
Functional brain imaging predicts public health

campaign success
Emily B. Falk,1,2 Matthew Brook O’Donnell,1 Steven Tompson,3

Richard Gonzalez,2,3 Sonya Dal Cin,2,4 Victor Strecher,5

Kenneth Michael Cummings,6 and Lawrence An,5,7

1Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA 19104, USA, 2Research
Center for Group Dynamics, Institute for Social Research, University of Michigan, Ann Arbor, MI 48106, USA,
3Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA, 4Department of
Communication Studies and 5Center for Health Communications Research, University of Michigan, Ann
Arbor, MI 48109, USA, 6Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina,
Charleston, SC 29425, USA and 7Department of Internal Medicine, University of Michigan, Ann Arbor, MI
48109, USA

Correspondence should be addressed to Emily B. Falk, Annenberg School for Communication, University of Pennsylvania, 3620 Walnut St., Philadelphia,
PA 19104, USA. E-mail: falk@asc.upenn.edu.

Abstract

Mass media can powerfully affect health decision-making. Pre-testing through focus groups or surveys is a standard,
though inconsistent, predictor of effectiveness. Converging evidence demonstrates that activity within brain systems asso-
ciated with self-related processing can predict individual behavior in response to health messages. Preliminary evidence
also suggests that neural activity in small groups can forecast population-level campaign outcomes. Less is known about
the psychological processes that link neural activity and population-level outcomes, or how these predictions are affected
by message content. We exposed 50 smokers to antismoking messages and used their aggregated neural activity within a
‘self-localizer’ defined region of medial prefrontal cortex to predict the success of the same campaign messages at the popu-
lation level (n¼400 000 emails). Results demonstrate that: (i) independently localized neural activity during health message
exposure complements existing self-report data in predicting population-level campaign responses (model combined R2 up
to 0.65) and (ii) this relationship depends on message content—self-related neural processing predicts outcomes in response
to strong negative arguments against smoking and not in response to compositionally similar neutral images. These data
advance understanding of the psychological link between brain and large-scale behavior and may aid the construction of
more effective media health campaigns.
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Much of the worldwide burden of morbidity and mortality can
be attributed to personal decisions made by individuals (Ezzati
et al., 2002; Mokdad et al., 2004; Keeney, 2008). Previous studies
have shown that mass media messages can influence health-
related decision making (NHS, 2004; Noar, 2006; Wakefield et al.,
2010); however, our understanding of the mechanisms prompt-
ing such influence is incomplete. Therefore, new ways of

understanding the mechanisms that produce effective mass-
mediated health campaigns are essential.

Neural responses recorded using functional magnetic reson-
ance imaging (fMRI) may provide insight into the mechanisms
leading to behavior change, and by extension, the design of ef-
fective messages. Broadly, research in social neuroscience and
neuroeconomics have advanced understanding of key concepts
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relevant to messaging such as self-related processing, valuation
and choice behavior (for reviews, see Northoff and Bermpohl,
2004; Northoff et al., 2006; Ariely and Berns, 2010; Liu et al., 2011;
Denny et al., 2012; Levy and Glimcher, 2012; Bartra et al., 2013).
Converging evidence demonstrates that neural activity within
the brain’s medial prefrontal cortex (MPFC) in response to
health messages can predict individual behavior change (Falk
et al., 2010, 2011; Chua et al., 2011; Wang et al., 2013), as well as
out-of-sample population-level outcomes (Falk et al., 2012),
above and beyond what is explained by participants’ self-re-
ports of their attitudes toward the behavior in question, their in-
tentions to change their behavior (Falk et al., 2010), confidence
in their ability to change and ability to relate to the ads (Falk
et al., 2011) and risk beliefs (Cooper et al., 2015). A small number
of studies have also found relationships between neural activity
in the valuation system and mediofrontal regions more broadly,
and large-scale behavioral outcomes in other domains (Berns
and Moore, 2012; Dmochowski et al., 2014; Boksem and Smidts,
in press). More broadly, fMRI offers a non-invasive way of moni-
toring neurocognitive responses to messages throughout the
brain. This provides several advantages, including the ability to
assess responses in real time, as persuasion occurs, without the
need to rely on retrospective self-reports. As such, fMRI is
ideally positioned to provide information that may not be ac-
cessible through other methods; for more extensive discussion
see Berkman and Falk (2013) and Lieberman (2010).

MPFC is the region most commonly observed in studies of
self-related processing (Lieberman, 2010), including computing
the value of stimuli to oneself (Bartra et al., 2013). Furthermore,
meta-analyses of self-related processing show robust activity in
MPFC associated with self-related processing (Yarkoni et al.,
2011; Denny et al., 2012). Although self-related processing, like
all cognitive constructs (Poldrack, 2006), is not limited to activity
in MPFC, we focus on MPFC given its role at the intersection of
research predicting behavior change (Falk et al., 2010, 2011, 2012;
Cooper et al., 2015) and research on self-related processing
(Northoff and Bermpohl, 2004; Northoff et al., 2006; Denny et al.,
2012). More specifically, in this study, we tested the extent to
which activation in MPFC in a small sample of smokers could
predict population-level responses to a mass media quit-smok-
ing campaign. We hypothesized that messages eliciting more
activity in self-related processing regions across individuals in a
neuroimaging context would also be more successful at eliciting
the target behavior at the population level. Given that activity in
MPFC is associated with multiple cognitive functions, however,
we use a validated cognitive task relying on self-knowledge as
an independent ‘localizer’ to identify a subregion of MPFC most
robustly activated by this form of self-related processing
(Schmitz and Johnson, 2006; Chua et al., 2011).

