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Abstract
In 2012, consumers paid an enormous $32 billion overdraft fees. Consumer attrition and

potential government regulations to shut down the overdraft service urge banks to come up
with financial innovations to overhaul the overdraft fees. However, no empirical research has
been done to explain consumers’ overdraft incentives and evaluate alternative pricing and prod-
uct strategies. In this paper, we build a dynamic structural model with consumer monitoring
cost and dissatisfaction. We find that on one hand, consumers heavily discount the future and
overdraw because of impulsive spending. On the other hand, a high monitoring cost makes it
hard for consumers to track their finances therefore they overdraw because of rational inatten-
tion. In addition, consumers are dissatisfied by the overly high overdraft fee and close their
accounts. We apply the model to a big dataset of more than 500,000 accounts for a span of 450
days. Our policy simulations show that alternative pricing strategies may increase the bank’s
revenue. Sending targeted and dynamic alerts to consumers can not only help consumers avoid
overdraft fees but improve bank profits from higher interchange fees and less consumer attri-
tion. To alleviate the computational burden of solving dynamic programming problems on a
large scale, we combine parallel computing techniques with a Bayesian Markov Chain Monte
Carlo algorithm. The Big Data allow us to detect the rare event of overdraft and reduce the
sampling error with minimal computational costs.

1 Introduction
An overdraft occurs when a consumer attempts to spend or withdraw funds from her checking
accounts in an amount exceeding the account’s available funds. In the US, banks allow consumers
to overdraw their accounts (subject to some restrictions at banks’ discretion) and charge an over-
draft fee. Overdraft fees have become a major source of bank revenues since banks started to
offer free checking accounts to attract consumers. In 2012, the total amount of overdraft fees in
the US reached $32 billion, according to Moebs Services1. This is equivalent to an average of
$178 for each checking account annually2. According to the Center for Responsible Lending, US
households spent more on overdraft fees than on fresh vegetables, postage and books in 2010.3

∗We acknowledge support from the Dipankar and Sharmila Chakravarti Fellowship. All errors are our own.
1http://www.moebs.com
2According to Evans, Litan, and Schmalensee 2011, there are 180 million checking accounts in the US.
3http://www.blackenterprise.com/money/managing-credit-3-ways-overdraft-fees-will-still-haunt-you/
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The unfairly high overdraft fee has provoked a storm of consumer outrage and therefore caused
many consumers to close the account. The US government has taken actions to regulate these
overdraft fees through the Consumer Financial Protection Agency4 and may potentially shut down
the overdraft service5. Without overhauling the current overdraft fee, banks encounter the problem
of losing valuable customers and possibly totally losing the revenue source from overdrafts.

Financial institutions store massive amounts of information about consumers. The advantages
of technology and Big Data enable banks to reverse the information asymmetry (Kamenica, Mul-
lainathan, and Thaler 2011) as they may be able to generate better forecasts about a consumer’s
financial state than consumers themselves can. In this paper, we extract the valuable information
embedded in the Big Data and harness it with structural economic theories to explain consumers’
overdraft behavior. The large scale financial transaction panel data allows us to sort through con-
sumers’ financial decision making processes and discover rich consumer heterogeneity. As a con-
sequence, we come up with individually customized strategies that can increase both consumer
welfare and bank revenue.

In this paper, we aim to achieve two substantive goals. First, we leverage rich data about con-
sumer spending and balance checking to understand the decision process for consumers to over-
draw. We address the following research questions. Are consumers fully attentive in monitoring
their checking account balances? How great is the monitoring cost? Why do attentive consumers
also overdraw? Are consumers dissatisfied because the overdraft fee?

Second, we investigate pricing and new product design strategies that overhaul overdraft fees.
Specifically, we tackle these questions. Is the current overdraft fee structure optimal? How will
the bank revenue change under alternative pricing strategies? More importantly, what new revenue
model can make the incentives of the bank and consumers better aligned? Can the bank benefit
from helping consumers make more informed financial decisions, like sending alerts to consumers?
If so, what’s the optimal alert strategy? How can the bank leverage its rich data about consumer
financial behaviors to reverse information asymmetry and create targeted strategies?

We estimate the dynamic structural model using data from a large commercial bank in the
US. The sample size is over 500,000 accounts and the sample length is up to 450 days. We find
that some consumers are inattentive in monitoring their finances because of a substantially high
monitoring cost. In contrast, attentive consumers overdraw because they heavily discount future
utilities and are subject to impulsive spending. Consumers are dissatisfied to leave the bank after
being charged the unfairly high overdraft fees. In our counterfactual analysis, we show that a
percentage fee or a quantity premium fee strategy can achieve higher bank revenue compared to
the current flat per-transaction fee strategy. Enabled by Big Data, we also propose an optimal
targeted alert strategy. The bank can benefit from sending alerts to let consumers spend their
unused balances so that the bank can earn more interchange fees. Helping consumers make more
informed decisions will also significantly reduce consumer attrition. The targeted dynamic alerts
should be sent to consumers with higher monitoring costs and both when they are underspending
and overspending.

Methodologically, our paper makes two key contributions. First, we build a dynamic struc-
tural model that incorporates inattention and dissatisfaction into the life-time consumption model.
Although we apply it to the overdraft context, the model framework can be generalized to ana-

4http://banking-law.lawyers.com/consumer-banking/consumers-and-congress-tackle-big-bank-fees.html
5http://files.consumerfinance.gov/f/201306_cfpb_whitepaper_overdraft-practices.pdf
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lyze other marketing problems regarding consumer dynamic budget allocation, like electricity and
cellphone usage.

Second, we estimate the model on Big Data with the help of parallel computing techniques.
Structural models have the merit of producing policy invariate parameters that allow us to conduct
counterfactual analysis. However, the inherent computational burden prevents it from being widely
adopted by industries. Moreover, the data size in a real setting is typically much larger than what’s
used for research purposes. Companies, in our case a large bank, need to have methods that are
easily scalable to generate targeted solutions for each consumer. Our proposed algorithm takes
advantage of state-of-the-art parallel computing techniques and estimation methods that alleviate
computational burden and reduce the curse of dimensionality.

The rest of the paper is organized as follows. In section 2 we first review related literature.
Then we show summary statistics in section 3 which motivate our model setup. Section 4 describes
our structural model and we provide details of identification and estimation procedures in section
5. Then in sections 6 and 7 we show estimation results and counterfactual analysis. Section 8
concludes and summarizes our limitations.

2 Related Literature
A variety of economic and psychological models can explain overdrafts, including full-information
pure rational models and limited attention, as summarized by Stango and Zinman (2014). However,
no empirical paper has applied these theories to real consumer spending data. Although Stango
and Zinman (2014) had a similar dataset to ours, their focus was on testing whether taking related
surveys can reduce overdrafts. We develop a dynamic structural model that incorporates theories
of heavy discounting, inattention and dissatisfaction in a comprehensive framework. The model is
flexible to address various overdraft scenarios, thus it can be used by policy makers and the bank
to design targeted strategies to increase consumer welfare and bank revenue.

Our model inherits from the traditional lifetime consumption model but adds two novel fea-
tures, inattention and dissatisfaction. First of all, a large body of literature in psychology and
economics has found that consumers pay limited attention to relevant information. In the review
paper by Card, DellaVigna and Malmendier (2011), they summarize findings indicating that con-
sumers pay limited attention to 1) shipping costs, 2) tax (Chetty et. al. 2009) and 3) ranking (Pope
2009). Gabaix and Laibson (2006) find that consumers don’t pay enough attention to add-on pric-
ing and Grubb (2014) shows consumers’ inattention to their cell-phone minute balances. Many
papers in the finance and accounting domain have documented that investors and financial analysts
are inattentive to various financial information (e.g., Hirshleifer and Teoh 2003, Peng and Xiong
2006). We follow Stango and Zinman (2014) to define inattention as incomplete consideration of
account balances (realized balance and available balance net of coming bills) that would inform
choices. We further explain inattention with a structural parameter, monitoring cost, which repre-
sents the time and effort to know the exact amount of money in the checking account. With this
parameter estimated, we are able to quantify the economic value of sending alerts to consumers
and provide guidance for the bank to set its pricing strategy. We also come up with policy simu-
lations about alerts because we think a direct remedy for consumers’ limited attention is to make
information more salient (Card, DellaVigna and Malmendier 2011). Past literature also finds that
reminders (Karlan et. al. 2010), mandatory disclosure (Fishman and Hagerty 2003), and penal-
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ties (Haselhuhn et al. 2012) all serve the purpose of increasing salience and thus mitigating the
negative consequences of inattention.

Second, as documented in previous literature, unfairly high price may cause consumer dissat-
isfaction which is one of the main causes of customer switching behavior (Keaveney 1995, Bolton
1998). We notice that consumers are more likely to close the account after paying the overdraft
fee and when the ratio of the overdraft fee over the overdraft transaction amount is high. This is
because given the current banking industry practice, a consumer pays a flat per-transaction fee re-
gardless of the transaction amount. Therefore, the implied interest rate for an overdraft originated
by a small transaction amount is much higher than the socially accepted interest rate (Matzler,
Wurtele and Renzl 2006), leading to price dissatisfaction.

We aim to estimate this infinite horizon dynamic structural model on a large scale of data and
obtain heterogeneous best response for each consumer to prepare targeted marketing strategies.
After searching among different estimation methods, including the nested fixed point algorithm
(Rust 1987), the conditional choice probability estimation (Arcidiacono and Miller 2011) and the
Bayesian estimation method developed in Imai, Jain and Ching (2009) (IJC), we finally choose the
IJC method for the following reasons. First of all, the hierarchical Bayes framework fits our goal of
obtaining heterogeneous parameters. Second, in order to apply our model to a large scale of data,
we need to estimate the model with Bayesian MCMC so that we can implement a parallel comput-
ing technique. Third, IJC is the state-of-the art Bayesian estimation algorithm for infinite horizon
dynamic programming models. It provides two additional benefits in tackling the computational
challenges. One is that it alleviates the computational burden by only evaluating the value func-
tion once in each MC iteration. Essentially, the algorithm solves the value function and estimates
the structural parameters simultaneously. So the computational burden of a dynamic problem is
reduced by an order of magnitude similar to those computational costs of a static model. The other
is that the method reduces the curse of dimensionality by allowing state space grid points to vary
between estimation iterations. On the other hand, as our sample size is huge, traditional MCMC
estimation may take a prohibitively, if not impossibly, long time, since for N data points, most
methods must perform O(N) operations to draw a sample. A natural way to reduce the compu-
tation time is to run the chain in parallel. Past methods of Parallel MCMC duplicate the data on
multiple machines and cannot reduce the time of burn-in. We instead use a new technique devel-
oped by Neiswanger, Wang and Xing (2014) to solve this problem. The key idea of this algorithm
is that we can distribute data into multiple machines and perform IJC estimation in parallel. Once
we obtain the posterior Markov Chains from each machine, we can algorithmically combine these
individual chains to get the posterior chain of the whole sample.

