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ABSTRACT. The Discounted Expected Utility model has been a major 

workhorse for analyzing individual behavior for over half a century. 

However, it cannot account for evidence that risk interacts with time 

preference, that time interacts with risk preference, that many people are 

averse to timing risk and do not discount the future exponentially, that 

discounting depends on the magnitude of outcomes, that risk preferences 

are not time preferences, and that risk and time preferences are correlated 

with cognitive ability. Here we address these issues in a decision model 

based on the interaction of an affective and a reflective valuation process. 

The resulting Dual Process Utility theory provides a unified approach to 

modeling risk preference, time preference, and interactions between risk 

and time preferences. It also provides a unification of models based on a 

rational economic agent, models based on prospect theory or rank-

dependent utility, and dual system models of decision making.   

Keywords: Risk preference; Time preference; Cognitive Ability; System 1; System 2 

    JEL Codes: D01, D03, D81, D90. 

 

 

* Economic Science Institute, Chapman University. One University Drive, Orange, CA 92866. (e-mail: 

schneide@chapman.edu). Acknowledgments: I thank Manuel Nunez, Peter Wakker, Manel Baucells, 

Enrico Diecidue, and Nat Wilcox for insightful comments on earlier drafts. The usual disclaimers apply.   

mailto:schneide@chapman.edu


 

2 

 

1. INTRODUCTION 

Many decisions in life involve uncertain outcomes that materialize at different points 

in time. For example, the struggle to kick an addiction involves a tradeoff between short 

term gratification and an increased risk of future health problems. Saving for retirement 

involves consideration of preferences for immediate consumption and uncertainty about 

future income. Whether to pursue a long-term project involves consideration of the time 

the project is expected to take and the likelihood of project success. The decision to 

purchase a warranty on a television or appliance involves a higher immediate cost, but 

reduced product breakdown risk. The decision to take a ‘buy-it-now’ option on eBay or 

wait until the auction ends for the chance of a better deal, the decision to purchase a 

laptop today or wait for a potential Black Friday sale, and the decision to take out a 

mortgage on a home or wait for a possibly lower interest rate each involve a tradeoff 

between a certain, immediate payoff and a risky, delayed payoff.  

As these examples illustrate, decisions often involve both risk and time delays. Yet 

the domains of risk and time have traditionally been studied separately. In cases where 

risk and time preferences are both considered, the discounted expected utility (DEU) 

model remains a major workhorse for analyzing individual behavior. There are, however, 

a variety of important shortcomings of DEU. For instance, it implies that introducing risk 

has no effect on time preference, that introducing delays has no effect on risk preference, 

that risk and time preferences are generated by the same utility function, that people are 

risk-seeking toward lotteries over uncertain payment dates, that people discount the 

future exponentially, and that discounting does not depend on the magnitude of 

outcomes. All of these predictions have been contradicted by experimental evidence.  

In this paper, we introduce a dual process model of choices under risk and over time 

that naturally resolves each of these limitations of the DEU model. The model generalizes 

both rank-dependent utility theory (Quiggin, 1982), and Mukherjee’s (2010) dual system 

model of choices under risk to develop a unified model that accounts for attitudes toward 

risk, attitudes toward time, and a variety of interaction effects between risk and time 

preferences. The proposed model also provides a unification of three classes of decision 
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models – rank-dependent utility theory, expected utility, and dual process (or dual selves) 

theories. We refer to the model developed here as Dual Process Utility (DPU) theory.   

The DPU theory introduces a new parameter into the analysis of economic decision 

models which represents the decision maker’s ‘cognitive type’ or ‘cognitive ability’. 

Essentially, an agent’s ‘cognitive type’ identifies whether a person naturally engages in 

more intuitive and feeling-based processing or relies on more analytical and calculation-

based processing. While cognitive ability has been found to correlate with a wide variety 

of economic behaviors including risk and time preferences (e.g., Frederick, 2005; Burks 

et al., 2009), saving behavior (Ballinger et al., 2011), strategic sophistication (Carpenter 

et al., 2013), and efficiency in experimental asset markets (Corgnet et al., 2015), it 

appears nowhere in the conventional economic models of individual choice.   

In addition to introducing the DPU model, we provide DPU with a strong theoretical 

foundation, motivated by plausible psychological assumptions regarding the properties of 

dual systems in decision making, as well as by a simple axiomatic approach in which the 

convex combination functional form of DPU and the existence and uniqueness of the 

parameter representing the decision maker’s ‘cognitive type’ are implied by the axioms.   

We subsequently show that DPU predicts a variety of the major empirical findings 

regarding risk and time preferences. After providing some background in §2, the model is 

introduced in §3. In §4 we demonstrate that DPU explains two important empirical 

violations of discounted utility theory (present bias and the magnitude effect). In §5, we 

show that DPU explains empirically observed interaction effects between risk and time 

preferences (time affects risk preference, risk affects time preference, subendurance). In 

§6 - §8, we demonstrate that DPU permits a separation between risk and time 

preferences, that it predicts a preference for diversifying payoffs across time, and that it 

predicts risk aversion toward timing risk. In §9 - §11, we consider additional implications 

and properties of DPU. The behaviors implied by the model are summarized in §12. A 

simple strategy for parameter elicitation is noted in §13. Related literature is discussed in 

§14. Concluding remarks are provided in §15.   
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2. BACKGROUND 

The study of risk preferences and time preferences, both analytically and empirically, 

has been the primary focus of research on individual choice for over half a century. 

However, although expected utility theory was axiomatized by von Neumann and 

Morgenstern in 1947, and discounted utility theory was axiomatized by Koopmans in 

1960, it was not until 1991 when researchers identified remarkable parallels between the 

major anomalous behaviors across both domains – such as a common ratio effect in 

choice under risk and a common difference effect in choice over time (Prelec and 

Loewenstein, 1991). Since the ‘common approach’ to risk and time preferences 

pioneered by Prelec and Loewenstein (1991), some models have been developed to 

explain behaviors across both domains. For instance, models of similarity judgments 

apply the same cognitive process to explain anomalies under risk and anomalies over 

time (Rubinstein 1988; Leland 1994; Leland 2002; Rubinstein, 2003). However, this 

approach does not address the basic question of how risk and time preferences interact.   

It has been only fairly recently that attention has shifted to explaining interactions 

between risk and time preferences. This research direction was partially spurred by 

experimental studies from Keren and Roelofsma (1995) and Baucells and Heukamp 

(2010) who each observed different and systematic interactions between risk and time 

preferences. For instance, Keren and Roelofsma (1995) observed that uncertainty induces 

more patient behavior. Baucells and Heukamp (2010) and Abdellaoui et al. (2011) both 

observed that time delays induce more risk-taking behavior. Andersen et al. (2011) and 

Miao and Zhong (2015) observed a preference for diversifying risks across time. Onay 

and Onculer (2007) and DeJarnette et al. (2015) observed risk-aversion to lotteries over 

uncertain payment dates. These behaviors are illustrated in Table 1. 

    An intuitive approach to modeling risky and intertemporal choices is to multiply a time 

discount function by a probability weighting function by a utility or value function. 

However, this general approach does not explain the finding that time affects risk 

preference (see Table 1) since both alternatives in the example by Baucells and Heukamp 

(2010) are delayed by the same amount (e.g., three months) and so the discount weights 
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cancel when comparing options A and B.  This approach also does not explain the finding 

that risk affects time preference, since both payoffs in the example by Keren and 

Roelofsma (1995) have the same probability (e.g., 50%), and so the probability weights 

cancel when comparing options A and B. In addition, this approach does not explain the 

finding of subendurance in the example by Baucells et al. (2009), since both options have 

the same payoffs (e.g., €100) and so the utilities cancel when comparing options A and B. 

It is then not obvious how to model such interaction effects between time delays, 

probabilities, and payoffs. It may be even less clear how to derive behaviors in the 

direction observed in experimental studies, or whether the same approach that might 

explain interaction effects for time delays can also explain interaction effects for 

probabilities, and payoffs. We will show that such a unified approach to these interaction 

effects is not only possible, but has a simple and intuitive interpretation.    
 

 

Table 1. Choices between Options A and B involving Risk and Time 
 

Observation 
 

 

Option A                     vs. 
 

Option B 
 

 

Common Ratio Effect* 

(Baucells and Heukamp, 2010) 
 

 

(9, for sure, now) 
 

(12, with 80%, now) 

(12, with 8%, now) (9, with 10%, now) 

 

Common Difference Effect** 

(Keren and Roelofsma, 1995) 

 

(100, for sure, now) 
 

(110, for sure, 4 weeks) 

(100, for sure, 26 weeks) (110, for sure, 30 weeks) 
 

 

Time affects Risk Preference* 

(Baucells and Heukamp, 2010) 

 

(9, for sure, now) 
 

(12, with 80%, now) 

(9, for sure, 3 months) (12, with 80%, 3 months) 
 

 

 

Risk affects Time Preference** 

(Keren and Roelofsma, 1995) 

 

(100, for sure, now) 
 

(110, for sure, 4 weeks) 

(100, with 50%, now) (110, with 50%, 4 weeks) 
 

 

 

Subendurance* 

(Baucells et al., 2009) 

 

(100, for sure, 1 month) 

(5, for sure, 1 month) 

 

(100, with 90%, now) 

(5, with 90%, now) 

 

Diversification across Time*** 

(Miao and Zhong, 2015) 

 

 If Heads: 100, now 

 If Tails:    100, 1 week 

 

If Heads: 100 now, 100, 1 week 

If Tails:            0 now,     0, 1 week 

 

Aversion to Timing Risk*** 

(Onay and Onculer, 2007) 

 

 If Heads:  100,  5   weeks 

 If Tails:    100,  15 weeks 

 

If Heads: 100, 10 weeks 

If Tails:    100, 10 weeks 

Adapted from Baucells and Heukamp (2012). Complementary probabilities for all options correspond to 

payoffs of 0. Sources of experimental results are in parentheses. Majority responses of experimental 

subjects are in bold font. *Currency in Euros; ** Currency in Dutch Guilders; *** Prototypical examples. 
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   In Table 1, the first five examples are adapted from Baucells and Heukamp (2012). The 

last two examples are prototypical illustrations of a preference for diversification across 

time and aversion to timing risk with outcomes determined by the toss of a fair coin. 

    Further research on relations between risk and time preferences was spurred by Halevy 

(2008) and Saito (2011) who investigated formal equivalences between the Allais 

paradox and hyperbolic discounting, and by Andreoni and Sprenger (2012) who re-

opened a debate on the limitations of DEU.  
 

2.1.      Dual Processes in Decision Making 
 

 Recent literature in cognitive science argues that people do not have a single mental 

processing system, but rather have two families of cognitive processes. Qualitatively 

similar distinctions have been made by many authors. Stanovich and West (2000), and 

Kahneman and Frederick (2002) label these families neutrally as System 1 processes and 

System 2 processes where System 1 includes automatic, intuitive and affective processes 

and System 2 includes more deliberative, logical, and reflective processes. Kahneman 

(2011) simply distinguishes between processes that are ‘fast’ and ‘slow.’ Rubinstein 

(2007, 2013) distinguishes between “instinctive” and “cognitive” processes. Denes-Raj 

and Epstein (1994) distinguish between an ‘experiential system’ and a ‘rational system’. 

