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Abstract

We develop a new empirical strategy for identifying the parameters of dynamic structural

models in markets for storable goods, with a focus on identification of the discount factor. The

identification strategy rests on an exclusion restriction generated by discontinuities in package

sizes: In storable goods product categories where consumption rates are exogenous and small

relative to package sizes, a consumer’s current utility does not depend on inventory most of the

time, his/her expected future payoff does. We demonstrate the feasibility of our identification

strategy with an empirical exercise, where we estimate a stockpiling model using scanner data

on laundry detergents. Our estimates suggest that consumers are not as forward-looking as most

papers in the literature assumes; our estimates of weekly discount factors average at about 0.73,

which is significantly lower than the value used in previous research (it typically is set at 0.99,

using the market interest rate). We also find significant unobserved heterogeneity in discount

factors across individuals.
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1 Introduction

Forward-looking behavior is a critical component of many quantitative models of consumer behavior

used by researchers in marketing and economics (Erdem and Keane (1996), Crawford and Shum

(2005), Hendel and Nevo (2006a), Erdem, Imai, and Keane (2003), Seiler (2013) and Liu and

Balachander (2014), Osborne (2011), Yang and Ching (2014)). When consumers are forward-

looking, they also behave strategically when making their purchase decisions. For instance, in the

context of new durable goods such as cameras or smart phones, consumers may wait to purchase a

product if they expect the product’s price to fall in the future. Similarly, in the context of storable

packaged goods such as canned tuna or canned soup, forward-looking consumers may respond to

a temporary price promotion today by stockpiling the product, since they understand that future

prices are likely to be high (Erdem, Imai, and Keane (2003), Haviv (2014)). If all shoppers are

extremely forward-looking and act in such a saavy way, durable goods producers would not be able

to use a price skimming strategy (Coase 1972), and grocery stores or supermarkets would never sell

their carried items at a regular price. This is not the case, since in reality price skimming and hi-lo

pricing are both prevalent, and consumers do make purchases of products when their prices are

high. Prior research on periodic promotions in economics (Hendel and Nevo (2013), Hong, McAfee,

and Nayyar (2002), Pesendorfer (2002), Sobel (1984)) has recognized that firms can use periodic

promotions to price discriminate between patient and impatient consumers. Thus, the extent to

which consumers consider the future clearly has implications for firms’ optimal pricing strategies.

Additionally, forward-looking behavior has important implications for public policy. One such area

is in estimating price indexes, such as the Consumer Price Index. Price indexes are constructed by

government agencies to measure inflation, and are used by businesses to index contracts. Standard

price indexes will correctly measure changes in the cost of living if consumers are myopic; however,

if consumers substitute purchases across time, recent research has suggested that standard indexes

overstate growth in the cost of living (Feenstra and Shapiro (2003), Reis (2009), Osborne (2017)).

In these models, the strength of forward-looking behavior is captured by a parameter called a

discount factor : the closer the discount factor is to 1, the more weight consumers put on future

payoffs when making current decisions. However, instead of estimating the discount factor, much

research focuses on estimated models of dynamic consumer behavior exercises the “rational ex-

pectations” assumption and uses the prevailing interest rate to fix the discount factor accordingly.

Depending on the length of a period, this calibration approach would lead to a value of weekly

discount factor about 0.99.1 Interestingly, Frederick, Loewenstein, and O’Donoghue (2002) sur-

1At a yearly interest rate of 5%, a rational consumer would discount utility in the following year at a rate of about
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vey prior experimental work in measuring discount factors: They document a significant amount

of heterogeneity in the estimates those studies obtained, ranging between close to 0 and close to

1. Additionally, in stated choice experiments performed by Dubé, Hitsch, and Jindal (2014), con-

sumers appear to be much less forward-looking than economic theory implies, with average discount

rates of 0.43. Dubé, Hitsch, and Jindal (2014) also find substantial heterogeneity in discount factors

across individuals.

The reason why the discount factor is typically not estimated in structural econometric work

stems from an identification problem: Most problems under study do not provide natural exclusion

restrictions that could help identify this parameter, and so any estimate of the discount factor would

be heavily reliant on functional form assumptions. Roughly speaking, to address this problem one

would need to have at least one state variable that impacts a consumer’s future payoffs, but not

her current payoffs. In econometrics terminology, such a variable provides exclusion restrictions

that helps to identify the discount factor (since it is excluded from current payoffs but not future

payoffs). The intuition is that if a consumer is completely myopic, then the consumer’s choice

should be independent of that variable. The extent to which consumer’s choice is influenced by the

exclusion restriction provides information about how forward-looking consumer is.