We also examined whether neural activity in the subregion
of MPFC identified by our self-localizer would be more predict-
ive of population-level responses for messages that were more
directly smoking-relevant. In particular, we focused on anti-
smoking messages inspired by the Food and Drug
Administration’s (FDA’s) proposed graphic warning labels for
cigarette packaging delivered through a mass email campaign
directing traffic to a quit-smoking website. We compared
strong, negative messages, of the type often used and demon-
strated to have at least short-term effectiveness, in antismoking
campaigns (Hammond et al., 2003; Hammond et al., 2004;
Hammond et al., 2006; Fathelrahman et al., 2010; Thrasher et al.,
2012) to compositionally similar neutral images. This manipula-
tion allowed us to test whether our hypothesized neural activity
predicts outcomes selectively in response to strong, behavior-

relevant arguments or whether this neural activity in turn pre-
dicts behavioral outcomes, regardless of message content. In
addition, this design allowed for a high degree of control over
the stimuli, balanced with a high degree of external validity;
The Centers for Disease Control and Prevention Best Practices
for Comprehensive Tobacco Control Programs lists ‘Promotion
of available services, including . . . quitting Web sites and social
media pages’ (p.34) as one best practice. Visits to a quit-smoking
website have been associated with longitudinal abstinence
from smoking (Richardson et al., 2013), and meta-analytic evi-
dence suggesting that web-based cessation interventions can
have significant impact under some circumstances (Myung
et al., 2009).

Materials and methods

This study tests whether self-related processing in the brains of
one group of smokers (n¼ 50) in response to antitobacco mes-
saging can predict the success of larger-scale media effects in
response to the same messages as measured in a population-
level campaign (n¼ 400 000 emails) (Figure 1). We: (i) established
population level success of the messages using a large-scale
email campaign in the state of New York (Tables 1 and 2); (ii)
verified the image properties using smokers identified on
Amazon Mechanical Turk (MTurk) (Tables 1 and 2) and (iii) col-
lected neural responses to the messages in a separate sample of
smokers in Michigan, using fMRI.

We built on prior research demonstrating the value of neural
signals implicated in self-related processing for prediction of in-
dividual behavior change (Falk et al., 2010, 2011; Chua et al.,
2011; Wang et al., 2013). More specifically, within our fMRI sam-
ple, we localized a subregion of MPFC most strongly associated
with self-related processing using a well-validated fMRI task
that allowed us to independently identify neural activity associ-
ated with self-related processing [a ‘self-localizer task’ (Chua
et al., 2011); Figure 1c]. We then used the fMRI data within this
self-related processing region of interest (ROI) during message
exposure to predict the population-level effectiveness of the
messages.

Population-level email campaign

Participants. Likely smokers, ages 18þyears within the State of
New York were identified by a third party email messaging ser-
vice (National Data Group; NDG; Table 1 for NDG estimated
demographics of the email sample). These participants had
opted in to receive emails from NDG. NDG uses credit card data
as one primary source of their direct email marketing lists and
uses information such as purchases of cigarettes and disclosure
of cigarette use in online marketing surveys or promotions as
indicators of smoker status; NDG did not link to data from to-
bacco companies.

We partnered with the New York State Smokers’ Quit Line
(NYSSQL) to launch an email campaign in which the 40 images
served as the basis for ads promoting internet-based quit-
smoking resources (www.nysmokefree.com). Each target
smoker of the email campaign received one of the 40 images
paired with text encouraging smokers to quit smoking (Figures
1 and 2). The images consisted of 20 negative antsmoking
images, modeled off of FDA’s proposed graphic warning labels
and 20 compositionally matched neutral images. The emails
also contained links to online quit-smoking resources managed
by the NYSSQL. The text within the body of the email consisted
of either a statement (n¼ 400 000): ‘Stop Smoking. Start Living.’

2 | Social Cognitive and Affective Neuroscience, 2015, Vol. 0, No. 0

 at U
niversity of Pennsylvania Library on D

ecem
ber 1, 2015

http://scan.oxfordjournals.org/
D

ow
nloaded from

 



Fig. 1. Overview of methods: (a) message design; (b) self-localizer task; (c) ROI identified using the self-localizer task; (d) population-level assessment of messages.