Hsee and Rottenstreich (2004) posit two qualitatively different types of valuation 

processes – valuation by feeling and valuation by calculation1. Following Stanovich and 

West (2000), we adopt the neutral System 1/System 2 distinction in our analysis.     

Concurrent with the dual process paradigm developing in the psychology literature, a 

plethora of dual process models have emerged recently in economics, each with similar 

distinctions between the types of processes involved. The relation between DPU and 

alternative dual system or dual selves models is discussed in §14. Despite their recent rise 

to theoretical prominence, two-system (dual process) theories date back to the early days 

of scholarly thought. The conflict between reason and passion, for instance, features 

prominently in Plato’s Republic and in Adam Smith’s Theory of Moral Sentiments.   

 

1
We do not employ ‘calculation’ to mean the agent is necessarily calculating expected utilities consciously. 

Rather, ‘calculation’ is meant in a broad sense to refer to reliance on logic and reasoning to make choices.  



 

7 

 

3. DUAL PROCESS UTILITY THEORY 

3.1.       Setup and Assumptions 

Our approach in this section builds on the variant of Harsanyi’s (1955) preference 

aggregation theorem in Keeney and Nau (2011). Keeney and Nau adapted Harsanyi’s 

theorem for agents with subjective expected utility preferences. We adapt the setting to 

decisions under risk and decisions over time. 

Formally, we proceed as follows: There is a finite non-empty set, T, of time periods 

and a finite non-empty set X of consumption sequences. We index consumption 

sequences by 𝑗 ∈ {1,2, … , 𝑛} and we index time periods by 𝑡 ∈ {0,1, … , 𝑇}. A 

consumption sequence 𝑥𝑗 ≔ [𝑥𝑗0, … , 𝑥𝑗𝑇], consists of dated outcomes in ℝ𝑛. A stochastic 

consumption plan is a probability distribution over consumption sequences. We denote a 

stochastic consumption plan by a function 𝑓: X → [0,1], whose elements are indexed by 

consumption sequences, with 𝑓(𝑥𝑗) denoting the probability it assigns to consumption 

sequence 𝑥𝑗. Denote the set of stochastic consumption plans by Ω.   

We first make assumptions about the risk and time preferences of Systems 1 and 2. We 

first assume that the preferences for each system are internally consistent. Viewing 

discounted expected utility (DEU) preferences as a model of consistent risk and time 

preferences, we impose this structure on the risk and time preferences for each system. 

We will see that imposing consistent preferences for each system can nevertheless 

generate a variety of decision anomalies as emergent phenomena that arise through the 

interactions between systems. As a further restriction, we let System 1 be more risk-

averse and more delay-averse (i.e., less patient) than System 2. The assumption that 

System 1 is more risk-averse than System 2 is broadly consistent with a range of 

evidence. Frederick (2005), Burks et al., (2009), Dohmen et al., (2010), and Benjamin et 

al. (2013) find that individuals with higher cognitive ability are less risk-averse (in 

particular, closer to risk-neutrality) than individuals with low levels of cognitive ability or 

cognitive reflection. Deck and Jahedi (2015) review evidence suggesting that increasing 

cognitive load (an experimental manipulation designed to increase reliance on System 1) 

leads to greater small-stakes risk aversion. Kirchler et al. (2015) find that placing 
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individuals under time pressure also produces greater risk aversion (for gains). The 

assumption that System 1 is less patient than System 2 is consistent with findings by 

Frederick (2005), Burks et al. (2009), Dohmen et al. (2010), and Benjamin et al. (2013) 

that decision makers with higher cognitive ability or cognitive reflection are more patient 

than individuals with lower levels of cognitive ability. In addition, Tsukayama and 

Duckworth (2010) find that decision makers are less patient for affect-rich outcomes.  

The following assumption is thus consistent with empirical evidence regarding the 

relationship between the risk and time preferences of Systems 1 and 2. Formally, let ≿𝑠 

and ≻𝑠 denote weak and strict preference, respectively, between pairs of stochastic 

consumption plans for system 𝑠, 𝑠 ∈ {1,2}.  

  Assumption 1 (Preferences2 of Systems 1 and 2): System s, 𝑠 ∈ {1,2} has discounted 

expected utility preferences, with System 1 more risk-averse and more delay-averse than 

System 2. That is, there exist utility functions 𝑢1, 𝑢2, with 𝑢1 more concave than 𝑢2, and  

unique discount factors, 𝛿1, 𝛿2 with 0 < 𝛿1 < 𝛿2 ≤ 1, such that for all 𝑓, 𝑔 ∈ Ω,  
 

(1) 𝑓 ≿𝑠 𝑔 ⟺ 𝑉𝑠(𝑓) ≥ 𝑉𝑠(𝑔), where 𝑉𝑠(𝑓) = ∑ ∑ 𝛿𝑠
𝑡 ∙ 𝑓(𝑥𝑗) ∙ 𝑢𝑠(𝑥𝑗𝑡).𝑗𝑡  

 

All of our results continue to hold even in the more restrictive case where System 2 is 

risk-neutral and delay-neutral. Mukherjee (2010), Loewenstein et al. (2015) and 

Schneider and Coulter (2015) each argue that risk-neutrality is a plausible, and even 

natural, assumption for System 2. To the extent that System 2 characterizes an idealized 

rational agent, it appears at least plausible that it does not have a pure rate of time 

preference which some authors have argued to be irrational (e.g., Harrod, 1948; Traeger, 

2013), and that it maximizes expected value. Formally, let (𝑐, 𝑝, 𝑡) ∈ Ω denote the 

stochastic consumption plan 𝑓 defined as 𝑓(x) = 𝑝 if x is the all zeros vector except at 

𝑥𝑡 = 𝑐, and 𝑓(x) = 1 − 𝑝 if x is the all zeros vector, and 𝑓(x) = 0 for all other x ∈ X. By 

‘delay neutrality’ we mean (𝑐, 𝑝, 𝑡) ~2(𝑐, 𝑝, 𝑟) for all 𝑡, 𝑟 ∈ 𝑇. Hence, in this special case, 

 

2
 We avoid explicit preference axioms for Systems 1 and 2 to simplify the exposition and to focus on the 

novel parameter 𝜃 in our model which is derived from our assumptions in Proposition 1. See Traeger 

(2013) for an axiomatization of discounted expected utility.  
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System 2 discounts the future for reasons of uncertainty, given the future is often more 

uncertain than the present, but not for reasons of impatience.  

Let ≿ and ≻ represent, respectively, weak and strict preferences of the decision maker 

over stochastic consumption plans. We minimally constrain the agent’s time preferences, 

and do not impose stationarity or even time separability so that we do not rule out 

common behaviors such as present bias or the magnitude effect. But note that while not 

ruling out these behaviors, we do not assume them either. Present bias and the magnitude 

effect as well as some observed interactions between risk and time preferences will 

emerge as general properties implied by our representation. Formally, our Assumptions 2 

and 3 can be viewed as special cases of Assumption 2 and 3 in Harsanyi’s aggregation 

theorem, as presented in Keeney and Nau (2011).  

  Assumption 2 (Preferences of the Decision Maker): The decision maker has time-

dependent expected utility preferences among stochastic consumption plans. That is, 

there exists a possibly time-dependent utility function, 𝑢𝑡(𝑥), such that for all 𝑓, 𝑔 ∈ Ω,  
 

 (2)  𝑓 ≿ 𝑔 ⟺ 𝑉(𝑓) ≥ 𝑉(𝑔), where  𝑉(𝑓) = ∑ ∑ 𝑓(𝑥𝑗) ∙ 𝑢𝑡(𝑥𝑗𝑡).𝑗𝑡    

 

Our final assumption is a simple Pareto condition that relates Assumptions 1 and 2.  

  Assumption 3 (Pareto Efficiency): If both systems weakly prefer 𝑓 to 𝑔, then 𝑓 ≿ 𝑔, 

and if, in addition, one system strictly prefers 𝑓 to 𝑔 then 𝑓 ≻ 𝑔. 

Given the preceding assumptions, we have the following result: 

Proposition 1 (Dual Process Utility Theorem): Given Assumptions 1, 2, and 3, there 

exists a unique constant3 𝜃 ∈ (0,1), unique discount factors  𝛿1, 𝛿2 with 0 < 𝛿1 < 𝛿2 ≤ 1 

and utility functions, 𝑢1 and 𝑢2, with 𝑢1 more concave than 𝑢2, such that for all 𝑓, 𝑔 ∈ 𝛺, 

the decision maker’s preferences are given by 𝑓 ≿ 𝑔 ⟺ 𝑉(𝑓) ≥ 𝑉(𝑔), where 

(3)           𝑉(𝑓) = (1 − 𝜃)𝑉1(𝑓) +  𝜃𝑉2(𝑓) 

             = (1 − 𝜃)(∑ ∑ 𝛿1
𝑡 ∙𝑗𝑡 𝑓(𝑥𝑗) ∙ 𝑢1(𝑥𝑗𝑡)) +  𝜃(∑ ∑ 𝛿2

𝑡 ∙ 𝑓(𝑥𝑗) ∙ 𝑢2(𝑥𝑗𝑡)𝑗𝑡 ). 

 

3 In Harsanyi’s theorem, the weights on individual member utilities are positive and unique up to a 

common scale factor. Without loss of generality, the weights can be scaled to sum to 1 in which case 𝜃 ∈
(0,1) is uniquely determined. Although Proposition 1 restricts 𝜃 ∈ (0,1), we will continue to discuss 𝜃 = 0 

and 𝜃 = 1 as special cases of DPU, as both are limiting cases and 𝜃 can be arbitrarily close to 0 or 1.   
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    One could imagine many ways of aggregating preferences of Systems 1 and 2. 

Proposition 1 provides a formal justification for the convex combination approach. 

Although including the time domain and the application of Harsanyi’s theorem from 

social choice theory to model individual choice behavior is new, the proof for Proposition 

1 follows straightforwardly from the proof of Harsanyi’s theorem and so is omitted here 

(see Keeney and Nau (2011) for a detailed proof).  

   The assumption of discounted expected utility preferences seems particularly 

appropriate for System 2 which may be intuitively thought to resemble the rational 

economic agent. However, in addition to differences in the content of risk and time 

preferences between systems (i.e., that the systems differ in their degrees of risk aversion 

and impatience), one might further propose that the two systems differ in the structure of 

their risk and time preferences, with System 2 having normative discounted expected 

utility preferences, and with System 1 having behavioral preferences based on prospect 

theory (PT) or rank dependent utility (RDU) theory. Supporting this, Rottenstreich and 

Hsee (2001) find that inverse S-shaped probability weighting (as assumed in RDU theory 

(Quiggin 1982) and prospect theory4 due to Tversky and Kahneman (1992)) is more 

pronounced for affect-rich outcomes. Support for assuming that System 1 has prospect 

theory preferences also comes from Barberis et al. (2013) who use prospect theory to 

model “System 1 thinking” for initial reactions to changes in the value of financial assets. 