We contribute to this literature by arguing that one of the key state variables of the stockpiling

problem, consumer inventory, provides exclusion restrictions that can help identify the discount

factor. Our key insight is that for most inventory levels, consumer’s current payoff does not depend

on it because the storage cost does not change until a package runs out. We illustrate how using an

example drawn from the laundry detergent market. Suppose a consumer is down to her last bottle

of laundry detergent. She washes one full load of clothes per week (and such need is driven by her

habit of wearing clean clothes every day). As she keeps consuming the laundry detergent, she may

worry that if she does not buy another bottle soon when the price is low, she may be forced to buy

it at a higher regular price when she uses it up in the near future. This sense of urgency becomes

stronger as inventory (i.e., the amount of detergent in the bottle) runs down, and her demand would

appear to become more sensitive to price cuts. Moreover, for any amount of inventory remaining,

the more forward-looking a consumer is, the more intense this feeling of urgency will get.

However, note that if a consumer is totally myopic, then inventory should not affect her behavior,

unless she runs out. A myopic consumer will only care about having enough detergent to do the

current week’s laundry, and her current utility will only be affected by the storage cost, which does

not change since she still has a single bottle taking up the same amount of space. The example

illustrates that inventory can provide exclusion restrictions to help identify the consumer’s discount

0.95, and would have a weekly discount rate of about 0.999.
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factor, because inventory impacts the consumer’s expected future payoff, but not her current payoff.

Intuitively, if inventory is observed, the reseacher can compute the probability a consumer makes

a purchase at each level of inventory. For a forward-looking consumer, this probability should rise

smoothly as her inventory drops; for a myopic consumer, it will not change as inventory drops,

until she runs out. Hence, if inventory is observed, the change in the purchase probability that is

observed as inventory decreases can help identify the discount factor.2

A complication for our approach to identification is that much research that estimates structural

stockpiling models uses supermarket scanner data, which does not track consumer inventory. Hence,

the main state variable of interest, inventory, is unobserved to the researcher. We argue that when

inventory is unobserved, the identification can still be achieved by the observed purchase hazard.3

The exclusion restrictions (reduction in inventory does not affect storage costs most of the time)

generate overidentifying restrictions, which help us to identify the parameters of our stockpiling

model, including the discount factor.

To demonstrate our identification arguments, we first show that we can recover the true pa-

rameter values of a stockpiling model even when inventory is unobserved using artificial data

experiments. We then estimate a more complicated stockpiling model using IRI scanner data for

laundry detergents, allowing for continuously distributed unobserved heterogeneity in most of the

model parameters, particularly the discount factor. We find that consumer discount factors range

from about 0.6 and 0.85, and average at about 0.73. The values of the discount factors for most

consumers are significantly lower than the value of 0.95 or 0.99 that many papers assume when

estimating dynamic discrete choice models of consumer behavior. Additionally, we find that higher

income, older and larger households seem to be more forward-looking, although the effect of demo-

graphics on the discount factor is small; most of the heterogeneity in discount factors we estimate

seems to be driven by unobserved factors (this result is also consistent with Dubé, Hitsch, and Jin-

dal (2014)). Our results could have strong substantive implications in answering the questions that

the literature has examined (e.g., short-term vs. long-term responses to temporary and permanent

price cuts).

An outline of the paper is as follows. In Section 2, we discuss related work. Section 3 introduces

2We note that in standard formulations of stockpiling models, researchers assume that storage costs increase

continuously as inventory increases. This assumption creates an identification problem, since a myopic individual’s

purchase probability will increase smoothly as inventory drops, making identification of forward-looking behavior

difficult.

3It is defined to be the average probability of a purchase occurring τ periods after a purchase occured in period

t, with no purchase occuring in the intervening time.

3



a simple stylized model of stockpiling behavior, and Section 4 contains proofs of the important

properties of the model. Section 5 presents conditions for identification of the discount factor when

inventory is observed. Section 6 describes how the discount factor can be identified when inventory

is unobserved. Section 7 describes the results of our artificial data experiments. Section 8 describes

our empirical application and the estimates, and Section 9 concludes.

2 Review of Literature

Proofs of identification of the discount factor often build on the conditional choice probability

approach introduced in Hotz and Miller (1993). In the Hotz and Miller (1993) approach, the

researcher assumes that the same state variables that are observed to the consumer are observed to

the researcher, and there is no unobserved heterogeneity across consumers. In this setting, under a

set of regularity conditions on the error term, one can flexibly estimate a consumer’s choice specific

value, which is the sum of the current period flow utility and the discount factor multiplied by the

value function. The choice specific values are identified conditional on a normalization of the utility

of one alternative (typically called the reference alternative), and given the functional form of the

error distribution. With no restrictions on the functional form of the flow utility, the discount factor

is not identified: in the conditional choice probability approach, one can think of each estimating

equation as the probability of a consumer choosing each alternative at each value of all the state

variables. A fully flexible model would allow the utility function to have a parameter that was

unique for each alternative and each state. Hence, if the discount factor were fixed the number

of equations and unknowns would be equal, and the model would be exactly identified. Formally,

to identify the discount factor, some restriction must be put on the functional form of the utility

function. Such a restriction will reduce the number of parameters in the model to be smaller than

the number of equations, allowing the discount factor to be identified.

