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Abstract

A Cross-Cohort Changepoint Model for Customer-Base Analysis

Many firms maintain a customer database with detailed transaction histories at the individual level.
Despite this wealth of information, firms are yet to fully exploit the underlying structure in a customer
database to forecast the behavior of brand new customers and detect whether new customers are
markedly different from old customers. We propose to extract information from the underlying
structure in a database by segmenting customers into cohorts indexed by period of acquisition, which
results in a sequence of customer cohorts. We develop a Hierarchical Bayesian cross cohort changepoint
model framework that (1) allows for cross-sectional heterogeneity within a cohort, (2) identifies
shifts/changepoints in cohort behavior along the sequence of customer cohorts, and (3) enables
predictions of recently acquired cohorts for whom the firm has little to no longitudinal transaction data.
We apply our model to a discrete-time non-contractual setting using multi-cohort donation data from a
non-profit and find that the changepoint model provides improved holdout prediction by reducing bias
in the predictive distribution versus a static baseline model. The results demonstrate that detecting
changepoints across a sequence of cohorts allows the firm to use data from relevant “peer” cohorts to
make predictions about new cohorts and pick up discrete shifts in behavior across cohorts. The
proposed framework can be applied to any setting with a sequence of cohorts, by selecting an

appropriate cohort-level model.
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l. Introduction

Customer-base analysis occupies a central role in many firms’ marketing departments, especially in
transaction-oriented industries such as telecommunications, internet retailing, and non-profits where
customer acquisition and retention is critical to business success. Models of customer-base analysis have
demonstrated accurate forecasting performance in a variety of settings (Schmittlein, Morrison and
Colombo 1987; Netzer, Lattin and Srinivasan 2008; Fader, Hardie and Shang 2010). Many of these
models account specifically for the heterogeneity in a customer base and some also model non-
stationarity of behavior at the individual level (Allenby, Leone and Jen 1999; Fader, Hardie and Huang
2004). Implicitly, these models assume that customers in the data set come from the same population,
such that the population-level model can be specified and estimated from all of the data. Suppose
instead that the customer base is in fact comprised of multiple segments, each having its own unique
model. One such segmentation is a sequence of cohorts, where each cohort consists of the set of
customers acquired in the same time period. This broader model allows us to explore new structural

patterns in the customer database, directly relevant to important managerial questions.

Consider a fictitious online retailer, Acme Apparel Inc. Acme has been selling clothing over the internet
since 2001. Each year, they acquire a cohort of new customers. Anita, the sales manager wants to
forecast future sales for newly acquired cohorts but has very little data about these customers. She
turns to Bob, the data analyst for assistance. Bob is not sure if he should use all cohorts since 2001 to
estimate the latest cohort’s forecast, or to draw a line at a particular year because the behavior of the
oldest cohorts may no longer reflect what can be expected today. He decides that more data will
improve his forecast and therefore uses all the data at his disposal. In the meanwhile, Colleen the
business intelligence manager has intuition that a competitor who entered the market in 2006 has been
“skimming the best new customer prospects”, such that the “quality” of the newer cohorts Acme has
acquired might be significantly different compared to pre-2006 ones. She asks Bob for his insights. Bob
knows there are good and bad customers in every cohort, and is not sure if he can state with confidence

whether the data confirms Colleen’s intuition.

The above example illustrates three key managerial questions: (1) when does data become outdated for
forecasting behavior of new cohorts, (2) how to develop forecasts for new cohorts, and (3) is there

evidence for a distinct shift in cohort behavior in a sequence of cohorts?



In this paper, we propose a Hierarchical Bayesian cross cohort changepoint model that provides
guidance to these managerial questions. Our framework is applicable to a wide range of settings
including counts of doctor visits, product interpurchase times, and even manufacturing and
epidemiological processes as shown in Table 1. The only requirements are that a sequencing of cohorts
exists, longitudinal data is available for each cohort at the individual level, and the cohort-level model is
parametric. Our model yields probabilistic inferences about discrete shifts or changepoints in cohort
behavior across the sequence of cohorts, and provides the ability to forecast new cohorts’ behavior with

little or no data from the new cohort itself.

[INSERT TABLE 1 HERE]

We calibrate the model in the context of a discrete-time non-contractual setting, using multi-cohort
donation data from a U.S. non-profit organization, using the Beta-Geometric Beta-Bernoulli (BG/BB)
model developed by Fader, Hardie and Shang (2010) to characterize each cohort’s behavior. Comparing
the changepoint model to a Hierarchical Bayesian static model that does not partition cohorts into
different blocks, we find evidence for a changepoint and benefit from more accurate forecasting of

holdout data versus the static model.

The remainder of this paper is organized as follows. In the next section, we review the relevant
literature. We then present the model framework and the corresponding MCMC estimation. We discuss
the empirical analysis based on both simulated data and a non-profit multiple donor cohort data set,
and highlight the insights learned from applying this model. We conclude with suggestions for future

work and overall implications for managers and researchers.

I1. Literature Review

Models of cross-cohort relationships

Models that account for inter-relationships among units (whether cohorts or individuals) can be of two
types. The first explicitly lays out a model with parameters that capture systematic
differences/similarities across units. For instance, Schweidel, Fader and Bradlow (2008) introduce
covariates relating to cohort age that affect a baseline hazard function in the context of modeling

service retention. Related work capturing spatial relationships among units includes Yang and Allenby



(2003) who use an autoregressive term capturing preference dependency across units in a discrete
choice model. Both of these allow for a range of possible patterns of cross-cohort effects but would tend
to smoothen out sudden non-stationarity shifts in cohort characteristics rather than detect them. The
second type introduces hierarchical priors which enable “information sharing” across units. Hofstede,
Wedel and Steenkamp (2002) use spatial prior distributions that borrow information from neighboring
units to help smooth posterior inference especially for units with limited data. Hui and Bradlow (2011)
suggest a general framework of modeling relationships between units in a graphical configuration
(particularly suited for spatial relationships), and use Bayesian methods to determine both the graphical
configuration and associated parameters from the data. Since using MCMC sampling on the graphical
configuration is infeasible, the posterior mode of the graphical configuration is found using simulated

annealing. The model is appealing since it can identify general relationships among units.

Since our problem specifies a sequence of cohorts, we can provide more structure than a general model
of inter-unit relationships, by constraining the search to the number and locations of changepoints along
this sequence. We essentially seek to divide the sequence into blocks of similar cohorts, each
characterized by a hierarchical block prior, which can determine the most relevant contiguous block to
forecast the behavior of new cohorts. We assume independence in hierarchical prior distributions across
blocks, conditional on the block partitioning pattern. This additional structure comes at the cost of

ignoring possible cyclical patterns across cohorts, which may be a fruitful topic for future research.

Even more closely related to our problem is the large literature on detecting changepoints which falls
into two basic categories. The first is the product partition approach outlined by Barry and Hartigan
(1993), whereby the underlying sequence of parameters that characterizes a sequence of observations
is divided into contiguous blocks. Within each block, the parameter value driving those observations is
homogeneous. Across blocks, the parameter value is allowed to shift. Both the number of changepoints
and their locations are treated as random variables with prior distributions, to allow their incorporation
into a Bayesian framework. Though Barry and Hartigan (1993) provide an elegant framework for
obtaining draws from the joint posterior of changepoint configuration and parameters, the product
partition approach is limited to situations where conjugate priors are used, and it is possible to integrate
out nuisance parameters such that the posterior parameters are known once the changepoint
configuration is drawn using data augmentation. In other words, once the possible changepoint
configuration is drawn, calculating the posterior parameters (of interest) is trivial. The product partition

method is therefore unsuitable for more general scenarios where priors are not conjugate, and where



model parameters must also be drawn from a distribution conditional on the changepoint configuration.

We do not pursue the product partition method for these reasons.

The second category deals with the complexity of scaling model dimensionality as the number of
changepoints is allowed to vary. Suppose the number of changepoints were fixed up-front (at K) with
unknown locations. It is straightforward to construct a model with (K + 1) distributions (each block of
similar cohorts has its own prior distribution) and use an MCMC procedure. However, if we allow K to
vary across MCMC iterations, each draw of K would result in a potential change in the dimensionality of
the underlying model, posing difficulties for even evaluating the conditional posterior distribution of K. If
a set of parameters is eliminated from the model, an absorbing state may result which violates a
necessary condition for convergence (Carlin and Chib 1995). A number of approaches exist to

circumvent the changing dimensionality problem.

Green (1995) presents an approach known as “reversible jump MCMC” which allows the number of
components/dimensions of a model to shrink or increase, while appropriately handling the Bayesian
machinery with an adaptation of the Metropolis-Hastings method. This sharply increases the complexity
of the algorithm but provides an approach that obtains convergence with judicious tuning of the
algorithm. Applications to changepoint models (Green 1995) as well as to modeling an unknown number

of mixtures (Richardson and Green 1997) have been demonstrated.

