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Smart Meter Driven Segmentation: What Your

Consumption Says About You
Adrian Albert, Ram Rajagopal

Abstract—With the rollout of smart metering infrastructure
at scale, demand-response (DR) programs may now be tailored
based on users’ consumption patterns as mined from sensed
data. For issuing DR events it is key to understand the inter-
temporal consumption dynamics as to appropriately segment
the user population. We propose to infer occupancy states from
consumption time series data using a Hidden Markov Model
framework. Occupancy is characterized in this model by i)
magnitude, ii) duration, and iii) variability. We show that users
may be grouped according to their consumption patterns into
groups that exhibit qualitatively different dynamics that may
be exploited for program enrollment purposes. We investigate
empirically the information that residential energy consumers’
temporal energy demand patterns characterized by these three
dimensions may convey about their demographic, household, and
appliance stock characteristics. Our analysis shows that temporal
patterns in the user’s consumption data can predict with good
accuracy certain user characteristics. We use this framework to
argue that there is a large degree of individual predictability in
user consumption at a population level.

I. INTRODUCTION

Demand response and energy efficiency programs have

gained wide acceptance as a mechanism to cope with man-

agement of peak load demand in the grid. Such programs

benefit from the heterogeneity in the end user consumption

goals. For example, consumers whose consumption pattern is

more flexible, can be compensated to either curtail or defer

their consumption during peak energy hours. Other programs

target consumers who are inefficient in their consumption due

to long term choices, such as utilizing inefficient appliances or

having poor home thermal insulation. Typical programs offer

rebates in exchange for purchasing more efficient appliances

or pursuing energy efficient interventions at their dwelling.

Due to the heterogeneity in consumer behavior and char-

acteristics, finding the right consumers for the right program

can be costly: it is not feasible to contact every consumer and

obtain demographic, dwelling and behavior information. Fur-

thermore, it is observed that excessive contact with potential

consumers can lead to attrition or loss of enrollment (noted,

e.g., in [11]). Yet, nowadays utilities have at their disposal a

wealth of data about consumers that is not yet extensively used

for improving program performance [33]. Advanced Metering

Infrastructure (AMI) deployments have enabled acquisition

of fine grained energy consumption information which could
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reveal various preferences, behaviors and characteristics of in-

dividual consumers. We define smart meter predictive program

segmentation as the problem of uncovering predictive relation-

ships between consumption (as measured by smart meters) and

consumer preferences, characteristics and behaviors. In this

paper we describe this problem in more detail, and propose

a first methodology that captures behaviors at multiple time-

scales and forms to build a predictive segmentation program.

An initial step in uncovering segments of consumers is

building rich, dynamic models of individual consumption; if

such models were available at the individual level, one may

then use them to compare user behavior and relate it with other

available information on socio-demographic characteristics

and user preference. We posit that, when external stimuli

(e.g., weather patterns [32]) are accounted for, individual

temporal consumption depends solely on behavioral choices

(e.g., lifestyle) as reflected in consumption. Moreover, we

hypothesize that these choices stem from socio-demographic

characteristics and attitudes towards energy efficiency. Our

interest here is for a descriptive analysis employing simple

models of consumption. To this end, we i) assess whether

individual users’ (weather-normalized) temporal consumption

patterns is reasonably described using a simple, generative

stochastic model that captures both dynamics and magnitudes

of consumption (a Hidden Markov Model, HMM [29]); ii)

compare and group users according to similarities in their

consumption patterns (using spectral clustering of HMMs [27];

and iii) utilize the inferred characteristics of consumption

to predict exogenous characteristics (demographics, appliance

stock, etc.) To the best of our knowledge, this is the first

paper to propose a dynamic model of consumption for program

segmentation, as well as to predict user attributes and lifestyle

using consumption characteristics.

The rest of the paper is structured as follows. Section II

defines smart meter predictive program segmentation. Section

III reviews the literature on data analytics for smart meters.

Section IV outlines the modelling framework and algorithms

used and how they relate to our application. Section V

describes the data used. Section VI presents a discussion of

consumption characteristics mined from the user population.

Section VII shows that consumption characteristics may be

used to infer user attributes. Section VIII offers a discussion

of how this methodology may be used in practice for targeted

incentive programs. Section IX concludes the paper.

II. PROBLEM STATEMENT

Predictive program segmentation. We observe N time series

{X}n, n = 1, ...N , each representing the energy consumption
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(in kWh) sampled at regular intervals ∆t (here 30-minute

aggregates of 10-minute data) of an individual household n
(here referred to interchangeably as users or individuals). Our

goal is to derive characterizations of individual consumption

across a user base as to identify segments in the population

whose usage patterns are in some way similar. Users in differ-

ent groups have different inter-temporal consumption decision

dynamics, and should benefit from different consumption

curtailment strategies. From a system operator’s perspective,

the demand of users with less predictable temporal consump-

tion profiles is more expensive to service than for those

whose consumption one can predict well [5]. Yet demand-

response programs may also benefit from diverse load patterns:

with proper aggregation and control mechanisms (differential

pricing, incentives for load deferral etc.), one may achieve

load-balancing results building on the relative flexibility in

consumption of more random users. Moreover, it is expected

that people sharing similarities on certain levels (lifestyle,

appliances, house characteristics for the energy context) will

generally exhibit similar characteristics in consumption. This

hypothesis has been hard to validate in the past because of

insufficiently detailed metered data. We propose a data-driven

methodology that allows predicting user attributes using only

consumption characteristics as inferred from the consumption

time series. The steps are outlined below and in Figure 1.

Fig. 1. Schematic of the analysis presented in this paper (see Section II).