One such type of restriction that has been proposed to help identify the discount factor is

called an exclusion restriction. Fang and Wang (2015) show that one can identify the discount

factor in the conditional choice probability setting if a dynamic model has at least two values of a

state variable where, for each alternative, flow utilities are the same for both values, but the value

functions differ.4

4Magnac and Thesmar (2002) is widely cited as the first paper which shows how exclusion restrictions can identify

the discount factor. However, it should be pointed out that their exclusion restriction is defined in a way that is

quite different from Fang and Wang (2015) and what we use here. It is difficult to give economic interpretations to

the exclusion restriction used in Magnac and Thesmar (2002).
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To our knowledge, there are only a handful papers that explore such an identification argument

to estimate consumer’s discount factor or her incentive to consider future payoffs (Ishihara and

Ching (2012), Chung, Steenburgh, and Sudhir (2013), Lee (2013), Ching, Erdem, and Keane (2014),

Chevalier and Goolsbee (2009)).5 Moreover, as far as we know, the previous structural models on

consumer stockpiling models all assume that the storage cost is an increasing and continuous

function of inventory. This simplifying assumption, though convenient, has ruled out the exclusion

restrictions that we use in our identification arguments. As a result, all of the previous structural

works in consumer stockpiling fix the discount factor according to the interest rate, instead of

estimating it.6

3 A Stylized Stockpiling Model

In this section we describe a model that is simplified somewhat from the model we will use for

our empirical application, but contains its most important features. The econometrician observes a

market containing N consumers making purchase decisions over T periods. Consumers are forward-

looking and discount the future at a discount rate βi < 1. In this stylized model, we assume that

a single product is available to consumers in some discrete package size. Each decision period t is

broken up into two phases: a purchase phase and a consumption phase. In the purchase phase,

consumer i observes the price of a package of the product (pit), an exogenous consumption need

(cit), and a choice-specific error (εijt). The consumer’s choice is her decision of how many packages

of the product to buy, which we denote as j ∈ {0, 1, ..., J}. After making her purchase, the consumer

receives her consumption utility.

We denote the size (or volumn) of a package as b, and for simplicity of exposition we assume that

b is an integer (we will relax this assumption in the empirical application). We denote the consumer’s

5Additionally, on-going research by Akça and Otter (2015) describes an alternative mechanism by which inventory

can be used to identify the discount factor. They argue that if inventory is observed by researchers and consumers

consume the inventory in a last-in-last-out order, then the discount factor can be identified. Our approach, which

focuses on package size discontinuities, rather than the order in which brands are purchased, can also handle unob-

served inventory. Geweke and Keane (2000) and Yao, Mela, Chiang, and Chen (2012) explore another identification

strategy which requires making assumptions that the current payoffs are either observed or can be recovered from a

static environment first.

6Note that with the assumption that the storage cost is an increasing and continuous function of inventory, a

consumer has an incentive to wait longer before buying a new bottle, since the storage cost keeps dropping as the

inventory shrinks. This has the opposite effect of the increase in expected stock-out cost as the inventory drops.

Therefore, the models in the previous works do not have clear implications about consumer purchase behavior as

inventory drops.
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inventory (which will also be integral) at the beginning of the period as Iit. Consumption rates cit

will be in the set {0, 1, 2, ..., c}. If the consumer’s inventory at the end of the purchase phase, which

we denote as Iit + b · j, is above the consumption need cit then she receives consumption utility γi.

If she cannot cover her consumption need then she incurs a stockout cost νi.
7 At the end of the

period, the consumer incurs a storage cost s(·;ωi). Here we formally introduce our first assumption

about s(·;ωi), which would allow the inventory variable to generate exclusion restrictions.

First Model Assumption Related to Exclusion Restrictions, X1

1. The storage cost function s is only a function of the number of packages held at the end of

the period, B, rather than inventory I, and the package size b > 1.