Carlin and Chib (1995) provide an alternative approach to Bayesian model selection by using “linking
densities”. Adapting their approach to our context, we would define (K + 1) models to cover the possible
cases of 0 to a maximum of K changepoints. Each MCMC iteration would involve taking draws for every
model’s parameters, even for models not drawn in the current iteration. They suggest running the
algorithm separately for each model to obtain posterior draws which can be used as a pseudoprior or
linking density in the next MCMC stage which includes model selection as a step. This avoids changing
dimensionality at the cost of maintaining a set of models and the associated increase in memory
storage. The parameters of the selected model are drawn using the usual Gibbs or Metropolis-Hastings
sampler. In addition, parameters of models not selected are also drawn using the linking density. The
limitation of this approach is that the number of models needs to be small to avoid computational
challenges, but it provides a practicable solution when the number of changepoints is capped to a small

value.



Chib (1998) formulates a multiple changepoint model in terms of a latent discrete state variable that
indicates the regime from which an observation is drawn. This enables the change-point probability to
vary depending on the regime, unlike the constant probability of change assumed in Barry and Hartigan
(1993). This approach is analogous to using a hidden Markov model (HMM) to guide changepoint
transitions, with restrictions in the state transition matrix. The number of changepoints needs to be

fixed to be able to define a state transition matrix.

There is also a literature stream that uses mixture models (Richardson and Green 1997; Allenby, Leone
and Jen 1999) and semi-parametric approaches (Ansari and lyengar 2006) to model complex
distributional shapes. However, these models do not necessarily impose structure in the form of
contiguous blocks of cohorts within regimes. Since our goal is to detect changepoints as well as model
the distributions in different regimes, we do not utilize these approaches for our cross cohort

changepoint model.

Either of Green (1995) or Carlin and Chib (1995) should be adequate for our context. At the timing of
writing this first year summer paper, the general changepoint model is still under development, and our
model framework fixes K at 1 (exactly one changepoint) with unknown location. A future version of this

paper will implement the general changepoint model.

Cohort-level models for discrete-time data

For the non-profit data set that we analyze, we need to specify a cohort-level model. Fader, Hardie and
Shang (2010) demonstrate the superior fit of the discrete-time non-contractual BG/BB model of
customer behavior in contexts where the firm is interested in the customer response or purchase
incidence with respect to a campaign, versus continuous-time models such as the Pareto/NBD model
(Schmittlein, Morrison and Colombo 1987). The BG/BB model characterizes cohort heterogeneity in the
probability of transaction incidence and the probability of dropout (which is a latent process not
observed in the data). The rationale is that we can identify both dropout and transaction propensities at
an individual level by observing the overall pattern of behavior. A very frequent donor who
subsequently halts all activity, might be someone with a high transaction propensity, but also a high
dropout propensity: while he is active, he consumes (i.e. donates) heavily; after a certain point, he
ceases all activity. On the other hand, we can draw different conclusions about another donor who has

the same aggregate amount of activity (in whatever measure) as the previous donor, but spreads the



activity in terms of occasional consumption. Such a person might be someone with a low transaction

propensity, but also a low dropout propensity.

We describe the details of the non-profit dataset in the Empirical Analysis section, but note here that its
characteristics are amenable to a discrete-time non-contractual model of donation incidences of
individuals over time. We therefore adopt the BG/BB model for our cohort-level likelihood function.
Fader, Hardie and Shang (2010) note that empirical identification becomes an issue for cohorts with few
observations, and suggest pooling data from multiple cohorts to estimate one set of parameters in a
Maximum Likelihood setting. This of course does not allow for possible changepoints across cohorts.
With the Hierarchical Bayesian specification, we allow each cohort to have its own set of parameters,
and use the hierarchical block prior distribution to allow for proper Bayesian shrinkage for those cohorts

with insufficient data for identification.

In the next section, we describe a Hierarchical Bayesian cross cohort changepoint model where the
number of changepoints and their locations are unknown, and are to be estimated along with the

hierarchical block priors and cohort-level BG/BB model parameters.

111. Model Development

Changepoint configuration and hierarchical block distributions

There are three levels of hierarchy in our model: the changepoint configuration (random scalar K
denoting number, and random vector Q denoting locations of changepoints), the (K+1) hierarchical prior

distributions for each block of contiguous cohorts (), and cohort-level parameters. With this

hierarchy, each cohort i has its own set of parameters (77,) that model the underlying phenomena of

interest in the cohort-level data (Y, ). We denote the set of all cohorts’ parameters as 77 and the set of

all cohort data as Y . Based on these hierarchical relationships, the following properties ensue: (1) K and

Q conditioned on € and 77 are independent of Y ; (2) {2 conditioned on K, Q and 77 is independent of

Y . This is easily seen in the graphical representation of the model shown in Figure 1, and is important

to note as we describe the model and its conditional distributions.

[INSERT FIGURE 1 HERE]



The full conditional distributions for K, Q, {2 and 77 are needed for the MCMC estimation to converge to

the joint posterior density p(K =k,Q ={q,,..9.},Q,7|Y).
The conditional distribution for the changepoint configuration is

p(K =k,Q ={q,,---q, }|,7)
o« p(Q,7|K=kQ={q,.q1}) p(K=kQ={q,.q})
=p(Q|K=k,Q={q,..q91}) p(72K=kQ={q,..q.}) p(K=k,Q={q,,..q.})

For the remainder of the paper, we describe the implementation and results for a changepoint model
with K fixed as 1 (i.e. exactly one changepoint) but with a random location Q (refer to Appendix section
B for discussion on what a multiple changepoint would entail). This is implemented using a data
augmentation approach (Tanner and Wong 1987) to draw the changepoint location, and then draw

model parameters conditioned on the location. The prior on the changepoint configuration
p(K =k,Q ={q,,...q, }) can now be defined as P(Q =) where Q is the index of the cohort where the

changepoint occurs.

We adopt the convention that a changepoint at index Q=g in a sequence of cohorts indexed from 1 to

N, (where N is the total number of cohorts in the sequence) divides the sequence into two blocks
{1,..,9-1} and {q,..., N }. The value of Q can range from 2 toN,. Each block has its own hierarchical prior
@, . Let Q be the set of prior parameters for the two blocks {a)l, a)z}- Let 77, as previously defined, be
the set of cohort parameter vectors for the sequence of N_ cohorts (each cohort having its own

parameter vector 77, ).

The probability of Q = g conditional on €2 and 7 is given by Bayes rule:

0Q=q|Qn=_PQ=0-pOQn[Q=0 _ pQ=0 pr|Q=092) p(©@]Q=0)

ZD(Q=J')-IO(QJ7IQ=J') _HZCIIO(Q=J')-p(77IQ=J',Q)-D(QIQ=J')

We can simplify the above conditional probability by noting that p(Q2|Q =()is equal to the prior

probability P(€2) since Q conveys no information to update P(£2) in the absence of 77 (see Figure 1).



=q)- =q,Q
p(Q=q|Qn7)=ncp(Q 9)-P(%1Q=0,%) "

> Q=) p(71Q=§.9)

By defining prior p(Q =(), Equation (1) now allows us to evaluate p(Q =q|€,7)at each possible
value of Q, and draw from a multinomial distribution as a Gibbs sampling step. The uniform distribution
would be the non-informative choice of prior for p(Q =q). If prior knowledge is available suggesting

that a certain location is more likely, this knowledge can be embedded in the appropriate probabilities

for each location gq.

Since our data set involves a discrete-time non-contractual setting, we use the BG/BB model at the
cohort level. The BG/BB model does not have a conjugate prior and we therefore use a multivariate

normal block prior for a specific parameterization of the BG/BB model that we will discuss below.

Q is thus defined by two sets of mean and covariance parameters corresponding to each block’s

multivariate normal distribution.
Q :{a)l’ a)z}:{ygl,zgl,/jgz,ﬁgz}

The  probability of cohort i’s parameter vector 7 given Q and Q is
P(7 [€2,Q=0) = MVN(7;; 4, ,Z, ) where the block index b is 1 if i < g, and 2 otherwise. Every

cohort must be assigned to one of the two blocks by the changepoint configuration.

tg, |Z~MVN(ug, 2/ x,) (3)

Ko =001; 15=[0 0 0 0] ;v,=7;%,=1,
The hyperpriors for X, and ug |Z are the Inverse Wishart (Equation 2) and Multivariate Normal

(Equation 3) distributions. This Normal-Inverse-Wishart parameterization is used by both Murphy (2007)
and Gelman et al (2004). As is typical in changepoint models (Barry and Hartigan 1993), block

parameters are assumed to be conditionally independent across blocks, given 77 and Q. We set the

hyperprior constants to be non-informative resulting in a reasonably diffuse prior (Rossi and Allenby

2003).



The parameters of the Normal-Inverse-Wishart model for each block b can be updated using 77 and Q .

The conditional posterior P(Q2|Q =0,7) < p(7]|Q =0q,Q)- p(€2) is now defined by the product of

two updated Normal-Inverse-Wishart distributions. See Appendix section A for details of Bayesian

updating.

Given Equations (2) and (3), and the assumption of a non-informative uniform prior p(Q =(), we can
define equation (1) as a product of two multivariate normal distributions (from the two blocks). The log

posterior density for Q is proportional to 10g p(7|Q =0,£2) and can be expressed as follows.

log p(Q =q [, 7)
clog p(7[Q =q,%)

q’]- Ne
= ZIng(Wl | /uglizgl) + ZIng(Ul | ;ng ’ Zgz)
i=1 i=q

g-1 N
1 Z('?. _/ugl)T E; (77| _;ugl) +Z(’7i _/ugz)T E; (77| _;ugz)
i=q

oCc ——| i=l
+(a-1)loglS, [+ (n, —q+1)loglz, | (4)

Equation (4) highlights that log p(7|Q =Q,Q) is proportional to sum of the squared Mahalanobis

distances (Bishop 2006) from each block mean for cohorts assigned to that block (given g), along with

two terms relating to the amount of variance in each block.