Dynamic user consumption model. For each user, we model

energy use as the sum of a deterministic weather sensitivity

component and an occupancy component:

Xt = f(Wt) + Yt, (1)

where Wt are exogeneously-specified weather time series, f(·)
is a functional form specified by the modeler (here linear-in-

parameters, see Section V), and Y is an occupancy-related

component. Note that we explicitly adopted the simplification

that weather and occupancy are independent, which is a strong

assumption to make; subsequent extensions on this basic

model will address this issue (see Section IX).

What we here term “occupancy” is in fact a proxy for a

combination of i) number of household members and their

presence in the house, and ii) their activity while at home.

In a real-world situation we do not observe ground-truth

labels of the different activities over time that result in energy

consumption decisions; but can we identify certain patterns

that are associated with more high-level lifestyle and appliance

ownership proxies?

Modeling each consumer separately has several advantages:

i) having a separate model for each user more richly cap-

tures the individual characteristics for personalized targeting

strategies; ii) the computation is easily parallelizable, as no

dependencies across users are taken into account; and iii) new

AMI deployments and data storage and processing capabilities

are making possible to analyze consumption at the individual

level, offering identification properties and rich structure pre-

viously only available from panel-type analyses.

The predominant approach to modelling energy consump-

tion has focused on the first component of (1), primarily

by specifying a linear form of f(·) on weather {Wt}. We

formulate a typical linear regression model in Section V;

however, we argue there that this modelling choice leaves

out important structure in the idiosyncratic component of the

regression. In particular we observe a large degree of serial

correlation and departure from the assumption of normality.

Even when (linear) deterministic weather effects are accounted

for, some users may display a bursty, relatively predictable

consumption behavior, whereas others may appear to consume

rather at random. I.e., the linear model predicts consumption

well for some users, but fails to do so for others.

Our contribution is to explicitly model the idiosyncratic

component Y , which we interpret as encoding occupancy

effects on consumption. We posit that consumption follows

an inter-temporal sequence of decisions that describe occu-

pancy states of a household in addition to the (deterministic)

baseline provided by weather. We wish to propose simple

characterizations of the occupancy states in terms of mag-

nitude, duration, and variability. Thus consumption may be

represented schematically as in Figure 2, with the magnitude

dimensions (µ, σ2) on the horizontal and vertical axis, the

duration dimension represented by the radius of the circles (λ),

and variability represented by the grayscale intensity of the

transition arrow between the two states. A natural modelling

choice for that end is a Hidden (Semi-)Markov Model.

Fig. 2. Consumption characteristics: magnitude µ, duration λ, variability S.

Model-based user classes. For the purpose of intervention

programs, we want to group our N time series into K ≪ N
types, so that each group may receive a tailored incentive. In
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practice it is critical to have a small enough K (to reduce

administrative costs and user confusion), yet to capture the

temporal dynamics structure in the data well. Given the non-

linear fashion in which these patterns interact across users, we

employ unsupervised learning techniques to compute group-

ings starting from the individual models for consumption.

These groups are natural targeting segments for marketing

demand-response programs.

User and consumption characteristics. Having characterized

individual consumption according to weather sensitivity, mag-

nitudes, duration, and variability, we wish to relate such struc-

ture to user attributes. We are interested in prediction power

of model features with respect to lifestyle- and appliance-

related attributes of users. This approach is the inverse of the

current practice at utilities, which perform “psychographic”

segmentation that attempts to infer consumption patterns from

questionnaire data administered to customer sample [25].

III. LITERATURE REVIEW

Energy consumption has been of significant interest for a

number of literatures, in particular economics and engineering.

Econometric studies are typically concerned with user demand

elasticity in the presence of non-linear pricing and deregula-

tion (e.g., [31], [32]). Another topic that has received much

attention has been the effect of weather on residential energy

use. For example, in [15] the authors argue for a non-linear

dependence of energy consumption with temperature, whereas

in [12] the authors propose a specification that uses lagged

temperature values. In [16], the authors use the same dataset

as us in a panel format to estimate econometrically the effects

of real-time feedback on consumption. However until recently

most such studies could only use daily or monthly data.

Because of the unavailability of high-resolution, hourly

or sub-hourly meter data, the literature on energy analyt-

ics energy is still in its infancy. Some recent works use

low-resolution consumption data for more recent statistical

learning algorithms to improve on forecasting performance of

early work. For example, in [21] the authors apply Gaussian

process regression to monthly energy consumption data for

residential buildings and household characteristics obtained

from databases to predict energy usage at a city block level.

With the recent introduction of smart meters at scale, more

(mostly application-oriented) studies have been published that

address high resolution time series modeling or customer

clustering. For example, [33] challenges the assumption in

the load analysis practice of morning and evening peaks by

using a large time series corpus to identify 40 typical load

shapes using K-Means clustering. In [10] the authors use 15-

minute resolution smart meter data from ∼ 200 customers of

an utility company in Germany to perform a K-Means clus-

tering analysis to inform cluster-based pricing schemes. They

propose time-varying prices that are a function of the “num-

ber of peaks” and peak width, which essentially are rough

measures of consumption dynamics. In [30] a features-based

(K-Means) clustering is proposed using quantities such as

the mean, standard deviation, maximum Lyapunov coefficient,

Fourier mode energy for each of the 11 weeks and the ∼ 1000

customers in their data. A similar approach is taken also in

e.g., [9]. More closely related to our analysis methodology, [2]

identifies groups of substations in the Belgian grid based on

daily load patterns at 245 buses using a multivariate version

of spectral clustering. Also, [19] analyze the same dataset

[16] from the perspective of structural building characteristics

effects on season-adjusted consumption statistics. Recently [1]

have proposed a statistically-meaningful customer segmenta-

tion technique that is based on Power Demand Distributions,

i.e., recurring shapes in consumption distribution profiles.

Extensive literature exists on HMMs [29] and on their

many flavors and applications, ranging from DNA structure

analysis to speech recognition to financial market modeling.

Here we use Hidden Semi-Markov Models (HSMMs) [39].