Table 1. Participant demographics

Email campaign recipients
(n¼ 400 000)

fMRI sample
(n¼ 47)

MTurk Sample 1
(n¼ 63)

MTurk Sample 2
(n¼ 19)

Gender (%M) 51.5% 59.6% (28 M, 19 F) 52.2% (33 M, 30 F) 52.6% (10 M, 9 F)
Age (years) 18–30¼ 32%, 18–30: N¼ 30 (63.8%) 18–30: N¼22 (34.9%) 18–30: N¼ 10 (52.6%)

31–50¼ 40%, 31–50: N¼ 10 (21.3%), 31–50: N¼33 (52.4%) 31–50: N¼ 5 (26.3%)
51þ¼ 28% 51þ : N¼ 7 (14.9%) 51þ¼ 8 (12.7%) 51þ¼ 4 (21.1%)

(M¼ 31.89, s.d.¼ 12.53,
range¼19–64)

(M¼ 36.7, s.d.¼ 11.6,
range¼ 20–66)

(M¼34.8, s.d.¼ 14.8,
range¼ 21–66)

Education 50% High school degree High school degree or less:
N¼ 22 (46.8%)

High school degree or less:
N¼ 27 (42.86%)

High school degree or less:
N¼6 (31.6%)

34% College degree; 13%
Graduate degree;

Associate degree from a 2-
year college: N¼ 3 (6.4%)

Vocational training other
than college: N¼ 2 (1.58%)

Associate degree: N¼ 2
(10.5%)

2% Vocational/Technical Currently in college: N¼ 12
(25.5%)

Associate degree: N¼5
(7.94%)

Bachelor’s degree: N¼ 3
(15.8%)

Bachelor’s degree or post-
graduate degree: N¼ 10
(21.3%)

Bachelor’s degree: N¼ 13
(20.631%)

Unknown: N¼ 8 (42.1%)

Unknown: N¼ 16 (25.4%)
Smoking status Likely smokers (duration

and frequency unknown)
M¼ 13.1, s.d.¼ 6.76,

range¼3–30 cigarettes
per day

M¼ 12.1, s.d.¼ 8.9,
range¼ 1–40 cigarettes
per day

M¼ 14.1, s.d.¼ 1.3,
range¼ 1–40 cigarettes
per day

Participants had smoked for
an average of 14 years
(M¼ 14.8, s.d.¼ 12.2)

Participants had smoked for
an average of 20 years
(M¼ 20.3, s.d.¼ 12.3)

Participants had smoked for
an average of 18 years
(M¼ 18.5, s.d.¼ 16.3)

Ethnicity Unknown White/European-American:
N¼ 31 (66%)

White/European-American:
N¼ 39 (61.90%)

White/European-American:
N¼12 (63.2%)

African-American: N¼ 5
(10.64%)

Asian-American: N¼ 6
(9.52%)

Asian-American: N¼ 1
(5.3%)

Hispanic/Latino: N¼ 5
(10.64%)

Hispanic/Latino: N¼ 1
(1.58%)

Hispanic/Latino: N¼ 4
(21.1%)

selected the ‘mixed’ ethni-
city category: N¼ 6
(12.77%)

Unknown: N¼ 17 (26.98%) Unknown: N¼ 2 (10.5%)
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(paired with each of the 40 negative and neutral images), or a
question (n¼ 400 000): ‘What are the good things that would
happen if you quit smoking?’ (paired with neutral images)/
‘What are the bad things that would happen if you don’t stop
smoking?’ (paired with negative images). Given that no differ-
ences were observed between statement and question text
emails, all data reported focus on the statement version of text

(Stop Smoking. Start Living.) that was used in the fMRI study
(n¼ 400 000 emails sent containing this tagline).

Prior to the launch of the email campaign, email subject
lines were piloted to select an email subject line that was likely
to elicit the greatest opening rate. Following the pilot, all emails
were sent with the same subject line (‘NY smokers. It’s time to
quit. Get free patches here.’), thus varying only message content

Table 2. Responses to antismoking email messages by image type

Measure Negative images
mean (s.d.)

Neutral images
mean (s.d.)

Difference stats

MTurk negative emotions 2.92 (1.02) 1.16 (0.07) t(38)¼ 7.7165, P< 0.001
MTurk positive emotions 1.66 (0.20) 2.01 (0.37) t(38)¼ 3.76, P< 0.001
MTurk image strength 3.53 (0.68) 2.54 (0.33) t(38)¼ 5.81, P< 0.001
fMRI participants QUIT 3.28 (0.72) 2.42 (0.39) t(38)¼ 4.66, P< 0.001
MPFC % signal change � 0.006 (0.041) 0.009 (0.017) t(38)¼ 1.58, P¼ 0.12
Email CTR 0.17 (0.03) 0.14 (0.02) t(38)¼ 4.94, P< 0.001

Note: QUIT, The degree to which a message made the participant want to quit; CTR, click through rate.
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Fig. 2. Neural activity in response to negative images predicts population-level email c through rates. (a) RANK success in the email campaign. Red¼negative images;

Blue¼neutral images; (b) Relationship between MPFC activity and population-level CTR.
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(imageþ statement/question within the email body). Email
click through rates (CTRs) in the email campaign (visits to
the quit-website generated by the email campaign) were
treated as the primary outcome of interest. The CTR for
each image in the email campaign was calculated as the num-
ber of emails opened for an image divided by the total number
of clicks of links within the email (clicks/opened).
Consistent with past work predicting population-level re-
sponses using neural activity (Falk et al., 2012), the population-
level email data were rank ordered from lowest (CTR¼ 1) to
highest (CTR¼ 40).