Reflecting on prospect theory in his book, “Thinking, Fast, and Slow,” Kahneman (2011) 

remarks, “It’s clear now that there are three cognitive features at the heart of prospect 

theory…They would be seen as operating characteristics of System 1” (281-282).  

    Recent impossibility results (Mongin and Pivato, 2015; Zuber, 2016) have 

demonstrated that axiomatic methods cannot be used to aggregate non-expected utility 

preferences. For instance, Zuber (2016) considers a general class of non-expected utility 

preferences and concludes, “non-expected utility preferences cannot be aggregated 

 

4
Although this version is commonly called cumulative prospect theory, Peter Wakker has noted (personal 

communication, July 2, 2016) that it was Amos Tversky’s preference for this latter version to be called 

prospect theory. Following Tversky’s preference, we refer to the 1992 version as prospect theory. 
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consistently.” However, formally we can generalize (1) by allowing for the possibility 

that System 1 engages in non-linear probability weighting, as in RDU theory and 

prospect theory. While we employ RDU theory, the examples and behaviors at the focus 

of our analysis involve only positive outcomes, in which case PT coincides with RDU.   

    In our analysis, we allow for the more general case where System 1 has behavioral 

preferences (given by prospect theory or rank–dependent utility theory) and System 2 has 

normative risk preferences given by discounted expected utility theory. Formally, we 

consider the following generalization of (3):  
 

 

(4)           𝑉(𝑓) = (1 − 𝜃) (∑ ∑ 𝛿1
𝑡 ∙𝑗𝑡 𝜋(𝑓(𝑥𝑗)) ∙ 𝑢1(𝑥𝑗𝑡)) +  𝜃 ∑ ∑ 𝛿2

𝑡 ∙ 𝑓(𝑥𝑗) ∙ 𝑢2(𝑥𝑗𝑡)𝑗𝑡 . 

 

where System 1 distorts cumulative probabilities by the function 𝜋: [0,1] → [0,1], with 

𝜋(0) = 0 and 𝜋(1) = 1, that takes the standard rank-dependent form given below with 

weighting function 𝑤:  
 

                    𝜋(𝑓(𝑥𝑗)) = 𝑤(𝑓(𝑥𝑗) + ⋯ + 𝑓(𝑥1)) − 𝑤(𝑓(𝑥𝑗−1) + ⋯ + 𝑓(𝑥1)), 

for 𝑗 ∈ {1,2, … , 𝑛}, where consumption sequences are ranked according to the discounted 

utility for System 1 for each sequence such that ∑ 𝛿1
𝑡

𝑡 ∙ 𝑢1(𝑥𝑛𝑡) ≤ ⋯ ≤ ∑ 𝛿1
𝑡

𝑡 ∙ 𝑢1(𝑥1𝑡). 

  The rank-dependent form for 𝜋 avoids violations of stochastic dominance, and the 

typical inverse S-shaped form often assumed for w reflects the psychophysics of 

probability perception as it exhibits diminishing sensitivity from the endpoints of the 

probability scale. This approach for ranking consumption sequences essentially collapses 

each sequence into its discounted utility and then rank-dependent probability weighting is 

applied to these discounted utilities for System 1. This effectively reduces the outcomes 

to a single dimension to which RDU can be applied as it would normally be applied to 

lotteries with static outcomes. 

    We say a decision maker with preferences given by (4) has dual process utility (DPU) 

preferences. Proposition 1 brings us most of the way to (4), but does not account for non-

linear probability weighting. Many of our results also hold under specification (3). 

However, we will employ a version of (4) in our analysis to allow for the plausible case 

in which System 1 has prospect theory or RDU preferences. To simplify notation and to 
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illustrate the model with the delay-neutrality and risk-neutrality assumptions for System 

2, we will employ the specification in (5) in the analysis to follow, where we drop the 

subscripts on System 1’s discount factor and utility function: 

(5)            𝑉(𝑓) = (1 − 𝜃) (∑ ∑ 𝛿𝑡 ∙𝑗𝑡 𝜋(𝑓(𝑥𝑗)) ∙ 𝑢(𝑥𝑗𝑡)) +  𝜃 ∑ ∑ 𝑓(𝑥𝑗) ∙ 𝑥𝑗𝑡𝑗𝑡 . 

      All of our subsequent results are robust to the risk-neutrality and delay-neutrality 

assumptions for System 2 and continue to hold if 𝑢2 is any monotonically increasing 

concave function with less curvature than 𝑢1 and if System 2 is more patient than System 

1. Our subsequent analysis demonstrates that our results hold even if the representation of 

System 2 preferences is parameter-free as in (5). In a sense, there is a duality between the 

preferences of System 1 and System 2 as represented in (5): System 1 discounts the 

future, but System 2 does not. System 1 weights probabilities non-linearly, but System 2 

does not. System 1 has a non-linear utility function, but System 2 does not.   

   For decisions involving only risk, (5) reduces to a variant of the dual system model 

(DSM) of Mukherjee (2010). The DPU model in (5) modifies the DSM by employing a 

rank-dependent probability weighting function for System 1, and extends the model to 

encompass both risk and time preferences. Rank-dependent weighting for System 1 

eliminates two undesirable features of the DSM: (i) the affective system in the DSM 

weights all outcomes in a lottery’s support equally (which implies the affective system 

assigns the same value to a lottery offering a 0.01 probability of $1 million and $0 

otherwise as to a lottery offering a 0.99 probability of $1 million and $0 otherwise); and 

(ii) the DSM violates first order stochastic dominance. Property (i) seems questionable 

even for System 1 as it seems plausible that there is a more positive affective response for 

a 0.99 probability of winning $1 million. Property (ii) is often taken as an essential 

requirement of adequate normative and descriptive decision theories.  

As a final point regarding (5), we note that DPU can be formulated in either discrete or 

continuous time with discrete or continuous distributions. The value of a stochastic 

consumption plan, 𝑔, under DPU is given by (6) for the analog to (5) with continuous 

time and continuous distributions. In (6), let weighting function 𝑤 be smooth with 

derivative 𝑤′, and let 𝐺 denote the cumulative distribution function of 𝑔: 
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(6)          �̃�(𝑔) ≔ ∫ ( 𝜃 ∫ 𝑥𝑔(𝑥)𝑑𝑥
∞

−∞

+ (1 − 𝜃) ∫ 𝛿𝑡𝑢(𝑥)𝑤′(𝐺(𝑥))𝑔(𝑥)𝑑𝑥
∞

−∞

) 𝑑𝑡
∞

0

. 

 

3.2.   Interpretation of  𝜃 

The parameter  𝜃 may be interpreted as the degree to which an agent is ‘hard-wired’ to 

rely on System 2. Intuitive agents then have low values of 𝜃, whereas more reflective  

agents have higher values of 𝜃. Alternatively, the choice may be determined by one 

system or the other probabilistically. Then 𝜃 may be interpreted as the probability the 

agent relies on System 2 in a given decision. A third interpretation of (4) is that 1 − 𝜃 is a 

perturbation such that the ‘rational’ (System 2) model is perturbed in the direction of the 

behavioral (System 1) model. Our results in Propositions 3 – 7 suggest even arbitrarily 

small perturbations from the rational model can explain the interaction effects in Table 1.  

We will refer to 𝜃 as the decision maker’s “cognitive type,” with an agent’s cognitive 

type becoming progressively less based on feeling and intuition and more reliant on logic 

and calculation as 𝜃 increases. The cases 𝜃 = 0 and 𝜃 = 1 can be viewed as caricatures 

of an agent who relies only on feeling or only on calculation when making decisions.   

3.3.  Interpretation of 𝑉1 and 𝑉2 

There is a debate as to how one should interpret the outcomes of a decision under 

expected utility theory. This issue is discussed by Keeney and Nau (2011) who remark: 

“There is a subtlety concerning the interpretation of the consequences… Strictly 

speaking, a consequence is a personal experience of an individual decision maker… A 

different interpretation is that a consequence is “whatever happens” when a given real 

alternative is chosen and a given real event occurs, regardless of how it may be 

perceived.”(p. 10). One plausible interpretation of 𝑉1 and 𝑉2 is that 𝑉1 represents the 

subjective value of the outcome (the “personal experience of an individual decision 

maker”), and 𝑉2 represents the objective value of the outcome (“whatever happens when 

a given real alternative is chosen and a given real event occurs, regardless of how it may 

be perceived”). The function 𝑉 is then a weighted average of the subjective and objective 

values. This interpretation unifies the two perspectives noted by Keeney and Nau.  
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3.4.   Basic Properties of DPU 

Consider two stochastic consumption plans 𝑓 and 𝑔, where 𝑓(𝑥𝑗) and 𝑔(𝑥𝑗) are the 

probabilities which 𝑓 and 𝑔 assign to consumption sequence 𝑥𝑗 , respectively. Since a 

decision maker either receives one consumption sequence or another and so cannot 

interchange components of any arbitrary sequences, we first seek a means of objectively 

ranking different consumption sequences, analogous to how one would rank individual 

outcomes. We can then extend the standard definition of stochastic dominance from 

lotteries over outcomes to lotteries over consumption sequences. In particular, we say 

sequence 𝑥𝑗 dominates sequence 𝑥𝑘 if 𝑥𝑗𝑡 ≥ 𝑥𝑘𝑡 for all 𝑡 ∈ {0,1, … , 𝑇}, with a strict 

inequality for at least one 𝑡. We say that consumption sequences 𝑥1, … . , 𝑥𝑛 are 

monotonically ordered if 𝑥𝑗 dominates 𝑥𝑗−1 for all 𝑗 ∈ {2, … , 𝑛}. For any monotonically 

ordered consumption sequences 𝑥1, … . , 𝑥𝑛, we say 𝑓 (first-order) stochastically 

dominates 𝑔 if 𝐹(𝑥𝑗𝑡) ≤ 𝐺(𝑥𝑗𝑡) for all  𝑗 ∈ {1, … , 𝑛}, and all 𝑡 ∈ {0,1, … , 𝑇}, where 𝐹 and 

𝐺 are the cumulative distribution functions for 𝑓 and 𝑔, respectively. Note that this 

reduces to the standard definition of stochastic dominance in an atemporal setting.  

Proposition 2: Let ≿ have a DPU representation as in (4). Then for any fixed  𝜃 ∈ [0,1],   

≿ satisfies the following properties over stochastic consumption plans: 

(i)   Weak Order (≿ is transitive and complete) 

(ii)   Continuity  

(iii)      First order stochastic dominance.  

The proofs of properties (i) and (ii) in Proposition 2 are standard so we prove only (iii). 

