal of Marketing, 73(3), 19–34.

Lusch, R. F., & Tay, N. (2004). Agent-based modeling: Gaining insight into firm and
industry performance. In Moorman Christine, & Donald R. Lehman (Eds.), Assessing
marketing strategy performance (pp. 213–227). Cambridge, MA: Marketing Science
Institute.

Marks, R. E., Midgley, D. F., & Cooper, L. G. (1997). Breeding competitive strategies.
Management Science, 43(3), 257–275.

Marks, R. E., Midgley, D. F., & Cooper, L. G. (2006). Co-evolving better strategies in
oligopolistic price wars. In Rennard Jean-Philippe (Ed.), Handbook of research on
nature-inspired computing for economy and management. Hershey, PA: Idea Group
Inc. Ch. 52.

Marks, R. E., Midgley, D. F., Cooper, L. G., & Shiraz, G. M. (1999). The complexity of
competitive marketing strategies. Complexity International, 6.

Miller, J. H., & Page, S. (2007). Complex adaptive systems: An introduction to
computational models of social life. Princeton University Press.

Moldovan, S., & Goldenberg, J. (2003). Cellular automata modeling of resistance to
innovations: Effects and solutions. Technological Forecasting and Social Change, 71(5),
425–442.

North, M. J., & Macal, C. M. (2007). Managing business complexity: Discovering strategic
solutions with agent-based modeling and simulation. Oxford University Press.

North, M. J., Macal, C. M., St. Aubin, J., Thimmapuram, P., Bragen, M., Hahn, J., et al.
(2010). Multi-scale agent-based consumer market modeling. Complexity, 15(5),
37–47.

Parker, D. C., Brown, D. G., Polhill, J. G., Deadman, P. J., & Manson, S. M. (2008).
Illustrating a new ‘conceptual design pattern’ for agent-based models and land use
via five case studies: The MR POTATOHEAD framework. In A. Lopez Paredes, & C.
Hernandez Iglesias (Eds.), Agent-based modelling in natural resource management
(pp. 23–51). Valladolid, Spain: Universidad de Valladolid.

Parunak, H. V. D., Savit, R., & Riolo, R. L. (1998). Agent-based modeling vs. equation-
based modeling: A case study and user's guide. In J. Sichman, R. Conte, & N. Gilbert
(Eds.), Multi-agent systems and agent-based simulation (lecture notes in computer
science) (pp. 10–25). Springer.

Polhill,G. J., Parker,D., Brown,D., &Grimm,V. (2008).Using theODDprotocol for describing
three agent-based social simulation models of land-use change. Journal of Artificial
Societies and Social Simulation, 11(2). http://jasss.soc.surrey.ac.uk/11/2/3.html
Please cite this article as: Rand, W., & Rust, R.T., Agent-based modeling
(2011), doi:10.1016/j.ijresmar.2011.04.002
Prietula, M., Carley, K. M., & Gasser, L. (1998). Simulating organizations: Computational
models of institutions and groups. Cambridge, MA: The MIT Press.

R Development Core Team (2008). R: A language and environment for statistical
computing. Vienna, Austria: R Foundation for Statistical Computing3-900051-07-0.
http://www.R-project.org

Rahmandad, H., & Sterman, J. (2008). Heterogeneity and network structure in the
dynamics of diffusion: Comparing agent-based and differential equation models.
Management Science, 54(5), 998–1014.

Railsback, S. F., Lytinen, S. L., & Jackson, S. K. (2006). Agent-based simulation platforms:
Review and development recommendations. Simulation, 82(9), 609–623.

Rand, W. (2006). Machine learning meets agent-based modeling: When not to go to a bar.
Agent 2006, Chicago, IL, USA.

Rogers, E. M. (1962). Diffusion of innovations. Free Press.
Rust, R. (2010). Network externalities—Not cool? A comment on ‘The chilling effects of

network externalities’. International Journal of Research in Marketing, 27(1), 18–19.
Schelhorn, T., O'Sullivan, D., Haklay, M., & Thurstain-Goodwin, M. (1999). STREETS: An

agent-based pedestrian model. CASA working papers 9. Center for Advanced Spatial
Analysis. London, UK: University College London.

Shaikh, N. I., Ragaswamy, A., & Balakrishnan, A. (2005). Modelling the diffusion of
innovations using small world networks. Working Paper.

Sharara, H., Rand, W., & Getoor, L. (2011, July 17–21). Differential adaptive diffusion:
Understanding diversity and learning whom to trust in viral marketing. Proceedings
of the AAAI International Conference on Weblogs and Social Media (ICWSM)
Barcelona, Spain.