3 Background and Model Free Evidence
We obtained data from a major commercial bank in the US. During our sample period in 2012 and
2013, overdraft fees accounted for 47% of the revenue from deposit account service charges and
9.8% of the operating revenue.

The bank provides a comprehensive overdraft solution to consumers. (For general overdraft
practices in the US, please refer to Stango and Zinman (2014) for a good review. Appendix A.1
tabulates current fee settings in top US banks.) In the standard overdraft service, if the consumer
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overdraws her account, the bank might cover the transaction and charge $316 Overdraft Fee (OD)
or decline the transaction and charge a $31 Non-Sufficient-Fund Fee (NSF). Whether the transac-
tion is accepted or declined is at the bank’s discretion. The OD/NSF fee is at a per-item level. If
a consumer performs several transactions when the account is already overdrawn, each transaction
item will incur a fee of 31 dollars. Within a day, a maximum of four per-item fees can be charged.
If the account remains overdrawn for five or more consecutive calendar days, a Continuous Over-
draft Fee of $6 will be assessed up to a maximum of $84. The bank also provides an Overdraft
Protection Service where the checking account can link to another checking account, a credit card
or a line of credit. In this case, when the focal account is overdrawn, funds can be transferred to
cover the negative balance. The Overdraft Transfer Balance Fee is $9 for each transfer. As you can
see, the fee structure for the bank is quite complicated. In the empirical analysis below, we don’t
distinguish between different types of overdraft fees and assume that money is fungible so that
the consumer only cares about the total amount of overdraft fee rather than the underlying pricing
structure.

The bank also provides balance checking services through branch, automated teller machine
(ATM), call center and online/mobile banking. Consumers can inquire about their available bal-
ances and recent activities. There’s also a notification service to consumers via email or text
message, named “alerts”. Consumers can set alerts when certain events take place, like overdrafts,
insufficient funds, transfers, deposits, etc. Unfortunately, our dataset only includes the balance
checking data but not the alert data. We’ll discuss this limitation in section 8.

In 2009, the Federal Reserve Board made an amendment to Regulation E (subsequently re-
codified by the Consumer Financial Protection Bureau (CFPB)) which requires account holders
to provide affirmative consent (opt in) for overdraft coverage of ATM and non-recurring point of
sale (POS) debit card transactions before banks can charge for paying such transactions7. This
Regulation E aimed to protect consumers against the heavy overdraft fees. The change became
effective for new accounts on July 1, 2010, and for existing accounts on August 15, 2010. Our
sample contains both opt-in and opt-out accounts. However, we don’t know which accounts have
opted in unless we observe an ATM/POS initiated overdraft occasion. We also discuss this data
limitation in section 8.

3.1 Summary Statistics
Our data can be divided into two categories, checking account transactions and balance inquiry ac-
tivities. In our sample, there are between 500,000 and 1,000,0008 accounts, among which 15.8%
had at least one overdraft incidence during the sample period between June 2012 and Aug 2013.
The proportion of accounts with overdraft is lower than the 27% (across all banks and credit unions)
reported by the CFPB in 20129. In total, all the counts performed more than 200 million transac-
tions, including deposits, withdrawals, transfers, and payments etc. For each transaction, we know
the account number, transaction date, transaction amount, and transaction description. The transac-

6All dollar values in the paper have been rescaled by a number between .85 and 1.15 to help obfuscate the ex-
act amounts without changing the substantive implications. The bank also sets the first time overdraft fee for each
consumer at $22. All the rest overdraft fees are set at $31.

7http://www.occ.gov/news-issuances/bulletins/2011/bulletin-2011-43.html
8For the sake of privacy, we can’t disclose the exact number.
9http://files.consumerfinance.gov/f/201306_cfpb_whitepaper_overdraft-practices.pdf

5



tion description tells us the type of transaction (e.g., ATM withdrawal or debit card purchase) and
location/associated institution of the transaction, like merchant name or branch location. The de-
scription helps us identify the cause of the overdraft, for instance whether it’s due to an electricity
bill or due to a grocery purchase.

Table 1: Overdraft Frequency and Fee Distribution
Mean Std Median Min 99.85 Percentile

OD Frequency 9.84 18.74 3 1 >100
OD Fee 245.46 523.04 77 10 >2730

As shown in Table 1, consumers who paid overdraft fees, on average, overdrew nearly 10 times
and paid $245 during the 15 month sample period. This is consistent with the finding from the
CFPB that the average overdraft- and NSF-related fees paid by all accounts that had one or more
overdraft transactions in 2011 were $22510. There is significant heterogeneity in consumers’ over-
draft frequency and the distribution of overdraft frequency is quite skewed. The median overdraft
frequency is three and more than 25% of consumers overdrew only once. In contrast, the top
0.15% of heavy overdrafters overdrew more than 100 times. A similar skewed pattern applies to
the distribution of overdraft fees. While the median overdraft fee is $77, the top 0.15% of heaviest
overdrafters paid more than $2,730 in fees.

Figure 1: Overdraft Frequency and Fee Distribution

Now let’s zoom in to take a look at the behavior of the majority overdrafters that have over-
drawn less than 40 times. The first panel in Figure 1 depicts the distribution of overdraft frequency
for those accounts. Notice that most consumers (> 50%) only overdrew less than three times. The
second panel shows the distribution of the paid overdraft fee for accounts that have overdrawn less
than $300. Consistent with the fee structure where the standard per-item overdraft fee is $22 or
$31, we see spikes on these two numbers and their multiples.

10http://files.consumerfinance.gov/f/201306_cfpb_whitepaper_overdraft-practices.pdf
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Table 2: Types of Transactions That Cause Overdraft
Type Frequency Percentage Amount
Debit Card Purchase 946,049 48.65% 29.50
ACH Transaction 267,854 13.77% 294.57
Check 227,128 11.68% 417.78
ATM Withdrawal 68,328 3.51% 89.77

What types of transactions cause overdraft? We find that nearly 50% of overdrafts are caused
by debit card purchases with mean transaction amounts around $30. On the other hand, ACH
(Automated Clearing House) and Check transactions account for 13.77% and 11.68% of overdraft
occasions. These transactions are generally for larger amounts, $294.57 and $417.78, respectively.
ATM withdrawals lead to another 3.51% of the overdraft transactions with an average amount of
around $90.

3.2 Model Free Evidence
This section presents some patterns in the data that suggest the causes and effects of overdrafts.
We show that heavy discounting and inattention may drive consumers’ overdraft behaviors. And
consumers are dissatisfied because of the overdraft fees. The model free evidence also highlights
the variation in the data that will allow for the identification of the discount factor, monitoring cost
and dissatisfaction sensitivity.

3.2.1 Heavy Discounting

First of all, we argue that a consumer may overdraw because she prefers current consumption much
more than future consumption, i.e. she heavily discounts future consumption utility. At the point
of sale, the consumer sharply discounts the future cost of the overdraft fee to satisfy immediate
gratification 11. If that’s the case, then we should observe a steep downward sloping trend in the
spending pattern within a pay period. That is, the consumer will spend a lot right after getting a
pay check and then reduce spending during the course of the month. But because of overspending
at the beginning, the consumer is going to run out of budget at the end of the pay period and has to
overdraw.

We test this hypothesis with the following model specification. We assume that the spending
for consumer i at time t Spendingit can be modeled as

Spendingit = β ∗LapsedTimeA f terIncomeit +µi + vt + εit

where LapsedTimeA f terIncomeit is the number of days after the consumer received income
(salary), µi is the individual fixed effect and vt is the time (day) fixed effect. To control for the

11We also considered hyperbolic discounting with two discount factors, a short term present bias parameter and a
long term discount factor. With more than three periods of data within a pay period, hyperbolic discount factors can
be identified (Fang and Silverman 2009). However, our estimation results show that the present bias parameter is not
significantly different from 1. Therefore we only keep one discount factor in the current model. Estimation results
with hyperbolic discount factors are available upon requests.
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effect that consumers usually pay for their bills (utilities, phone bills, credit card bills, etc) after
getting the pay check, we exclude checks and ACH transactions which are the common choices
for bill payments from the daily spendings and only keep debit card purchases, ATM withdrawals
and person-to-person transfers.

We run this OLS regression for heavy overdrafters (whose overdraft frequency is in the top
20 percentile among all overdrafters), light overdrafters (whose overdraft frequency is not in the
top 20 percentile among all overdrafters) and non-overdrafters (who didn’t overdraw during the 15
months sample period) separately. The results are reported in column (1) (2) and (3) of Table 3.

Table 3: Spending Decreases with Time in a Pay Cycle
(1) (2) (3)

Heavy
Overdrafters

Light
Overdrafters

Non-
Overdrafters

Lapsed Time after Income (β ) −6.8374??? −0.00007815 −0.00002195
(0.00006923) (0.00006540) (0.00002328)

Fixed Effect Yes Yes Yes
Number of Observations 17,810,276 53,845,039 242,598,851
R2 0.207 0.275 0.280

Note: *p<0.01;**p<0.001;***p<0.0001

We find that the coefficient of LapsedTimeA f terIncomeit is negative and significant for heavy
overdrafters but not light overdrafters or non-overdrafters. This suggests that heavy overdrafters
have a steep downward sloping spending pattern during a pay period while light overdrafters or
non-overdrafters have a relatively stable spending stream. The heavy overdrafters are likely to
overdraw because they heavily discount their future consumptions.

3.2.2 Inattention

Next we explain the overdraft incentives for the light overdrafters with inattention. The idea is that
consumers might be inattentively monitoring their checking accounts so that they are uncertain
about the exact balance amount. Sometimes the perceived balance can be higher than the true
balance and this might cause an overdraft. We first present a representative example of consumer
inattention. The example is based upon our data, but to protect the privacy of the consumer and
the merchants, amounts have been changed. However, the example remains representative of the
underlying data.
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Figure 2: Overdraft due to Balance Perception Error

As shown in figure 2, the consumer first received her salary on August 17th. After a series
of expenses she was left with $21.16 on August 20th. As she had never checked her balance,
she continued spending and overdrew her account for several small purchases, including a $25
restaurant bill, a $17.12 beauty purchase, a $6.31 game and a $4.95 coffee purchase. These four
transactions added up to $53.38 but caused her to pay four overdraft item fees, a total of $124. We
speculate that this consumer was careless in monitoring her account and overestimated her balance.

Beyond this example, we find more evidence of inattention in the data. Intuitively, a direct
support of inattention is that the less frequent a consumer checks her balance, the more overdraft
fee she pays. To test this hypothesis, we estimate the following specification:

TotODPmtit =β0 +β1BCFreqit +µi + vt + εit

where for consumer i at time t (month), TotODPmtit is the total overdraft payment, BCFreqit
is the balance checking frequency.