Recall that 𝜋(∙) ranks sequences such that ∑ 𝛿1
𝑡

𝑡 ∙ 𝑢1(𝑥1𝑡) ≥ ⋯ ≥ ∑ 𝛿1
𝑡

𝑡 ∙ 𝑢1(𝑥𝑛𝑡). Note 

that if consumption sequences 𝑥1, … . , 𝑥𝑛 are monotonically ordered, then 𝑢1(𝑥1𝑡) ≥ ⋯ ≥

𝑢1(𝑥𝑛𝑡) for all 𝑡 ∈ {0,1, … , 𝑇}, and for any increasing function 𝑢1. Thus, 𝜋(∙) preserves 

the monotonic ordering of the sequences. If 𝑓 stochastically dominates 𝑔, then 

𝛿𝑡 ∑ 𝜋(𝑓(𝑥𝑗))𝑢(𝑥𝑗𝑡𝑗 ) > 𝛿𝑡 ∑ 𝜋(𝑔(𝑥𝑗))𝑢(𝑥𝑗𝑡𝑗 ), for each period 𝑡 ∈ {0,1, … , 𝑇}, which 

implies that 𝑉1(𝑓) > 𝑉1(𝑔). Since 𝑉2(𝑓) > 𝑉2(𝑔), the convex combination of 𝑉1 and 𝑉2 

ranks 𝑓 higher than 𝑔 for all 𝜃 ∈ [0,1].  
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4. EMPIRICAL VIOLATIONS OF DISCOUNTED UTILITY THEORY 
 

In this and the following sections, all propositions assume the decision maker has dual 

process utility preferences (given by (5)). Proofs of all Propositions in §4 and §5 are 

given in the appendix. Notably, each of these results (Propositions 3, 4, 5, 6, and 7) do 

not hold when  𝜃 = 0 or 𝜃 = 1, indicating the need for a dual process paradigm in our 

setup. First, we show that DPU resolves two of the most important empirical violations of 

discounted utility theory - present bias and the magnitude effect.  

4.1. Present Bias 

Systematic empirical violations of the stationarity axiom of discounted utility theory 

(Koopmans, 1960), such as present bias, have been well-documented in experiments 

(Frederick et al., 2002), and are thought to reveal time-inconsistent preferences (Laibson 

1997; O’Donoghue and Rabin 1999). Formal accounts of present bias and hyperbolic 

discounting have often directly assumed such behavior in the functional form of the 

agent’s preferences (e.g., Loewenstein and Prelec 1992; Laibson 1997). Surprisingly, 

present bias emerges as a general property of DPU without any explicit assumptions 

regarding hyperbolic discounting or diminishing sensitivity to delays. In fact, present bias 

is predicted by DPU even though each system has time consistent preferences.  

As before, let (𝑐, 𝑝, 𝑡) denote a stochastic consumption plan which has one non-zero 

outcome 𝑐, to be received with probability 𝑝 at time 𝑡. We have the following definition:   

Definition 1 (Present Bias):  Present bias holds if for 𝑦 ∈ (0, 𝑐),  and 𝑡, ∆> 0,  

(𝑦, 𝑝, 0) ~ (𝑐, 𝑝, ∆) ⟹  (𝑦, 𝑝, 𝑡) ≺ (𝑐, 𝑝, 𝑡 + ∆)  

Proposition 3: Under DPU, present bias holds if and only if 𝜃 ∈ (0,1). 

Proposition 3 implies that DPU explains the example of the common difference effect in 

Table 1 demonstrated by Keren and Roelofsma (1995). In particular, a decision maker 

indifferent between 100 Dutch guilders for sure now and 110 Dutch guilders for sure in 4 

weeks will strictly prefer 110 Dutch guilders for sure in 30 weeks over 100 Dutch 

guilders for sure in 26 weeks. It is also clear from the proof of Proposition 3 that present 

bias does not hold if  𝜃 = 0 or if 𝜃 = 1. Thus, under DPU, present bias arises due to the 

interaction between System 1 and System 2.  
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4.2.     The Magnitude Effect 

The DPU model also offers an explanation of the magnitude effect in intertemporal 

choice. The magnitude effect is the robust observation that behavior is more patient for 

larger rewards than for smaller rewards (Prelec and Loewenstein, 1991). For instance, the 

magnitude effect implies that a decision maker indifferent between $1 now and $2 in one 

year, will prefer $200 in one year over $100 now. Formally, we have: 

Definition 2 (Magnitude Effect): We say the magnitude effect holds if for 𝑦 ∈ (0, 𝑐),

𝑠 > 𝑡, and 𝑟 > 1, (𝑦, 𝑝, 𝑡) ~ (𝑐, 𝑝, 𝑠) ⟹  (𝑟𝑦, 𝑝, 𝑡) ≺ (𝑟𝑐, 𝑝, 𝑠) 

Proposition 4: For any concave power utility function 𝑢, the magnitude effect holds 

under DPU, if and only if 𝜃 ∈ (0,1). 

Note that a power utility function is sufficient, but not necessary for DPU to generate 

the magnitude effect. A power utility function is also the most widely used specification 

for prospect theory (Wakker and Zank, 2002) and among the most-widely used utility 

functions in analysis and applications of expected utility theory.   

5. INTERACTIONS BETWEEN RISK AND TIME PREFERENCE 

In this section, we apply DPU to systematic interactions between risk and time 

preferences from Table 1, identified in Baucells and Heukamp (2012).   

5.1.   Time Interacts with Risk Preference 

  We return now to the behaviors illustrated in Table 1. As displayed in the table, 

Baucells and Heukamp (2010) found that most respondents in their study preferred a 

guaranteed 9 Euros immediately over an 80% chance of 12 Euros immediately, but chose 

the possibility of receiving 12 Euros immediately when the probabilities of winning were 

scaled down by a factor of 10. This behavior is an instance of the Allais common ratio 

effect (Allais, 1953). Baucells and Heukamp further observed that when the receipt of 

payment is delayed 3 months, most respondents preferred an 80% chance of 12 Euros 

over a guaranteed 9 Euros. This finding that people are less risk-averse toward delayed 

lotteries was also observed by Abdellaoui et al. (2011). 
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       The common ratio effect example from Baucells and Heukamp (2010) holds under 

DPU if the probability weighting function is sub-proportional. Here we confirm that DPU 

explains the finding that ‘time interacts with risk preference’ which holds even if System 

1’s utility function is linear in probabilities. Let 𝔼[𝑓] denote the (undiscounted) expected 

value of stochastic consumption plan 𝑓. We consider the case where the riskier lottery 

has the higher expectation as was the case in Baucells and Heukamp (2010). 

       Definition 3: We say time interacts with risk preference if for 𝑦 ∈ (0, 𝑐), 𝛼 ∈ (0,1), 

and 𝑠 > 𝑡 , (𝑦, 𝑝, 𝑡) ~ (𝑐, 𝛼𝑝, 𝑡) ⟹ (𝑦, 𝑝, 𝑠) ≺ (𝑐, 𝛼𝑝, 𝑠). 

       Proposition 5: Let 𝔼[(𝑐, 𝛼𝑝, 𝑡)] > 𝔼[(𝑦, 𝑝, 𝑡)]. Then under DPU, time interacts with 

risk preference if and only if 𝜃 ∈ (0,1). 

Interestingly, DPU accounts for changes in risk preference over time without assuming 

time-varying risk-preference parameters.  

5.2.   Risk Interacts with Time Preference 

   As displayed in Table 1, Keren and Roelofsma (1995) found that most respondents in 

their study preferred a guaranteed 100 Dutch guilders immediately over a guaranteed 110 

Dutch guilders in 4 weeks, but chose the guaranteed 110 when the receipt of both 

payments was delayed an additional 26 weeks. This behavior is an example of present 

bias. Keren and Roelofsma further observed that when the chance of receiving each 

payment was reduced, most respondents preferred a 50% chance of 110 Dutch guilders in 

4 weeks over a 50% chance of 100 now. That is, making both options risky leads to more 

patient behavior, analogous to the effect of adding a constant delay to both options. 

    Definition 4: We say risk interacts with time preference if for 𝑦 ∈ (0, 𝑐), 𝑡, ∆> 0, 

and 𝑞 < 𝑝,  (𝑦, 𝑝, 𝑡) ~ (𝑐, 𝑝, 𝑡 + ∆) ⟹  (𝑦, 𝑞, 𝑡) ≺ (𝑐, 𝑞, 𝑡 + ∆).                                 

    Proposition 6: If 𝑤(𝑞)/𝑤(𝑝) < 𝑞/𝑝, then under DPU, risk interacts with time 

preference if and only if 𝜃 ∈ (0,1).  

In the example by Keren and Roelofsma in Table 1, the condition on the weighting 

function in Proposition 6 reduces to 𝑤(0.5) < 0.5, which implies 𝜋(0.5) < 0.5. This 

inequality is a general feature of observed probability weighting functions (Starmer, 

2000) and represents a form of pessimism. Indeed this condition is implied by the 
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assumption of pessimism in the rank-dependent utility framework (Chateauneuf et al., 

2005). This condition holds for all convex probability weighting functions as well as for 

the familiar inverse-S-shaped weighting functions (such as those parameterized by 

Tversky and Kahneman (1992), Prelec (1998) and Gonzalez and Wu (1999)). The early 

weighting functions in the literature were selected primarily on their ability to fit 

experimental data and generate an inverse-S-shape. A recent weighting function by 

Blavatskyy (2016) provides a more intuitive basis for such weighting functions. 

Blavatskyy (2016) formally demonstrates that for the inverse-S-shaped weighting 

function he proposes, the condition 𝜋(0.5) < 0.5 implies “an aversion to the dispersion 

of outcomes and an attraction to positively skewed distributions.” (p. 103). The condition 

𝜋(0.5) < 0.5 will reappear in our analysis and is the only substantive property of the 

weighting function that is necessary for DPU to explain the experimental observations 

studied here. The more general condition 𝑤(𝑞)/𝑤(𝑝) < 𝑞/𝑝 is only necessary for the 

generalization of the behavior observed by Keren and Roelofsma to all 𝑞 < 𝑝 as 

formalized in Definition 4. This latter condition is satisfied, for instance, by any convex 

power weighting function.  

5.3.    Payoffs Interact with Risk and Time Preferences 
 

    Baucells et al. (2009) find that 81% of respondents preferred €100 for sure in one 

month to €100 with 90% immediately, but 57% preferred €5, with 90% immediately over 

€5 for sure, in one month. Baucells and Heukamp (2012) refer to this behavior as 

subendurance and they define it more generally as follows: 

   Definition 5: Subendurance holds if for 𝑦 ∈ (0, 𝑐), 𝑡, ∆> 0 and 𝜆 ∈ (0,1),          

(𝑐, 𝑝, 𝑡 + ∆) ~ (𝑐, 𝜆𝑝, 𝑡) ⟹  (𝑦, 𝑝, 𝑡 + ∆) ≺ (𝑦, 𝜆𝑝, 𝑡). 

   Proposition 7: For any concave power utility function 𝑢, subendurance holds5 under 

DPU, if and only if 𝜃 ∈ (0,1). 