Typical computational issues include estimating the number of

states [4] and dealing with missing data [37]. In the context

of residential load data, HMMs have only seen a limited use

to date, in particular for the disaggregation problem of re-

covering individual appliance signals from the aggregate load

profile [22], [20]. Recently HMMs have been adopted with

enthusiasm also in the targeted interventions and marketing

literatures. For example, in [26] the authors estimate a model

of the dynamics of alumni-university relationship using a panel

of donation data. Over the last decade a growing interest is

noticeable in incorporating external covariates into the HMM

framework, which is most commonly done using generalized

linear (e.g., logit) models for rows of the transition matrix and

linear regression models for the state emission probabilities

[36], [40]. Recently a growing body of literature developed

estimation methodologies for such models defined over an

entire population (in a panel fashion) [40].

Segmenting a collection of time series using Hidden Markov

Models is also a relatively new thread of research. In a

clustering application, direct comparison of the parameter

space of two models is ill defined, as the models may differ

greatly in complexity [17]. Different techniques [34], [23],

[17], [38] have been proposed to learn clustering solutions for

HMM collections which typically involve computing a log-

likelihood matrix L of every time series under each of the

models, and then applying a standard clustering algorithm on

L (or a suitable transformation thereof), such as K-Means

or spectral clustering [27]. Other, fully-parametric approaches

view the K-clustering problem as estimating a mixture of K
HMMs on the entire dataset [6]. The analysis presented in this

paper more closely resembles that in [17] and [38], as we use

a combination of parametric and unsupervised learning.

IV. ALGORITHMIC FRAMEWORK

A. Hidden Markov Models

We propose to model the time-dependent occupancy effects

on consumption for an individual user as a trajectory through

occupancy states. Each state is characterized by magnitude

and duration spent in the state as described in Figure 2.

Moreover, the dynamics of transitioning between the states

is modeled as a (discrete) stationary process. As we argue in

Section V, a large degree of serial correlation is observable

empirically in the consumption time-series. This suggests that
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Fig. 3. Top: We model a user as a finite-state machine with states
characterized by Λ = (µ, σ2, λ); Bottom: The structure of a Hidden Markov
Model. Observed values Yt are generated by and underlying, unobserved
Markov process Yt. A Hidden Semi-Markov Model is a generalization that
allows the time spent in any state to obey a general distribution, including the
Geometric one for the HMM as a special case.

modeling consumption as an HMM can transparently and

parsimoniously capture both magnitudes and dynamics, while

addressing the departures from the assumptions of the linear

model observed in real data.

Definitions. A (discrete-time, homogeneous) Hidden Markov

Model is a simple (stochastic) graphical model [29] with the

following special structure (see Figure 3, bottom panel):

1) A set of M (unobserved) states S = {S1, ..., SM}
2) An initial probability distribution over the states

πi = P (S1 = i)
3) A state transition probability distribution

Aij = P (St = i|St−1 = j). This is the Markov

assumption that the state of the system at time t only

depends on its state at the previous time step t− 1, but

not on all past history.

4) An emission probability density b(y) = p(Yt = y|St).

In essence, a Hidden Markov Model can be viewed as a noisy

observation of an underlying Markov chain. Note that while

the chain {St} obeys the Markov property, the process {Yt}
does not. This allows us to model long-range serial correlations

in a simple and flexible way.

The standard HMM has an implicit geometric distribution

over the time spent in each state [40]. This construction

may be too restrictive for modeling energy consumption,

which depends on lifestyle and work schedules that span

time scales longer than the 30-minute unit of observation in

our data that have characteristic time spans (e.g., 1-2 hour

mornings preparing for going to work, 3-4-hour evenings at

home relaxing at the end of the work day). Thus we wish

to explicitly model the distribution d(ut|St = i) over the

number of time steps ut spent in each state. One class of

models that internalize this behavior are the (discrete) Hidden

Semi-Markov Models [39]. For this we used a simple Poisson

counting process ut = k|St = i ∼ Poisson(λi), i.e.,

d(ut = k|St = i;λi) =
λk
i e

−λi

k!
, (2)

with rate parameters λi, i = 1, ...,M to be estimated from

the data. Our choice of the Poisson model is motivated by

several observations. First, it is a standard, widely-used model

for describing spread around an observed average duration of

random event occurrences; such models have been used to

model many aspects of human behavior, from communication

activity (email, text messages) to credit default and queuing

behavior [3]. Second, it is a simple analytic model that

simplifies computational inference.

We model the emission distributions as Gaussian, b(y; θ) ∼
N (µi, σ

2
i ), i.e.,

p(Yt = y|St = i; θi) =
1√
2πσi

exp

(

(y − µi)
2

2σ2
i

)

, (3)

where θi ≡ (µi, σ
2
i ) and i = 1, ...,M . We use Gaussian distri-

butions because of i) this choice offers direct correspondence

with and least departure from the usual assumption of the

linear model, for which many statistical results are known [13];

and ii) estimation via the Expectation-Maximization (EM)

algorithm [14] is more efficient computationally because of

the analytic maximization in the M-step (see below).

We denote Λ ≡ (θ,λ) = (µ,σ2,λ) the vector of model

parameters that we need to estimate from the data (the bold

face font indicates vector quantities). In this paper we estimate

one such Λn for each individual household n = 1, ..., N .

Estimation. The (complete) likelihood for data {Yt}Tt=1 under

such models may be written as:

L(y) =
M
∑

s1,...,sT=1

P (Y = y,S = s), where

P (Y = y,S = s) = πs∗
1
ds∗

1
(u1)

R
∏

r=2

p(s∗r |s∗r)ds∗1 (ur)

T
∏

t=1

p(yt|st),

(4)

where s∗r is the r-th visited state, r = 1, ..., R and ur the time

spent in that state.

Fitting HMMs is referred to as the learning problem,

i.e., computing maximum likelihood estimates (MLE) of the

parameter vector Λ:

Λ = argmax L(y;Λ).