The number of packages held can be written as the following function of inventory Bi,t+1(j, I, cit) =

⌈max{(Iit + b · j − cit)/b, 0}⌉.
8 The assumption that b > 1 ensures that X1 is meaningful. ωi is

a vector of parameters determining how storage costs vary with the number of packages held. We

will parameterize the storage cost function as flexibly as possible:

s(B;ωi) = ωi,B. (1)

This functional form is nonparametric in the sense that there is a different parameter, ωi,B for each

possible number of packages held. In practice, one may consider imposing a functional form on s,

such as quadratic. We will assume that the cost of storing 0 packages is 0.

The assumption that a consumer’s storage cost depends on the number of packages held is

valid for many product categories. For example, products that are sold in bottles or boxes such

as laundry detergent or breakfast cereal will likely satisfy this assumption. The cost to storing

laundry detergent depends on the amount of space taken up by the bottle, but not the amount of

liquid within the bottle.

Another crucial assumption is that consumption rate is exogeneous in the sense that it does

not depend on one’s inventory. This assumption will ensure that the current payoff does not vary

with inventory continuously.

Second Model Assumption Related to Exclusion Restrictions, X2

2. The consumption need is exogenous (i.e., it is not a function of inventory).

7We assume that the stockout cost does not depend on the consumption need but this assumption is innocuous.

We could also assume that the stockout cost is proportional to the difference between inventory and the consumption

shock, and our identification results will be unaffected.

8The ceiling function ⌈·⌉ returns the smallest integer that is greater than or equal to its argument.

6



Intuitively, this assumption says consumers receive no additional utility from consuming more

than their consumption needs. This assumption should also be largely applicable to products like

laundry detergent, breakfast cereal, etc. But for products such as snacks, this assumption might

not hold (e.g., Sun (2005))

We should note that our exclusion rerstriction argument would fail if the realizations of con-

sumption need, cit, are discrete and take on values that are multiples of the package size, as storage

costs would always change when inventory changes. To be a bit more precise, we would like con-

sumption need to be significantly less than the package size.

Third Model Assumption Related to Exclusion Restrictions, X3

3. Consumption needs are much smaller than the package size: cit << b.

This assumption ensures that for most values of inventory levels faced by consumers, the number

of packages held remains unchanged (and hence storage costs remain unchanged). For product

categories such as laundry detergent, ketchup, etc., this assumption will likely be satisfied. But for

categories like canned tuna (or canned soup), this assumption will likely be violated.

Given this information, we can write down the consumer’s flow utility as follows:

uit(j, Iit, εijt, pit, cit;θi) (2)

=







γi − s(Bi,t+1(j, I, cit);ωi)− αipitj + ηεijt if Iit + b · j ≥ cit

−νi − αipitj + ηεijt otherwise
.

The vector θi = (αi, βi, γi, νi,ωi) is a vector of the consumer utility coefficients and the discount

factor. The parameter αi is the price coefficient. The parameter η is an error term weight that will

be relevant for some of the theoretical proofs. In estimation we will normalize this parameter to 1.

We assume that consumers believe that the product’s price follows a stochastic Markov process

with a transition density F (pi,t+1|pit). The consumption shocks cit are i.i.d over time for each

consumer and are drawn from a discrete distribution where the probability of receiving consumption

shock level l as πl
c. The consumer’s Bellman equation is as follows:

Vit(Iit, pit) =

c
∑

l=0

Eεit max
j=0,...,J

{uit(j, Iit, εijt, pit, l;θi) + βiEpi,t+1|pitV (Ii,t+1, pi,t+1)}π
l
c. (3)

The transition process for the inventory state variable Iit is

Ii,t+1 = max{Ii,t + b · j − cit, 0}.

7



We also put an upper bound on the number of packages a consumer can carry, which we denote

M . We assume that if a consumer makes a purchase when her inventory is above Mb − cit, then

her inventory is set to the upper bound Mb. Intuitively, this is consistent with a situation where a

consumer’s storage space is used up, but if she purchases another bottle she takes the one that is

already open and gives it away or otherwise disposes of it.

4 Model Properties

In the derivations below we will normalize the consumption utility, γ, to 0. We can do this because

if a consumer runs out, her decision can be written in terms of γ + ν. If she does not, γ appears in

both utility of purchasing and of not purchaseing, and so it does not affect the purchase decision.

In this section we will derive some useful properties of the model above, which will help us

to understand intuitively what type of variation in the data will help identify the discount factor.

The basic idea behind the identification of β is that there are exclusion restrictions in our model:

Consumer inventory enters the expected future payoffs in a continuous way, and it almost never

directly affects consumer’s current payoffs.9 Intuitively, unless a consumer is very close to using up

a bottle/package of laundry detergent, washing an extra load of laundry will lower the inventory

level, but it does not change the storage cost. Therefore, if a consumer cares about her future

payoffs, her incentive to purchase should depend on the inventory. Consider the situation where

a consumer’s inventory is down to the last bottle. As she continues to consume, she gets closer

and closer to stocking out. At the same time, her incentive to avoid the stock out cost ν also gets

stronger and stronger if she is more forward-looking (i.e., β > 0). In other words, the functional

relationship between consumer’s purchase incidence and inventory should depend on the value of

her discount factor. Therefore, a consumer’s discount factor should be identified if we observe

consumer’s choice at different inventory levels.