We estimate this model on light overdrafters (whose overdraft frequency is not in the top 20
percentile) and heavy overdrafters (whose overdraft frequency is in the top 20 percentile) separately
and report the result in the column (1) and (2) in Table 4.
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Table 4: Frequent Balance Checking Reduces Overdrafts for Light Overdrafters
(1) (2) (3)

Light Overdrafters Heavy Overdrafters All Overdrafters
Balance Checking
Frequency (BCFreq, β1)

−0.5001??? −0.00001389 −0.6823???

(0.00000391) (0.00000894) (0.00000882)
Overdraft Frequency
(ODFreq, β2)

16.0294???

(0.00002819)

BCFreq×ODFreq (β3)
27.8136???

(0.00000607)
Number of Observations 53,845,039 17,810,276 71,655,315
R2 0.1417 0.1563 0.6742

Note: Fixed effects at individual and day level; Robust standard errors, clustered at individual level.*p<0.01;**p<0.001;***p<0.0001

The result suggests that more balance checking decreases overdraft payment for light over-
drafters but not for heavy overdrafters. We further test this effect by including overdraft fre-
quency (ODFreqit) and an interaction term of balance checking frequency and overdraft frequency
BCFreqit ×ODFreqit in the equation below. The idea is that if the coefficient for this interaction
term is positive while the coefficient for balance checking frequency (BCFreqit) is negative, then
it implies that checking balances more often only decreases the overdraft payment for consumers
who overdraw infrequently but not for those who do it with high frequency.

TotODPmtit =β0 +β1BCFreqit +β2ODFreqit +β3BCFreqit ×ODFreqit

+µi + vt + εit

The result in column (3) of Table 4 confirms our hypothesis.
Interestingly, we find that a consumer’s balance perception error accumulates overtime in the

sense that the longer a consumer hasn’t check balances, the more likely that she is going to over-
draw and pay higher amount of overdraft fees. Figure 3 below exhibits the overdraft probability
across number of days since a consumer checked balance last time for light overdrafters (whose
overdraft frequency is not in the top 20 percentile). It suggests that the overdraft probability in-
creases moderately with the number of days since the last balance check.

Figure 3: Overdraft Likelihood Increases with Lapsed Time Since Last Balance Check
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We confirm this relationship with the following two specifications. We assume that overdraft
incidence I(OD)it (where I(OD)it = 1 denotes overdraft and I(OD)it = 0 denotes no overdraft) and
overdraft fee payment amount ODFeeit for consumer i at time t can be modeled as:

I(OD)it = Φ(ρ0 +ρ1DaysSinceLastBalanceCheckit +ρ2BeginBalit +µi + vt)

ODFeeit = ρ0 +ρ1DaysSinceLastBalanceCheckit +ρ2BeginBalit +µi + vt + εit

where Φ is the cumulative distribution function for standard normal distribution. The term
DaysSinceLastBalanceCheckit denotes the number of days consumer i hasn’t checked her balance
until time t and BeginBalit is the beginning balance at time t. We control for the beginning balance
because it can be negatively correlated with the days since last balance check due to the fact that
consumers tend to check when the balance is low and a lower balance usually leads to an overdraft.

Table 5: Reduced Form Evidence of Existance of Monitoring Cost
I (OD) ODFee

Days Since Last Balance Check (ρ1) 0.0415??? 0.0003???

(0.00000027) (0.00000001)
Beginning Balance (ρ2) −0.7265??? −0.0439???

(0.00000066) (0.00000038)
Individual Fixed Effect Yes Yes
Time Fixed Effect Yes Yes
Number of Observations 53,845,039 53,845,039
R2 0.5971 0.6448

Note: The estimation sample only includes overdrafters. Marginal effects for the Probit model; Fixed effects at individual and day level; robust standard errors, clustered at individual

level.*p<0.01;**p<0.001;***p<0.0001.

Table 5 reports the estimation results which support our hypothesis that the longer a consumer
hasn’t checked balance, the more likely she overdraws and the higher overdraft fee she pays.

Since checking balances can effectively help prevent overdrafts, why don’t consumers do it
often enough to avoid overdraft fees? We argue that it’s because monitoring the account is costly
in terms of time, effort and mental resources. Therefore, a natural consequence is that if there’s
a means to save consumers’ time, effort or mental resources, the consumer will indeed check
balances more frequently. We find such support from the data about online banking ownership.
Specifically, for consumer i we estimate the following specification:

CheckBalFreqi = β0 +β1OnlineBankingi+β2LowIncomei +β3Agei + εi

where CheckBalFreqi is the balance checking frequency, OnlineBankingi is online banking
ownership (1 denotes the consumer has online banking while 0 denotes otherwise), LowIncomei is
whether the consumer belongs to the low income group (1 denotes yes and 0 denotes no) and Agei
is age (in years).
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Table 6: Reduced Form Evidence of Existance of Monitoring Cost
Dependent variable Check Balance Frequency
Online Banking (β1) 58.4245???

(0.5709)
Low Income (β2) 3.3812???

(0.4178)
Age (β3) 0.6474???

(0.0899)
Number of Observations 602,481
R2 0.6448

*p<0.01;**p<0.001;***p<0.0001.

Table 6 shows that after controlling for income and age, consumers with online banking ac-
counts check the balance more frequently than those without, which suggests that monitoring costs
exist and when they are reduced, consumers monitor more frequently.

3.2.3 Dissatisfaction

Table 7: Account Closure Frequency for Overdrafters vs Non-Overdrafters
Total % Closed
Heavy Overdrafters 23.36%
Light Overdrafters 10.56%
Non-Overdrafters 7.87%

We also find that overdrafters are more likely to close their accounts (Table 7). Among non-
overdrafters, 7.87% closed their accounts during the sample period. This ratio is much higher for
overdrafters. Specifically, 23.36% of heavy overdrafters (whose overdraft frequency is in the top
20 percentile) closed their accounts, while 10.56% of light overdrafters (whose overdraft frequency
is not in the top 20 percentile) closed their accounts.

Table 8: Closure Reasons
Overdraft Overdraft No Overdraft

Forced Closure Voluntary Closure Voluntary Closure
Heavy Overdrafters 86.34% 13.66% –
Light Overdrafters 52.58% 47.42% –
Non-Overdrafters – – 100.00%

From the description field in the data, we can distinguish the cause of account closure: forced
closure by the bank because the consumer is unable or unwilling to pay back the negative balances
and the fee (charge-off) or voluntary closure by the consumer. Among heavy overdrafters, 13.66%
closed voluntarily and the rest (86.34%) were forced to close by the bank (Table 8). In contrast,
47.42% of the light overdrafters closed their accounts voluntarily. We conjecture that the higher
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voluntary closures may be due to customer dissatisfaction with the bank, with evidence shown
below.

Figure 4: Days to Closure After Last Overdraft

First, we find that overdrafters who closed voluntarily were very likely to close soon after the
overdraft. In Figure 4 we plot the histogram of number of days it took the account to close after its
last overdraft occasion. It shows that more than 60% of accounts closed within 30 days after the
overdraft occasion.

Figure 5: Percentage of Accounts Closed Increases with Fee/Transaction Amount Ratio

Second, light overdrafters are also more likely to close their accounts when the ratio of over-
draft fee over the transaction amount that caused the overdraft fee is higher. In other words, the
more unfair the overdraft fee (higher ratio of overdraft fee over the transaction amount that caused
the overdraft fee), the more likely it is that she will close the account. We show this pattern in the
left panel of Figure 5. However, this effect doesn’t seem to be present for heavy overdrafters (right
panel of Figure 5).

The model free evidence indicate that consumer heavy discounting and inattention can help
explain consumers’ overdraft behaviors as consumers might be dissatisfied after being charged the
overdraft fees. Below we’ll build a structural model that incorporates consumer heavy discounting,
inattention and dissatisfaction.

4 Model
We model a consumer’s daily decision about non-preauthorized spending in her checking account.
Alternatively we could describe this non-preauthorized spending as immediate or discretionary; not
discretionary in the sense that economists traditionally use the term, but in the sense that immedi-
ate spending likely could have been delayed. To focus on rationalizing the consumer’s overdraft

13



behavior, we make the following assumptions. First, we abstract away from the complexity as-
sociated with our data and assume that the consumer’s income and preauthorized spendings are
exogenously given. We refer to preauthorized spending to mean those expenses for which the
spending decision was made prior to payment. For example, a telephone bill or a mortgage due
are usually arranged before the date that the actual payment occurs. We assume that decisions
for preauthorized spending are hard to change on a daily basis after they are authorized and more
likely to be related to consumption that has medium or long-run consequences. In contrast, non-
preauthorized spending involves a consumer’s frequent day-to-day decisions and the consumer can
adjust the spending amount flexibly. We make this distinction because non-preauthorized spending
is at the consumer’s discretion and thus affects the overdraft outcome directly. To ease explana-
tion, we use “coming bills” to represent preauthorized spending for the rest of the paper. Second,
we allow the consumer to be inattentive to monitoring her account balance and coming bills. But
she can decide whether to check her balance. When a consumer hasn’t checked the balance, she
comes up with an estimate of the available balance and forms an expectation about coming bills.
If she makes a wrong estimate or expectation, she faces the risk of overdrawing her account. Last,
as consumption is not observed in the data, we make a bold assumption that spending is equiva-
lent to consumption in terms of generating utility. That is, the more a consumer spends, the more
she consumes, the higher utility she obtains. In what follows, we use consumption and spending
interchangeably.

We’ll describe the model in the next four parts: (1) timing, (2) basic model (3) inattention and
balance checking and (4) dissatisfaction and account closing.

4.1 Timing
The timing of the model is as follows (Figure 6). On each day:

1. The consumer receives income, if there is any.
2. Her bills arrive if there is any.
3. Balance checking stage (CB): She decides whether to check her balance. If she checks,

she incurs a cost and knows today’s beginning balance and the bill amount. If not, she recalls an
estimate of the balance and bill amount.

4. Spending stage (SP): She makes the discretionary spending decision (Choose C) to max-
imize total discounted utility V (or expected total discounted utility EV if she didn’t check bal-
ance)for today and spends the money.

5. Overdraft fee is charged if the ending balance is below zero.
6. Account closing stage (AC): She decides whether to close the account (after paying the

overdraft fee if there’s any). If she closes the account, she receives an outside option. If she
doesn’t chose the account, she goes to 7.

7. Balance updates and the next day comes.
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Figure 6: Model Timing

4.2 Basic Model
We assume the consumer’s per-period consumption utility at time t is a constant relative risk averse
utility (Arrow 1963):

uC (Ct) =
C1−θt

t

1−θt
(1)

where θt is the relative risk averse coefficient which represents the consumer’s preference about
consumption. The higher θt , the higher utility the consumer can derive from a marginal unit of
consumption.