This is usually performed via the Baum-Welch algorithm [29],

which is a variant of the EM algorithm [14] for dealing with

missing data (here the missing observations are the unobserved

states {St}). The EM algorithm may be summarized as:

1) Start with a (reasonably chosen, see below) guess Λ0

2) E-step: compute expected value of complete-data log-

likelihood Q(Λ|Λk) = E[logL(y; Λk)]
3) M-step: choose Λk+1 = argmax Q(Λ|Λk)
4) Repeat (2) and (3) until convergence.
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Explicitly modeling durations ur above complicates learning,

but a number of efficient estimation methods have been

developed for the task. Here we used the exposure and

implementation in [28].

Note that the solution the EM algorithm converges to is

typically a local maximum of the likelihood function. This

is because L is non-convex in general. Careful initialization

of model parameters or multiple re-estimations starting from

different initialization points may ensure that a good such

local optimum is found that is close to the global optimum.

Following [23], here we first computed a K-means clustering

on M (the number of HMM states) of the observation data y;

for each of those clusters we computed the mean and variance

of the observations contained, which we then used as initial

estimates for state means and variances.

Inference (computing the most likely sequence of states s

that fits a given observation sequence y) is referred to as the

decoding problem in the HMM literature:

argmax
s

P (S|Y).

Efficient inference (the Viterbi algorithm [29]) that is based

on dynamic programming is known for this problem. We use

the implementation provided in the [28] in our calculations.

Choosing model size. The discussion above assumes that

the number M of states is known a priori; this is not the

case when dealing with real data. Many approaches have been

proposed that address this problem in particular contexts [24];

here we employ a strategy outlined in [4]: for a given time

series we fit an HSMM with a maximum allowed number of

states Mmax (here Mmax = 10) to the training set (about half

of the observations); we then sequentially prune out the least

probable state in the stationary distribution of the underlying

Markov Chain, each time computing a measure of model fit

(here the BIC criterion [14]) on a validation set (of similar

size to the training set); we finally choose the optimum model

size M∗ the one with the highest BIC score.

B. HMM clustering

As in [23], [17], we use spectral clustering to segment a

collection of HMMs into classes of similar statistical prop-

erties. This is a graph-theoretic segmentation technique that

relies on solving a minimum cut problem in a weighted graph

[27]. For a K-clustering problem, the algorithm is as follows:

1) compute a N ×N symmetric matrix W , where

Wij = |p({Yt}j ;Λi) + p({Yt}i;Λj)−
p({Yt}i;Λi)− p({Yt}j;Λj)|, (5)

for all pairs of sequences {Yt} and HMM fits Λ;

2) compute the normalized Laplacian L of the graph de-

fined by the adjacency matrix exp(−Wij/2σ
2) (for σ2

chosen as described in [27])

3) compute the K principal eigenvectors corresponding to

the largest eigenvalues of L and use them to form a new

stacked N ×K matrix P ;

4) apply a standard clustering algorithm (here we used

K-Medoids) on P , and output cluster membership.

Fig. 4. Geographic distribution and climate zones of users in the sample.

V. EXPERIMENTAL SETUP

A. Data description

Question Levels Answers

Individuals.under.5 No/Yes 615/337

Individuals.36.to.54 No/Yes 546/406

Individuals.55.to.65 No/Yes 893/59

Individuals.over.65 No/Yes 927/25

Pets No/Yes 573/379

Employed.full.time outside.home. No/Yes 14/938

Employed.part.time outside.home. No/Yes 835/117

Work.from.home No/Yes 788/164

Unemployed. No/Yes 669/283

Central.Heater Other/Electricity 763/189

Spa.Hot.Tub.or.Pool.Heater Other/Electricity 870/82

Water.Heating.Systems Other/Electricity 814/138

Clothes.Dryer Other/Electricity 366/586

Oven Other/Electricity 435/517

Cooktop.Stovetop Other/Electricity 615/337

Plasma.Televisions No/Yes 670/282

Non.plasma.Televisions No/Yes 180/772

Refrigerators < 2/ >= 2 699/253

Computers < 2/ >= 2 52/900

DVD.players No/Yes 61/891

Gaming.Consoles No/Yes 300/652

Dishwashers No/Yes 53/899

Stand.alone.Freezers No/Yes 821/131

Washing.Machines No/Yes 91/861

Clothes.Dryers No/Yes 94/858

Room.Units.or.Central.AC No/Yes 339/613

Stand.alone.Unit.or Central.Heaters No/Yes 70/882

Spas.Hot.Tubs.or.Pools No/Yes 829/123

TABLE I
QUESTIONNAIRE SUMMARY (APPLIANCES AND DEMOGRAPHICS)

The primary dataset used in this paper was collected through

an 8-month (March-October 2010) experiment [16]. The orig-

inal goal of the study was to assess the impact of detailed con-

sumption feedback on energy use. Data is available from about

1100 households of U.S-based Google employees and contains

i) Power demand time series of 10-minute resolution for about

1100 households and ii) Socio-economic data obtained via

an on-line survey in which approximately 950 participants

took part. In addition to this data we collected measurements

on weather parameters (at 5 − 15 minutes resolution) at

the locations (indicated by zipcode) of most users in the

experiment using an online API1. The geographic distribution

1www.weatherunderground.com
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(and the corresponding weather patterns) experienced by the

users varied substantially across the population (see Figure 4).

Most users however were located in Northern California.

Data was not free of inconsistencies (e.g., reading errors or

incorrect timestamps); some time series contained very few

data points (less than 200), such that they were left out of the

final analysis. In addition, we only retained those households

(N = 952) for which survey responses were available, and for

which reliable fine-grained weather data could be collected.