We contrast equation (4) to a constrained k-means clustering approach (Bradley et al 2000; Wagstaff et
al 2001), where block membership is required to be contiguous. Firstly, the block means and covariances
are not drawn from posterior distributions but obtained directly from the data. The choice of g, rather
than being drawn from a multinomial distribution would be the following optimization.

i=1 i=q

g-1 n,
q <arg g"n Z(ni _’ngl)T .zgi.(ni _ﬂ91)+2(77i _/ugz)T 2; -(m, _,ng)}
a,

The Hierarchical Bayesian machinery enables us to understand how uncertainty in one parameter can
impact uncertainty in other parameters. We discuss the impact of uncertainty when analyzing the
posterior predictive distributions from the model. This would not be possible using a constrained k-

means approach.

10



We now present an extension of the changepoint model that can provide more detailed diagnostics
about cross-cohort shifts, with the addition of new assumptions about the correlation among

parameters in 77. Suppose that some or all of the cohort-level parameters represented in 77are mutually
uncorrelated®. We can then model separate block priors for subgroups of parameters in n and also

allow for a different changepoint configuration for each subgroup. This leads to a vector-changepoint
model as opposed to the scalar-changepoint model we defined earlier in which all parameters of 7

III

contribute to the identification of a “global” discrete shift. In contrast, the vector-changepoint model
identifies discrete shifts along each subgroup’s parameter space, partitioning data for each subgroup in

a data-driven fashion”. If every element of 7is mutually uncorrelated with other elements, all the

results from equations (1) through (4) hold for each element, resulting in a vector of Q’s and block prior
parameters, corresponding to each element. Note that the cohort-level prior on each parameter would
then be univariate normal, with the block priors being normal inverse chi-squared distributed. We
discuss the relative merits of the vector-changepoint and scalar-changepoint approaches in the

Simulation Analysis section.

We also define an alternate static Hierarchical Bayesian model with no changepoints. The drawing of

changepoint location step is no longer needed, and ={,ug,Zg}, consists of just one multivariate

Normal-Inverse-Wishart distribution. We use the static model as a benchmark to determine if the

changepoint model demonstrates superior prediction.

Cohort-level parameters

We now motivate our chosen cohort-level parameterization of the BG/BB model (represented by

dimensions of 7).

The BG/BB model provides a parsimonious framework to capture transaction incidence behavior in a
cohort consisting of multiple individuals. We chose transaction incidence for a cohort over time as the
primary feature of cohort behavior that we model. Future research could include monetary amount of

donations as an additional feature® (Fader, Hardie and Lee 2005a). In the context of our data set (further

! Since the cohort-level parameters have a normal prior distribution, uncorrelated parameters implies independence.

2 An advantage of dividing the parameter space into subgroups is that a changepoint in one subgroup does not hamper the
other subgroup from sharing data across all cohorts, which is not possible in a scalar-changepoint model.

3 Fader, Hardie and Lee (2005) discuss empirical evidence for modeling the distribution of monetary amounts as independent of
the model of transaction incidence. If we assume independence in these two distributions, the posterior cohort-level

parameter distributions would be unaffected by the addition of a monetary amount feature.

11



details in the Empirical Analysis section) changes in transaction incidence across cohorts provides

diagnostic insights on behavioral patterns over the cohort sequence.

Hence individual behavior within a cohort is represented by a vector of binary transaction incidence
choices across discrete time periods. The first observation corresponds to the first repeat transaction
opportunity, and thus excludes the initial transaction which identifies the cohort an individual belongs
to. Recency and frequency statistics can be computed from an individual’s vector of choices. Recency
indicates the most recent time period of a transaction. Frequency indicates the total number of

transactions over the duration of observation.

Due to the specification of the BG/BB model (Fader, Hardie and Shang 2010), recency and frequency
together serve as a sufficient statistic for that individual’s behavioral pattern. Since each individual is
assumed to have a Bernoulli probability p of making a transaction at any given time period, and a
geometric distribution with parameter 8 of dropping out or “dying” at the beginning of each period, the
recency statistic identifies the last known period the individual was “alive”. By definition, all transactions
for an individual take place before or at the time period indicated by the recency statistic. Since an
individual’s transactions are assumed i.i.d and therefore exchangeable, the probability of any sequence

of transactions with the same recency and frequency is identical and given by

n—-t,—1

POt n| p,60) = E[P(x,tn| P 6,2)]= p*(L-p)"*1-6)"+ D p*(L-p)" " O(- )"
i=0

where xis frequency, t, is recency, n is the number of periods and Z is the period where the individual
dropped out (which is unobserved). Taking the expectation over Z results in the probability of observing

{X,t,,n}given {p,6}.

Heterogeneity across individuals in cohort i is modeled using independent Beta distributions such that
p ~ Beta(a;, ;) and @ ~ Beta(y;,5;) . Fader, Hardie and Shang (2010) also define the SBB/GB model which
allows p and @ to be arbitrarily correlated. A possible future extension is to replace the BG/BB cohort-

level model with the SBB/GB model.

For cohort i observed over N, periods, we categorize all individuals into J =0.5n;(n; +1)+1 possible

recency-frequency combinations. Equation (5) shows the likelihood function for any Yjthat is

12



categorized as the /" recency (txj ) and frequency ( x; ) pattern, given the «;, f;,7,6; parameters of the

BG/BB model after integrating out p and . Note that B(-,) in equation (5) refers to the Beta function.

P(Yij s Bin 71,61 Xty o)
_ B(aj +xj, 5 +n; - X)) B(j/i,ﬁi+ni)+ni7txjilB(ai+Xj'ﬂi+t><j7Xj+i) B(ri +1.6; +1t5, +1) ()
- B(ai. 5i) B(yi,4i) i—0 B(ai. fi) B(7i.9i)

By counting the incidence of recency-frequency patterns within a cohort, the entire cohort’s
transactions can be represented by the sufficient statistic of a recency-frequency table of counts for the

BG/BB model. Let Y; represents the data set (i.e. recency-frequency table) associated with cohort i.
Ji
f.
p(Y; |“i:ﬁiv7iv5i)=H(p(Yi |ailﬁi17i!§ivxj’txjvni))l (6)
j=1

Equation (6) describes the BG/BB model likelihood function for a cohort’s data, given the four cohort-

level model parameters. J; represents the total number of recency-frequency combinations for cohort
i. f;represents the total consumer count for pattern j in the recency-frequency table. The appendix

includes an example of a recency-frequency table to illustrate the data needed to compute equation (6).

To improve convergence properties for estimation we reparameterize the BG/BB model as follows. First
we parameterize the two Beta distributions in terms of their means and polarizations as shown in
equation (7). This has the advantage of compartmentalizing changes in parameters across cohorts,
substantially reducing correlations between parameters, which may enable consideration of the vector-
changepoint model. It would be more valuable to know that the mean of the transaction or dropout

process has shifted across cohorts, than simply to know that the original Beta distribution parameters

have changed. Second, we take the logit transform for each of,upi,¢pi,,u&| ,¢9| , since each of these

parameters is bounded between 0 and 1.

e 1 i 4, = 1
R 1+05i+ﬂi”ugi 7i+5i’5i 1+7i +6i

Mo (7)

0git(1,) = log( ) 10git(,) = ~109(ct + 3 ):logit(sey) = log (1) ogit(4) = ~1og(r; +5)

13



The parameter vector 7, :{ logit(x, ),logit(4, ), logit(, ), logit(#,)} captures the transformed
parameterization. Thus the prior for 7; can be represented by a multivariate normal distribution from

the block it is assigned by the changepoint location Q.
J ‘.

pGr 1¥1,Q =, e [T (pC%: 175 x5t .m))" - p(y 1Q = 0.2) (®)
j-1

The posterior density of 7, defined up to a proportionality constant is given in equation (8). This

completes the model specification of the cross-cohort changepoint model for a discrete-time setting.

1VV. Model Estimation and Identification

The MCMC pseudo-algorithm for the scalar-changepoint model is described in Figure 2. Note that we
can also obtain the static Hierarchical Bayesian model, by simply assigning all the data to one of the
block prior parameters and essentially ignoring the other block parameters. We would also remove the
changepoint location draw step, replacing it with a constant location (e.g. g = 1) that essentially contains
all cohorts in one block. We compare the performance of the changepoint model to that of the static

model in the empirical analysis section.
[INSERT FIGURE 2 HERE]

Empirical identification of the BG/BB model is a known issue when very few observations (1 or 2 periods
of data) are available. Because the BG/BB model looks to capture both overt transaction behavior and
latent dropout behavior, multiple explanations can exist for limited data. A cohort with 1 or 2
observations tends to have an informative but multi-modal likelihood function. We cannot therefore
identify the parameters of the latent dropout process which are critical for predicting future behavior of
this cohort* by accounting for churn in the customer base. If such cohorts are included in the MCMC
estimation, their parameters may not converge, affecting the hierarchical block parameters as well.
Hence, a cohort’s data is only included in the model estimation if it has at least three periods of

observation, which in simulation testing has been shown to have good convergence properties.