θt = exp(θ + εt)

εt ∼ N
(
0,ς2)

As consumers’ preference for consumption might change over time and the relative risk averse
coefficient is always positive, we allow θt to follow a log-normal distribution. Essentially, θt is
the exponential of the sum of a time-invariant mean θ and a random shock εt . The shocks capture
unexpected needs for consumption and follow a normal distribution with mean 0 and variance ς2

(Yao et. al. 2012).
Notice that the consumption plan Ct depends on the consumer’s budget constraint, which fur-

ther depends on her current balance Bt , income Yt and future bills Ψt . For example, when the
coming bill is for a small amount, the consumption can be higher than when the bill is for a large
amount.

4.3 Inattention and Balance Checking
In practice, the consumer may not be fully attentive to her financial well-being. Because moni-
toring her account balance takes time and effort, she may not check her balance frequently. As a
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consequence, instead of knowing the exact (available) balance Bt
12, she recalls a perceived bal-

ance B̃t . Following Mehta, Rajiv and Srinivasan (2003), we allow the perceived balance B̃t to be
the sum of the true balance Bt and a perception error ηtωt . The first component of the perception
error ηt is a random draw from the standard normal distribution13 and the second component is the
standard deviation of the perception error, ωt . So B̃t follows a normal distribution

B̃t ∼ N
(
Bt +ηtωt ,ω

2
t
)

The variance of the perception error ω2
t measures the extent of uncertainty. Based on the

evidence from section 3.2.2, we allow this extent of uncertainty to accumulate through time which
implies that the longer the consumer goes without checking her balance, the more inaccurate her
perceived balance is. That is,

ω
2
t = ρΓt (2)

where Γt denotes the lapsed time since the consumer last checked her balance, and ρ denotes the
sensitivity to lapsed time as shown in the equation (2) above14. Notice that the expected utility is
decreasing in the variance of the perception error ω2

t . This is true because the larger the variance
of the perception error, the less accurate the consumer’s estimate of her true balance, and the more
likely she is going to mistakenly overdraw, which lowers her utility.

We further assume that the consumer is sophisticated inattentive15 in the sense that she is aware
of her own inattention (Grubb 2014). Sophisticated inattentive consumers are rational in that they
choose to be inattentive due to the high cost of monitoring her balances from day-to-day. We
also model the consumer’s balance checking behavior. We denote the balance checking choice as
Qt ∈ {1,0} where 1 means check and 0 otherwise. If a consumer checks her balance, she incurs a
monitoring cost but knows exactly what her balance is. So the perception error is reduced to zero
and she can make her optimal spending decision with all information. In mathematics form, her
consumption utility function changes to

ut =
C1−θt

t

1−θt
−Qtξ +χtQt (3)

where ξ is her balance checking cost and χQt is the idiosyncratic shock that affects her bal-
ance checking cost. The shock χtQt can come from random events like a consumer checks balance
because she’s also performing other types of transactions (like online bill payments) or she is on
vacation without access to any bank channels so it’s hard for her to check balances. The equation

12Available balance means the initial balance plus income minus bills. For the ease of exposition, we omit the word
"available" and only use "balance".

13The mean balance perception error η̄ cannot be separately identified from the variance parameters ρ because the
identification sources both come from consumers’ overdraft fee payment. Specifically, the high overdraft payment for
a consumer can be either explained by a positive balance perception error or large perception error variance caused by
large ρ . So we fix η̄ at zero, i.e. the perception error is assumed to be unbiased.

14We considered other specifications for the relationship between perception error variance and lapsed time since
last balance check. Results remain qualitatively unchanged

15Consumers can also be naively inattentive, but we don’t allow it here. See discussion in Grubb 2014.

16



implies that if the consumer checks her balance, then her utility decreases by a monetary equiva-
lence of [(1−θt)ξ ]

1
1−θt . We assume that χtQt are iid and follow a type I extreme value distribution.

If she doesn’t check, she recalls her balance B̃t with the perception error ηt . So her perceived
balance is

B̃t ∼ QtBt +(1−Qt)N
(
Bt +ηtωt ,ω

2
t
)

She forms an expected utility based on her knowledge about the distribution of her perception
error. The optimal spending will maximize her “expected” utility after integrating out the balance
perception error, which is

ut =

ˆ
B̃t

ˆ
ηt

ut

(
Ct ; B̃t

)
dF (ηt)dF

(
B̃t

)
4.4 Dissatisfaction and Account Closing
We assume that the consumer also has the option of closing the account (e.g., an “outside option”).
If she chooses to close the account, she might switch to other competing banks or become un-
banked. With support from section 3.1, we make an assumption that consumers are sensitive to the
ratio of the overdraft fee to the overdraft transaction amount and we useΞit to denote this ratio as
a state variable. We assume that the higher the ratio, the more likely it is that the consumer will
be dissatisfied to close the account because the forward-looking consumer anticipates that she’s
going to accumulate more dissatisfaction (as well as lost consumption utility due to overdrafts) in
the future so that it’s not beneficial for her to keep the account open any more. Furthermore, we
assume that consumers keep updating her belief of the ratio and only remembers the highest ratio
that has ever incurred. That is, if we use ∆t to denote the per-period ratio then

∆t =
ODt

|Bt−Ct |

and

E [Ξt+1|Ξt ] = max(Ξt ,∆t)

This assumption reflects a consumer’s learning behavior over time in the sense that after experi-
encing many overdrafts, a consumer realizes how costly (or dissatisfied) it could be for her to keep
the account open. When she learns that the ratio can be high enough so that it’s not beneficial for
her to keep the account open any more, she’ll choose to close the account. Specifically, we add the
dissatisfaction effect to the per-period utility function where

Ut = ut−ϒ∗∆t ∗ I[Bt−Ct < 0]

In the above equation, ut is defined in equation 3 and ϒ is the dissatisfaction sensitivity, i.e., the
impact of charging an overdraft fee on a consumer’s decision to close the account.

We assume that closing the account is a termination decison. Once a consumer chooses to
close the account, her value function (or total discounted utility function) equals an outside option
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with a value normalized to 0 for identification purposes.16If the consumer keeps the account open,
she’ll receive continution values from future per-period utility functions. More specifically, let W
denote the choice to close the account, where W = 1 is closing the account and W = 0 is keeping
the account open. Then the value function for the consumer becomes

Vt =

{
Ut +ϖt0 +βE [Vt+1|St ] if Wt = 0
Ut +ϖt1 if Wt = 1

where ϖt0 and ϖt1 are the idiosyncratic shocks that determine a consumer’s account closing de-
cision. Sources of the shocks may include (1) the consumer moved address; (2) competing bank
entered the market, and so on. We assume these shocks follow a type I extreme value distribution.

4.5 State Variables and the Transition Process
We have explained the following state variables in the model: (beginning) balance Bt , income Yt ,
coming bill ψt , lapsed time since last balance check Γt , overdraft fee ODt , ratio of overdraft fee
to the overdraft transaction amount Ξt , preference shock εt , balance checking cost shock χt and
account closure utility shock ϖt . The other state variable to be introduced later, DLt , is involved in
the transition process.

For (available) balance Bt , the transition process satisfies the consumer’s budget constraint,
which is

Bt+1 = Bt−Ct−ODt ∗ I (Bt−Ct < 0)+Yt+1−ψt+1

where ODt is the overdraft fee. As we model the consumer’s spending decision at the daily
level rather than transaction level, we aggregate all overdraft fees paid and assume the consumer
knows the per-item fee structure stated in section 3. This assumption is realistic in our setting be-
cause we have already distinguished between inattentive and attentive consumers. The argument
that a consumer might not be fully aware of the per-item fee is indirectly captured by the balance
perception error in the sense that the uncertain overdraft fee is equivalent to the uncertain balance
because they both tighten the consumer’s budget constraint. As for the attentive consumer who
overdraws because of heavy discounting, she should be fully aware of the potential cost of over-
draft. So in both cases we argue that the assumption of a known total overdraft fee is reasonable.

The state variable ODt is assumed to be iid over time and to follow a discrete distribution with
support vector and probability vector {X , p}. The support vector contains multiples of the per-item
overdraft fee.

Consistent with our data, we assume an income distribution as follows

Yt = Y ∗ I (DLt = PC)

where Y is the stable periodic (monthly/weekly/biweekly) income, DLt is the number of days
left until the next payday and PC is the length of the pay cycle. The transition process of DL is

16Although the outside option is normalized to zero for all consumers, the implicit assumption is that we allow for
heterogeneous utility of the outside option. The heterogeneity is reflected by the other structural parameters, including
the dissatisfaction sensitivity.
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deterministic
DLt+1 = DLt−1+PC ∗ I (DLt = 1)

where it decreases by one for each period ahead and goes back to the full length when one pay
cycle ends.

The coming bills are assumed to be iid draws from a compound Poisson distribution with arrival
rate φ and jump size distribution G, Ψt ∼CP(φ ,G). This distribution can capture the pattern of
bills arriving randomly according to a Poisson process and bill sizes are sums of fixed components
(each separate bill).

The time since last checking the balance also evolves deterministically based on the balance
checking behavior. Formally, we have

Γt+1 = 1+Γt (1−Qt)

which means that if the consumer checks her balance in the current period, then the lapsed time
goes back to 1 but if she doesn’t check, the lapsed time accumulates by one more period.

The ratio of the overdraft fee to the overdraft transaction amount evolves by keeping the maxi-
mum amount over time.

E [Ξt+1|Ξt ] = max(Ξt ,∆t)

The shocks εt , χt and ϖt are all assumed to be iid over time.
In summary, the whole state space for consumer is St =

{
B̃t ,Ψt ,Yt ,DLt ,ODt ,Γt ,Ξt ,εt ,χt ,ϖt

}
.

In our dataset, we observe Ŝt = {Bt ,ψt ,Yt ,DLt ,ODt ,Γt ,Ξt} and our unobservable state variables
are S̃t =

{
B̃t ,ηt ,εt ,χt ,ϖt

}
. St = Ŝt ∪ S̃t ∩{Bt ,ψt}. Notice here that consumers also have unob-

served states Bt and ψt due to inattention, which means that the consumer doesn’t know the true
balance (Bt) or the bill amount (ψt) if she doesn’t check her balance but only the perceived balance
(B̃t) and expected bill (Ψt).