We snapped both the weather covariates and the consumption

time series to the same time axis using nearest-neighbor

interpolation to fill in small gaps (up to 2 hours) and an EM

algorithm (package Amelia in R with a multivariate normal

target distribution) to imputate gaps for up to a day.

The online survey included information on many socio-

demographic characteristics (we selected 89 covariates of

interest, leaving out information such as political orientation

and gender). A summary of some selected important attributes

is given in Table I. For the purpose of this analysis, we

were only interested in practical dichotomies on participant

characteristics, e.g., whether a given household had a large

number (> 2) of fridges, or had any elderly people or infants.

B. Weather effects

We estimate the (linear) weather effects in (1) as f(W ) by

performing a regression analysis of the form

xnt =

9
∑

j=1

βnjWnt +

24
∑

j=1

δnj1{ToD(t) = j}+

7
∑

j=1

γnj1{DoW(t) = j}+ νn1{Holiday(t)} + ǫnt,

(6)

where n ∈ {1, ...N} refers to the user n as before, t ∈
{1, ...T } represents time (on a 30-minute resolution), Wnt are

the weather covariates (temperature, pressure, humidity, and

second-order interactions) for user n, the δ’s, γ’s and the ν’s

are dummy variables for time-of-day (in hours), day-of-week

(Monday to Sunday) and federal holiday, respectively. We

settled for specifying hourly and weekly fixed effects this way

as opposed to defining a more flexible day-of-week to hour-

of-day interaction terms because of the more stringent data re-

quirements for estimating the latter specification (24×7 = 168
coefficients as opposed to 24 + 7 = 31 coefficients in the

former case). The ǫnt terms are normally-distributed with zero

mean (an ordinary least-squares regression). We used higher

powers of weather covariates following [15], who argue for an

up to fourth-order polynomial dependence with temperature of

energy use based on a physical model of heat loss. The object

of analysis in the next sections is the regression residuals ǫ̂nt
which, according to Figure 5 accounts for a significant portion

of consumption: around 80% of variance in consumption for

most users, and up to 35% of variance for even the users

best-represented by linear models. Designing programs and

evaluating their performance based on models with such poor

predictive capabilities clearly miss important opportunities.

Fig. 5. Distribution of variance explained (R2 , expressed as fraction) by
weather (overall and per-covariate) for all users in the sample.

As Figure 5 suggests, regression performance varies quite

widely across the panel of users in explaining variance in

consumption. Taken individually, weather covariates don’t

exhibit significant performance, with the best of the three

being temperature (up to ∼ 30% variance explained for some

users) and the worst being humidity (green curve). However,

the model (6) explains up to ∼ 65% of the variance in

consumption depending on the user. We retained the regression

coefficients as classification features (Section VII).

C. Beyond the linear model: the case for occupancy effects

Note that important assumptions on the idiosyncratic shock

ǫnt in linear models such as (6) are independence and identical

distribution (i.i.d) according to a normal distribution (with

constant variance) [13], i.e.,

E[ǫntǫnt′ ] = 0 and

ǫnt ∼ N (0, σ2). (7)

These are very restrictive assumptions that do not necessarily

hold in real consumption data, even with flexible specifications

of the deterministic part in (6). For example, consider Figure 6,

where we present some properties of the regression residuals

for one typical user. The residual density (lower-left panel)

is clearly non-Gaussian, with apparent secondary peaks and a

long tail, which suggests a mixture structure. Moreover, the

autocorrelation coefficients for the first 15 lags (lower-right

panel) are significantly greater then 0 (well above the 5%

confidence level indicated by the horizontal dashed line).

We performed a similar analysis on the residuals for all

users in our sample. First, we observe a high degree of het-

eroskedasticity (unequal variance σ2 at different observations).

In fact, of the ∼ 1000 users that we perform our analysis on,

> 94% display noticeable heteroskedasticity (as detected using

a standard Breusch-Pagan test at a 5% level [13]). Second, we

investigated the departure from normality of consumption for

users in the sample, using an Anderson-Darling test of the

null hypothesis H0 that the data was drawn from a normally-

distributed population [13], and find that we are able to reject

H0 at a 5% confidence level for 83% of the users in the

sample. To test for serial correlation we used a Durbin-Watson

test [13] (which tests H0 that the first-order autocorrelation

lag ρ = 0), and find that we are able to reject H0 at a 5%
confidence level for all (100%) the users in our sample. All
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Fig. 6. Structure of the linear model error term for one example user. A time
series of the residuals is shown in the upper panel. Note the non-Gaussian
distribution density (lower-left panel) and the significant autocorrelation
coefficients (lower-right panel, bars above the dotted blue line) for lags up to
16 (8 hours).

these observations are clear indication that there is more to

consumption that is not captured by the simple linear model

that is pervasive in the energy consumption analysis literature.

VI. OCCUPANCY STATES ANALYSIS

A. Characteristics of consumption

The analysis in this section proceeds on the occupancy

component of consumption Y in our model (1). To each user’s

occupancy component Y we fit time-homogeneous HSMMs

with Gaussian emission distributions and Poisson sojourn

times, as outlined in Section VII and following the exposure

in [28]. All estimations were performed in the open-source

statistical language R. Model structure for an example user is

illustrated in Figure 7. The top panel presents the decoded

sequence for about 5 days, with the means (colored dots)

and standard deviations (vertical gray bars) of the inferred

states plotted over the actual consumption (gray). Note that

such a model is able to capture both the bursty events in

consumption (the high-mean, high-variance state 3 depicted

in green) and the relative flat consumption periods (state 5

depicted in magenta). The bottom-left panel is an illustration

of the consumption characteristics of the occupancy states for

the selected users following the schematic in Figure 2, in

which each state is a circle of radius λ in a (µ,σ2)-space. Link

widths are proportional to the transition probabilities between

states and encode variability in consumption. The bottom-right

panel compares the first 40 autocorrelation coefficients of the

residuals ǫ̂it for the sample user with those of the the HSMM

fit. Such a model is (by construction) able to capture the long-

range correlations in consumption to a significant degree at

least for the first ∼ 10 lags (corresponding to 5− 6 hours).