Formally, we can express the above intuition by deriving two key properties of the value func-

tion. First, the expected future value of a purchase should increase as inventory drops, at least for

sufficiently low values of inventory. Second, as consumers get more forward-looking, the expected

future value of a purchase should rise. We will prove these statements are true in a simple set-

ting with no price variation, and where the error term has zero variance (η = 0). We will then

9As we describe in more detail below, the two exceptions are at the exact point a consumer stocks out, and at

the point a consumer uses up a package. We will argue that when inventory is observed, it is sufficient to observe

some range of inventory where storage cost does not change in order to guarantee identification. When inventory is

unobserved, changes in storage cost occur rarely enough that the discount factor will still be identified.
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demonstrate that the value function is continuous in η under some regularity conditions on the

error term, and if payoffs can be bounded, which will demonstrate that for small values of η the

same properties of the value function will hold.

We will make some simplifications to the model which we will relax in later sections. To simplify

notation we will normalize the price coefficient, α, to 1. We will also assume that all the model

parameters are homogeneous across the population, and thus will drop the i subscript on everything

except the state variables and the error term.

The simplifying assumptions that we will maintain for the remainder of this section are listed

below:

Assumptions A1-A6

1. The consumption need is constant across time and individuals: cit = 1 for all i, t.

2. In a given purchase occasion, the maximum number of packages a consumer is allowed to buy

is 1.

3. Prices are fixed over time at a level p > 0.

4. The package size b ≥ 2.

5. Purchasing at 0 inventory is better than running out: ω1 + p < ν.

6. The storage cost function is weakly increasing and weakly convex, and storage costs are

weakly positive.

Assumption A1 is made for convenience; the propositions proved in this section will still hold under

stochastic consumption rates, which we demonstrate in Online Appendix 11. Assumption A4 is a

more precise statement of the exclusion restriction assumption X3 from the prior section. Assump-

tion A5 will imply that the stockout cost is positive, as p > 0 and the storage cost parameters are

weakly positive by A6.

Lemma 1 If A1-A5 holds and η = 0, then it is optimal to purchase only when I = 0, for all β.

Proof.

Case 1: β = 0. This is given by A5.

Case 2: β > 0.

First note that if a consumer only buys when I = 0, then I ≥ 0. Then by A1 and A4, a

consumer always receive γ, ∀t. Hence, the discounted sum of utility, U1 =
γ−ω1

1−β
− p

1−βb .

Claim 2a: It is not optimal for a consumer to choose not to buy when I = 0.

9



If a consumer chooses not to buy when I = 0, then the discounted sum of utility, U2 =
−ν
1−β

.

Note that

U1 =
γ − ω1

1− β
−

p

1− βb
>

γ − ω1 − p

1− β
. (4)

Since γ > 0, it follows from A6 that γ−ω1−p
1−β

> −ν
1−β

= U1. It then follows from the above

equation that U2 > U1. This shows Claim 2a.

Claim 2b: It is not optimal for a consumer to choose to buy when I > 0.

Note that U1 =
γ

1−β
− ω1

1−β
− p

1−βb .

If a consumer makes a purchase when I > 0, it will only make the second and third components

in U1 more negative. This proves the claim.

Lemma 2 If A1-A6 holds and η = 0, then V (I) is increasing in I, for I < Ī and sufficiently small

storage costs.

Proof. Denote as x the number of packages held by a consumer, and n = I − b(x − 1) as the

number of units left in the package currently begin consumed by an individual. The value function

for I units of inventory can be written as:

V (I) =
1− βI

1− β
γ −

1− βn−1

1− β
ωx −

x−1
∑

k=1

βn−1+b(k−1) 1− βb

1− β
ωx−k + βIV (0) (5)

Case 1: Suppose an increase in I does not change the number of packages.

Then it follows from Lemma 1 that V (I) increases with I. This is because the future stream

of storage costs and consumption do not change, and the future stream of payments is being

postponed.

Case 2: Suppose that an increase in I leads to an increase in the number of packages being

stored.

The only difference between here and Case 1 is that the future stream of storage costs is incresaed

by ωB − ωB−1 for a finite number of periods (by one period if we consider the increase in I is 1).

As long as (ωB − ωB−1) is sufficiently small, V (I) is still increasing in I.