4.6 The Dynamic Optimization Problem and Intertemporal Tradeoff
The consumer chooses an infinite sequence of decision rules {Ct ,Qt ,Wt}∞

t=1in order to maximize
the expected total discounted utility:

max
{Ct ,Qt ,Wt}∞

t=0

E{St}∞

t=1

{
U0 (C0,Q0,W0;S0)+

∞

∑
t=1

β
tUt (Ct ,Qt ,Wt ;St) |S0

}
where

Ut (Ct ,Qt ,Wt ;St) =

[ˆ
B̃t

ˆ
ηt

{
C1−θt

t

1−θt
−Qtξ +χtQt

}
dF (ηt)dF

(
B̃t

)
−ϒ

ODt ∗ I[Bt −Ct < 0]
|Bt −Ct |

+ϖt0

]
(1−Wt)+Wtϖt1

.
Let V (St) denote the value function:

V (St) = max
{Cτ ,Qτ ,Wτ}∞

τ=t

E{{Sτ}∞

τ=t+1}

{
Ut (St)+

∞

∑
τ=t+1

β
τ−tUτ (Sτ) |St

}
(4)
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according to Bellman (1957), this infinite period dynamic optimization problem can be solved
through the Bellman Equation

V (St) = max
C,Q,W

ESt+1 {U (C,Q,W ;St)+βV (St+1) |St} (5)

In the infinite horizon dynamic programming problem, the policy function doesn’t depend on
time. So we can eliminate the time subscript. Then we have the following choice specific value
function:

v
(
C,Q,W ; B̃,Ψ,Y,DL,OD,Γ,Ξ,ε,χ,ϖ

)

=



uC (C)−ξ +χ1−ϒ
OD∗I[B−C<0]
|B−C| +ϖ0

+βES+1

[
V
(

B̃+1,Ψ+1,Y+1,DL+1,OD+1,1,Ξ+1ε+1,χ+1,ϖ+1

)]
if Q = 1&W = 0´

B̃t

´
ηt
[uC (C)+χ0]dF (ηt)dF

(
B̃t

)
−ϒ

OD∗I[B−C<0]
|B−C| +ϖ0

+βES+1

[
V
(

B̃+1,Ψ+1,Y+1,DL+1,OD+1,Γ+1,Ξ+1,ε+1,χ+1,ϖ+1

)]
if Q = 0&W = 0

ϖ1 if W = 1

(6)

where subscript+1 denotes the next time period. So the optimal policy is given by the following
solution

{C∗,Q∗,W ∗}= argmaxv
(
C,Q,W ; B̃,Ψ,Y,DL,OD,Γ,Ξ,ε,χ,ϖ

)
One thing that’s worth noticing is that there’s a distinction between this dynamic programming

problem and traditional ones. Because of the perception error, the consumer observes B̃t = Bt +
ηtωt but doesn’t know Bt or ηt . She only knows the distribution N(Bt +ηtωt ,ω

2
t ). The consumer

makes a decision C∗
(

B̃t

)
based on the perceived balance B̃t . But as researchers, we don’t know the

realized perception error ηt . We observe the true balance Bt and the consumer’s spending C∗
(

B̃t

)
.

So we can only assume C∗
(

B̃t

)
maximizes the “expected ex-ante value function”. Later we look

for parameters such that the likelihood for C∗
(

B̃t

)
maximizes the expected ex-ante value function

attains maximum. Following Rust (1987), we obtain the ex-ante value function which integrates
out the cost shocks, preference shocks, account closing shocks and unobserved mean balance error.

EV (B,ψ,Y,DL,OD,Γ,Ξ) =

ˆ

ϖ

ˆ
χ

ˆ

ε

ˆ

η

v
(
C∗,Q∗,W ∗; B̃,Ψ,Y,DL,OD,Γ,Ξ,ε,χ,ϖ

)
dηdεdχdϖ

Consumers’ intertemporal trade-offs are associated with the three dynamic decisions. First of
all, given the budget constraint, a consumer will evaluate the utility of spending (or consuming)
today versus tomorrow. The higher amount she spends today, the lower amount she can spend
tomorrow. So spending is essentially a dynamic decision and the optimal choice for the consumer
is to smooth out consumption over the time. Second, when deciding when to check balance, the
consumer will compare the monitoring cost with the expected gain from avoiding the overdraft
fee. She’ll only check when the expected overdraft fee is higher than her monitoring cost. As
the consumer’s balance perception error might accumulate with time, the consumer’s overdraft
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probability also increases with the lapse time since the last balance check. As a result, the consumer
will wait until the overdraft probability reaches the certain threshold (when the expected overdraft
fee equals the monitoring cost) to check the balance. Finally, the decision to close the account is
an optimal stopping problem. The consumer will compare the total discounted utility of keeping
the account with the utility from the outside option to decide when to close the account. When
expecting too much overdraft fees as well as the accompanied dissatisfaction, the consumer will
find it more attractive to take the outside option and close the account.

4.7 Heterogeneity
In our data, consumers exhibit different responses to their state conditions. For example, some
consumers have never checked their balances and frequently overdraw while other consumers
frequently check their balances and rarely overdraw. We hypothesize that it’s due to their het-
erogeneous discount factors and monitoring costs. Therefore, our model needs to account for
unobserved heterogeneity. We follow a hierarchical Bayesian framework (Rossi, McCulloch and
Allenby 2005) and incorporate heterogeneity by assuming that all parameters: βi (discount factor),
ςi (standard deviation of risk averse coefficient),ξi (monitoring cost), ρi (sensitivity of error vari-
ance to lapsed time since last checking balance) and ϒi (dissatisfaction sensitivity) have a random
coefficient specification. For each of these parameters, ϑ ∈ {βi,ςi,λi,ξi,ρi}, the prior distribution
is defined as ϑ ∼ N

(
µϑ ,σ

2
ϑ

)
. The hyper-prior distribution is assumed to be diffuse.

4.8 Numerical Example
Here we use a numerical example to show that inattention can explain the observed overdraft
occasions in the data. More importantly, we display an interesting case in which an unbiased
perception can make the consumer spend less than the desired level. In this example, there are
two periods, t ∈ {1,2}. The consumer chooses the optimal consumption to maximize the expected
total discounted utility. In order to obtain an analytical solution for the optimal spending, we
assume a CARA utility uC (Ct) =

1
θ

exp(−θCt) and the coming bill following a normal distribution
Ψ2 ∼ N

(
ψ̄2,ζ

2
2
)
. The initial balance is B1 and the consumer receives income Y1 and Y2. As

period 2 is the termination period, the consumer will spend whatever is left from period 1, i.e.,
C2 = B1 +Y1−ψ1−C1−OD ∗ (B1 +Y −ψ1−C1−ψ2)+Y2−ψ2. So the only decision is how
much to spend for period 1: C1. Let θ = 0.07, B1 = 3.8, Y1 = 3, Y2 = 3, ψ2 = 1,ζ2 = 3.9,β = 0.99,
OD = 3.58 (The values seem small compared to spending in reality because we apply log to all
monetary values).
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4.8.1 Effect of Overdraft

Figure 7: Optimal Spending with Neutral vs Negative Shock

In this example in Figure 7, when there’s no bill to pay in the first period (ψ1 = 0 in the left panel),
the total budget for the consumer is 6.8 and she would like to spend 4.2 to attain the maximum
utility. However, when she has to pay for a bill of 6 (right panel), she is left with only 0.8. Her
optimal choice is to spend 0.8 and just clear the budget because the disutility of overdraft (utility
function with overdraft is the black line labeled as OD) is too high. This example shows that since
the overdraft fee is equivalent to an extremely high interest rate short-term loan, the consumer
wouldn’t want to overdraw her account.

4.8.2 Effect of Inattention–Overdraft

Figure 8: Inattention Leads to Overdraft–Balance Error B̃1 > B1

In a different scenario (Figure 8), if the consumer overestimates her balance to be 7 (her true
balance is 3.8), i.e., she has a positive perception error regarding her true balance, then she would
spend 2.8 which is the optimal amount based on this misperception. This perception error leads
her to an overdraft.
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4.8.3 Effect of Inattention–Error Constraints Spending

Figure 9: Inattention Leads to Underspending

Finally, we discover an interesting case where inattention may cause the consumer to spend less
than her optimal spending level. This happens because the consumer knows that she is inattentive,
i.e., she might overestimate her effective balance to run into overdraft. In order to prevent this, the
consumer tends to constrain her spending. As shown in Figure 9, though the optimal spending is
0.8 as in the previous example (section 4.8.1), the inattentive consumer chooses to spend 0.5 to
prevent overdraft. This example suggests a new revenue source for the bank. If the bank provides
automatic alerts to consumers to inform them of their exact balances, the consumers won’t have to
take precautions to avoid overdrafts. As a consequence, consumers will spend more and the bank
can benefit from the increased interchange fees.

5 Identification and Estimation
We now discuss the identification of the parameters and the estimation procedure.

5.1 Identification
The unknown structural parameters in the model include {θ ,β ,ς ,ξ ,ρ,ϒ}where θ is the logarithm
of the mean risk averse coefficient, β is the discount factor, ς is the standard deviation of the risk
averse coefficient, ξ is the monitoring cost, ρ is the sensitivity of balance error variance to the
lapsed time since last balance checking, and ϒ is the dissatisfaction sensitivity. Next we provide
an informal rationale for identification of each parameter.

First of all, as we know from Rust (1987), the discount factor β cannot be separately identified
from the static utility parameter, which in our case, the risk aversion coefficient θ . The reason is
that lowering θ tends to increase consumption/spending, an effect which can also be achieved by
lowering β . As we are more interested in the consumers’ time preference rather than risk pref-
erence, we fix the risk averse coefficient θ , which allows me to identify the discount factor17.

17We also tried to fix the discount factor (at 0.9998) and estimate the risk averse coefficients. Other structural
parameter estimates are not significantly unaffected under this specification. Our results confirm that the risk averse
coefficient and the discount factor are mathematically substitutes (Andersen et al. 2008). Estimation results with fixed
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This practice is also used in Gopalakrishnan, Iyengar, Meyer 2014. As to the risk averse coeffi-
cient, we choose θ = 0.74, following the latest literature by Andersen et al. (2008) where they
jointly elicit risk and time preferences18. After fixing θ , βi can be well identified by the sequences
of consumption (spending) within a pay period. A large discount factor (close to 1) implies a
stable consumption stream while a small discount factor implies a downward sloping consump-
tion stream. Because a discount factor is constrained above by 1, we do a transformation to set
βi =

1
1+exp(λi)

and estimate λi instead.
Second, the standard deviation of risk averse coefficient ςi is identified by the variation of

consumptions on the same day of the pay period but across different pay periods.
Moreover, according to the intertemporal tradeoff, the longer the consumer goes without check-

ing her balance, the more likely she will be to overdraw due to the balance error. The observed
data pattern of more overdraft fees paid longer after a balance checking inquiry can help pin down
the structural parameters ρi.

Intuitively, the monitoring cost ξi is identified by the expected overdraft payment amount.
Recall that the tradeoff regarding balance checking is that a consumer only checks balance when
ξi is smaller than the expected overdraft payment amount. In the data we observe the balance
checking frequency. Combining this with the calculated ρi we can compute the expected overdraft
probability and further the expected overdraft payment amount, which is the identified ξi. Given
ρi, a consumer with few balance checking inquiries must have a higher balance checking cost ξi.

Lastly, the dissatisfaction sensitivity parameter ϒi can be identified by the data pattern that
consumers’ account closure probability varies with the ratio of overdraft fee over the overdraft
transaction amount, as shown in section 3.1.