* With the emphasis on prediction of holdout data, it is not of interest to include a cohort with 1 or 2 periods, just to improve
in-sample fit for the cohort.

14



In the case of cohorts acquired sequentially, we can choose to analyze the data by assuming a cut-off
year, and examining data from cohorts observed up to that point. Due to our “3 observation minimum”
requirement, the most recent two cohorts will necessarily be excluded from the model. For example, if
we examine data up till and including 2001, the latest cohort included would be the 1998 cohort, and we

would exclude the 1999 and 2000 cohorts which would have 2 and 1 repeat observations respectively.

The question then arises of how we predict behavior for cohorts that fall below the “3 observation
minimum” requirement. We are able to take advantage of the hierarchical block parameters to draw
cohort-level parameters for those cohorts with limited or even zero data. Since excluded cohorts will

always follow to the right of included cohorts (as a sequence), we use the mean and covariance
parameters of the second block to generate cohort parameters 77, from the multivariate normal prior

distribution.

To provide a specific example, suppose that 1990 is the oldest cohort, 2000 is the data cut-off year, and
that the model detected a changepoint at 1996 with high posterior probability. The cohorts exerting the
greatest influence on the second block’s parameters would be the 1996 and 1997 cohorts. The first
block would have six cohorts (1990 — 1995) driving its parameters, and would be expected to have lower
uncertainty in both the mean and covariance distributions. However, if a changepoint is indeed
accurately detected at the 1996 cohort, we should expect a bias-variance tradeoff between the
posterior predictive distributions of the changepoint versus the static model for excluded cohorts (1998
and 1999 cohorts). Specifically, the changepoint model should have lower bias than the static model, in
terms of the centering the predictive distribution closer to the actual values. However, the predictive
distributions of excluded cohorts should exhibit larger variance when generated from the changepoint
model since by definition the block parameters are based on fewer cohorts than the static model. For
prediction, a lower bias is advantageous and we use holdout data to compare the two models in the

Empirical Analysis.

We note that cohorts included in model estimation have very informative likelihood functions, due to
the large number of individuals in each cohort. These cohorts will exhibit little to no shrinkage as a
result, and therefore relatively unaffected by the choice of prior (whether coming from a changepoint or
static model). Hence, we expect the predictive distributions for these cohorts to be very similar across
the two models. Since our emphasis is on predicting behavior of new cohorts with limited observations,

this is not an aspect of the data that is relevant for model comparison.
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We used the following configuration to run the MCMC algorithm on the actual data set. The first 10,000
iterations are utilized as burn-in. Most parameters converged within 2,000 iterations but this buffer
helps ensure that all model parameters converge (according to the Gelman-Rubin statistic by running 3
chains with over-dispersed initial parameter values). Autocorrelation is significant for cohort level

parameters (especially @, which represents the polarization for the dropout Beta distribution) and

requires considerable thinning to result in approximately i.i.d draws. We ran 550,000 iterations, and
thinned aggressively after burn-in, by taking every 500" draw. These draws exhibited very low
autocorrelation and can be considered a reasonable approximation to i.i.d samples for the purposes of
estimating posterior intervals. The per-iteration run time was about 0.052 seconds on a 4-core 2.70GHz
processor in the R programming environment, with a total run time of approximately 8 hours. The

appendix contains computational details for the MCMC algorithm.

In the next two sections, we describe the results from running the described MCMC algorithm on

simulated and actual data sets.

V. Simulation Analysis

We performed a simulation analysis to answer the following questions: (1) can the scalar-changepoint
model detect discrete shifts in a cohort sequence? (2) how does the scalar-changepoint model behave
when the data does not admit a clear changepoint? (3) how does the scalar-changepoint model perform

versus the vector-changepoint model if shifts occur in different parameters, at different cohorts?

All of our simulations were based on a sequence of 11 cohorts to mirror the total number of cohorts
available in the non-profit data set. Each cohort was assigned a four-dimensional parameter vector

{up, @y 19 .99}, and data was simulated for a cohort using the assigned parameters, assuming 6

periods of observations for each individual and 10,000 individuals per cohort. We standardize the
number of periods and cohort size as our objective in running simulations is to test the changepoint

detection capability of the algorithm, and not to generate predictive distributions for new cohorts.

The results are obtained by running 50,000 MCMC iterations, allowing for 20,000 iterations as burn-in
and drawing 1,000 thinned samples from the post-burn-in period. All cohort parameters and block priors
converge within the burn-in period (based on Gelman-Rubin statistic, running 3 chains with over-
dispersed initial values). The posterior distribution of the changepoint location is compared to the actual

location to assess convergence and accuracy.
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Figure 3a shows that a changepoint is clearly detected when there is a fairly large discrete jump in one

of the parameters (we pick x, ) in three different scenarios (shift at cohort 2, 6 and 10 respectively).

The remaining parameters {¢pi,,u€i,¢9i} are similar across cohorts. Figure 3b shows the posterior
interquartile range for u, across cohorts, showing that the cohort-level parameter has been identified

with a tight distribution, and we observe the jump at cohort 6 corresponding to the scenario where we
coded the jump at this cohort. Figure 3c presents the posterior interquartile range of each hierarchical

block mean for the cohort 6 jump coding. We observe that the first block’s mean reflects the higher

value of u, = 0.6 set for the first five cohorts. The second block’s mean also reflects the lower value of

My = 0.3 set for the last six cohorts. Appropriate posterior block mean distributions are obtained for

the other jump codings. Hence, our first objective of detecting discrete shifts using the scalar-

changepoint model has been satisfied.
[INSERT FIGURE 3a,b,c HERE]

Figure 4a shows the result from having no changepoint in the sequence of 11 cohorts — only small
fluctuations in parameters from cohort to cohort are encoded, with no large discrete jumps (as seen in

the posterior interquartile range for u, across cohorts in Figure 4b). We observe the apparently

counter-intuitive assignment of roughly symmetric high posterior probability to cohort 2 and cohort 11.
In fact, this assignment is consistent with the estimation of the joint posterior density of the scalar-
changepoint model. In particular, the draws of the changepoint location and block distributions need to
be viewed holistically. Because our model has the number of changepoints fixed at one, which is a
mismatch to the data which does not admit a discrete shift, the changepoint location is pushed to either
end of the sequence to maximize the number of cohorts in a block®. We observe from Figure 4c that the
posterior interquartile ranges of the two block means are fairly similar. When we move to a general
changepoint model that would nest the possibility of K = 0, this mismatch should no longer occur.
Hence, our model is able to detect the likely absence of a changepoint via this assignment of

probabilities.

[INSERT FIGURE 4a,b,c HERE]

> The assignment of changepoint posterior probability to the ends of the cohort locations where a changepoint is permissible, is
observed whenever the data does not suggest a sizeable discrete jump. For the K = 1 model we currently have, the observation
of symmetric probability to g = 2 and q = 11 is an indication of the lack of evidence for a changepoint. Should there be a discrete
jump at one of the end locations such as q = 2 (Figure 3a), this is clearly identified by the changepoint model.
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Our final simulation compares the scalar-changepoint model whose performance we have characterized
thus far, with the vector-changepoint model. Figure 5 shows the result for the scalar-changepoint model
for a cohort sequence with two different discrete jumps, occurring in two different parameters of 77.
Since the scalar-changepoint model is constrained to fit one changepoint, its performance is sub-optimal
when presented with a data set with multiple changepoints. From Figure 5a, we observe that a high
posterior probability is assigned at cohort 6. The other jump at cohort 3 is picked up by the model by
assigning the second highest posterior probability, but is overwhelmed by the jump at cohort 6. This is
entirely consistent with how our model with one changepoint is expected to behave. However, we now
examine the performance of the vector-changepoint model in being able to detect multiple shifts if they

occur in different parameters, even without migrating to a multiple-changepoint framework.
[INSERT FIGURE 5a,b,c HERE]

We can make the assumption that the parameters of 77 are mutually independent since this is a

simulated data set. When we use the vector-changepoint model based on this assumption, any

correlation between pairs of parameters in the simulated data is ignored. A vector of posterior

changepoint location distributions is obtained corresponding to{,upi N Mg ,¢6,i}. Figure 6a shows the

results of posterior changepoint probability for each parameter. Changepoints are accurately detected

at cohort 3 for My, (transaction process mean) and cohort 6 for Ly (dropout process mean). The
changepoint probability assignments for ¢pi and ¢9i are reflective of no changepoints in these

parameters (see previous discussion relating to Figure 4). In Figure 6b, discrete jumps can be observed

at cohort 3 and cohort 6 in the My, and g, Parameters respectively (very similar to Figure 5b). In Figure

6c, note that each parameter of the block mean has its interquartile range deriving from its own
changepoint configuration. The two blocks have markedly different distributions for parameters 1 and 3,
while parameters 2 and 4 are similar (since the data does not shift in these parameters). The results
show the advantage of the vector-changepoint model® in detecting multiple shifts in a cohort sequence,
if they occur in different parameters of the cohort-level model. When considering a multiple-
changepoint model, the vector-changepoint approach can still be applicable to detect multiple shifts in

different parameters.