Proposition 1 If A1-A6 hold and η = 0, then β ∗ [V (I + b)− V (I)] is decreasing in I, for I ≥ c.

10



Proof. Denote as x the number of packages held by a consumer. Note that

V (I + b) = (γ − ωx) ∗
(1− βb)

(1− β)
+ βb+1 ∗ V (I)

V (I + b)− V (I) = (γ − ωx) ∗
(1− βb)

(1− β)
+ βb+1 ∗ V (I)− V (I)

V (I + b)− V (I) = (γ − ωx) ∗
(1− βb)

(1− β)
+ (βb+1 − 1) ∗ V (I)

Because βb+1−1 < 0, and V (I) is increasing in I by Lemma 2, it follows that β∗[V (I+b)−V (I)]

is decreasing in I.

Proposition 2 If A1-A6 hold and η = 0, then β ∗ [V (I + b)− V (I)] is decreasing in β, for I ≥ 0

and sufficiently small storage costs.

Proof.

To start note that we need to show

∂β(V (I + b)− V (I))

∂β
= V (I + b)− V (I) + β

(

∂(V (I + b)− V (I))

∂β

)

> 0. (6)

A sufficient condition for the above inequality to hold is V (I+ b)−V (I) > 0, which we can show in

Proposition 1 for sufficiently small storage costs. Next, we want tosign the derivative ∂(V (I+b)−V (I))
∂β

.

It is possible to show that this derivative is positive if storage costs are sufficiently small.

To start, because lemma 1 implies a consumer does not buy until she runs out, it has to be the

case that if I ≤ b + 1 (note that if I = b + 1, the individual holds 2 packages at the beginning of

the period, but one of the packages is used up during the period, and storage costs are paid at the

end of the period) then

V (I) =
1− βI

1− β
γ −

1− βI−1

1− β
ω1 + βIV (0) (7)

The first term is the consumption utility discounted over I periods. The second is the discounted

storage cost. Storage costs are paid for I − 1 periods, since in the I − 1st period an individual has

only 1 unit at the beginning of the period, uses up that unit, and has no packages at the end of

the period; hence no storage cost is paid I periods from now.

Lemma 1 implies that an individual purchases when beginning the period with 0 inventory,

which means we can derive the following formula for V (0):

V (0) = γ − ω1 − p+ βV (b− 1)

=
1− βb

1− β
γ −

1− βb−1

1− β
ω1 − p+ βbV (0),
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Where the last line follows by substituting in equation (7). We can solve the above equation to

derive an explicit formula for V (0):

V (0) =
1

1− βb

(

1− βb

1− β
γ −

1− βb−1

1− β
ω1 − p

)

=
1

1− β
γ −

1

1− βb

1− βb−1

1− β
ω1 −

p

1− βb
(8)

The derivations above can be used to derive a formula for V (I), for all inventory values of I.

The general formula is a little more complicated since we have to account for the fact that storage

costs may change. To derive a general formula that includes storage costs, we denote as x the

number of packages held by a consumer, and n = I − b(x− 1) to be the number of units left in the

package currently begin consumed by an individual. The formula for the value function will be

V (I) =
1− βI

1− β
γ −

1− βn−1

1− β
ωx −

x−1
∑

k=1

βn−1+b(k−1) 1− βb

1− β
ωx−k + βIV (0) (9)

We will split up the value function difference V (I + b)− V (I) into three terms:

V (I + b)− V (I) = ∆1 +∆2 +∆3

The first term, ∆1, we define to be the difference in the first term from equation (9):

∆1 =
1− βI+b

1− β
γ −

1− βI

1− β
γ

=
1− βI+b − (1− βI)

1− β
γ

=
βI − βI+b

1− β
γ

= βI 1− βb

1− β
γ (10)

We define ∆2 to be the difference in the terms in equation (9) that contain storage costs:

∆2 = −
1− βn−1

1− β
∆ωx+1 −

x−1
∑

k=1

βn−1+b(k−1) 1− βb

1− β
∆ωx−k+1 − βn−1+b(x−1) 1− βb

1− β
ω1

The final term, ∆3, is defined to be the difference in the final term of (9), which contains V (0):
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∆3 = (βI+b − βI)V (0)

= βI(βb − 1)V (0)

=
βI(βb − 1)

1− β
γ −

βI(βb − 1)

1− βb

1− βb−1

1− β
ω1 −

βI(βb − 1)p

1− βb

=
βI(βb − 1)

1− β
γ +

βI(1− βb−1)

1− β
ω1 + βIp (11)

Note that ∆1 cancels with the first term in ∆3 from the last line of equation (11). As a result,

cosumption utility does not affect the difference in value functions.