Note that aside from these structural parameters, there is another set of parameters that govern
the transition process. These parameters can be identified prior to structural estimation from the
observed state variables in our data. The set includes {φ ,G,X , p}.

In sum, the structural parameters to be estimated include {λi,ςi,ξi,ρi,ϒi}.

5.2 Likelihood
The full likelihood function is

L
({{

Cit ,Qit ,Wit ; Ŝit
}T

t=1

}I

i=1

)
=

({
L
{

Cit ,Qit ,Wit ; Ŝit
}T

t=1

}I

i=1

)
L
({

f
{

Ŝit |Ŝit−1
}T

t=1

}I

i=1

)
L
({

Ŝi0
}I

i=1

)
where Ŝit = {Bit ,ψit ,Yit ,DLit ,ODit ,Γit ,Ξt}. As the likelihood for the optimal choices and that

for the state transition process are additively separable when we apply log to the likelihood func-
tion, we can first estimate the state transition process from the data, then maximize the likelihood
for the optimal choices. The likelihood function for the optimal choice is

discount factor are available upon requests.
18We also tried other values for the relative risk averse coefficient θ , the estimated discount factor β values change

with different θ ’s, but other structural parameter values remain the same. The policy simulation results are also robust
with different values of θ ’s.
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L
({{

Cit ,Qit ,Wit ; Ŝit
}T

t=1

}I

i=1

)
=

L

∏
i=1

T

∏
t=1

L
(
Cit ; Ŝit

)
L
(
Qit ; Ŝit

)
L
(
Wit ; Ŝit

)
=

L

∏
i=1

T

∏
t=1

f (εit |Cit)Pr (χit |Qit ,Cit)Pr (ϖit |Wit ,Qit ,Cit)

where f (εit |Cit) is estimated from the normal kernel density estimator to be explained in section
5.3.1, Pr (χit |Cit ,Qit) and Pr (ϖit |Cit ,Qit ,Wit) follow the standard logit model given the choice
specific value function in equation 6. In specific,
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)}
∑Qit exp

{
v
(
Cit ,Qit ,Wit ; Ŝit
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5.3 Estimation: Imai, Jain and Ching (2009)
5.3.1 Modified IJC

We use the Bayesian estimation method developed by Imai, Jain and Ching (2009) to estimate
the dynamic choice problem with heterogeneous parameters. As our model involves a continuous
choice variable, spending, we adjust the IJC algorithm 19 to obtain the choice probability through
kernel density estimation. We now show the details of the estimation procedure. The whole param-
eter space is divided into two sets (Ω= {Ω1,Ω2}), where the first one contains hyper-parameters in
the distribution of the heterogeneous parameters (Ω1 =

{
µλ ,µς ,µξ ,µρ ,µϒ,σλ ,σς ,σξ ,σρ ,σϒ

}
),

and the second set contains heterogeneous parameters (Ω2 = {λi,ςi,ξi,ρi,ϒi}I
i=1) . We allow

all heterogeneous parameters (represented by ϑi) to follow a normal distribution with parameters
mean µϑ and standard deviation σϑ . Let the observed choices be Od =

{
Od

i
}I

i=1 =
{

Cd
i ,Q

d
i ,W

d
i
}

where Cd
i ≡

{
Cd

it ,∀t
}

, Qd
i ≡

{
Qd

it ,∀t
}

and W d
i ≡

{
W d

it ,∀t
}

.
Each MCMC iteration mainly consists of two blocks.
(i) Draw Ωr

1 , that is, draw µr
ϑ
∼ fµϑ

(ϑ |σ r−1
ϑ

,Ωr−1
2 ) and σ r

ϑ
∼ fσϑ

(σϑ |µr
ϑ
,Ωr−1

2 ) (ϑ ∈{λ ,ς ,ξ ,ρ,ϒ},
the parameters that capture the distribution of ϑ for the population) where fµϑ

and fσϑ
are the con-

ditional posterior distributions.
(ii) Draw Ωr

2 , that is, draw individual parameters ϑi ∼ fi
(
ϑi|Od

i ,Ω
r
1
)

by the Metropolis-
Hastings (M-H) algorithm.

More details of the estimation algorithm is presented in Appendix A.2.

19The IJC method is designed for dynamic discrete choice problems. Zhou (2012) also applied it to a continuous
choice problem.
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5.3.2 Parallel Computing: Neiswanger, Wang and Xing (2014)

We adopt the parallel computing algorithm by Neiswanger, Wang and Xing (2014) to estimate our
model with data from more than 500,000 consumers. The logic behind this algorithm is that the
full likelihood function is a multiplicative of the individual likelihood.

p
(
ϑ |xN)

∝ p(ϑ) p
(
xN |ϑ

)
= p(ϑ)

N

∏
i=1

p(xi|ϑ)

So we can partition the data onto multiple machines, and then perform MCMC sampling on
each using only the subset of data on that machine (in parallel, without any communication).
Finally, we can combine the subposterior samples to algorithmically construct samples from the
full-data posterior.

In details, the procedure is:
(1) Partition data xN into M subsets {xn1 , ...,xnM}.
(2) For m = 1, ...,M (in parallel):
(a) Sample from the subposterior pm, where pm (ϑ |xnm) ∝ p(ϑ)

1
M p(xnm|ϑ)

(3) Combine the subposterior samples to produce samples from an estimate of the subposte-
rior density product p1...pM, which is proportional to the full-data posterior, i.e. p1...pM (ϑ) ∝

p
(
ϑ |xN).
Given T samples {ϑt}T

t=1 from a subposterior pm, we can write the kernel density estimator as
p̂m (ϑ),

p̂m (ϑ) =
1
T

T

∑
t=1

1
hd K(

||ϑ −ϑt ||
h

)

=
1
T
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2 |Id|−
1
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{
− 1
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′ I−1

d (ϑ −ϑt)

}
=

1
T

T

∑
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N
(
ϑ |ϑt ,h2Id

)
where we have used a Gaussian kernel with bandwidth parameter h. After we have obtained the

kernel density estimator p̂m (ϑ) for M subposteriors, we define our nonparametric density product
estimator for the full posterior as

̂p1 · · · pm (ϑ)

= p̂1 · · · p̂m (ϑ)

=
1

T M

T

∑
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This estimate is the probability density function (pdf) of a mixture of TM Gaussians with
unnormalized mixture weights wt· Here, we use t·= {t1, . . . , tM} to denote the set of indices for the
M samples

{
ϑ 1

t1, . . . ,ϑ
M
tM

}
(each from one machine) associated with a given mixture component,

and let

wt· = N
(

ϑ |ϑ̄t·,
h2

M
Id

)
ϑ̄t· =

1
M

M

∑
m=1

ϑ
m
tm

(4) Given the hierarchical Bayes framework, after obtaining the posterior distribution of the
population parameter ϑ , use M-H algorithm once more to obtain the individual parameters (details
in Appendix A.2 Step 4)

The sampling algorithm is presented in Appendix A.3.

6 Results

6.1 Model Comparison

Table 9: Model Comparison
A: No Forward Looking B: No Inattention C: No Heterogeneity D: Proposed

Log-Marginal Density -2943.28 -3636.59 -2764.56 -1758.33

Hit Rate: Overdraft 0.499 0.351 0.504 0.870

Hit Rate: Check Balance 0.405 0.226 0.632 0.841

Hit Rate: Close Account 0.660 0.727 0.696 0.758

We compare our model against the other four benchmark models in order to investigate the con-
tribution of each element of the structural model. Models A to C are our proposed model without
forward-looking, inattention and unobserved heterogeneity respectively and model D is our pro-
posed model. Table 9 shows the log-marginal density (Kass and Raftery 1995) and the hit rate for
overdraft, check balance and close account incidences (we only consider when these events happen
because no event takes place the majority of the time). All four measures show that our proposed
model significantly outperforms the benchmark models. Notably inattention contributes the most
to model fit which is consistent with our conjecture in section 3.
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6.2 Value of Parallel IJC

Table 10: Estimation Time Comparison
Size\Method (seconds) Parallel IJC IJC CCP FIML

1,000 518 1579 526 5,010
10,000 3,199 12,560 4,679 54,280

100,000 4,059 14,0813 55,226 640,360
>500,000 5,308 788,294 399,337 3,372,660

(1.5 hr) (9 days) (5 days) (39 days)

Table 11: Monte Carlo Results when N=100,000
Var True Value Parallel IJC IJC CCP FIML

µβ 0.9 Mean 0.878 0.883 0.851 0.892

Std 0.041 0.039 0.036 0.025

µς 1.5 Mean 1.505 1.502 1.508 1.501

Std 0.131 0.124 0.199 0.103

µξ 0.5 Mean 0.482 0.507 0.515 0.502

Std 0.056 0.039 0.071 0.044

µρ 1 Mean 1.006 1.003 1.015 1.002

Std 0.027 0.022 0.026 0.019

µϒ 5 Mean 5.032 5.011 4.943 4.987

Std 0.023 0.010 0.124 0.008

σβ 0.1 Mean 0.113 0.095 0.084 0.104

Std 0.016 0.014 0.015 0.010

σς 0.3 Mean 0.332 0.318 0.277 0.309

Std 0.024 0.015 0.029 0.021

σξ 0.1 Mean 0.112 0.091 0.080 0.090

Std 0.055 0.029 0.025 0.025

σρ 0.1 Mean 0.107 0.107 0.085 0.105

Std 0.008 0.006 0.010 0.006

σϒ 0.1 Mean 0.092 0.109 0.111 0.100

Std 0.014 0.013 0.021 0.009

We report the computational performance of different estimation methods in Table 10. All the
experiments are done on a server with an Intel Xeon CPU, 144 cores and 64 GB RAM. The first
column is the performance of our proposed method, IJC with parallel computing. We compare
it with the original IJC method, the Conditional Choice Probability (CCP) method by Arcidia-
cono and Miller (2011) 20 and the Full Information Maximum Likelihood (FIML) method by Rust
(1987) (or Nested Fixed Point Algorithm) 21. As the sample size increases, the comparative advan-

20We use the finite mixture model to capture unobserved heterogeneity and apply the EM algorithm to solve for the
unobserved heterogeneity. More details of the estimation results can be obtained upon requests.

21We use the random coefficient model to capture unobserved heterogeneity. More details of the estimation results
can be obtained upon requests.
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tage of our proposed method is more notable. To run the model on the full dataset with more than
500,000 accounts takes roughly 1.5 hours compared to 9 days with the original IJC method. The
reason for the decrease in computing time is that our method takes advantage of multiple machines
that run in parallel. We further run a simulation study to see if the various methods are able to
accurately estimate all parameters. Table 11 shows that different methods produce quite similar
estimates and all mean parameter estimates are within two standard errors of the true values. The
Parallel IJC method is slightly less accurate than the original IJC method.