Image characteristics rated by smokers on mechanical
turk

Participants. Sixty-three smokers (MTurk Sample 1; Table 1 for
demographics) rated the 40 images used in the email campaign
using five point Likert scales according to emotion (negative: de-
pressing, disgusting, frightening, unpleasant; positive: encour-
aging, hopeful, inspiring, meaningful) and image strength
relative to the behavior in question [Image strength: ‘This mes-
sage would make smokers want to quit’; ‘Is the reason the mes-
sage gave for quitting a strong or a weak reason’; ‘This message
put thoughts in my mind about wanting to quit’; ‘This message
put thoughts in my mind about not wanting to quit’ (Reverse
coded)] (Zhao et al., 2011). Summary indices were computed as
average ratings per image for negative emotions, positive emo-
tions and image argument strength. Finally, paralleling a met-
ric collected in the fMRI scanner (QUIT; details later), a group of
19 smokers (MTurk Sample 2; Table 1 for demographics)
rated the images according to the extent to which each image
‘makes me want to quit’ (referred to subsequently as
mturk.QUIT).

fMRI study

Participants. Fifty smokers residing in Michigan (outside of the
area targeted by the email campaign) were recruited to the fMRI
portion of the study; however, three participants were excluded
due to excessive head motion (two participants) or data transfer
difficulties (one participant). The remaining 47 subjects
included 28 males and 19 females with a mean age of 31.89
(s.d.¼ 12.53, range of 19–64 years old; Table 1 for demographics).

The subjects were recruited using convenience sampling
from the general population using Craigslist and
UMClinicalStudies.org (an online registry of individuals who
sign up expressing an interest in participating in research) and
completed a phone screening, an appointment where they filled
out initial questionnaires, an fMRI appointment and a phone
call 1 month later (Figure 3). To participate in the study, during
the preliminary screening subjects had to report smoking at
least five cigarettes per day for the past month, have been a
smoker for at least 12 months, and be between the ages of 18
and 65. Subjects also had to meet standard fMRI eligibility crite-
ria, including no metal in their body, no history of psychiatric or
neurological disorders, weight under 350 pounds, and currently
not taking any psychiatric or illicit drugs. On the day of the
scan, subjects reported smoking an average of 13 cigarettes per
day (M¼ 13.11, s.d.¼ 6.76, range¼ 3–30 cigarettes per day: a
small number of participants reduced their smoking between
screening and fMRI appointment). Participants had smoked for
an average of 14 years (M¼ 14.78, s.d.¼ 12.15). Participants were
paid $100 for completion of the study.

For the self-localizer task, an additional two subjects were
excluded from analyses due to missing data (one subject) and
excessive head movement specific to this task (one subject) for
a total of 45 subjects included in analyzing the self-localizer
task data. For the images task, one subject was excluded due to

Fig. 3. Recruitment diagram. Participants were initially screened via telephone. Of the 77 deemed eligible, 21 were unable to be scheduled. An additional two partici-

pants were deemed ineligible by the study team after more detailed screening at appointment 1 and 4 participants failed to attend their scheduled fMRI appointment.
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missing data for that task for a total of 46 subjects included in
analyzing the images data.

fMRI data acquisition. Neuroimaging data were acquired using a
3 Tesla GE Signa MRI scanner. Two functional runs for the self-
localizer task (288 volumes total), followed by two runs for the
email campaign images task (300 volumes total) were acquired
for each participant. Participants completed the self-localizer
prior to the email campaign task. Functional images were re-
corded using a reverse spiral sequence (TR¼ 2000ms,
TE¼ 30ms, flip angle¼ 90�, 43 axial slices, FOV¼ 220mm, slice
thickness¼ 3mm; voxel size¼ 3.44� 3.44� 3.0mm). We
also acquired in-plane T1-weighted images (43 slices; slice
thickness¼ 3mm; voxel size¼ 0.86� 0.86� 3.0mm) and high-
resolution T1-weighted images (SPGR; 124 slices; slice thick-
ness¼ 1.02� 1.02� 1.2mm) for use in coregistration and
normalization.