Second, consider the impact of storage costs on the value function difference. This difference

can be written as ∆3 plus the second term of equation (11):

∆2 +
βI(1− βb−1)

1− β
ω1 = −

1− βn−1

1− β
∆ωx+1 −

x−1
∑

k=1

βn−1+b(k−1) 1− βb

1− β
∆ωx−k+1 − βn−1+b(x−1)ω1

Since this term is negative, if storage difference increase, the first term of equation (6) will decrease,

decreasing the overall derivative. Second the derivative of the term ∆2 +
βI(1−βb−1)

1−β
ω1 does not

have a clear sign. For instance, the derivative of the first term is

(n− 1)βn−2(1− β)− (1− βn−1)

(1− β)2
∆ωx+1,

which could be negative (ie for small β). The terms in the summation sign will have derivatives

that look as follows:

[

−(n− 1 + b(k − 1))βn−2+b(k−1) 1− βb

1− β
+ βn+b(k−1) bβ

b−1(1− β)− (1− βb)

(1− β)2

]

∆ωx−k+1,

which again may be negative. The term −βn−1+b(x−1)ω1 will be decreasing in β. Note that if

storage costs are zero, then it will be the case that V (I + b) − V (I) = βIp. In this case the

derivative will be

V (I + b)− V (I) + β
∂(V (I + b)− V (I))

∂β
= βI(I + 1)p,

which is positive. Because the difference in value functions is continuous in storage costs, the above

derivative will still be positive, as long as storage costs are sufficiently small.
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The size of the storage costs clearly plays a role here. In reality one would expect storage costs

to be relatively small for the first few packages, and increasing and convex after that. For instance,

suppose that an individual who stores laundry detergent has some dedicated space for bottles of

detergent, so that ω1 is close to zero. Then for I ≤ b+1, both Propositions 1 and 2 will hold. The

propositions could still hold for larger values of I if the increase in storage costs from adding more

bottles is not too large: this results from the fact that for I > b + 1, the value function difference

depends on storage cost differences.

Both proposition 1 and 2 assume that there is no error term in the utility function. We will use

the following lemma to show that these two propositions still hold in a random utility framework.

The argument relies on showing that the expected future value of purchase is continuous in η. Here

we make some regularity assumptions on the error term, and put boundedness and sign restrictions

on the payoffs:

Assumptions E1-E2

1. Continuity and support: The CDF of the difference in ε1 − ε0, F , is continuous, strictly

increasing, and has support (−∞,∞).

2. Value function: There exists a bound on η, η, such that if η < η then the following hold

I − c ≥ 0 : −p− (ωB+1 − ωB1{I > c}+ β(V (I + b− c)− V (I − c)) < 0

I − c < 0 : −p− (ω1 − ν + β(V (I + b− c)− V (0)) > 0

where the number of packages held at the end of the period, B, is ⌈(I + b− 1)/b⌉ if I > 1 and

0 if I = 1.

The two assumptions above, along with Assumptions A1-A4, will imply that the value function

is continuous in η, which we summarize in the following lemma:

Lemma 3 If assumptions A1-A6 and E1-E2 hold then the expected future value of purchase from

an increase in inventory, β [V (I + b)− V (I))], is continuous in η.

Proof. For I ≥ c, the probability of a purchase can be written as

P (I, c) = F ((−p− (ωB+1 − ωB1{I > c}+ β(V (I + b− c)− V (I − c)))/η), (12)

while the probability of purchase for I < c is
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P (I, c) = F ((−p− (ω1 − ν + β(V (I + b− c)− V (0)))/η). (13)

The value function for I ≥ c can be written as

V (I) = P (I, c)(−p− ωB+1 + βV (I + b− c)) + (1− P (I, c))(−ωB1{I > c}+ βV (I − c)).

(14)

Under E1 and E2 it is the case that if I − c ≥ 0 then

lim
η→0−

P (I, c) = 0,

and otherwise

lim
η→0−

P (I, c) = 1.

The limits above are taken from the left as we assume that η ≥ 0. If we consider the first limit, we

know that if I ≥ c then for η sufficiently close to zero, the net value of buying becomes negative,

which we assume in E2 (and Lemma 1 implies this inequality holds for η = 0). For η arbitrarily

small and positive the term (−p − (ωB+1 − ωB1{I > c} + β(V (I + b − c) − V (I − c)))/η will be

negative and will approach −∞. E1 guarantees that the probability in (12) will approach 0. A

similar argument applies to the second limit in the context of equation (13). As a result, it is clear

that the limit as η approaches zero of equation (14) will equal the value function that is obtained

when η = 0, which we derive in the proofs of Lemma 1 and Lemma 2. Similar findings will be

obtained for the value function when I < c.