In Figure 8 we show the distribution of variance explained

R2 and model size M for the user population. Such modeling

explains, on average, another ∼ 35% of the variance in the

OLS residual, and as high as 80%. Most common model

complexity is 5 states; note that the truncation at M > 10
was done for computational reasons (since the Baum-Welch

has a runtime complexity quadratic in M , O(TM2)). There is

wide variation on performance, which indicates that our simple

modeling steps may not be sufficient for capturing the complex

nature of consumption for certain users. We are currently

developing a user model with superior predictive properties

building upon the observations in this paper.

A general trend we notice in the case of magnitude charac-

teristics (state mean µ and variance σ2) is that the first four

states tend to represent consumption levels below the baseline

offered by the deterministic weather part in (1); models with

5 or more states represent complex dynamics including more

pronounced bursty consumption. We also notice that typical

sojourn times (rates λ of Poisson durations) range from 2-

4 time steps (1-2 hours) to upwards of 50 timesteps (a

whole day). This indicates a large degree of heterogeneity in

occupancy regimes for single users and across a population.

B. Occupancy variability

To quantify empirically the randomness in the HSMM state

sequence describing each individual user’s consumption as es-

timated above, we turn to information-theoretic concepts. The

(Shannon) entropy of a discrete (over M states), stationary,

i.i.d. stochastic process with known p.m.f p is given by

Sshn = −
M
∑

j=1

p(j)log2p(j). (8)

In our case p(·) is defined over sequences [7]. To approxi-

mately compute the entropy of arbitrary sequences for a finite,

discrete-time process, we use the Lempel-Ziv estimator [35]

SLZ =

(

1

T

∑

i

li

)

−1

lnT, (9)

with T the length of the sequence and li the length of the

shortest substring that starts at position i and which does not

appear at any position between 1 and i − 1. In addition, we

compute two additional benchmarks to characterize variability

of the occupancy states under different models for p(·). If p
is the uniform distribution, we have Srnd = log2(M). If p
is the limiting distribution π̂ of the underlying Markov chain

(the left-eigenvector of the transition matrix A,π̂ = Aπ̂), we

have Sshn = −∑M

j=1
π̂j log2π̂j . In Figure 9 (left panel) we

present the distribution of the three benchmarks Srnd, Sshn,

and SLZ over all users in the sample. Note that SLZ peaks

at ∼ 1.5 (corresponding to an average uncertainty of 21.5 <
3 states), whereas Sshn peaks at ∼ 2.4 (corresponding to an

uncertainty ∼ 5 states). Moreover the distribution of SLZ is

much narrower than the others. These observations suggest

that the temporal succession of states in the sequence indeed

encodes information, allowing us to discriminate users by how

flexible their consumption is.

As an additional benchmark we calculated the predictability

Π [35] for each user, defined as the probability that a suitable

algorithm may correctly predict future states in a given se-

quence. For a sequence of length T and entropy S, we may

calculate an upper bound Πmax on Π as the solution of

S =−Πmaxlog2Π
max − (1−Πmax)

log2(1−Πmax) + (1 −Πmax)log2(T − 1) (10)
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Fig. 7. HSMM model for one user. Top: Example decoded sequence (T = 200 samples). States are shown in colors connected by a solid black line; original
signal is shown in gray. Bottom-left: state space diagram as introduced in Figure 2; Bottom-right: autocorrelation coefficients of HMM fit (blue bars) and
original signal (red bars) up to 40 lags (20 hours).

Fig. 8. HMM fit results: variance explained (as fraction, left panel) and
model complexity M (right panel).

The distribution of Πmax estimates (random, Shannon, and

Lempel-Ziv) is plotted in Figure 9 (right panel). User pre-

dictability under our state-space model of consumption as es-

timated using the full entropy SLZ peaks at 77%, as compared

with the time-uncorrelated model Sshn, which peaks at 47%.

This again suggests that temporal patterns may be used to

predict consumption, and that the user population is highly

heterogenous in consumption predictability.

C. Clustering analysis

We group users according to their temporal patterns as out-

lined in Section IV. To estimate the number K∗ of clusters we

used the Gap Statistic [14] technique and found K∗ = 8. As

mentioned in Section IV, we used a K-medoids algorithm

as the last step in spectral clustering; this identifies “represen-

tative” users (cluster medoids) that can be used as prototypes

in describing the entire population. The computed centers

are illustrated in Figure 10. Note that indeed the models are

distinct in their properties: Cluster 1 is a complex 10-state

model, whereas cluster 7 contains low-complexity models (3
states); cluster 5 contains medium-complexity models with

small magnitude and variance states, out of which one is

considerably “stickier” than the others. In addition, all models

identified an occupancy state of high mean and variance, and

Fig. 9. Top: Distribution of Random, Shannon, and Lempel-Ziv entropy
benchmarks across the user population. Bottom: Population distributions of
predictability bounds Πmax.

Fig. 10. Typical consumption models for the N = 993 users.
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relatively short duration. Anticipating the occurrence of such

an occupancy regime is quite relevant in a Demand-Response

context: an appropriate action (a so-called “Demand Response

event” such as contacting the user to ask them to reduce or

shift their consumption) may be taken for those individuals

that are likely to exhibit a spike in consumption during peak.

VII. RELATING USER AND CONSUMPTION

CHARACTERISTICS

A. An inverse problem

We set out to understand whether certain user characteristics

may be inferred from knowledge of temporal patterns in

their demand. Associate occupancy consumption characteris-

tics with e.g., whether the household has a certain appliance,

or whether its inhabitants have certain lifestyles that are

indicative of when and how they will consume can serve as

a starting point to guide what kind of interventions aimed

at consumption curtailment they might be more responsive

to. As such, we learn (binary) classifiers to answer questions

of the type “Does the household have a Dishwasher?” or

“Does the household contain an elderly person?” using as

inputs consumption characteristics as described in Section VI.