Preprocessing. Functional data were preprocessed and analyzed
using Statistical Parametric Mapping (SPM8, Wellcome
Department of Cognitive Neurology, Institute of Neurology,
London, UK). To allow for the stabilization of the BOLD signal,
the first five volumes (10 s) of each run were discarded prior to
analysis. Functional images were despiked using the 3dDespike
program as implemented in the AFNI toolbox. Next, data were
corrected for differences in the time of slice acquisition using
sinc interpolation; the first slice served as the reference slice.
Data were then spatially realigned to the first functional
image. We then coregistered the functional and structural
images using a two-stage procedure. First, in-plane T1
images were registered to the mean functional image. Next,
high-resolution T1 images were registered to the in-plane
image. After coregistration, high-resolution structural images
were segmented to produce a grey matter mask, and then nor-
malized to the skull-stripped MNI template provided by FSL
(‘MNI152_T1_1mm_brain.nii’). Finally, functional images were
smoothed using a Gaussian kernel (8mm FWHM).

First-level analysis. The fMRI data were modeled for each subject
for each task using fixed effects models within the general lin-
ear model as implemented in SPM8 and second-level random
effects models for each task were also implemented in SPM8
(see details for each task later). The six rigid-body translation
and rotation parameters derived from spatial realignment were
included as nuisance regressors in all first-level models. Data
were high-pass filtered with a cutoff of 128 s in all models.

Self-localizer task. All participants first completed two runs of an
adapted1 version of a well-validated self-related processing task
(Schmitz and Johnson, 2006; Chua et al., 2011). The task involves
judging the self-relevance or valence of trait adjectives from the
Anderson trait word list (Anderson, 1968). The task includes
blocks of six trials with three positive and three negative words
in each block. Each block was preceded with a 3 s orientation

screen and blocks were separated by 2 s of fixation. The same 36
(18 negative and 18 positive) words were shown in each condi-
tion and were arranged so that an equal number of positive and
negative words occur first in each of the conditions. The task
was modeled using a single boxcar function for each 18 s block.
Fixation and condition preparation periods were not modeled
and included with baseline rest. Neural activity during condi-
tions in which participants made trait judgments about them-
selves were compared with conditions in which participants
judged word valence. The resulting contrast images were com-
bined by averaging across subjects using a random effects
model in SPM8 and the resulting image map (cluster corrected
FWE, P< 0.05) was used to identify a subregion of MPFC that was
most robustly associated with self-related processing across
subjects. This cluster was converted to a functionally defined
ROI (fROI) using MarsBaR and served as the primary fROI in the
subsequent messages task (Figure 1c).

fMRI email campaign messages task. We examined neural activity
as participants were exposed to each of 40 email-campaign
images that were presented along with a tag-line from the body
text of the email campaign: ‘Stop Smoking. Start Living.’ (Figure
1b). The timing for each trial consisted of 4 s of image presenta-
tion followed immediately with a 3 s response screen with the
statement ‘This makes me want to quit’ and a five-point rating
scale (1¼definitely does not, 2¼does not, 3¼neutral, 4¼does,
5¼definitely does; referred to as ‘QUIT’), followed by fixation
with jitter ITI (3–7.5 s, mean¼ 4.10, median¼ 3.32, s.d.¼ 1.01,
total¼ 164.0). The task also included 10 additional negative
images, 10 additional neutral images, 10 personal (Facebook) or
control (NimStim) images, for which no population-level email
campaign data are available, and which are not the focus of the
current investigation that were interspersed with the primary
trials of interest.

Data for the email campaign ads tasks were modeled at the
first level using the general linear model as implemented in
SPM8. Consistent with past methods used to aggregate re-
sponses to cultural products (Berns and Moore, 2012), we mod-
eled exposure to each image with the campaign separately. Our
models focused on the 4 s exposure to the campaign message
(before making image ratings). We separately modeled the 3 s
response periods following each image exposure as a condition
of no interest. Fixation rest-periods constituted an implicit
baseline.

At the second level, in SPM8, we combined first-level maps
averaging across subjects to form statistical parametric maps of
activation relevant to each ad, relative to the implicit baseline.
In other words, we conducted the analysis such that the ads
were the units of analysis, as opposed to the study participants,
to facilitate combination of data across levels of analysis.
Activation estimates were extracted for each image for each
subject using MarsBaR (Brett et al., 2002) in units of percent sig-
nal change from baseline. Parameter estimates were standar-
dized (z-scores) within subject and outliers> 2 s.d. from mean
were excluded to reduce bias from motion and other fMRI arti-
facts (note: this did not change the substantive ordering of the
ad rankings).

Consistent with past research (Falk et al., 2012), the param-
eter estimates for the MPFC self-related processing neural ROI
for each image were ranked first within subjects, scores were
averaged across participants and a final average rank across
subjects was computed for each ad. For the email campaign this
resulted in an ordering from lowest (image rank¼ 1) to highest
(image rank¼ 40).