   Note that the interaction effects discussed in this section (effect of time on risk 

preference, effect of risk on time preference, subendurance) challenge a larger class of 

 

5
 The proof of Proposition 7 shows that subendurance holds more generally if 𝑢(𝑐)/𝑢(𝑦) < 𝑐/𝑦 for 𝑦 < 𝑐. 
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time preferences than discounted utility theory. Indeed, they cannot be explained by any 

model of discounting in which the evaluation of payoffs, probabilities, or delays is 

multiplicatively separable. Yet the major models in the literature typically assume that 

time preference is separable into a discount function and a utility function. The class of 

such separable time preferences includes traditional discounted utility theory as well as 

the model of hyperbolic discounting by Loewenstein and Prelec (1992), the model of 

quasi-hyperbolic discounting studied in Laibson (1997), and more recent models 

involving both risk and delay such as those by Halevy (2008) and Epper and Fehr-Duda 

(2015). As, Baucells and Heukamp (2012) note, when evaluating a stochastic 

consumption plan (𝑥, 𝑝, 𝑡), “One may be tempted to propose 𝑉(𝑥, 𝑝, 𝑡) = 𝑤(𝑝)𝑓(𝑡)𝑣(𝑥). 

Unfortunately, this form is not appropriate because by Patterns 1 – 3 and 4 – 6, 

probability and time cannot be separated. One may then propose the more general form 

𝑉(𝑥, 𝑝, 𝑡) = 𝑔(𝑝, 𝑡)𝑣(𝑥), but this fails to accommodate subendurance.” 6 Moreover, 

Ericson and Noor (2015) reject the common assumption that discount functions and 

utility functions are separable for nearly 70% of their participants. Given the necessity of 

a seemingly complex non-separable functional form for evaluating (𝑥, 𝑝, 𝑡) in order to 

explain the observations in Table 1, the DPU functional form in (5) is surprisingly 

simple. Under an even simpler special case of (5) in which System 1 has expected utility 

preferences, Propositions 2, 3, 4, 5, and 7 continue to hold. Note also that  𝜃 ∈ (0,1) is 

necessary to explain present bias, the magnitude effect, and interaction effects between 

time and risk preferences in Table 1. We show in §9 that 𝜃 also has implications for 

correlations between risk preference, time preference, and cognitive ability.  

6. RISK PREFERENCE AND INTERTEMPORAL SUBSTITUTION  

The discounted expected utility model uses the same utility function in both risky and 

temporal contexts. However, risk preference and inter-temporal substitution are often 

observed to be distinct (e.g., Miao and Zhong, 2015). Consider the following stochastic 

 

6 In their quotation, Pattern 1 – 3 refers to the observation that delay reduces risk aversion and Pattern 4-6 

refers to the finding that risk reduces impatience.  
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consumption plan, 𝑓, also considered by Miao and Zhong (2015), subject to (1 + 𝑟)𝑐1 +

𝑐2 = 100 and (1 + 𝑟)𝑐1
′ + 𝑐2

′ = 100, where 𝑟 ∈ (0,1) is an interest rate. 

  𝑡1 𝑡2 

𝑝  𝑐1 𝑐2 

1 − 𝑝  𝑐1
′  𝑐2

′  

 

 

The present equivalents PE(𝑐1, 𝑐2) and PE′(𝑐1
′ , 𝑐2

′ ) of consumption (𝑐1, 𝑐2) and (𝑐1
′ , 𝑐2

′ ), 

respectively, are determined such that PE/PE′ at 𝑡1 is indifferent under V to receiving 

(𝑐1, 𝑐2)/(𝑐1
′ , 𝑐2

′ ) on the time horizon. They are defined as 

𝑃𝐸(𝑐1, 𝑐2): = 𝑉−1( (1 − 𝜃)(𝑢(𝑐1) + 𝛿𝑢(𝑐2)) + 𝜃(𝑐1 + 𝑐2)). 

     𝑃𝐸′(𝑐1
′ , 𝑐2

′ ): = 𝑉−1((1 − 𝜃)(𝑢(𝑐′1) + 𝛿𝑢(𝑐′2)) + 𝜃(𝑐′1 + 𝑐′2)). 

Employing rank-dependent probability weighting to aggregate the certainty equivalent as 

in the Chew-Epstein-Halevy approach (see Miao and Zhong, 2015), the certainty 

equivalent (CE) under DPU can be expressed as 

CE(𝑓) = 𝑉−1 (𝑤(𝑝)𝑉(𝑃𝐸(𝑐1, 𝑐2)) + 𝑤(1 − 𝑝)𝑉(𝑃𝐸(𝑐1
′ , 𝑐2

′ ))) 𝑖𝑓 𝑃𝐸 ≥ 𝑃𝐸′ 

 CE(𝑓) = 𝑉−1 (𝑤(1 − 𝑝)𝑉(𝑃𝐸(𝑐1, 𝑐2)) + 𝑤(𝑝)𝑉(𝑃𝐸(𝑐1
′ , 𝑐2

′ ))) 𝑖𝑓 𝑃𝐸 ≤ 𝑃𝐸′. 

This approach permits a separation between risk attitude (which is partially determined 

by 𝑤) and inter-temporal substitution (which does not depend on 𝑤). 

7. PREFERENCE FOR DIVERSIFICATION ACROSS TIME 

Miao and Zhong (2015) provide a variant of the following example in which they 

observe a preference for diversification across time:  
 

  Option A 𝑡 = 0 𝑡 = 1     Option B 𝑡 = 0 𝑡 = 1 

       𝑝 = 0.5 100 0         𝑝 = 0.5 100 100 

1 − 𝑝 = 0.5 0 100  1 − 𝑝 = 0.5 0 0 

  

 

We can think of the consumption sequences as being determined by the toss of a fair 

coin. Then Option A offers $100 in period 0 (and nothing in period 1) if the coin lands 

heads, and it offers $100 in period 1 (and nothing in period 0) if the coin lands tails. In 
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contrast, Option B offers $100 in period 0 and $100 in period 1 if the coin lands heads, 

and it pays $0 in both periods if the coin lands tails. Miao and Zhong (2015) propose and 

find experimental support for the hypothesis that in such choices, a decision maker would 

prefer Option A in which risks are diversified across time over Option B in which they 

are not. Such behavior has also been observed by Andersen et al. (2011) who refer to this 

preference pattern as ‘correlation aversion’ or ‘intertemporal risk aversion.’ 

Correlation aversion is simply explained by DPU. Note that, for Option A, System 1 

will rank consumption sequence 𝑥 ≔ (100, 𝑡 = 0; 0, 𝑡 = 1) higher than the sequence 

𝑦 ≔ (0, 𝑡 = 0; 100, 𝑡 = 1) in order of preference due to impatience (since 𝛿 < 1).  Thus, 

DPU assigns weight 𝜋(0.5) to sequence 𝑥 and weight (1 − 𝜋(0.5)) to sequence 𝑦. 

Weights are assigned analogously for Option B.  

In most experimental studies of rank-dependent probability weighting functions 

including Tversky and Kahneman (1992), Wu and Gonzalez (1996), Gonzalez and Wu 

(1999), Abdellaoui (2000), and Bleichrodt and Pinto (2000), it has been found that for a 

binary lottery (𝑥, 𝑝; 𝑦, 1 − 𝑝), where 𝑥 > 𝑦, when 𝑝 = 0.5, the rank-dependent weight is 

given by 𝜋(0.5) < 0.5 (see also Starmer (2000) and Wakker (2010)). This condition is 

also a general property resulting from Prelec’s (1998) axiomatic characterization of the 

probability weighting function. Under DPU, with 𝑢(0) = 0, the values of the options are: 

𝑉(𝑂𝑝𝑡𝑖𝑜𝑛 𝐴) = (1 − 𝜃) ((𝜋(0.5))𝑢(100) + (1 − 𝜋(0.5))𝛿𝑢(100)) + 𝜃(100) 

𝑉(𝑂𝑝𝑡𝑖𝑜𝑛 𝐵) = (1 − 𝜃) ((𝜋(0.5))(𝑢(100) + 𝛿𝑢(100))) + 𝜃(100) 

Since 𝛿 ∈ (0,1), 𝑢(100) > 𝛿𝑢(100).  Hence, A is preferred to B if  𝜋(0.5) < 0.5 which 

is a robust finding. Thus, DPU predicts a preference for diversification across time.     

8. AVERSION TO TIMING RISK 

Onay et al. (2007) and DeJarnette et al. (2015) experimentally investigate preferences 

over lotteries that pay a fixed prize at an uncertain date. For instance, in choices such as 

receiving $100 in 10 weeks for sure (Option A), or receiving $100 in either 5 or 15 weeks 

with equal probability (Option B), they find that people are generally risk-averse toward 
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timing risk, preferring Option A. However, DEU and the standard models of hyperbolic 

and quasi-hyperbolic discounting imply people will be risk-seeking toward timing risk.  

 As in DeJarnette et al., consider a choice between receiving $100 at time 𝑡 

(Option A), or $100 at either time 𝑡 − 𝑟 or time 𝑡 + 𝑟 with equal probability (Option B).   

Under DPU, the values of Options A and B are given by: 

𝑉(𝐴) = (1 − 𝜃)𝛿𝑡𝑢(100) + 𝜃(100).  

𝑉(𝐵) = (1 − 𝜃) (𝛿𝑡−𝑟𝜋(0.5)𝑢(100) + 𝛿𝑡+𝑟(1 − 𝜋(0.5))𝑢(100)) + 𝜃(100). 

For all 𝜃 ∈ [0,1), Option A is preferred to Option B if the following inequality holds: 

(7)        1 > [𝛿−𝑟𝜋(0.5) + 𝛿𝑟(1 − 𝜋(0.5))]. 

The above inequality can hold given 𝜋(0.5) < 0.5, generating a preference for receiving 

payment in 10 weeks. The condition 𝜋(0.5) < 0.5 is a robust finding, noted in §5.2.  

9. RISK PREFERENCE, TIME PREFERENCE, AND COGNITIVE ABILITY 

The DPU model also captures observed relationships between risk preference, time 

preference, and cognitive ability. An agent’s ‘cognitive type’, as parameterized by 𝜃 can 

be interpreted as a measure of reliance on System 2 processing which may be correlated 

with cognitive ability. DPU accommodates a continuum of types - any 𝜃 ∈ [0,1]. Note 

that the DPU specifications in (5) predicts the following properties of 𝜃: 

Proposition 8:  

(i) The decision maker approaches risk-neutrality as 𝜃 increases. 

(ii)  The decision maker becomes more patient as 𝜃 increases. 

(iii) Expected value maximization is negatively correlated with impatience. 

To the extent that 𝜃 indexes an agent’s cognitive ability, DPU predicts the correlations 

between risk neutrality and cognitive ability observed by Frederick (2005), Burks et al. 

(2009), Oechssler et al. (2009), Cokely and Kelley (2009), Dohmen et al. (2010), and 

Benjamin et al. (2013). Burks et al. (2009) report “those individuals making choices just 

shy of risk-neutrality have significantly higher CS [cognitive skills] than those making 

more either risk-averse or more risk-seeking choices” (p. 7747). However, Andersson et 

al. (2016) finds no correlation between risk preferences and cognitive abilities.  
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     The DPU model also predicts the correlations between time preference and cognitive 

ability and between risk preference and time preference that have been found in a variety 

of studies (e.g., Frederick (2005), Burks et al. (2009), Dohmen et al. (2010), and 

Benjamin et al. (2013)). These studies observed that agents with greater cognitive ability 

are also typically more patient than those with lower cognitive ability, and that the 

tendency to maximize expected value is negatively correlated with impatience.  