® The vector-changepoint model also improves speed of computation since a k-dimensional multivariate distribution is replaced
with k univariate normal distributions. However, this alone is not a reason to use the vector-changepoint model over the scalar-
changepoint model.
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[INSERT FIGURE 6a,b,c HERE]

A cautionary note here is to verify the assumption of mutual independence among cohort-level
parameters. Running the scalar-changepoint model and examining the posterior distribution of
correlation coefficients between pairs of parameters would provide some indication of whether the
assumption of zero correlation can be justified. The researcher can still impose the assumption of
independence if this can be inferred from prior knowledge or previous data sets, at the cost of distorted

results should the assumption be false.

Judicious selection of parameter sub-groups can provide managerially relevant changepoint signals. For

instance, a researcher may decide that the transaction process parameters {,upi,qﬁpi} form one
subgroup while the dropout process parameters {,ugi '¢0i} form another subgroup, and that these

subgroups are mutually independent. The covariance matrix for the cohort-level prior then has a block-
diagonal structure, and is a middle path to avoid assuming that all parameter pairs are mutually
independent. As the number of features modeled at the cohort level increases, the vector-changepoint
model can bring additional insights and computational savings when the assumption of independence is

justified.

V1. Empirical Analysis

To test the model’s capabilities with actual data, we obtained a multi-cohort donor data set from a
regional U.S. non-profit public television station. The 11 cohorts in the data set were acquired from 1990
through 2000. The data for each cohort runs from the year of acquisition through to the end of 2009.
For each cohort, the raw data contains transaction dates and donation amounts for each donor. We
convert this data into a binary sequence of annual transaction incidences for each donor. The range of a
cohort’s size is from 8,900 to 23,153 donors. In this context, focusing on yearly giving behavior as the
time scale is appropriate since the non-profit organization plans a set of campaigns across the year
(involving TV appeals and direct mail). Choosing a time scale shorter than a year can result in variations
across periods that are due to seasonality or other temporal factors rather than stable donor behaviors’,

which would distort cohort parameter estimates. In other contexts, it may be that the time scale for a

7 Fader, Hardie and Shang 2010 found that using a time scale shorter than annual incidence results in undesirable data
distortions in a non-profit setting.
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period is quarterly, monthly or even weekly. Our changepoint model can be applied to any of these

settings, and the only differences would be in the number of observations.

The management team of the television station was interested to know if the characteristics of their
donor base had changed over time, whether the change was gradual or involved a distinct changepoint,
and how to best forecast the behavior of new cohorts. We estimate the changepoint and static models
to address these questions. The changepoint model provides the posterior probability of a shift at each
possible cohort. The cohort-level parameter distributions tracked across the cohort sequence provides
guidance on the nature of the shift (if one exists). Posterior predictive distributions for new cohorts
obtained from the changepoint and static models are compared with actual data to determine which

model is a better fit.

With the plethora of quantities available to assess model fit, we focused on two measures: posterior
predictive distributions of holdout data for the newest cohort in our data set (acquired in 2000), and log
marginal likelihood. Per the earlier discussion on empirical identification of the BG/BB model and the
highly informative likelihood function for cohorts with at least three periods of repeat observations (we
use the terms ‘observation’ and ‘repeat observation’ interchangeably), parameters of cohorts with
sufficient data undergo little to no shrinkage. Therefore, in-sample features of the data are fit equally
well by the changepoint and static models, which have very similar cohort-level posterior distributions.
We return to this point when presenting the log marginal likelihood comparison. As a result, we expect
using a five year holdout period for the 2000 cohort’s data to provide a solid measure of each model’s

predictive accuracy and face validity in capturing features of the data set not used in model estimation.

To provide a true test of the difference between the changepoint and static models, we deliberately
picked “cut-off” years where the 2000 cohort would have very few or no observations®. The cut-off years
we use are 2000, 2001, 2002, and 2003. In Figure 7, we show how cohorts included for model estimation
at each cut-off year have differing periods of repeat observations, with the 1990 cohort always having
the largest number of observations. Cohorts with fewer than three observations are excluded from
model estimation but we can still generate parameter draws and posterior predictive distributions of
interest using the estimated model’s MCMC draws. For example, the 2000 cohort has no repeat

observations in the year 2000, and could not be estimated at all using Maximum Likelihood methods.

& Note that our data set contains transactions up to 2009 for every cohort. If we used all this data, each cohort from 1990 to
2000 would have more than the minimum three observations required for identification, and there would be practically no
difference in prediction between the changepoint and static models. Hence, we use a more realistic test putting ourselves back
in time such that the 2000 cohort has very few observations.
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Our hierarchical Bayesian models enable predictions to be made by borrowing information either from
all cohorts (static model) or relevant cohorts if a changepoint is detected (changepoint model). In 2003,
the 2000 cohort would have 3 observations and is included in model estimation and we will observe that
the predictive distributions of the changepoint and static models become very similar. We compute
mean squared error (MSE) across predictive distribution draws and decompose MSE into the bias and

variance components to highlight the difference between the changepoint and static models.
[INSERT FIGURE 7 HERE]

We also considered whether the vector-changepoint or scalar-changepoint model would be appropriate
for analyzing this data set. Based on the discussion in the Simulation Analysis section, we first checked
the correlation between pairs of parameters using the scalar-changepoint model, shown in Table 2. We
observe a large 95% posterior interval width for all possible correlation coefficients for pairs of
parameters in each block. We therefore defer the analysis using vector-changepoint model until
potential distortions it may introduce are investigated. Presently, we use the scalar-changepoint model

which allows for correlations between parameters.
[INSERT TABLE 2 HERE]

We start by looking at posterior probability of changepoints as we move from the 2000 cut-off to the

2003 cut-off. This provides a view of what management could have taken note of in “real time”.

Using the progression of the four cut-off years from 2000 to 2003 shown in Figure 8, we can infer the
following shifts in the cohort sequence. There appears to have been a moderate shift detected at the
1997 cohort in the year 2000. However, this has been superseded by a larger shift at the 1998 cohort
(which was only possible to detect once the 1998 cohort had enough data to be included in model
estimation in 2001). In 2002 and 2003, the 1998 cohort continues to have a large posterior probability of
a change. This pattern therefore suggests that cohorts acquired in 1998 or later have different

behavioral characteristics compared to pre-1998 cohorts.
[INSERT FIGURE 8 HERE]

In which parameters might shifts have occurred which lead to the above changepoint probabilities? We

examine the 2002 cut-off as an illustrative example. In Figure 9, we plot the posterior interquartile

ranges across cohorts for each parameter in{,upi N Mg '¢6’.}' We observe that the transaction process
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parameters appear to be relatively similar across cohorts. In the dropout process parameters however,
we see a substantial shift in both the mean and polarization at the 1998 cohort, and a further (but
smaller) shift at the 1999 cohort. This corresponds to the high posterior probability of a changepoint at
the 1998 cohort, and the next-highest probability at the 1999 cohort for the 2002 cut-off depicted in
Figure 8. The managerial implication is that the 1998 and 1999 cohorts appear to have a much higher
dropout rate on average than their predecessors, and with greater heterogeneity as well in the dropout
rate. The television station would need to examine any environmental or policy changes that may have

resulted in these poorer-performing cohorts.

[INSERT FIGURE 9 HERE]

Based on the evidence pointing towards a changepoint at the 1998 cohort, as well as the parameter
shifts, we should expect to find corroborating evidence in the predictive accuracy of the changepoint
model versus the static model. Specifically, we can hypothesize that the static model would overpredict
the number of transactions of the 2000 cohort over the holdout period, compared to the changepoint
model. This follows from the increased dropout mean evident in the 1998 and 1999 cohorts, which

would get “smoothed over” by the static model.

We now examine the predictive performance of the two models with respect to five year holdout data
of the 2000 cohort. For the 2000 cut-off, the holdout period is 2001-2005; for the 2001 cut-off, the
holdout period is 2002-2006, and so forth. Apart from the 2003 cut-off, the 2000 cohort is not included
in model estimation for the other cut-off years. Hence, how closely the posterior predictive distribution
characterizes the actual holdout data is an indication of the resemblance of the 2000 cohort to its
predecessors. Figure 10 shows the actual holdout transactions versus the mean of the posterior
predictive distribution from the changepoint and static models. From Figure 10, we observe that the
mean of the posterior predictive distribution for the changepoint model is centered closer to the actual
holdout values for every holdout period and every cut-off year except 2003. In 2003, the 2000 cohort
has enough observations to be included in model estimation and the posterior predictive distributions

are very similar for both models.