1 The task contained five conditions (each condition was repeated in 6
blocks, each containing 6 trials, for a total of 36 trials per condition):
you_you (from your own perspective, judging yourself), you_friend
(from your perspective, judging a friend), friend_you (from a friend’s
perspective, judging you), friend_friend (from a friend’s perspective,
judging a friend) and valence (is the word positive or negative). The pri-
mary contrast of interest examined conditions in which the participant
was the target of judgment (you_you & friend_you) vs conditions in
which the judgment was word valence.
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Analysis combining neural and population-level data

We used a brain-as-predictor framework (Berkman and
Falk, 2013) to examine the relationship between individual level
neural data and population-level campaign outcomes. We
constructed a combined model in which ranks of neural
and self-report variables were simultaneously entered to pre-
dict email CTR; rank scores of fMRI participants’ ratings of QUIT,
MTurk ratings of mturk.QUIT, MTurk ratings of Image Strength,
and percent signal change in the MPFC self-related processing
neural ROI were separately entered in regressions with
image type (negative vs neutral) and the interaction between
each type of rating and image type, to predict email CTR rank-
ings implemented in R (R Development Core Team, 2014).
Overall, ranks were used because they provide a non-paramet-
ric and robust way to harmonize variables across multiple
data sets. The Pearson correlation between ranks is equivalent
to the well-known Spearman correlation, and the extension
of multiple regression on ranks has been studied by Iman
and Conover (1979). In addition, from a public health con-
text, knowing which ads are likely to be the best, independent
of scale used, can aid in the selection of optimal messaging.

After conducting our a priori planned ROI analyses, we
also conducted whole-brain searches to explore which regions
(in addition to MPFC) are associated with message success (i.e.
email CTR). More specifically, first-level models were computed
for each participant in the neuroimaging data set, modeling ex-
posure to negative (smoking-relevant) images, neutral images
and parametric modulators capturing the ranked population-
level CTR for each image. As with the main image-wise ROI ana-
lysis, the models focused on the main exposure period (first 4 s
of exposure to each image, prior to image rating, with nuisance
regressors specified for the rating period). Images were thresh-
olded at P< 0.005 with a cluster extent threshold of 36 voxels,
corresponding to P< 0.05 corrected, as determined by a monte
carlo simulation conducted with AlphaSim (Ward, 2000).

Results
Email campaign data

On average, participants opened 14% of emails received (57 395
opened of 400 000 sent). Of those emails that were opened, on
average, participants clicked through� 16% of the time (over
the 40 ads: mean CTR¼ 15.6%, median CTR¼ 15.9%, range¼ 10–
26%). CTRs in the email campaign were significantly higher for
negative images than neutral images (Table 2, Figure 2).

Ratings of images

Ratings from the MTurk sample confirmed that the negative
images elicited more negative emotions and less positive emo-
tions than the neutral comparison images (Table 2). Both MTurk
and fMRI participants rated the negative images as prompting
more desire to quit (QUIT, mturk.QUIT: Table 2) as compared
with the neutral images. MTurk participants confirmed that the
negative images were significantly more relevant to quitting
smoking/made stronger arguments for quitting (Image
Strength: Table 2). There was a high degree of convergence
across items in the fMRI and MTurk samples (e.g. QUIT and
mturk.QUIT, r¼ 0.87, P< 0.001).

Prediction of email campaign CTR from neural activity

We used neural activity, image valence and their interaction to
predict the success of messages within the email campaign
(model R2¼ 0.60). Activity within an independently localized
self-related MPFC subregion during health message exposure
predicted population-level campaign responses [B¼ 0.30,
t(36)¼ 2.126, P¼ 0.04].

Next, we examined the importance of message content in
the ability to predict population-level behavior. We found that
the relationship between MPFC activity and population
outcomes depended on message content [interaction
between MPFC and image type: B¼ 0.52, t(36)¼�2.424, P¼ 0.02;
Figure 2]—self-related neural processing predicted outcomes in
response to graphic warning labels, but not in response to com-
positionally similar neutral images. Thus, the current data sup-
port the hypothesis that self-related processing of health
messages predicts message-consistent outcomes but also sug-
gest an important boundary condition on the relationship be-
tween neural activity and prediction of campaign success.

Prediction of email campaign CTR by self-report
measures

MTurk rankings of each message’s argument strength were
positively associated with population-level email CTR [B¼ 0.43,
t(36)¼ 2.45, P¼ 0.02, R2¼ 0.37]. MTurk rankings of QUIT
(mturk.QUIT) were positively associated with population-level
email CTR [B¼ 0.37, t(36)¼ 2.13, P¼ 0.04, R2¼ 0.38]. Our fMRI par-
ticipants’ ranked ratings of how much each message made
themwant to quit (labeled QUIT) were positively, but not signifi-
cantly, associated with population-level CTRs in the email cam-
paign (CTR) [B¼ 0.26, t(36)¼ 1.59, P¼ 0.12]. The relationship
between self-report measures and population-level email CTR
was not significantly moderated by image type (P¼ 0.14, 0.19
and 0.41, respectively).