The parallel IJC is almost 600 times faster than FIML. This happens because the full solu-
tion method solves the dynamic programming problem at each candidate value for the parameter
estimates, whereas this IJC estimator only evaluates the value function once in each iteration.

6.3 Parameter Estimates

Table 12: Structural Model Estimation Results
Var Interpretation Mean (µϑ ) Standard deviation (σϑ )
βi Discount factor 0.9997 0.362

(0.00005) (0.058)
ςi Standard deviation of relative risk aversion 0.257 0.028

(0.014) (0.003)
ξi Monitoring cost 0.708 0.255

(0.084) (0.041)
ρi Inattention Dynamics–lapsed time 7.865 0.648

(0.334) (0.097)
ϒi Dissatisfaction Sensitivity 5.479 1.276

(1.329) (0.109)

Table 12 presents the results of the structural model. We find that the higher the age, the more
risk averse the consumer is. The monitoring cost is estimated to be 0.708. Using the risk averse
coefficient, we can evaluate the monitoring cost in monetary terms. It turns out to be $2.03. We
also obtained the cost measure for each individual consumer.

The variance of the balance perception error increases with the lapsed time since the last time
to check balance and with the mean balance level. Notably the variance of the balance perception
error is quite large. If we take the average number of days to check the balance from the data,
which is 9, then the standard deviation is 7.865 ∗ 9 = 70.79. This suggests a very widely spread
distribution of the balance perception error.

The estimated dissatisfaction sensitivity parameter confirms our hypothesis that consumers can
be strongly affected by the bank fee and close the account as a consequence of dissatisfaction. If we
consider an average overdraft transaction amount at $33, then the relative magnitude of the effect of
dissatisfaction is comparable to $171. This suggests that unless the bank would like to offer a $171
compensation to the consumer, the dissatisfied consumer will close the current account and switch.
Moreover, consistent with the evidence in Figure 5, the dissatisfaction sensitivity is stronger for
light overdrafters (whose average is 5.911) than for heavy overdrafters (whose average is 3.387).
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And keeping the average overdraft transaction amount as fixed, a 1% increase in the overdraft fee
can increase the closing probability by 0.12%.

7 Counterfactuals

7.1 Pricing
The structurally estimated model allows us to examine the effect of changing the pricing structure
on consumers’ spending pattern and more importantly, their overdraft behavior. We test three
alternative pricing schemes: a reduced per-item flat fee, a percentage fee, and a quantity premium.

Table 13: Overdraft Fee under Alternative Pricing
Pricing Current Reduced Flat Percentage Quantity Premium

$31 $29.27 15.8% 8.5% *I (OD≤ 10) +

$31 *I (OD > 10)

Overdraft Revenue $18,654,510 $19,262,647 $19,982,711 $20,297,972

Overdraft Freq 544,997 590,093 610,288 631,325

%4Revenue – +3.26% +7.12% +8.81%

%4Freq – +2.77% +11.98% +15.84%

%4Check Balance – -3.58% +2.83% +3.31%

%4Close Account – -1.01% -1.35% -1.94%

Notice here that the underlying assumption for all these simulations is fungibility, i.e., con-
sumers’ reaction only depends on the fee amount rather than the fee structure. If two different fee
structures result in the same fee amount, then the consumer should respond in the same fashion.

In the first scenario, we keep the per-item flat fee scheme but reduce it to $29.27 per item.
Because of law of demand, there’s a negative relationship between the per-item overdraft fee and
overdraft frequency. So we further pursue an optimization task where we try to solve the optimal
per-item fee. As we aggregate data to the daily level, we calculate the average transaction amount
for each item, which is $44, and use it to derive the total overdraft fee. For example, if a consumer
overspent $170, then the consumer had to pay four overdraft item fees. The optimization is a nested
algorithm where in the outer loop we search for the per-item overdraft fee, and in the inner loop
we solve the consumer’s best response, including optimal spending, balance checking and account
closing given the fee size. We found that the optimal per-item overdraft fee is $29.27 under which
the bank’s revenue will increase by 3.26%. This suggests that the current overdraft fee is too high
because the bank fails to take into account consumer’s negative reaction to the overdraft fee, which
results in huge loss in the consumers’ lifetime value (I calculate the lifetime value of a consumer
in a conservative way by multiplying the accounts spendings by the interchange rate).

In the second scenario, the per-item flat fee is changed to a percentage fee of 15.8% (optimized
in a similar way as described in the first scenario). This is lower than the 17% calculated from the
ratio of the total fee paid over the total transaction amount that caused the fees in the data. Again
this suggests that the bank might be charging a too high fee currently. Intuitively, the percentage
structure should encourage consumers to overdraw on transactions of a small amount but deter
them from overdrawing on transactions of a large amount. As there are more transactions of a small
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amount than transactions of a large amount, the total fees generated soars by 7.12%. Therefore,
the percentage overdraft fee invites more consumers to use the overdraft service. It is this market
expansion effect that increases the bank’s overdraft revenue.

In the last scenario, a quantity premium structure is employed, where when a consumer over-
draws no more than 10 times, she pays a 8.5% percentage fee and if she overdraws more than 10
times, she pays a flat fee at $31. This quantity premium can increase the bank’s revenue by 8.81%,
because the quantity premium uses the second degree price discrimination to segment two types of
overdrafters. The bank will earn more overdraft fee from the heavy overdrafters who are willing
to pay for the flat fee while retaining the lifetime value for the light overdrafters who prefer the
percentage fee (due to the high dissatisfaction sensitivity).

7.2 Alerts Benefit Consumers And the Bank
Although the changed pricing strategies can help the bank improve revenue, the bank is still ex-
ploiting consumer inattention and may exacerbate consumer attrition. In this counterfactual, we
propose a new product design strategy (specific design to be introduced in section 7.3) to help
consumers prevent overdrafts: sending automatic alerts to inform consumers about their balances.
As alerts eliminate consumers’ balance perception error, the total amount of overdraft fee paid by
consumers decreases by 49.53% (Table 14. This is in comparison to the overdraft revenue under
the optimal Quantity Premium pricing strategy in Table 13).

Table 14: Effect of Alerts on Bank’s Revenue
Amount Percentage Change

Overdraft revenue $10,243,529 -49.53%

Interchange revenue from increased spendings $1,997,488 +9.84%

Lifetime value from retained consumers $8,430,424 +41.53%

Total $20,671,441 +1.84%

Although alerts benefit consumers by helping them avoid the high overdraft fees, the bank
might not have incentives to send out alerts as its objective is to earn more revenue. However, we
find that alerts can benefit the bank too for two reasons. First of all, as shown in section 4.8.3, due
to inattention consumers are constraining spendings to prevent overdrafts. With alerts, consumers’
precautionary motive is relieved so that they will increase spendings. As a result, the bank can
gain more interchange fees. We calculate this gain of more interchange fee from the increased
amount of spending by multiplying the increased spending with an average interchange fee rate
of 0.8%22. We find that sending alerts to consumers can offset 9.84% of the loss in overdraft fees
because of the gain in the interchange fees. Moreover, without being dissatisfied by the overdraft
fee, consumers are less likely to close their accounts. We find that alerts reduce the number of
closed accounts from 16.37% to 8.25% which increases the bank’s revenue by getting the lifetime
value from these retained consumers. As shown in Table 14, the increased lifetime value from
retained consumers and the increase in interchange fee from increased spendings not only offset
the loss in overdraft revenue but increase it by 1.84%.

22http://www.federalreserve.gov/paymentsystems/regii-average-interchange-fee.htm
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7.3 Optimal Alert Strategy
Finally, we explain how we design the optimal alert that can help the bank increase its revenue in
section 7.2. We show the effect of the proposed alert with an example in Figure 10. Consider a
consumer who receives a weekly wage of $2000. This consumer’s discount factor is 0.8.23 She
sets a threshold alert at $300 originally thus will only receive the alert when the account balance
is below $300. But our proposed alert will be triggered both when the consumer is overspending
and underspending. As shown in the figure, as long as the consumer’s spending falls out of the
range between the overspending and underspending lines, an alert will be received. So when the
consumer’s balance is below $700 on day 2, she will receive an alert although the threshold is
not reached yet. The optimal alert is earlier than the threshold alert to give the consumer more
time to adjust her spending rather than to wait until the last moment when she can hardly make
any immediate change. On the other hand, if the consumer’s balance is below $300 on day 5, the
threshold alert will be triggered while the consumer is still in a safe zone. Receiving the threshold
alert doesn’t help consumers because her perception error accumulates too fast to make day 6 and
7 danger days prone to overdrafts again. Therefore, the dynamic alert can correct the defects of the
threshold alerts of being either too late or too early.

Figure 10: Dynamic Optimal Alert Notifies Overspending and Underspending

Another imbedded feature of the dynamic alert is that it accounts for consumers’ disutility to
receive too many alerts. In reality, consumers dislike frequent alerts that spam their mailboxes. We
incorporate this alert-averse effect into an optimization task where we choose the optimal timing
to send the alerts given the estimated structural parameters. The objective function is as follows

max{Ait}

N

∑
i=1

∞

∑
t=1

β
t−1
[
Uit

(
C∗it ,W

∗
it ; Ŝit

)
−κi

]
Ŝit = AitSit +(1−Ait) S̃it

where Ait is a binary choice of whether to send an alert to the consumer i at time t. The
second equation means that if the alert is sent, the consumer knows the exact balance and coming

23For the ease of exposition, we choose a relatively small discount factor.
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bills, denoted as the true state variable Sit ; if not, the consumer only knows the distribution of
the perceived balance and coming bills, denoted as S̃it . The consumers’ disutility of receiving the
alert is summarized by a time invariate the parameter κi. We solve the optimization problem in a
nested algorithm where in the outer loop we test for all combinations of alert opportunities, and
in the inner loop we solve the consumer’s best response, including optimal spending and account
closing given the alert profile. (We assume that consumers don’t have to make the balance checking
decision because of the automatic alerts.)

We first test the optimal alert strategy assuming that all consumers have the same structural
parameters (we use the posterior mean of the hyper-distribution parameters). We set this disutility
as the inverse of the estimated monitoring cost (µξ ) because the consumer who incurs a high
monitoring cost might not know how to use online banking or call centers so automatic message
alerts are favored. As Table 15 reports, this alert service increases total consumer utility by 1.11%
when the threshold rule of $300 is applied and 2.85% when the dynamic rule is applied.

We further allow all structural parameters to be heterogeneous across consumers and solve the
optimal alert timing specific to each individual. We find that targeted alerts can increase consumer
utilities six times more than the uniform threshold alert (6.65%).