Siebel, F., & Kellam, L. (2003). The virtual world of agent-based modeling: Procter and
Gamble's dynamic supply chain. Perspectives on Business Innovation, 9, 22–27.

Stephen, A. T., & Berger, J. A. (2009). Creating contagious: How social networks and item
characteristics combine to drive persistent social epidemics (April 9). http://ssrn.
com/abstract=1354803 Available at SSRN

Stephen, A. T., Dover, Y., & Goldenberg, J. (2010, May 17). A comparison of the effects of
transmitter activity and connectivity on the diffusion of information over online social
networks. INSEAD Working Paper No. 2010/35/MKT. http://ssrn.com/
abstract=1609611 Available at SSRN

Sterman, J. D. (2000). Business dynamics: Systems thinking and modeling for a complex
world. Irwin/McGraw-Hill.

Stonedahl, F., Rand, W., & Wilensky, U. (2008). Multi-Agent learning with a distributed
genetic algorithm. Proceedings of Autonomous Agents and Multi-Agents Systems
(AAMAS) ALAMAS+ALAg Workshop, May 12–16, 2008, Estoril, Portugal.

Tay, N. S. P., & Lusch, R. F. (2002). Agent-based modeling of ambidextrous
organizations: Virtualizing competitive strategy. IEEE Transactions on Intelligent
Systems, 22(5), 50–57.

Tay, N. S. P., & Lusch, R. F. (2005). A preliminary test of Hunt's General Theory of
Competition: Using artificial adaptive agents to study complex and ill-defined
environments. Journal of Business Research, 58(9 SPEC. ISS), 1155–1168.

ThinkVine (2010). How we use agent-based modeling in our marketing simulation &
planning tool. Technical white paper. http://www.thinkvine.com/

Torrens, P. M. (in press). Moving agent-pedestrians through space and time. Annals of
the Association of American Geographers.

Toubia, O., Goldenberg, J., & Garcia, R. (2008). A new approach tomodeling the adoption
of new products: Aggregated diffusion models. MSI Reports: Working Papers Series,
No. 08-001 (pp. 65–76).

Valente, T. W. (1995). Network models of the diffusion of innovations. Cresskill, NJ, USA:
Hampton Press, Inc.

Van den Bulte, C., & Joshi, Y. V. (2007). New product diffusion with influentials and
imitators. Marketing Science, 26(3), 400–421.

Walsh, W., & Wellman, M. (1999). Modeling supply chains formation in multiagent
systems. Proc. IJCAI-99 Workshop Agent-Mediated Electronic Commerce.

Watkins, A., & Hill, R. (2009). A simulation of business-to-business decision making in a
relationship marketing context. Industrial Marketing Management, 28(8), 994–1005.

Watts, D. J. (1999). Small worlds: The dynamics of networks between order and
randomness. Princeton: Princeton University Press.

Watts, D. J. (2002). A simple model of global cascades on random networks. Proceeding
of the National Academy of Sciences, 99, 5766–5771.

Watts, D. J., & Dodds, P. S. (2007). Influentials, networks and public opinion formation.
Journal of Consumer Research, 34(4), 441–458.

Wilensky, U. (1999). Center for connected learning and computer-based modeling.
Evanston, IL: Northwestern University. http://ccl.northwestern.edu/netlogo

Wilensky, U. (2003). BehaviorSpace. Evanston, IL: Center for Connected Learning and
Computer Based Modeling, Northwestern University. http://ccl.northwestern.edu/
netlogo/behaviorspace

Wilkinson, I., & Young, L. (2002). On cooperating: Firms, relations, networks. Journal of
Business Research, 55, 123–132.
in marketing: Guidelines for rigor, Intern. J. of Research in Marketing

http://jasss.soc.surrey.ac.uk/9/3/2.html
http://jasss.soc.surrey.ac.uk/11/2/3.html
http://www.R-project.org
http://ssrn.com/abstract=1354803
http://ssrn.com/abstract=1354803
http://ssrn.com/abstract=1609611
http://ssrn.com/abstract=1609611
http://www.thinkvine.com/
http://ccl.northwestern.edu/netlogo
http://ccl.northwestern.edu/netlogo/behaviorspace
http://ccl.northwestern.edu/netlogo/behaviorspace
http://dx.doi.org/10.1016/j.ijresmar.2011.04.002

	Agent-based modeling in marketing: Guidelines for rigor
	1. Introduction
	2. Previous applications of agent-based modeling in marketing
	3. Why use agent-based modeling?
	4. Introduction to the illustrative example
	5. When is agent-based modeling appropriate?
	6. Guidelines for model development
	7. Guidelines for a rigorous model
	7.1. Verification
	7.2. Validation

	8. Using the model
	9. Conclusion
	Acknowledgments
	References