    The notion that System 2 is closer to risk-neutrality and is more patient than System 1 

is also supported by studies which employ other means of manipulating System 1 versus 

System 2 processing. Placing people under a high working memory load for instance, is 

one approach to inducing greater reliance on System 1 processing. Studies have found 

that increased cognitive load (Deck and Jahedi, 2015; Holger et al., 2016) and time 

pressure (Kirchler et al., 2015) both increase deviations from risk-neutrality such as 

increased small-stakes risk aversion. Cognitive load has also been found to produce less 

patient and more impulsive behavior (Shiv and Fedorikhin, 1999). Leigh (1986), and 

Anderhub et al. (2001) also find risk aversion is positively correlated with impatience.  

   Outside the laboratory, DPU is consistent with the finding that higher cognitive ability 

is associated with stock market participation, even when controlling for wealth, income, 

age, and other demographic information (Cole and Shastry, 2008; Grinblatt et al., 2011).  

10. HETEROGENEITY IN RISK TAKING 

Bruhin et al. (2010) characterize risk taking behavior by estimating a finite mixture 

model for three experimental data sets. They report “Roughly 80% of the subjects exhibit 

significant deviations from linear probability weighting of varying strength,” and that 

“Twenty percent of the subjects weight probabilities near linearly and behave essentially 

as expected value maximizers.” (p. 1375). Similar heterogeneity was observed by 

Harrison and Rutstrom (2009) who also found the modal EU type to be risk-neutral. 

Since DPU reduces to risk-neutrality when 𝜃 = 1, and it reduces to RDU when 𝜃 = 0, it 

can capture the observed distribution of risk preferences. Rather than interpreting the 

mixture model as proportions of a population who are either RDU or EU types, DPU 

offers a unified perspective in which agents are a mixture of both RDU and EU types.   
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11.   CHANGES IN PROCESS ACROSS CONTEXTS 

All results in the previous sections hold even if 𝜃 is held fixed. Here we consider 

additional implications of DPU if  𝜃 changes systematically across contexts such that 

decisions requiring more contemplation or calculation induce higher values of 𝜃 and 

‘easy’ or intuitive, or tempting decisions induce lower values of  𝜃. That is, we consider 

the possibility that systematic changes in process could produce systematic changes in 

preference. Two cases in which 𝜃 may change systematically with the decision are:  

(i) 𝜃 may decrease for affect-rich outcomes, as the agent relies more on feeling. 

(ii) 𝜃 may increase for pricing tasks, as the agent relies more on calculation. 

11.1.   Temptation 

In the DPU model, probability weighting emerges from a feeling-based System 1, 

which governs intuitive and affective processes7. Under the plausible assumption that 𝜃 

decreases as outcomes become more affectively appealing, DPU predicts the following: 

Prediction 1: Nonlinear probability weighting is more pronounced for affect-rich 

outcomes (e.g., candy) than for affect-poor outcomes (e.g., money). 

Prediction 1 follows since greater weight is placed on the probability weighting 

function as 𝜃 decreases. This prediction is supported by the experimental results of 

Rottenstreich and Hsee (2001).  

Prediction 2: Affect-rich outcomes are discounted more than affect-poor outcomes.  

      Prediction 2 holds under DPU since decreasing 𝜃 for affect-rich outcomes places 

greater weight on the affective discount factor, and correspondingly reduces the weight 

on the more patient System 2 value function. This prediction is also supported by the 

results of Tsukayama and Duckworth (2010) who observed greater discounting for 

‘tempting’ rewards (candy, chips, beer) than for rewards that were not seen as tempting. 

Prediction 2 is also consistent with the evidence that increased cognitive load makes 

temptation harder to resist (Shiv and Fedorikhin, 1999).   

 

7 The diminishing sensitivity property of perception is another determinant of the form of probability 

weighting functions. See Rottenstreich and Hsee (2001), section 7.1 in Wakker (2010), and references 

therein, for a discussion of perceptual, emotional, and cognitive influences on probability weighting. 
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11.2    Preference Reversals under Risk and over Time 

All results in the previous sections hold even if 𝜃 is fixed. Additional implications 

arise if 𝜃 may change systematically across decision tasks. For instance, it appears 

plausible that tasks which require calculation (such as pricing tasks) might elicit more 

calculation-based or analytical processing. Such tasks may thus increase 𝜃, thereby 

increasing the weight on the System 2 value function. This hypothesis explains 

empirically observed preference reversals both under risk (as observed by Lichtenstein 

and Slovic (1971), and Tversky et al. (1990)) and over time (as observed by Tversky et 

al. (1990)). In preference reversals under risk, a decision maker chooses between a high 

probability, low payoff bet (a P-bet) and a low probability, high payoff bet (a $-bet) 

which usually has a higher expected value8. The decision maker subsequently prices each 

lottery in isolation. The robust finding observed by Lichtenstein and Slovic (1971), 

Grether and Plott (1979), Tversky et al. (1990) and others is that the P-bet is preferred in 

a choice task, but the $-bet is assigned a higher minimum selling price than the P-bet.  

Under the assumption that pricing tasks induce more calculations than choice tasks 

(or more concretely, that the weight on 𝑉2 is higher in pricing than in choice tasks), DPU 

predicts that preferences will shift toward expected value maximization in pricing tasks. 

Thus, a DPU agent who is indifferent between the P-bet and the $-bet in a choice task, 

will assign a higher value to the $-bet in a pricing task, as observed.  

Note that under the same assumption that calculation-based processing is higher in 

pricing tasks than choice tasks, DPU makes the novel prediction that pricing tasks will 

induce more patient behavior. This prediction is supported by the time preference 

reversals observed by Tversky et al. (1990) who found that a smaller sooner payoff was 

chosen 74 percent of the time, but it was priced higher than the larger delayed payment 

only 25 percent of the time. Under DPU, if there is a higher weight on 𝑉2 in pricing than 

choice, a decision maker who is indifferent between the smaller sooner and larger 

delayed payoffs in the choice task will assign a higher price to the larger delayed payoff. 

 

8
 In the study by Tversky et al. (1990), for 16 of the 18 lottery pairs, the $-bet had a higher expected value.  
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12. SUMMARY OF RESULTS 

A summary of behaviors explained by DPU is provided in Table 2. For the behaviors 

from present bias through subendurance, Table 2 displays the necessary restrictions on 

(3) to generate the effects. For the remaining behaviors, Table 2 displays the necessary 

restrictions on (4) to generate the effects. As noted in §5.2, the condition 𝑤(0.5) < 0.5 is 

a standard finding in the empirical literature which holds for typical estimates of the 

characteristic inverse-S shape as well as for any convex weighting function. Even with 

these relatively standard and innocuous restrictions, the model predicts a diverse set of 

behaviors in the direction observed in experimental studies. In addition, all properties 

hold while preserving transitivity, continuity, and stochastic dominance. 

 

Table 2. Necessary Conditions for DPU to Explain Observed Behaviors  
 

 

 

Property                                                                                               Parameter Values*        

 

 

Present bias (Laibson, 1997) 

 

 

𝜃 ∈ (0,1), 𝛿1 < 𝛿2     
 

 

 

Delay reduces risk aversion (Baucells and Heukamp, 2010) 

 

 

𝜃 ∈ (0,1), 𝛿1 < 𝛿2   
 
 

 

 

Cognitive type and time preference (Burks et al., 2009) 
 
 

 

 

 𝛿1 < 𝛿2   

 

 

Cognitive type and risk preference (Burks et al., 2009) 
 
 

 

 

 𝑢1 more concave than 𝑢2  

 

 

Patience correlates with risk neutrality (Burks et al., 2009) 
 
 

 

 

 𝑢1 more concave than 𝑢2, 𝛿1 < 𝛿2   
  

 

 

Magnitude effect (Loewenstein & Prelec, 1991)   

 

 

𝜃 ∈ (0,1), 𝑢1 more concave than 𝑢2 
 
 

 

  

Subendurance (Baucells & Heukamp, 2012) 
 

 

 

𝜃 ∈ (0,1), 𝑢1 more concave than 𝑢2 
 
 

 

 

Risk reduces impatience (Keren & Roelofsma, 1995) 
 

 

 

𝜃 ∈ (0,1), 𝑤(0.5) < 0.5 
 
 

 

 

Diversifying risks across time (Miao & Zhong, 2015) 
 

 

 

𝜃 ∈ [0,1), 𝑤(0.5) < 0.5 
 
 

 

 

Aversion to timing risk (DeJarnette et al., 2015) 

 

 

𝜃 ∈ [0,1), 𝑤(0.5) < 0.5 
 
 

 

 

Separation of risk and time preference (Epstein & Zin, 1989) 
 

 

 

𝜃 ∈ [0,1), 𝑤(𝑝) ≠ 𝑝 
 
 

 
 

* The parameter 𝜃 is restricted such that 𝜃 ∈ [0,1] unless otherwise specified.   
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13. PARAMETER ELICITATION 

Here we briefly note a strategy for eliciting the parameters of the DPU specification in 

(5) directly from qualitative preference data: First, consider lotteries with no delays and 

with the same expected values. In this case, (5) reduces to RDU and standard techniques 

for eliciting the RDU parameters (functions 𝑢 and 𝑤) can be used. For instance, one may 

use the two-step parameter-free elicitation technique proposed by Abdellaoui (2000). 

After eliciting the RDU functions, present subjects with simple prospects of the form 

(𝑥, 𝑝, 𝑡) (with 𝑥 > 0 to be received with probability 𝑝 at time 𝑡, and 0 otherwise) that 

have different delays but with the same undiscounted expected value to identify 𝛿. In 

particular, holding the expectation fixed, the value of prospect (𝑥, 𝑝, 𝑡) under (5) reduces 

to 𝛿𝑡𝑤(𝑝)𝑢(𝑥). Given an immediate prospect, (𝑥, 𝑝, 0), and a prospect delayed one time 

period (𝑦, 𝑞, 1), one can vary 𝑥, 𝑝, 𝑦, and 𝑞 (subject to the constraint 𝑥𝑝 = 𝑦𝑞) using 

survey data to elicit an indifference point such that (𝑥, 𝑝, 0) ~ (𝑦, 𝑞, 1). Since the 𝑢 and 𝑤 

functions have already been elicited, we obtain 𝛿 = 𝑤(𝑝)𝑢(𝑥)/𝑤(𝑞)𝑢(𝑦). To elicit 𝜃, 

compare simple prospects with different expected values. Under this case, the value of a 

prospect (𝑥, 𝑝, 𝑡) under (5) is given by (1 − 𝜃)𝛿𝑡𝑤(𝑝)𝑢(𝑥) + 𝜃𝑝𝑥. Given an indifference 

between two prospects (𝑥, 𝑝, 𝑡) ~ (𝑦, 𝑞, 𝑟) with 𝑥𝑝 ≠ 𝑦𝑞, there is a unique value of 𝜃 

such that (1 − 𝜃)𝛿𝑡𝑤(𝑝)𝑢(𝑥) + 𝜃𝑝𝑥 = (1 − 𝜃)𝛿𝑟𝑤(𝑞)𝑢(𝑦) + 𝜃𝑞𝑦. In particular: 

 

𝜃 =
[𝛿𝑡𝑤(𝑝)𝑢(𝑥) − 𝛿𝑟𝑤(𝑞)𝑢(𝑦)]

[𝛿𝑡𝑤(𝑝)𝑢(𝑥) − 𝛿𝑟𝑤(𝑞)𝑢(𝑦) + 𝑞𝑦 − 𝑝𝑥]
. 