In essence, we explore the practical value of this modeling

methodology to building a potential real-world system that

is able to make statements about users’ characteristics using

their usage data. This is the opposite approach to the one

that utilities currently take when designing their segmentation

and targeting strategies. Typically, utilities would send out

questionnaires of the type described in Section V to a sample

of their users, and would use the answers (typical response

rate is around 5%) for a “psychographic” segmentation [25],

creating user groups such as “green enthusiasts” or “apathetic

consumers”. This approach is costly and scales poorly on the

one hand, but also fails to take into account the actual energy

usage. By comparison our proposed method allows to make

(cheap) predictions on the lifestyle of the participants as to

decide on the appropriate programs to offer to different users.

Here we are primarily interested in prediction performance

without making any parametric assumptions, as opposed to

building a microeconomically-sound model that readily lends

itself to interpretation - which typically also has poor out-of-

sample predictive performance. In fact, attempting generaliza-

tions of the type of typical interest in the related economics

literature starting from this data would not be easily defensi-

ble: all users are relatively well-off, highly-educated Google

employees, which suggests strong biases at the very least.

Thus we are interested in a classification technique that may

be rather opaque, but has good out-of-sample performance.

Our preferred off-the-shelf classifier is the AdaBoost (the

ada package in R). This is an ensemble learning technique

that uses linear combinations of weak classifiers to improve

performance (here we used classification trees). In essence,

the algorithm computes optimal weights for a pre-determined

number of individual classifiers, which are initialized with

random assignments. A detailed description is given in [14].

For the purpose of this study we shall consider AdaBoost

as a high-performance off-the-shelf classifier.

B. Classification performance measures

We selected 33 items in the survey that relate to appliances

and household occupancy characteristics (see Table I). We

perform a 5-fold cross-validation analysis of classification, and

report average results in Table II. To assess the out-of-sample

classification performance we use the following concepts: the

number of true positives (TP ), false positives (FP ), true

negatives (TN ), and false negatives (FN ). Then we define

the following performance metrics (following the discussion

in [8]):

• Precision: PREC = TP
TP+FP

• Recall: RECL = TP
TP+FN

• F-measure: FMES = 2 PREC×RECL
PREC+RECL

All measures are between 0 and 1 and increase with classifi-

cation performance. FMES is the geometric mean of precision

and recall; we use this widely-accepted measure [8] as primary

performance indicator.

The survey data is quite unbalanced; for example, only

91 users do not have washing machines, which is little over

10% of the population. Then a classifier that assigns labels

at random (either has a washing machine or not) can appear

to perform quite well. Consider a “Yes“ response frequency p
observed in the data, and a classification algorithm that assigns

”Yes” with probability p i.i.d. Then the True Positives and

False Positives frequencies are TP = p2 and FP = p(1 − p).
Other measures follow in the same manner as above. We call

this algorithm a random classifier. Our task below is to assess

whether the feature-based classifier can offer gains over the

base case given by the random classifier.

C. Classification results

In Table II we tabulate the performance metrics described

above for a subset of questions that are typically associated

with Demand-Response interventions: large appliances, occu-

pancy information, heating/cooling infrastructure. All numbers

are differences in percentages from performance obtained with

classification and performance obtained with the random clas-

sifier on imbalanced data. We observe that substantial gains

in classification performance are achieved for some questions

over random guessing: washing machines 19% improvement,

clothes dryers 19% improvement, children under 5 11% (on

the F-measure). Note the substantial improvement in precision

(true positive rate) over random guessing for several questions,

e.g., 50% for the electric clothes dryers or 52% for the

presence of washing machines.

For each of the questions in Table II we also investigated the

most relevant classification predictors. For ensemble learning

such as the AdaBoost, relative importance is roughly the

relative frequency with which the feature is selected at splits

in the weak learners (decision trees) employed by the classifier

[14]. The results are exemplified in Figure 11 for 8 of the best-

separated questions (only the first 5 most important features

are shown). The states are ordered according to their means.

The x-axis values represent the relative importance of a given

covariate in the classfier.

A general trend observed was that appliance-related ques-

tions are best predicted by characteristics of states (roughly
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Question Precision Recall Fmeasure

Has electric clothes dryer? 0.50 0.10 0.19
Has washing machine? 0.52 0.10 0.19
Has central AC? 0.21 0.13 0.17
Has small children (under 5)? 0.06 0.18 0.11
Has unemployed occupants? 0.03 0.18 0.10
Has more than 1 fridge? 0.03 0.18 0.10
Has a plasma TV? 0.01 0.22 0.10
Has occupants aged 36-54? 0.05 0.13 0.09
Has pets? 0.03 0.15 0.08
Do occupants work from home? 0.00 0.16 0.07

TABLE II
CLASSIFICATION PERFORMANCE METRICS FOR THE TOP 10 BEST

PREDICTABLE QUESTIONNAIRE ITEMS: RELATIVE IMPROVEMENT OVER

RANDOM GUESSING (AS FRACTION).

related to consumption magnitude), whereas lifestyle-related

questions were best predicted by features more intimately

related to temporally-varying consumption (entropy and pre-

dictibility). For example, randomness in consumption on work-

days or Fridays can be a proxy for Individuals under

5 (small children) in the household, whereas variance of high-

mean states 8 and 9 predict the presence of washing machines.

Interestingly, randomness in consumption on Thursdays is

indicative of whether users owned washing machines, which

may suggest that many users may do laundry on Thursdays.