Prediction of email campaign CTR combining neural and
self-report measures

Neural activity was entered into a regression with each self-
report measure to predict population-level CTR. Each of the
self-report measures were entered as covariates in separate re-
gressions given the limited degrees of freedom and colinearity
between covariates. The interaction between MPFC activity and
image type remained significantly related to CTR controlling
image strength: B¼ 0.57, t(35)¼� 2.83, P¼ 0.008, model R2¼ 0.65;
controlling QUIT: B¼ 0.56, t(35)¼�2.64, P¼ 0.01, model R2¼ 0.63
and controlling mturk.QUIT: B¼ 0.58, t(35)¼�2.78, P¼ 0.009,
model R2¼ 0.65. Thus, accounting for neural responses in com-
bination with message features improved predictive power,
complementing our best self-report predictors. Together, our
brain measures and self-report measures accounted for up to
65% of the variance in the success of the email campaign, sug-
gesting that the combination of neural data with survey results
may ultimately aid in more efficient prediction of the success of
mass media health campaigns.

Exploratory whole-brain searches for additional regions
associated with CTR

After conducting our planned ROI analyses, we conducted a ser-
ies of whole-brain searches for regions associated with CTR in
addition to our main MPFC ROI (Table 3; Figure 4). Reinforcing
the hypothesized relationship between self-related processing
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and CTR for smoking-relevant images, we observed interactions
between image type and CTR in MPFC and posterior cingulate
cortex. Among other regions, we also observed this relationship
in regions implicated in affective salience, such as amygdala.

Discussion

In sum, we demonstrate that neural activity as measured by
fMRI in the MPFC observed in relatively small groups of smokers
was predictive of population-level responses to an email cam-
paign featuring different antismoking messages. These results
extend past findings by: (i) bolstering confidence that neural sig-
nals can be combined with self-report measures to aid in the de-
sign and selection of optimal public-health media messages; (ii)
providing evidence for a neurocognitive mechanism linking
neural and behavioral data (self-related processing) and (iii)
suggesting a condition under which this method is likely to be
most applicable (message content interacts with self-related
neural processing to predict outcomes of interest). Furthermore,
both self-report and neural variables explained significant

Table 3. Whole-brain search for regions associated with CTR in the larger-email campaign

Region x, y, z size t-stat

a. Association with CTR for negative images
MPFC �2 67 10 125 3.39
VMPFC �6 46 �8 3.16
DMPFC 15 36 43 59 3.07
DMPFC �6 46 31 2.97
Lingual gyrus 22 �78 �11 1013 7.95
Inferior temporal lobe �44 �57 �8 311 6.12
Inferior frontal gyrus �44 36 10 135 5.16
Hippocampus/medial temporal lobe �20 �26 �8 440 5.1
Hippocampus/medial temporal lobe 29 �26 �11 747 5.09
Middle cingulate gyrus 1 �2 34 100 5.08
Cerebellum �2 �60 �38 36 3.58

b. Positive association with CTR for neutral images
Inferior frontal gyrus 42 39 13 308 4.92
Posterior Insula 42 �16 7 52 3.61

c. Negative association with CTR for neutral images
Middle temporal gyrus/posterior superior temporal sulcus �54 �71 7 304 4.74

d. Association with CTR for neutral>negative Images
Middle frontal gyrus 39 46 13 61 3.72

e. Association with CTR for negative>neutral Images
VMPFC �2 46 �11 38 4.1
MPFC/DMPFC �2 67 10 354 3.83
DMPFC 1 53 31 3.82
MPFC �2 56 4 3.64
Posterior cingulate cortex 4 �40 1 44 4.01
Amygdala 18 �2 �14 40 3.76

29 15 �17 3.05
Fusiform/lingual gyrus 25 �71 �8 745 6.33
Inferior frontal gyrus �37 29 �17 156 4.43
Angular gyrus/TPJ �44 �54 25 48 4.19
Superior occipital cortex �20 �91 37 41 3.77

Note: Threshold¼P<0.005, k¼36, corresponding to P<0.05, corrected. No regions were negatively associated with CTR dur-

ing exposure to the negative images. TPJ: temporoparietal junction; DMPFC: dorsomedial prefrontal cortex; VMPFC: ventrome-

dial prefrontal cortex; PSA: public service announcement; ERP: event related potential; MNI: montreal neurological institute;

fwhm: full width, half maximum; ITI: intertrial interval; BOLD: blood oxygen level dependent.

Fig. 4. Neural activity associated with CTR for negative>neutral images. Note:

These results correspond to Table 3e. Image thresholded at P<0.005, k¼36, cor-

responding to P<0.05, corrected.
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variance in the population-level outcome, suggesting the value
of synergy across methods in understanding mass media effects
in the public health domain.

This research is consistent with prior research suggesting
that neural activity within MPFC can predict larger-scale popu-
lation-level outcomes (Falk et al., 2012) as well as other findings
linking neural activity in mediofrontal regions to larger, out-of-
sample outcomes (Berns and Moore, 2012; Dmochowski et al.,
2014; Boksem and Smidts, in press). We hypothesized that this
effect might stem from a message’s ability to elicit self-related
processing across a wide range of individuals. Thus we focused
on MPFC as the region most commonly predictive of behavior
change in past studies, and refined our target ROI using a well-
validated localizer task (Schmitz and Johnson, 2006; Chua et al.,
2011). Although activity within MPFC has been linked with mul-
tiple functions, our strong, a priori theory and the use of a local-
izer strengthens our confidence in this theoretical link by
refining MPFC to a more specific subregion. Furthermore, a
whole-brain search for regions associated with greater CTR in
smoking-relevant>neutral images showed activity in posterior
cingulate—another region commonly associated with self-
related processing and autobiographical memory; for reviews,
see Northoff and Bermpohl (2004) and Northoff et al. (2006).