[INSERT FIGURE 10 HERE]

At the 2000 cut-off, data from the 1998 cohort is not included in the model estimation. Since we
observe a changepoint at the 1998 cohort at a later cut-off, we can see that the bias of the changepoint

model’s predictive distribution, while lower than that of the static model, is still off from the actual
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values. At the 2001 cut-off, we observe a much improved fit using the changepoint model, while the
static model has a large positive bias since it is influenced by older cohorts which seem to have a much
lower dropout propensity than the 2000 cohort. In the 2002 cut-off, the changepoint model fit is good
for the first two holdout years, and then deviates with an upward bias. The explanation for this can be
found in Figure 9 which shows the 1999 cohort with a dip in the transaction process polarization relative
to other cohorts. Because the scalar-changepoint model we are using heavily weights the 1998 and 1999
cohorts in the estimation of the second block’s parameters, all parameters from these two cohorts
(including of the transaction process) influence the 2000 cohort predictive distribution. Thus, the 1999
transaction process polarization causes the prediction for the 2000 cohort to be upwardly biased. The
vector-changepoint model may be useful in such instances to avoid the tendency of the scalar-
changepoint model to assign all parameters to the same block structure due to a large shift in a subset
of the parameters. Finally, Figure 10 shows that the holdout predictions for the changepoint and static
models become practically identical in the 2003 cut-off, since the 2000 cohort’s own data are primarily
driving its parameter draws, with the information “borrowed” from the 1998 and 1999 cohorts having a
weak influence. That both models produce biased predictions for the 2003 cut-off is a reflection that the
trajectory of the 2000 cohort’s predictive distribution is not entirely given by information in the three

observations of this cohort’ (from 2001-2003).

While we show the holdout performance over five years to illustrate overall fit, the most important
prediction is for the following year because the model can be re-estimated each year as new data
arrives. Therefore, predictions made for the longer-term can be periodically revised. The changepoint
model provides predictions with much lower bias than the static model, which helps forecast behavior
of the 2000 cohort even when there is very little to draw from that cohort’s data itself. The lower bias of
the changepoint model does not come without a cost. In Table 3, we decompose the mean squared
error across posterior predictive draws into bias and variance components. Per the discussion in the
Model Estimation section, we expect a higher variance for the changepoint model. We show the results
for the first holdout year in each cut-off, but the general pattern of a bias-variance tradeoff persists

across each of the holdout years.

[INSERT TABLE 3 HERE]

9 . - L . . ) . ) .
While a cohort’s BG/BB likelihood function is identified with three observations, the shape of the likelihood function can still fluctuate as new
observations are added, and only “settle” after more than three observations. This can vary from cohort to cohort.
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From Table 3, the changepoint model has an overall higher MSE which is driven primarily by variance in
the posterior predictive distribution, since block parameters are driven by fewer cohorts and exhibit
more uncertainty. The static model has a lower MSE but has a large bias component. The posterior
predictive p-values also indicate that the changepoint model has better face validity in explaining the
holdout data versus the static model whose p-values are on the higher end of the spectrum. These
results are consistent with Figure 10, indicating that the 2000 cohort is significantly underperforming in
terms of transactions compared to earlier cohorts, and the changepoint model is able to pick up on
some of the change and shield the predictions for the 2000 cohort from being influenced by the older
cohorts. Notably, the 2003 cut-off uses the 2000 cohort’s data for its predictions, resulting in a much

lower overall MSE and similar statistics for the changepoint and static models.

We examine “global model fit” by computing log marginal likelihood for each model and cut-off year
using the harmonic mean method (Newton and Raftery 1994), as shown in Table 4. We observe both
models to have very similar log marginal likelihoods, because cohorts included in model estimation have
at least three observations and have very informative likelihood functions due to the large number of
donors in a cohort. Thus, little to no shrinkage towards the prior is observed for cohorts included in
model estimation for either model, and cohort level parameters are tightly distributed. Cohort-level
parameters converge to similar posterior distributions in both models, leading to similar predictive

distributions.
[INSERT TABLE 4 HERE]

We note that the changepoint model’s primary purpose is to detect discrete shifts across cohorts, and
enable improved prediction of new cohorts with limited observations. Therefore, the log marginal
likelihood comparison is of limited value compared to the posterior predictive checks we discussed

earlier.

VII. Discussion and Managerial Implications

The comparison of the changepoint and static models shows that utilizing the changepoint framework
provides new information about the structure in a cohort sequence, and that this new information plays

a significant role in enhancing predictive accuracy of holdout data by reducing bias.
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We return to the managerial questions posed at the beginning: (1) when does data become outdated for
forecasting behavior of new cohorts, (2) how to develop forecasts for new cohorts, and (3) is there

evidence for a distinct shift in cohort characteristics in a sequence of cohorts?

Bob, the analyst from Acme Apparel, has drawn parallels from the non-profit data set to his own
context. Using the changepoint model, he saw that a line could be drawn at the cohort where the
posterior probability of a changepoint is highest. He is now able to determine which cohorts would be
relevant predecessors for the new cohorts that Anita, the sales manager, is interested in. In the non-
profit example, cohorts prior to 1998 are identified by the model as being from a different “regime”.
Without this output from a changepoint model, Bob would understandably be reluctant to disregard 6
to 8 cohorts’ worth of data to forecast new cohorts’ behavior and management may be skeptical of
analysis which uses less data than what is available. Thus, decision making based on heuristics of what is

relevant can be augmented with data-driven evidence of regime change.

Bob has also learned that he can examine the parameters which have shifted at the changepoint
location to better understand the intuition of what cohort-level behavior is responsible for the shift. He
may be able to confirm Colleen’s intuition by analyzing whether the transaction or dropout propensity
of newer cohorts have undergone a significant shift since the new competitor’s entry. He can now
provide Colleen with data-driven corroboration of intuition regarding changes in the marketplace that

impact customer behavior, which he was previously unable to quantify.

While the changepoint model is not dynamic in the sense of “sequential Monte Carlo” methods, it can
be re-run after each period in which new data is received, thus providing a moving snapshot of cross-
cohort changes. To run the MCMC algorithm for 550,000 iterations (needed for aggressive thinning)
took about 8 hours on a 4-core 2.70GHz processor in the R programming environment. An analyst like

Bob can therefore re-run the model on a periodic basis to determine relevant cross-cohort patterns.

Bob is keenly interested in the bias-variance tradeoff between the changepoint and static models. He
understands that using fewer cohorts to estimate block parameters results in greater uncertainty in
those parameters. The mean squared error of the changepoint model appears larger than the static
model, but is centered closer to the actual performance. He knows that Anita, who has read Lodish
(1986), would prefer to be “vaguely right” than “precisely wrong”. For making predictions, it is more

valuable to have low bias than low variance, if these had to be traded off.
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We also note that the MSE of the changepoint prediction will reduce as more cohorts are added over
time; however, the bias of the static model improves very slowly with additional data, as the older
cohorts will dominate if they are greater in number than the cohorts in the second regime. Thus, while
there appears to be a “tradeoff” between bias and variance when comparing the changepoint and static
models, this is not a real tradeoff that a manager has to make. The changepoint prediction is more
relevant, and its variance provides information on uncertainty which is also important for the manager
to know. Having a false sense of certainty can lead to decisions that are sub-optimal for the
organization. For instance, Anita may overcommit her sales organization to over-ambitious goals by
relying on forecasts that do not take changepoints into account. Management of startup companies
whose valuations rely upon customer acquisition and retention may portray a less accurate view of

future growth if they project new cohorts to behave like the “average” of all previous cohorts.

For researchers, these findings suggest that investigating cross-cohort shifts can be a powerful tool
when dealing with a dataset that has an inherent cohort sequence structure. New insights can be
obtained with the general changepoint model framework, regardless of the type of cohort-level
behavior being modeled. The absence of evidence of a changepoint can also provide confirmatory

feedback to conduct analysis which uses a single population model for the entire dataset.

VIII. Extensions/Future Work

Ongoing Extensions

As described in the Model Development section, we are currently developing a multiple-changepoint
model to supersede the fixed changepoint model implemented in this paper. Approaches such as
reversible jump MCMC (Green 1995) and model selection using linking densities (Carlin and Chib 1995)
are under consideration, and we will include implementation details for the multiple-changepoint model
in a future version of this paper. The multiple-changepoint model will be valuable to allow for the
detection of an arbitrary number of shifts, which may well occur in a long cohort sequence. We will
extend the comparison of the scalar-changepoint and vector-changepoint approaches to the multiple-

changepoint model.

We also plan to characterize the nature of distortions introduced by using a vector-changepoint model

when cohort parameters are in fact correlated. If the vector-changepoint model is reasonably robust
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when parameters are correlated, we can uncover more detailed insights about shifts by parameter

dimension compared to the scalar-changepoint model.
Future Work

While the changepoint model provides useful insights on cross cohort shifts, it has a number of

limitations, which can be addressed in future research.

First, the model does not currently have covariates which can explain potential causes of cross cohort
shifts. For instance, the state of the environment and firm at the time of acquiring a cohort may explain
part of the cohort’s characteristics. A variety of macroeconomic and firm-internal variables may be
hypothesized as reasons for the shifting behavior of customer cohorts. It would be useful to build a
model with covariates that can test for a link between changepoint locations and explanatory variables.
Endogeneity needs to be accounted for, especially if the covariates involve firm-internal strategies which

may be influenced by the behavior of previous cohorts.

Second, it is possible that cohorts are not necessarily related to each other in contiguous blocks.
Returning to the idea of a more general model of relationships amongs cohorts (e.g. Hui and Bradlow
2011), the model could allow for cohorts exhibiting similar behaviors to be grouped together, akin to a
latent class model, even if this breaks the temporal sequencing. This may be interesting if new cohorts
follow a cyclical pattern of resembling earlier cohorts (perhaps due to economic cycles), or if the
segmentation is not based on period of acquisition. A more general segmentation of customers will not

have a cohort sequence structure, but there can still be underlying patterns which can be uncovered.