 

This completes the approach for eliciting the DPU parameters from qualitative 

preference data. Note that a novel, testable prediction of DPU is that one should elicit the 

same value of  𝜃 from risk preference data as from time preference data.  

A subtlety in the approach described here is that the System 1 and System 2 utility 

functions are each unique up to a positive affine transformation, although they are 

uniquely defined upon normalization to a 0-1 scale. Thus, both System 1 and System 2 

utilities can be normalized to a 0-1 scale to facilitate comparison between System 1 and 

System 2 preferences.  
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14. RELATED LITERATURE 

A large array of models for decisions under risk and decisions over time has been 

developed in the past five decades, and it is not feasible to review them all here. Since 

models developed for only decisions under risk or for only decisions over time cannot 

account for the majority of our results, we focus on models which consider both risk and 

time. The standard discounted expected utility model motivated our analysis and it 

provides a natural benchmark with which to compare our predictions. Table 2 may be 

viewed as a summary of properties of DPU that are not shared by DEU. Prelec and 

Loewenstein (1991) noted parallels between anomalies for decisions under risk and 

decisions over time, and Loewenstein and Prelec (1992) provided a general model which 

accounts for observed violations of DEU such as hyperbolic discounting and the Allais 

paradox. Rubinstein (1988, 2003) and Leland (1994, 2002) provided models of similarity 

judgments which explain many of the key anomalies for decisions under risk and over 

time such as the Allais paradox and hyperbolic discounting as arising from the same 

cognitive process. However, all of these approaches treat risk and time independently, 

and thus cannot explain interaction effects between risk and time preferences, nor can 

they explain correlations between risk preference, time preference and cognitive ability.  

Classic approaches to studying interactions between risk and time preferences can be 

found in Kreps and Porteus (1978), Epstein and Zin (1989), and Chew and Epstein 

(1990). Kreps and Porteus consider preferences for the timing of the resolution of 

uncertainty, an issue not studied here. Epstein and Zin (1989) and Chew and Epstein 

(1990) provide models which can disentangle risk preferences from the degree of 

intertemporal substitution. Traeger (2013) introduces a model of intertemporal risk 

aversion in which a rational agent does not discount the future for reasons of impatience.  

Recent models by Halevy (2008), Walther (2010) and Epper and Fehr-Duda (2015) 

focus on implications of rank-dependent utility theory when extended to an intertemporal 

framework. Halevy (2008) and Walther (2010) focus primarily on relationships between 

hyperbolic discounting over time and non-linear probability weighting under risk. Halevy 

notes that his model is also consistent with the experimental evidence of Keren and 
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Roelofsma (1995). The observations of Keren and Roelofsma and Baucells and Heukamp 

(2010) are both explained by the probability-time tradeoff model of Baucells and 

Heukamp (2012). However, this model applies only to a restrictive class of prospects 

offering a single non-zero outcome to be received with probability 𝑝 at time 𝑡. The 

probability weighting model of Epper and Fehr-Duda (2015) extends the approach of 

Halevy (2008) by further exploring implications of RDU for decisions over time. Epper 

and Fehr-Duda assume that delayed prospects are transformed to include a zero outcome, 

reflecting the possibility that a guaranteed future payment will not materialize. They 

assume the likelihood of this zero outcome is determined by a constant per-period 

stopping probability which is transformed by a rank-dependent weighting function 

exhibiting subproportionality9. Epper and Fehr-Duda demonstrate that their model 

explains the interaction effects observed by Keren and Roelofsma (1995) and Baucells 

and Heukamp (2010) as well as preferences for the timing of the resolution of 

uncertainty. However, the model in Epper and Fehr-Duda (2015) does not account for 

subendurance or the correlations between risk and time preferences and cognitive ability.  

Aside from extensions of RDU to intertemporal choice, one other major literature 

stream which has grown rapidly in recent years is the class of dual-selves models 

motivated to explain temptation and self-control as well as more general choices under 

risk and over time. In these models, the two families of processes have been characterized 

as controlled and automatic (Benhabib and Bisin, 2005), long-run and short-run 

(Fudenberg and Levine, 2006; 2011, 2012), hot and cold (Bernheim and Rangel, 2005), 

affective and deliberative (Mukherjee, 2010; Loewenstein et al., 2015), and rational and 

emotional (Bracha and Brown, 2012). In addition, Gul and Pesendorfer, (2001; 2004) 

model agents who have temptation preferences and commitment preferences. 

A leading example in the class of dual-selves models is that of Fudenberg and Levine 

(2006, 2011, 2012) and Fudenberg et al. (2014) which can explain the Allais paradox as 

well as the interactions between risk and time preferences identified by Keren and 

 

9 The model by Epper and Fehr-Duda (2015) is specified only for the case of two non-zero outcomes, 

although they note that their approach can be easily generalized to 𝑛 > 2 outcomes, provided that survival 

risk does not change the rank-order of the prospects. 



 

30 

 

Roelofsma and Baucells and Heukamp. However, Fudenberg et al. (2014) comment 

“Unfortunately the model of Fudenberg and Levine (2011) is fairly complex, which may 

obscure some of the key insights and make it difficult for others to apply the model.” (p. 

56). In addition, a major drawback of the model from both a normative and a descriptive 

viewpoint is that it violates transitivity (Fudenberg et al., 2014), even though transitivity 

is rarely violated in experiments (Baillon et al., 2014; Regenwetter et al., 2011).    

Aside from the work of Fudenberg and Levine, most dual-selves models in 

economics are restricted to either risk or time. As noted earlier, Mukherjee’s (2010) 

model is restricted to decisions under risk and can violate stochastic dominance. McClure 

et al. (2007) employ a two-system model of time preference with two discount factors but 

with a single utility function. Their approach can explain present bias, but not the 

magnitude effect or any of the interaction effects involving risk and time discussed here. 

The dual selves model of Bracha and Brown (2012) applies to risk and uncertainty. The 

models of Gul and Pesendorfer (2001; 2004), Benhabib and Bisin (2005), and Bernheim 

and Rangel (2005) were developed for decisions over time. The model of Loewenstein et 

al. (2015) is applied separately to risk and time. 

      Although not from a dual system perspective, mixture models of prospect theory and 

expected utility have been applied to experimental data at the aggregate level to identify 

subjects as either ‘prospect theory types’ or ‘expected utility types’ (Harrison and 

Rutstrom 2009; Bruhin et al., 2010). These empirical models account for a large degree 

of heterogeneity in behavior. The DPU model offers an alternative interpretation in which 

the decision maker is a mixture of prospect theory types and expected utility types.    

     Our results also relate to the finding in the social choice literature that present bias 

emerges from aggregating individual discount factors (Jackson and Yariv, 2015) in a 

setting of certainty where all members of society have identical utility functions. We 

show a similar phenomenon in a dual system model of individual choice. Conversely, our 

results have implications for the simultaneous aggregation of risk and time preferences in 

group decision making – that such preferences will display the magnitude effect and 

some systematic interaction effects between risk, time, and money from Table 1. 
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15. CONCLUSION 

Economic models of choice are great simplifications of the complexity of actual 

decisions. For instance, everything that affects a person’s time preferences is summarized 

in a single parameter, the discount factor, and everything that affects a decision maker's 

preferences over lotteries or consumption plans is summarized in her utility function.   

In the present paper, an additional parameter has been given to the decision maker: 

Everything that affects a person's thinking style (e.g. whether the decision maker relies 

more on feeling and intuition or reason and calculation) is summarized by the parameter 

𝜃 representing one’s ‘cognitive type’, which is derived from our assumptions in 

Proposition 1. We saw that any 𝜃 ∈ (0,1) explains (i) present bias and the magnitude 

effect, (ii) interaction effects such as how risk affects time preference and how time 

affects risk preference, and (iii) observed correlations between risk preference, time 

preference, and cognitive ability. These observations hold under general conditions in 

Propositions 3 – 8 (for any 𝜃 ∈ (0,1), 𝛿 ∈ (0,1), and without relying on a form for 𝑤), 

and they do not hold in the special cases of rank dependent utility or expected utility 

preferences (i.e., where 𝜃 = 0 or 𝜃 = 1), motivating the need for a more general theory. 

The DPU model also makes strong predictions as it rules out the opposite preference 

patterns to those in Propositions 3 – 8. In addition, DPU generates a separation between 

risk preference and time preference, a preference for diversification across time, and risk 

aversion toward timing risk. Moreover, these observations are explained under DPU, 

while preserving transitivity, continuity, and first order stochastic dominance.    

In addition to providing a unified approach to modeling risk preference and time 

preference, DPU also provides a unification of three broad classes of decision models – 

models based on a rational economic agent (corresponding to 𝜃 = 1), models based on 

prospect theory or rank-dependent utility theory (corresponding to 𝜃 = 0), and dual 

system or dual selves models of decision making (corresponding to any 𝜃 ∈ (0,1)).   
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APPENDIX: PROOFS OF PROPOSITIONS 

 

In the following proofs for Propositions 3 – 7, the agent is assumed to have DPU 

preferences given by (5). 

 

Proposition 3: Present bias holds if and only if 𝜃 ∈ (0,1).   

Proof:  (Sufficiency) We need to show that (8) implies (9): 

(8)     𝑉(𝑦, 𝑝, 0) = (1 − 𝜃)𝑤(𝑝)𝑢(𝑦) + 𝜃𝑝𝑦 = 𝑉(𝑐, 𝑝, ∆) = (1 − 𝜃)𝛿∆𝑤(𝑝)𝑢(𝑐) + 𝜃𝑝𝑐             

(9)                       (1 − 𝜃)𝛿𝑡𝑤(𝑝)𝑢(𝑦) + 𝜃𝑝𝑦 < (1 − 𝜃)𝛿𝑡+∆𝑤(𝑝)𝑢(𝑐) + 𝜃𝑝𝑐    

Note that since 𝑐 > 𝑦, equation (8) implies that 𝑤(𝑝)𝑢(𝑦) > 𝛿∆𝑤(𝑝)𝑢(𝑐).     