Table 15: Utility Impact of Different Types of Alerts
Alert Type Alert Timing Utility Gain

Uniform
Threshold 1.11%
Dynamic 2.85%

Targeted
Threshold 4.39%
Dynamic 6.65%

8 Contributions and Limitations
The $32 billion dollar annual overdraft fee has caused consumer attrition and may induce poten-
tially tighter regulation. However there is little quantitative research on consumers’ financial deci-
sion making processes that explains their overdraft behaviors. The lack of well-calibrated models
prevent financial institutions from designing pricing strategies and improving financial products.
With the aid of Big Data associated with consumers’ spending patterns and financial management
activities, banks can use adverse targeting (Kamenica, Mullainathan, and Thaler 2011) to help
consumers know themselves better and make better financial decisions.

In this paper we build a dynamic structural model of consumer daily spending that incorporates
inattention to rationalize consumers’ overdraft behavior. We quantify the discount factor, monitor-
ing cost and dissatisfaction sensitivity for each consumer and use these to design new strategies.
First we compare the current pricing scheme with several alternative pricing strategies. We find
that a percentage fee structure can increase the bank’s revenue through market expansion and the
quantity premium structure can increase the bank’s revenue because of second degree price dis-
crimination. More importantly, we propose an alert strategy to make the incentive of the bank and
the incentive of the consumers better aligned. The optimal alert can be sent to the right consumer
at the right time to prevent overdrafts. This customized dynamic alert product can be six times
more effective than a uniform threshold alert. Not only does this alert benefits consumers, it can
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also benefit the bank through increased interchange fees and lower consumer attrition.
We calibrated our model at an individual level on a sample of more than 500,000 accounts.

This Big Data provide great value for our analysis. First of all, an overdraft is still a relatively
rare event compared to numerous other transactions. Without a large amount of data, we cannot
detect these rare but detrimental events, let alone their diverse causes. Second, as summarized by
Einav and Levin (2014), Big Data contain rich micro-level variation that can used to identify novel
behavior and develop predictive models that are harder with smaller samples, fewer variables, and
more aggregation. We leverage the variation in consumer daily spending and balance checking
behaviors to evaluate the effect of heterogeneous policy instruments. These evaluations can be
useful for bank managers to design new products and policy makers to create new regulation rules
at a much more refined fashion than before.

In order to estimate a complicated structural model with Big Data, we adopt parallel computing
techniques in combination with the Bayesian estimation algorithm developed by Imai, Jain and
Ching (2009). This new method significantly reduces the computation burden and could be used
for other researchers and marketers who would like to use structural models to solve real-world
large-scale problems.

There are several limitations of the current study that call for future work. First, we don’t
observe consumers’ existing alert settings. Some consumers may have already received alerts
to help them make financial decisions. In our policy simulations, we made bold assumptions
about consumers’ disutility for reading alerts. These assumptions could be tested if we had the
alerts data. The current alerts are set by consumers who might fail to consider their spending
dynamics. Future field experiments are needed to test the effect of our proposed alert strategy.
Second, we don’t have the data about consumers’ decision on whether to opt-in for overdraft
protection by ATM/POS transactions. We only know that if ATM/POS transactions caused an
overdraft, then the consumer must have opted-in. If no such transactions happened, we do not
know the consumer’s opt-in status. Had we known this information, we could have provided
an informative prior in our the Bayesian model. The logic is that a consumer who has opted in
probably has stronger needs for short term liquidity due to fluctuations in the size and arrival time
of income and expenditures. Finally, we only model consumers’ non-preauthorized spending in the
checking account. In reality, consumers usually have multiple accounts, like savings, credit cards
and loans, with multiple financial institutions. A model to capture consumers’ decisions across
all accounts for both short-term and long-term finances will provide a more complete picture of
consumers’ financial management capabilities and resources so that the bank can design more
customized products.
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Appendix

A.1 Overdraft Fees at Top US Banks

Table 16: Overdraft Fees at Top U.S. Banks
Bank Overdraft Fee Max Fees

per Day

Overdraft

Protection

Transfer

Continuous

Overdraft

Fee

Grace

Period

Bank of America $35 4 $10.00 $35 5

BB&T $36 6 $12.50 $36 5

Capital One $35 4 $10.00

Capital One 360 $0 N/A N/A

Chase $34 3 $10.00 $15 5

Citibank $34 4 $10.00

PNC $36 4 $10 .00 $7 5

SunTrust $36 6 $12.50 $36 7

TD Bank $35 5 $10.00 $20 10

US Bank* $36 4 $12.50 $25 7

Wells Fargo $35 4 $12.50
Source: http://www.nerdwallet.com/blog/banking/overdraft-fees-what-banks-charge/

A.2 Estimation Algorithm: Modified IJC
Detailed steps

1. Suppose that we are at iteration r. We start with Hr =

{{
S̃k

i ,Ṽ
k
(

Ŝk
i , S̃

k
i ;ϑ k

i

)}I

i=1

}r−1

k=r−N
where I is the number of consumers; N is the number of past iterations used for the expected future
value approximation; ϑi = {λi,ςi,ξi,ρi,ϒi}.

2. Draw µr
ϑ

(population mean of ϑi) from the posterior density (normal) conditional on σ
r−1
ϑ

and
{

ϑ
r−1
i
}I

i=1. µr
ϑ
∼ N

(
∑

I
i=1 ϑ

r−1
i

I ,σ r−1
ϑ

)
3. Draw σ r

ϑ
(population variance of ϑi) from the posterior density (inverted gamma) condi-

tional on µr
ϑ

and
{

ϑ
r−1
i
}I

i=1.σ r
ϑ
∼ IG

(
I
2 ,

∑
I
i=1(ϑ

r−1
i −µr

ϑ)
2

2

)
4. For each i= 1, ..., I, draw ϑ r

i from its posterior distribution conditional on (Cd
i ,Qd

i ,W d
i ,µr

ϑ
,σ r

ϑ
),

which is

fi

(
ϑi|Cd

i ,Q
d
i ,W

d
i ,µ

r
ϑ ,σ

r
ϑ

)
∝ π (ϑi|µr

ϑ ,σ
r
ϑ )ρi

(
Cd

i |ϑi

)
ρi

(
Qd

i |ϑi

)
ρi

(
W d

i |ϑi

)
Since there is no easy way to draw from this posterior, we use the M-H algorithm.

(a) Draw ϑ ∗ri from the proposal distribution q
(
ϑ

r−1
i ,ϑ ∗ri

)
(e.g., ϑ ∗ri ∼N

(
ϑ

r−1
i ,σ2)where ϑ ∗ri

is a candidate value of ϑ r
i .

(b) Compute the pseudo-likelihood for consumer i at ϑ ∗ri , i.e., ρr
i
(
Cd

i |ϑ ∗ri
)
, ρr

i
(
Qd

i |ϑ ∗ri
)

and
ρi
(
W d

i |ϑ ∗ri
)
. Since there is no closed form solution to the optimal strategy profile, a likelihood
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function based on observed Cit becomes infeasible. Instead, we implement a numerical approxi-
mation method to establish a simulated likelihood function for estimation. For each Cit observed
in the data and its corresponding state point Ŝit , we use the following steps to simulate its density:

i. First assume the unobserved state variables are S̃it = {εit ,ηit ,χit ,ϖit}. Draw nr=1000 random
shocks S̃it = {εit ,ηit ,χit ,ϖit} from

ηit ∼ N(0,ω2
i ), εit ∼ N (0,1),χit~EVI

24,ϖit~EVI;

i. For each balance checking decision Q = {1,0}and account closing decision W = {1,0}, each
random draw of S̃it and the observed Ŝit , calculate the optimal consumption by solving the follow-
ing equations

C∗it
(

Ŝit , S̃it |Q,W
)

= argmax
Cit

ṽr
(

Q,W ; Ŝit , S̃it ,ϑ
∗r
i

)
= argmax

Cit
U
(

Cit ,Q,W ; Ŝit , S̃it ,ϑ
∗r
i

)
+β Êr

Sit+1

{
V
(

Ŝit+1, S̃it+1;ϑ
∗r
i

)
|Ŝit , S̃it

}

iii. Using the calculated nr = 1000 optimal C∗it
(

Ŝit , S̃it

)
, simulate ρr

i
(
Cd

it |ϑ ∗ri
)
, the density of

the observed Cd
it , using a Gaussian kernel density estimator. (This simulation borrows an idea from

Yao, Mela, Chiang and Chen (2012)) . Moreover,

ρi

(
Qd

it |ϑ ∗ri

)
=

1
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exp
{
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(
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k=r−N
, treating ϑi as one of the parameters when computing the

weights. In the case of independent kernels, for all Ŝi = {Bi,ψi,Yi,DLi,ODi,Γi,Ξi}, because Bi,Ξi
are continuous and evolves deterministically, ψi and ODi are continuous and evolve stochastically,
and Yi,DLi,Γi are discrete so
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We repeat the same step and obtain the pseudo-likelihood (ρr
i
(
Od

i |ϑ
r−1
i
)
) conditional on

(
ϑ

r−1
i
)
.

Then, we determine whether or not to accept ϑ ∗ri . The acceptance probability, Λ, is given by
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24Type I Extreme Value Distribution
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where π (·) denotes the prior distribution.
(c) Repeat (a) & (b) for all i.

5. Computation of the pseudo-value function,
{
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)}I

i=1
(a) Make one draw of the unobserved state variables S̃r

i from ηi∼N(0,ω2
i ), εi∼N

(
0,ς2

i
)
,χi~EVI25,

and ϖi~EVI;
(b) Compute the pseudo expected future value at ϑ ∗ri .
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(c) Compute Ṽ r
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, using the pseudo expected future values computed in (b) and the
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i , S̃i

)
+β Êr
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where C∗i ,Q
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∗
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(d) Repeat (a-c) for all i.
6. Go to iteration r + 1.

A.3 Parallel MCMC Sampling Algorithm

Table 17: Algorithm: Asymptotically Exact Sampling via Nonparametric Density Product Estima-
tion

Input: Subposterior samples,
{

ϑt1

}T
t1=1 ∼ p1 (ϑ) , ...,{ϑtM }

T
tM=1 ∼ pM (ϑ)

Output: Posterior samples (asymptotically, as T → ∞), {ϑi}T
i=1 ∼ p1...pM (ϑ) ∝ p

(
ϑ |xN)

1: Set h = 1. 10: Draw u∼Uni f ([0,1]).

2: Draw t·= {t1, ..., tM}
iid∼Uni f ({1, ..,T}) 11: if u < wt·

wc·
then

3: Set c·= t· . 12: Draw ϑt ∼ N
(

ϑ̄t·,
h2

M Id

)
.

4: Draw ϑ1 ∼ N
(

ϑ̄t·,
h2

M Id

)
. 13: Set c·= t· .

5: for i = 2 to T do 14: else

6: for m = 1 to M do 15: Draw ϑt ∼ N
(

ϑ̄c·,
h2

M Id

)
.

7: Set t·= c· . 16: end if

8: Draw tm ∼Uni f ({1, ..,T}) 17: end for

9: Set h = i−
1

(4+d) . 18: end for

25Type I Extreme Value Distribution
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