Third, our model does not allow for correlations between the transaction and dropout process
parameters within a cohort. This limitation can be addressed by replacing the BG/BB cohort-level model

with a more general SBB/GB model that allows for correlations.

Fourth, our model focused on transaction incidence, giving the same weight to a transaction regardless
of monetary amount. Modeling transaction monetary amounts within a cohort and tracking changes in
this dimension across cohorts can provide additional insights on behavioral changes at the cohort level.
This would enable the firm to compute the overall cohort lifetime value and distinguish between
frequent, low monetary spend customers and infrequent, high spend customers. Empirical evidence of

independence between the distributions of monetary amount and transaction incidence (Fader, Hardie
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and Lee 2005a) may facilitate the use of the vector-changepoint approach to separate the changes

related to spend and incidence.

Finally, our changepoint model is not dynamic in the sense of a sequential Monte Carlo approach. The
model has to be re-run with the entire new data set, if new time periods of observations become
available. This may be reasonable if computation does not have to be in real-time. However, there can
be scenarios (especially in rapidly growing online social networks), where cross cohort patterns need to
be analyzed on a weekly or even daily basis. In this case, sequential Monte Carlo methods such as
particle filtering could enable real-time updating of model parameters as new data comes in (Doucet, de

Freitas and Gordon, 2001).

IX. Conclusions

We have demonstrated the value and importance of considering change points in multi-cohort
sequences. Since many businesses acquire cohorts of customers over time, monitoring the evolution of
cohort behaviors may provide a telling indication of change, either confirming managers’ intuitions or
providing a fresh impetus to search for external or internal shifts. Managers may discover that new
cohorts’ behaviors have been shifting significantly due to recent promotions by a competitor, which
they had initially assumed to be ineffective. Managers may discover signs of saturation in the market
they are targeting — successive new cohorts may appear to have less attractive characteristics than older
cohorts, perhaps because the best prospects were already converted in the older cohorts, and the ones
remaining are the “customers nobody wants to have”. Lumping all customers, new and old, into one

grouping will not enable the detection of such changes.

We have developed a Hierarchical Bayesian cross cohort changepoint model that provides guidance to
these managerial issues. Our framework is applicable to any scenario where a sequencing of cohorts
exists, longitudinal data is available for each cohort, and the cohort-level model is parametric. Our
model yields probabilistic inferences about discrete shifts or changepoints in cohort characteristics
across the sequence of cohorts, and provides the ability to forecast new cohorts’ behavior with little or
no data from the new cohort itself. We hope this work spawns further research in uncovering new

structural patterns in customer databases that help managers make the most effective use of their data.
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Tables and Figures

Table 1: Examples of multi-cohort data sets to which the cross-cohort changepoint model can be

applied

Hierarchical prior

References

Cohort-level data Cohort-level for cohort-level
model parameters

Number of doctor visits in the last | Negative Binomial | Log normal Winkelmann (2004)
three months for an age- Distribution
demographic cohort of patients
Interpurchase time for a financial | Generalized Log normal Allenby, Leone and Jen
firm’s customer cohort Gamma (1999)
Purchase of CDs for a cohort of Beta- Logit normal & Fader, Hardie and Lee
customers over time Geometric/NBD Log normal (2005b)
Proportion of defective products | Bernoulli Beta Rosenblatt and Lee
per batch in manufacturing (1986)
process
Milk yield in dairy herd: one of N | Multinomial Dirichlet Madouasse (2009)

categories of yield

Note:

The papers referenced utilize the cohort-level model for these applications, but do not use a cohort

sequence approach to analyze cross-cohort differences. Our suggestion is that the cross-cohort

changepoint model can be applied to such settings.
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Table 2: Correlations between cohort parameters in a scalar changepoint-model using 2001 as cut-off

year

Correlation coefficient/Quantile

pl_12 (block 1, par 1 and par 2)
pl 13 (block 1, par 1 and par 3)
pl_14 (block 1, par 1 and par 4)
pl_23 (block 1, par 2 and par 3)
pl 24 (block 1, par 2 and par 4)
pl 34 (block 1, par 3 and par 4)
p2_12 (block 2, par 1 and par 2)
p2_13 (block 2, par 1 and par 3)
p2_14 (block 2, par 1 and par 4)
p2_23 (block 2, par 2 and par 3)
p2_24 (block 2, par 2 and par 4)
p2_34 (block 2, par 3 and par 4)

Note:

2.50%

-0.58
-0.49
-0.41
-0.54
-0.62
-0.47
-0.74
-0.73
-0.71
-0.76
-0.73
-0.72

25%

-0.21
-0.13
0.01

-0.16
-0.31
-0.14
-0.28
-0.30
-0.26
-0.30
-0.32
-0.24

50%
-0.01
0.08
0.21
0.04
-0.11
0.10
-0.01
0.02
0.05
-0.01
-0.03
0.09

75%
0.18
0.27
0.40
0.23
0.09
0.31
0.29
0.31
0.34
0.27
0.26
0.41

97.50%
0.52
0.59
0.67
0.56
0.50
0.64
0.72
0.77
0.78
0.77
0.73
0.79

We observe that the distributions of Pearson correlation coefficients (obtained from draws of block

covariance matrices) are centered near zero, but exhibit a fair amount of uncertainty. The 95% posterior

interval covers a wide range of values.
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Table 3: Posterior predictive statistics for 2000 Cohort, when using data cut-offs at 2000, 2001, 2002

and 2003

Cut-off Year

2000
2001
2002

2003

Note:

Changepoint Model
Static Model
Changepoint Model
Static Model
Changepoint Model
Static Model
Changepoint Model
Static Model

Actual Holdout

Year 1 Value
2,625
2,625
2,201
2,201
1,822
1,822
1,551
1,551

Mean (T(y_rep))
3,197
3,563
2,218
2,808
1,728
2,247
1,590
1,594

MSE
1,841,345
1,397,720
1,400,150

851,641
1,035,545
636,159
5,933
5,950

MSE - Bias % MSE - Var %

17.7%
63.0%

0.0%
43.2%

0.9%
28.3%
25.6%
30.4%

82.2%
37.0%
100.0%
56.8%
99.1%
71.7%
74.4%
69.6%

RMSE
1,357
1,182
1,183

923
1,018
798
77
77

Pr(T(y_rep) >T(y) )
0.675
0.910
0.463
0.821
0.395
0.735
0.728
0.747

Mean(T(y_rep)) refers to the mean of the posterior predictive distribution for the statistic, which in this

case is holdout transactions.

MSE is the mean squared error for the posterior predictive draws.

MSE — Bias % is the proportion of MSE due to bias.

MSE — Var % is the proportion of MSE due to variance in the predictive draws.

RMSE is the root mean squared error, presented to provide a measure of error in the same units as the

number of transactions.

Pr(T(y_rep)>T(y)) is the posterior predictive p-value. A p-value closer to 0.5 would indicate that the

actual value is located close to the center of the predictive distribution. A p-value at the extremes (close

to 0 or 1) would indicate a poorer model fit with the data.
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Table 4: Log Marginal Likelihood for Changepoint and Static models under each cut-off year

Cut-off Year / Model Changepoint Model Static Model
2000 -366,528 -366,529
2001 -410,579 -410,579
2002 -464,984 -464,984
2003 -517,352 -517,352

Note:

The log marginal likelihoods were calculated using the harmonic mean method (Newton and Raftery

1994) under the Changepoint and Static models. We observe both models to have very similar log

marginal likelihoods, because cohorts included in model estimation have at least three observations and

have very informative likelihood functions due to the large number of donors in a cohort. Thus, little to

no shrinkage towards the prior is observed for cohorts included in model estimation for either model,

and cohort level parameters are tightly distributed.
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Figure 1: Directed acyclic graph of hierarchical model

Changepoint Hyperpriors
fi ti K

configuration ,Q of K. Q

Hierarchical H i

Block O ypen:n:))rs

distributions °

Cohort i‘s
parameter n.
vector

Cohort i‘s Y
Data [

Note:

K and Q are the number and locations of changepoints respectively. In this paper, K is set to 1 and only Q
is random.