Also note that (8) can be rewritten as: 

(1 − 𝜃) (𝑤(𝑝)𝑢(𝑦) − 𝛿∆𝑤(𝑝)𝑢(𝑐)) = 𝜃𝑝(𝑐 − 𝑦) 

In addition, the inequality in (9) can be rewritten as: 

(1 − 𝜃)𝛿𝑡 (𝑤(𝑝)𝑢(𝑦) − 𝛿∆𝑤(𝑝)𝑢(𝑐)) < 𝜃𝑝(𝑐 − 𝑦) 

Thus, (1 − 𝜃)𝛿𝑡 (𝑤(𝑝)𝑢(𝑦) − 𝛿∆𝑤(𝑝)𝑢(𝑐)) < (1 − 𝜃) (𝑤(𝑝)𝑢(𝑦) − 𝛿∆𝑤(𝑝)𝑢(𝑐)). 

The above inequality holds since 𝑤(𝑝)𝑢(𝑦) > 𝛿∆𝑤(𝑝)𝑢(𝑐). 

(Necessity) Under DPU, the agent has a constant discount factor if 𝜃 = 0 or 𝜃 = 1. ∎ 

 

Proposition 4: For any concave power function 𝑢, the magnitude effect holds if and only 

if 𝜃 ∈ (0,1). 

Proof: (Sufficiency) We need to show that (10) implies (11): 

(10)  𝑉(𝑦, 𝑝, 𝑡) = (1 − 𝜃)𝛿𝑡𝑤(𝑝)𝑢(𝑦) + 𝜃𝑝𝑦 = 𝑉(𝑐, 𝑝, 𝑠) = (1 − 𝜃)𝛿𝑠𝑤(𝑝)𝑢(𝑐) + 𝜃𝑝𝑐         

(11)            (1 − 𝜃)𝛿𝑡𝑤(𝑝)𝑢(𝑟𝑦) + 𝜃𝑝𝑟𝑦 < (1 − 𝜃)𝛿𝑠𝑤(𝑝)𝑢(𝑟𝑐) + 𝜃𝑝𝑟𝑐                          

Note that since 𝑐 > 𝑦, equation (10) implies that 𝛿𝑡𝑤(𝑝)𝑢(𝑦) > 𝛿𝑠𝑤(𝑝)𝑢(𝑐).  

Also note that (10) can be rewritten as 

(12)       (1 − 𝜃)(𝛿𝑡𝑤(𝑝)𝑢(𝑦) − 𝛿𝑠𝑤(𝑝)𝑢(𝑐)) = 𝜃𝑝(𝑐 − 𝑦)                  

In addition, the inequality in (11) can be rewritten as: 

  (1 − 𝜃)(𝛿𝑡𝑤(𝑝)𝑢(𝑟𝑦) − 𝛿𝑠𝑤(𝑝)𝑢(𝑟𝑐)) < 𝜃𝑝𝑟(𝑐 − 𝑦) 
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For a concave power utility function over gains, (i.e., 𝑢(𝑧) = 𝑧𝛼 , with 𝑧 > 0,   𝛼 < 1), 

the above inequality becomes 

(13)      (1 − 𝜃)𝑟𝛼(𝛿𝑡𝑤(𝑝)𝑦𝛼 − 𝛿𝑠𝑤(𝑝)𝑐𝛼) < 𝜃𝑝𝑟(𝑐 − 𝑦).                 

Note that by (12), we have  (1 − 𝜃)(𝛿𝑡𝑤(𝑝)𝑦𝛼 − 𝛿𝑠𝑤(𝑝)𝑐𝛼)/𝜃𝑝(𝑐 − 𝑦) = 1. 

Thus, (13) reduces to 𝑟 > 𝑟𝛼, which is satisfied since 𝑟 > 1 and 𝛼 < 1. 

(Necessity) If 𝜃 = 0 or 𝜃 = 1, the scaling constant factors out. ∎ 

 

Proposition 5: Let 𝔼[(𝑐, α𝑝, 𝑡)] > 𝔼[(𝑦, 𝑝, 𝑡)]. Then time interacts with risk preference if 

and only if 𝜃 ∈ (0,1). 

Proof:  (Sufficiency) We need to show that (14) implies (15): 

(14)  (1 − 𝜃)𝛿𝑡𝑤(𝑝)𝑢(𝑦) + 𝜃𝑝𝑦 = (1 − 𝜃)𝛿𝑡𝑤(𝛼𝑝)𝑢(𝑐) + 𝜃𝛼𝑝𝑐                

(15)      (1 − 𝜃)𝛿𝑠𝑤(𝑝)𝑢(𝑦) + 𝜃𝑝𝑦 < (1 − 𝜃)𝛿𝑠𝑤(𝛼𝑝)𝑢(𝑐) + 𝜃𝛼𝑝𝑐.            

Note that since 𝔼[(𝑐, α𝑝, 𝑡)] > 𝔼[(𝑦, 𝑝, 𝑡)], we have 𝛼𝑐𝑝 > 𝑝𝑦, in which case equation 

(14) implies that 𝛿𝑡𝑤(𝑝)𝑢(𝑦) > 𝛿𝑡𝑤(𝛼𝑝)𝑢(𝑐). Also note that (14) can be rewritten as  

(1 − 𝜃)𝛿𝑡(𝑤(𝑝)𝑢(𝑦) − 𝑤(𝛼𝑝)𝑢(𝑐)) = 𝜃𝑝(𝛼𝑐 − 𝑦) 

In addition, note that the inequality in (15) can be rewritten as: 

(1 − 𝜃)𝛿𝑠(𝑤(𝑝)𝑢(𝑦) − 𝑤(𝛼𝑝)𝑢(𝑐)) < 𝜃𝑝(𝛼𝑐 − 𝑦) 

Thus, (1 − 𝜃)𝛿𝑠(𝑤(𝑝)𝑢(𝑦) − 𝑤(𝛼𝑝)𝑢(𝑐)) < (1 − 𝜃)𝛿𝑡(𝑤(𝑝)𝑢(𝑦) − 𝑤(𝛼𝑝)𝑢(𝑐)). 

The above inequality holds since 𝑤(𝑝)𝑢(𝑦) > 𝑤(𝛼𝑝)𝑢(𝑐). 

(Necessity) If either 𝜃 = 0 or 𝜃 = 1, the discount factors cancel when comparing the two 

alternatives and time does not affect risk preference. ∎ 

 

Proposition 6: If 𝑤(𝑞)/𝑤(𝑝) < 𝑞/𝑝, risk interacts with time preference if and only if 

𝜃 ∈ (0,1). 

Proof:  (Sufficiency) We need to show that (16) implies (17): 

(16)       (1 − 𝜃)𝛿𝑡𝑤(𝑝)𝑢(𝑦) + 𝜃𝑝𝑦 = (1 − 𝜃)𝛿𝑡+∆𝑤(𝑝)𝑢(𝑐) + 𝜃𝑝𝑐               

(17)       (1 − 𝜃)𝛿𝑡𝑤(𝑞)𝑢(𝑦) + 𝜃𝑞𝑦 < (1 − 𝜃)𝛿𝑡+∆𝑤(𝑞)𝑢(𝑐) + 𝜃𝑞𝑐                                   

Note that since 𝑐 > 𝑦, equation (16) implies 𝛿𝑡𝑤(𝑝)𝑢(𝑦) > 𝛿𝑡+∆𝑤(𝑝)𝑢(𝑐), and 

therefore 𝑢(𝑦) > 𝛿∆𝑢(𝑐). Also note that (16) can be rewritten as:  
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(1 − 𝜃)𝛿𝑡𝑤(𝑝) (𝑢(𝑦) − 𝛿∆𝑢(𝑐)) = 𝜃𝑝(𝑐 − 𝑦) 

In addition, note that the inequality in (17) can be rewritten as: 

        (1 − 𝜃)𝛿𝑡𝑤(𝑞) (𝑢(𝑦) − 𝛿∆𝑢(𝑐)) < 𝜃𝑞(𝑐 − 𝑦)  

Then by (16),  ((1 − 𝜃)𝛿𝑡 (𝑢(𝑦) − 𝛿∆𝑢(𝑐))) /𝜃(𝑐 − 𝑦) = 𝑝/𝑤(𝑝) 

By (17),  ((1 − 𝜃)𝛿𝑡 (𝑢(𝑦) − 𝛿∆𝑢(𝑐))) /𝜃(𝑐 − 𝑦) < 𝑞/𝑤(𝑞).  

Thus, if 𝑤(𝑞)/𝑤(𝑝) < 𝑞/𝑝 then (16) implies (17). 

(Necessity) If either 𝜃 = 0 or 𝜃 = 1, the probability weights cancel when comparing the 

two alternatives and risk does not affect time preference. ∎  

 

Proposition 7: For any concave power function 𝑢, subendurance holds if and only if      

𝜃 ∈ (0,1). 

Proof:  (Sufficiency) We need to show that (18) implies (19): 

(18)         (1 − 𝜃)𝛿𝑡+∆𝑤(𝑝)𝑢(𝑐) + 𝜃𝑝𝑐 = (1 − 𝜃)𝛿𝑡𝑤(𝜆𝑝)𝑢(𝑐) + 𝜃𝜆𝑝𝑐                  

(19)        (1 − 𝜃)𝛿𝑡+∆𝑤(𝑝)𝑢(𝑦) + 𝜃𝑝𝑦 < (1 − 𝜃)𝛿𝑡𝑤(𝜆𝑝)𝑢(𝑦) + 𝜃𝜆𝑝𝑦       

Since 𝑝𝑐 > λ𝑝𝑐, equation (18) implies 𝛿𝑡𝑤(𝜆𝑝)𝑢(𝑐) > 𝛿𝑡+∆𝑤(𝑝)𝑢(𝑐). Also note that 

(18) can be rewritten as:  

(20)        (1 − 𝜃) (𝛿𝑡𝑤(𝜆𝑝)𝑢(𝑐) − 𝛿𝑡+∆𝑤(𝑝)𝑢(𝑐)) = 𝜃𝑝𝑐(1 − 𝜆)      

Inequality (19) can be rewritten as (21):  

(21)    𝜃𝑝𝑦(1 − 𝜆) < (1 − 𝜃) (𝛿𝑡𝑤(𝜆𝑝)𝑢(𝑦) − 𝛿𝑡+∆𝑤(𝑝)𝑢(𝑦)) 

From (20) and (21), we obtain 

 (1 − 𝜃)(𝛿𝑡𝑤(𝜆𝑝)𝑢(𝑐) − 𝛿𝑡+∆𝑤(𝑝)𝑢(𝑐))𝑦 < (1 − 𝜃)(𝛿𝑡𝑤(𝜆𝑝)𝑢(𝑦) − 𝛿𝑡+∆𝑤(𝑝)𝑢(𝑦))𝑐. 

For all 𝜃 ∈ (0,1), the above inequality reduces to, 𝑢(𝑐)/𝑐 < 𝑢(𝑦)/𝑦, which, for a power 

utility function, 𝑢(𝑧) = 𝑧𝛼 , with 𝑧 ≥ 0, becomes 
𝑐𝛼

𝑐
<

𝑦𝛼

𝑦
 where we recall that 0 < 𝑦 < 𝑐. 

Taking the natural log of both sides confirms that the inequality holds for any 𝛼 < 1. 

(Necessity) If 𝜃 = 0 or 𝜃 = 1, the utilities cancel and subendurance does not hold. ∎ 
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