The presence of unemployed members of the household is

also best predicted by randomness in consumption during

work days - presumably unemployed people stay at home,

and use the appliances, rather than go to work and follow

a more regular schedule of consumption. Surprisingly cluster

membership does not appear as a top predictor when using

both features of the regression analysis step and HMM fea-

tures, although it ranks higher than regression features. It does

however appear as an important predictor for some questions

when using HMM features alone (not shown here for space

considerations). This suggests that similarity between users as

determined with a segmentation algorithm may only capture

second-order effects and its usefulness may be limited to

summarization of data. Note also that sensitivity to weather

and fixed-effects for time-of-day and day-of-week that we used

in the initial weather normalization in the linear regression

analysis (6) do not appear as top predictors, either (they come

up with intermediate scores though and are not shown in

Figure 11). This is again surprising, but may reflect the fact

that users in this sample are all professionals who do not

base their use of appliances and their schedules on weather.

However this requires further validation on larger and more

representative datasets - a topic we are also pursuing currently.

Given the limited number of people in the sample, and the

issues with data quality described in Section V, generalizable

conclusions may be drawn only with that further analysis.

VIII. DISCUSSION: DATA-DRIVEN PROGRAM TARGETING

HSMMs offer a compact characterization of users’ con-

sumption as noisy observations of a finite-state automaton.

It allows us to address several important Demand-Response

tasks [5], [18]

Fig. 11. Important variables for classification. Scores on the horizontal
axis represent relative importance and are computed as in [14]. Magnitude-
related consumption characteristics (magnitude, variance) are outlined with
a red, solid line; variability-related consumption characteristics (entropy) are
outlined with a blue, dashed line.

• identify users displaying a “random” consumption from

those with more “regular” usage patterns,

• understand inter-temporal consumption dynamics as to

anticipate negative-impact events such as high-magnitude

spikes in consumption.

To the first point, “predictable” users should be treated in

a fundamentally different way than irregular ones for the

purpose of efficiency programs and control mechanisms for

load-balancing demand on the grid: irregular users may benefit

from enrollment in peak-pricing (to incentivize a more regular

consumption), while relatively predictable users, who are

thus less flexible in their consumption, may be targeted for

rebates for efficient appliances (to reduce their consumption

magnitude). Moreover, it has been argued that predictable

loads are cheaper for the utility to service [1], [5].

In the case of demand-response management, it is of interest

to understand timing of consumption at both the individual

level and at the aggregate level. In particular, being able to

specify a probability distribution over the occurrence of high-

load events given the current state of consumption has practical

value in determining e.g., cost of service for an individual

user [5]. For example, Pacific Gas and Electric (PG&E, a

large California energy utility company) runs a differential

pricing program (Smart Rate) for residential users that charges
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higher rates during the peak usage times in the summer1.

A general consumption model over a population is not of

practical use here: action is required at the individual level.

Modeling each user as described above allows predictions of

the type P (Yt−1|St), i.e., knowing the state of consumption

at the current hour allows to define a probability distribution

over consumption at the next hour. In the SmartRate context, a

dynamic user model will allow the system operator (PG&E) to

identify the customers that are likely to have high consumption

during peak time, which in turn may be targeted for nudges

such as text (SMS) alerts requesting that they reduce con-

sumption in the next hour. A first-pass triage of the users may

take place with a model-based segmentation such as the one

illustrated in Section VI, which identifies prototypical users in

terms of their model complexities and usage dynamics.

As an example, let us suppose that the system operator’s

objective is to reduce congestion and peak demand for the

network, where the serviced population is composed of four

users whose consumption is illustrated in Figure 12. She may

then note that users U1 and U2 have similarly predictable

demands, which differ substantially from those of users U3
and U4 (which, in turn, are quite similar to each other). One

reasonable intervention for the first group would be demand

deferring (delaying or squeezing consumption over time),

which would dis-align maxima and result in less pronounced

aggregate peaks. Users U1 and U2 seem however to have

relative little flexibility in the amount of consumption; thus

they might also benefit from an efficiency program such as

rebates for improved appliances that might not make their

consumption more predictable, but at least would shave off

some of the consumption. The utility thus needs to identify

the appropriate users to whom it can make specific enough

recommendations about what actions they may take that will

be effective for demand curtailment and saving money.

But what specific actions can the utility recommend when

for most users it only knows their consumption patterns? Being

able to relate the consumption characteristics described in

Section VI to user characteristics as done in Section VII would

be useful in this context. Assessing whether the user is likely

to consume in a certain way because of a pet in the household

or a high number of computers can serve as a basis for tailored

marketing actions.

IX. CONCLUSION AND FUTURE WORK

We have investigated the effectiveness of Hidden Markov

Models and model-based cluster analysis for smart meter time

series data in producing meaningful features for classifica-

tion. We show that one may correlate temporal consumption

patterns with certain user characteristics. In particular, we

calculated crude estimates of the amount of inherent random-

ness in users’ consumption, and found that there is both a

significant amount of predictability in users’ state sequence

and considerable variation in this quantity over the population,

which may be used as first proxy for inferring certain lifestyle

and appliance stock characteristics. This suggests that the

1http://www.pge.com/en/myhome/saveenergymoney/energysavingprograms/smartrate/index.page

Fig. 12. Simulated consumption (HMM) time profiles: two classes of users
with very different temporal consumption dynamics. Users U1 and U2 have a
“regular” consumption, while users U3 and U4 have a less predictable usage
pattern.

dynamics of the time series as captured by HMM analysis

can serve as valuable cues in guiding tailored interventions.

Methodologically, we plan to extend this work i) with a

more flexible consumption model that internalizes the depen-

dency of occupancy states on weather and other exogeneous

covariates and ii) with an explicit, dynamic model of user

engagement with different energy programs. Clearly, one

important challenge is to formulate segmentation algorithms

and implementations that scale to very large user populations,

and that may be estimated as closely on-line as possible.

We are currently developing flexible population-level Hidden

Markov Models and estimation methodologies for distributed

computing environments such as Hadoop/MapReduce.
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