We also tested whether neural activity in self-related pro-
cessing regions would predict large-scale outcomes regardless
of message content, or whether predictive capacity would be
stronger for antismoking messages that contain strong behav-
ior-relevant arguments (in this case, strong arguments to quit
smoking). Well-supported theories of health behavior change
(e.g., Rosenstock, 1974; Leventhal et al., 1983; Strecher and
Rosenstock, 1997) suggest that individuals are most likely to act
on health messages when they perceive specific health risks as
self-relevant combined with self-relevant pathways to address
the risk. Our negative messages were easily linked to the conse-
quences of smoking and were rated by an independent group as
providing strong arguments to quit (Table 2). In contrast, the
compositionally similar neutral images were not linked to
smoking behavior in the absence of the ‘Stop Smoking. Start
Living.’ tagline. Within the email campaign, the neutral mes-
sages we tested had a lower CTR than the negative messages,
perhaps because they failed to elicit emotional responses and/
or call to mind the relevant behavior change. In addition to be-
havioral relevance, the valence of the images itself may have
also influenced smokers’ motivations to quit. Negative emo-
tions, such as fear, have been commonly used in public health
messaging to increase motivation (Witte and Allen, 2000; Peters
et al., 2013), c.f. (Earl and Albarracin, 2007), and can be motivat-
ing if accompanied by high levels of self-efficacy or other factors
that offset threat (Peters et al., 2013; Sherman, 2013; Cohen and
Sherman, 2014).

In parallel, we found that neural activity in subregions of
MPFC (identified using the self-localizer task) predicted popula-
tion-level CTR for the strong, negative antismoking messages,
but not for the neutral images. This finding is consistent with
the idea that neural responses in MPFC may only be predictive
of large-scale outcomes when message content makes an argu-
ment relevant to both the behavior in question and the person
in question. A neural index of self-related processing may not
be meaningful in the context of neutral images that are not as
directly relevant to the target behavior. In contrast, self-related
processing may be more relevant to behavior when the message
content highlights a need for change. In sum, the current data
add confidence to prior results indicating that self-related pro-
cessing of health messages may predict message-consistent

outcomes but also suggest an important boundary condition on
the relationship between neural activity and prediction of cam-
paign success.

Paralleling behavioral findings, affective salience of the
graphic warning label inspired images likely also influenced
message processing. One study of cigarette graphic warning
labels found increased activity in amygdala and insula, brain re-
gions associated with affective salience, accompanied by
decreased craving in smokers (Do and Galvan, 2015). Likewise,
our whole-brain searches suggested that amygdala activity, in
addition to MPFC, is associated with higher message success for
the negative>neutral messages. A second study of graphic
warning labels reported ERP data consistent with diminished af-
fective response to cigarette cues (Wang et al., 2015), suggesting
that such negative images may shift the motivational value of
smoking cues. Taken together, although valence and smoking
relevance are confounded in our study, both likely contribute to
the specific neural effects observed. It is unlikely that neural ac-
tivity in MPFC predicts behavior change only for negative
images [since past research has found similar relationships for
humorous PSAs; (Falk et al., 2012)] but more likely that MPFC in-
tegrates behavioral relevance and affective salience in comput-
ing the value of the message to the self.

More broadly, although a growing body of studies link neural
data with out-of-sample, large-scale outcomes (Berns and
Moore, 2012; Falk et al., 2012; Dmochowski et al., 2014; Boksem
and Smidts, in press), additional research is needed to specify
further boundary conditions on type of medium, content area
and psychological targets of the intervention, and to determine
the generalizability of these findings across content areas and
media. Furthermore, results of trials using web-based resources
have been mixed (Myung et al., 2009), and as with any mass
media campaign, measuring long-term behavioral outcomes is
challenging; therefore additional research is also needed to ex-
plore the extent to which the present results generalize to other
outcomes of interest beyond CTR (e.g. population-level smoking
rates).

Finally, we found that neural variables complemented the
best self-report measures pre-tested to predict campaign suc-
cess. Neural activity, image characteristics and self-report pre-
dictors together accounted for up to 65% of the variance in the
success of the email campaign, suggesting that the combination
of neural data with survey results may ultimately aid in more
efficient prediction of the success of mass media health
campaigns.

Moving forward, it is possible that this knowledge may be
used in the construction of more successful, evidence-based,
large-scale media campaigns to improve health and ultimately
reduce health care costs for preventable medical conditions.
Such technology may also benefit future discussions regarding
broader questions relevant to the effects of health messaging
(e.g. FDA proposed graphic warning labels, cigarette and e-
cigarette advertising and health-relevant messages more
broadly) and help to more efficiently engage large groups of
people across domains.
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