Q) contains the hierarchical block distributions. For K=1, Q) contains exactly two distributions.
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Figure 2: MCMC Pseudo-algorithm for scalar-changepoint model

Generate random starting values for g,¥i

Generate random starting value for changepoint location q

Loop through iterations from 1l:nlterations

Draw new values for pm,z&,p&,zh based on q and #,¥i, by Gibbs

sampling from conditional posterior distributions.
Loop through each cohort
Draw new m;using Metropolis-Hastings step
Accept or reject candidate using posterior density ratio test

End Loop

Draw new changepoint location q based on ph,E&,ph,Za and #;¥i using

Gibbs sampling from multinomial density function

End Loop
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Figure 3a: Large jump from u, =06 to u, =03 and minor fluctuations within-block with

changepoint at cohort 2 (left), cohort 6 (middle) and cohort 10 (right) of a 11 cohort simulated

Posterior distribution of changepoint location Q=q Posterior distribution of changepoint location Q=g Posterior distribution of changepoint location Q=q
o g o
3 2
@
3 @ | @ |
3 3
2 g4 R 2 o]
K 8 s
5 g s
5 s s
g o g g
-4 & -4
o o | |
S S s
o o o
3 S s
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9o 10 1 2 3 4 5 & 7 8 9 10 1u

Changepoint location Q=q Changepoint location Q=q Changepoint location Q=q

Figure 3b: Posterior interquartile range for each cohort’s ., when discrete jump coded at cohort 6
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Figure 4a: No jumps, only minor fluctuations across 11 cohort simulated sequence
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Figure 5a: Scalar-Changepoint: Large jump from 4, =0.3 to 4, =0.6 at cohort 3 and large jump from

ty =0.2 to 1, =0.5 at cohort 6; other parameters similar across the cohort sequence

Posterior distribution of changepoint location Q

0.8

Posterior probability
0.4 0.6
| |

0.2

0.0

Changepoint location Q=¢

Figure 5b: Posterior interquartile range for each cohort’s My, and g

par-1 par-2 par-3 par-4

c 0.7 - 06
v 06 — r g 05 —
E8 o5 E & o4
c 2 c &Y
e 8 0.4 - g_ 03
S S 1. E :
28 03 T 500
o g 02 -
[TIC] v O
g g o1 *g 501
= O T T T T T T T T T T 1 ‘S O T T T T T T T T T T
© u= c ©
S ° 1234567 891011 S 12 3 4 5 6 7 8 9 10 11
Cohort Index Cohort Index
Figure 5c: Posterior interquartile range of Hy s M,
MU_g1 - posterior interquartile range K_g2 - posterior interquartile range
g g
s 07 s 07
& 06 g 06 :
(]
E 05 i g 0.5 :
5 04 ! 5 04
S 03 5 03
x B
§° 0.2 : ! §° 0.2
@ 0.1 2 01
g 0 T T T 1 g 0 T T T
£ £

par-1 par-2 par-3 par-4

40




Figure 6a: Vector-Changepoint: Large jump from ., =03 to u, =0.6 at cohort 3 and large jump

from 1, =0.2 to 1, =0.5 at cohort 6; other parameters similar across the cohort sequence
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Figure 7: Cut-off years and cohorts included for model estimation

1991 1992 @1994 1995 P 1996 P 1997 P 1998 P 1999 @

2000 Cut-off

2001 Cut-off

2002 Cut-off

2003 Cut-off

Note:

There are three aspects of cutting off data at the various “cut-off” years that are noteworthy. First, only
cohorts with at least three repeat observations are included for model estimation. For instance, at the
2000 cut-off, the latest cohort included in model estimation is the 1997 cohort, with repeat observations
in 1998, 1999 and 2000. By the 2003 cut-off, every cohort in our data set is included in model estimation
as even the 2000 cohort has 3 repeat observations.

Second, each cohort (whether included or excluded for model estimation) has a different number of
observations. The 1990 cohort always has the largest number of observations. For instance, at the 2001
cut-off, the 1990 cohort has 11 observations and the 2000 cohort has 1 observation.

Third, any cohort that is excluded from model estimation can still be predicted using MCMC draws from
the various model parameters to generate posterior predictive distributions of interest.
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Figure 8: Posterior probability of changepoint using 2000 cut-off (top left), 2001 cut-off (top right),

2002 cut-off (bottom left), 2003 cut-off (bottom right).
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Figure 9: Posterior interquartile range for parameters across cohort sequence (2002 cut-off)
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Figure 10: Actual holdout transactions versus posterior predictive distribution means for 2000 cohort

at cut-off years ranging from 2000 to 2003
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Figure 10 (continued):
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Appendix

A. MCMC Implementation Details

To implement the MCMC algorithm, we need full conditionals for Q, Q2and 7.

From equation (1), we have

0(Q=q|0,y)=-PQ=9P71Q=09)
>'p@Q= ) p71Q= .0

Q can be drawn as a Gibbs sampling step from a multinomial distribution by calculating equation (1) for

every value of Q.

Drawing the parameters of ) conditional on g and 77 is straightforward if we use a conjugate prior. We

choose the Normal-Inverse-Wishart conjugate prior for the multivariate normal p(r7|Q =q,Q) so that

it becomes a Gibbs sampling step. We draw block parameters @, and ®,separately as they are

conditionally independent given Q and 77.

P(Q[Q=0,7) = p(7]|Q=0,Q)-p(?)

The hyperpriors for each block’s Normal-Inverse-Wishart distribution are set to be non-informative:
T

Ko =001; 1o=[0 0 0 0] ;v,=7;%,=1,

K, is @ measure of the amount of “prior data” upon which 4, is based. By setting it to a small positive

constant, it scales variance X such that the distribution of x4 |X is diffuse. vy =7 is set so that the

degrees of freedom equals rank(Z,)+3. £, =1, is the identity matrix. Both these settings result in a
reasonably diffuse prior (Rossi and Allenby 2003). While the prior £, does not allow for correlations in

the parameter space of 77, the posterior distribution of X, can be influenced by data-driven

correlations in the cohort-level parameter vectors.

The parameters of the Normal-Inverse-Wishart model for each block b can be updated using 77 and Q

before drawing posterior block parameters.
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ng - IW(VPb’ZPb)
Ly, |2 ~ MVN(,upb,Z/Kph)

n n
c - 1 c

Let n, = z l,_, be the number of cohorts assigned to a block and M, :—z l,, -7, be the mean of
i=1 b =1

the cohort vectors assigned to block b.
The Normal-Inverse-Wishart parameter updates are given by the following equations:

Ky =Ko+,
My, = (o g + 1y -My) 1,

V, =V, +N,

n,
— y T Kooy T
zph =2, +z licy - (7 —=my) (77, = my,) " + . '(mb _ﬂo)'(mb _;Uo)
i=1 Po
The final step is to draw a parameter vector for each cohort, and this requires a Metropolis-Hastings
step since the multivariate normal prior is not conjugate to the BG/BB likelihood function in Equation
(6). The unnormalized posterior density used to calculate the conditional probability of the proposed
J
f
candidate is p(7{*™ |Y;,Q =, Q) ocH(p(Yi |75 X0t )" P 1Q=0,9).
j-1
Note that our current implementation requires the model to fit one changepoint to the data. In the case

that there are multi-modalities (multiple changepoints) in the data, this may hinder the accurate

detection of the most sizeable discrete jump.

We used the following configuration to run the MCMC algorithm on the actual data set. The first 10,000
iterations are considered the burn-in period. Most parameters converged within 2,000 iterations but
this buffer helps ensure that all model parameters converge. It is difficult to examine the convergence of
the parameters in each model with graphical checks. We use the Gelman-Rubin statistic for each
estimand (using draws from three different chains with overdispersed starting parameter values), and
determine that every parameter of each model converges (using R threshold of 1.1 per Gelman et al

2004).

Autocorrelation is significant for cohort level parameters (especially ¢H. which represents the

polarization for the dropout Beta distribution) and requires considerable thinning to result in
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approximately i.i.d draws. We ran 550,000 iterations, and thinned aggressively after burn-in, by taking
every 500" draw. These draws exhibited very low autocorrelation and can be considered a reasonable

approximation to i.i.d samples for the purposes of estimating posterior intervals.

We used a constant jump variance or step of 0.0025 (for each parameter in 7;) for the Metropolis-

Hastings step in drawing each cohort’s parameter vector. This was tuned to provide a reasonable
acceptance rate (around 10% to 30% depending on the cohort), while keeping autocorrelation from
being too high. A lower jump variance boosts the acceptance rate but at the expense of more significant
autocorrelation. A higher jump variance reduces the acceptance rate. We did not implement an
adaptive jump variance as we found good convergence and mixing properties with the fixed jump

variance.

B. Random changepoint model discussion

The terms p(7|Q, K =k,Q ={q,,...q,}) and p(Q|K =k,Q={q,,...0,}) pose the challenge in a

model with a random number of changepoints. The number of blocks in the cohort sequence is (K + 1)
and therefore dependent on K. The number of hierarchical priors is equivalent to the number of blocks,
and the MCMC algorithm will have to handle potentially changing dimensionality of Q2 to even draw a
new changepoint configuration, and to enable convergence and good mixing. The reversible jump
MCMC method (Green 1995) would entail a modified Metropolis-Hastings step which can draw K, and
evaluate whether to accept or reject this draw. A process of creating new hierarchical priors or removing

a prior will need to be defined per Green (1995). Carlin and Chib (1995) can also be applied to this

context by indexing a set of models based on the number of changepoints from 0 to K and

max ’/

maintaining a set of ®={QO,....kaax}by taking draws for all values of K, even those that are not

drawn in that MCMC iteration.

C. Recency-Frequency Sufficient Statistic - Example

For each cohort, we construct a recency-frequency table that serves as sufficient statistics for the BG/BB
model. As an illustration, we provide the recency-frequency table for the 1996 cohort after four periods
of observation (from 1997 — 2000) in Table C1. Of the 18,527 donors in this cohort, over half have no
transaction activity since their initial donation, after four observations (1997 — 2000). The BG/BB
likelihood function is described in equation (6) as a product of likelihoods corresponding to each row of

the recency-frequency table.
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Frequency (x) | Recency (t,) | #donors
4 4 1,343
3 4 826
2 4 494
1 4 239
3 3 661
2 3 640
1 3 553
2 2 786
1 2 707
1 1 1,994
0 0 10,284

Table C1: Recency-Frequency Table for 1996 Cohort after four observations (data as of year 2000)
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