Lemma 3 further shows that these properties hold in a random utility framework, suggesting

that the magnitude of the incentive to purchase can be measured by choice probabilities. With

Lemma 3, it is clear that both proposition 1 and 2 hold even if we introduce an error term in

the utility function, as long as η is sufficiently small. To provide some more intuition in Figure

1, we plot the expected future value of a purchase for different values of the discount factor, for a

low and high value of the stockout cost ν. For a forward-looking consumer, the expected future

value of a purchase rises as inventory drops because purchasing delays the likelihood of a future

stockout. Additionally, when inventory is sufficiently low, increasing the discount factor increases

the expected future payoff from purchase. When storage costs are positive and the stockout cost is

low, at sufficiently high levels of inventory the expected future value of purchase can be decreasing
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in the discount factor, since adding inventory will increase storage costs in the future, which will

counterbalance the gain from delaying the stockout cost.
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Figure 1: Expected future payoff from purchase, β(V (I + b) − V (I)), as a function of I and β.

Parameter values ω1 = 0, ω2 = 0.05, ω3 = 0.15, η = 1, M = 3, p = 2, and logit error term.

5 Identification with Observed Inventory

In this section, we will discuss how the discount factor and other parameters of the model can be

identified in the situation in which inventory is observed. Although in most empirical applications

inventory will be unobserved, we feel that understanding the features of the model that drive

identification in this setting will help the reader to understand what drives identification in the

setting where inventory is not observed. For convenience, we will maintain three assumptions:

(i) prices do not vary; (ii) consumers can only purchase one package at a time; (iii) inventory is

integral.

We outline the intuition behind the identification using numerical solution of the model at par-

ticular parameter values, and then provide some discussion of formal conditions that will guarantee

identification. To illustrate this intuition we plot the purchase probabilities as a function of time

for different discount factors in Figure 2, in the following situation: We suppose that in period 0

the consumer starts with an inventory level of I = 16, which is 2 full packages of the product. We

maintain the assumption that the individual’s consumption rate is 1, so she has no inventory at the

beginning of period 17. Consider first the black line, which shows the probability of purchase for

a completely myopic consumer. This consumer’s purchase probability is flat except at 3 periods:

period 8, where a package is used up and the storage cost drops, period 16 where the storage cost is
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0 at the end of the period, and period 17 where the consumer runs out. In periods 1 through 8, an

individual’s purchase probability will be Pr(−αp− (ω3 − ω2) + εi1t − εi0t > 0). Given a particular

value of the price coefficient α, the value of the purchase probability in this interval will identify the

storage cost difference ω3−ω2. Similarly, the level of the purchase probability in periods 9 through

15 will identify ω2 − ω1. In period 16, a consumer who runs out will not pay the stockout cost

since she has a single unit of inventory, and will not pay the storage cost since she uses up her last

package and storage costs are incurred at the end of the period, and so her purchase probability is

Pr(−αp − ω1 + εi1t − εi0t > 0); this purchase probability will therefore identify ω1. In period 17,

the individual runs out and her purchase probability will be Pr(−αp+ ν + εi1t − εi0t > 0), so the

purchase probability at zero inventory would identify the stockout cost ν.

The discount factor, β, will be identified from the slope of the purchase probability in areas where

the myopic consumer’s flow utility is flat as inventory drops because of the exclusion restrictions

made in Assumption X1. In these areas of the state space, the purchase probability rises when

inventory drops for a forward-looking individual is a result of Proposition 1. In addition, as β

increases the probability of purchase rises for low values of inventory, which is a result of Proposition

2. Consumers who are more forward-looking will try harder to avoid stockouts, and this can be seen

in larger slopes of the purchase probability for larger values of β. As a final note, we have not yet

discussed the identification of α, the price coefficient. Technically, this coefficient is identified from

purchase probabilities when the consumer has M = 3 packages in inventory. Because we assume

that when an individual has M packages in inventory she throws away her current package and

sets her inventory level to Mb, the purchase probability for a myopic consumer in such a situation

would be Pr(−αp+ εi1t − εi0t > 0). However, in general it is preferable to obtain identification of

the price coefficient from price variation, rather than an assumption about how inventory is filled

up when a consumer reaches her maximum storage capacity.

We now turn to a more formal discussion of identification. The researcher observes consumer

choice probabilities at different values of the inventory state. These choice probabilities are functions

of choice-specific values, which we define as the present discounted value of purchasing or not

purchasing. To simplify the analysis we follow Fang and Wang (2015) and Abbring and Daljord

(2016) and assume that the choice-specific error term follows a Type 1 Extreme Value distribution.

Denote P̂ (I) as the probability of purchase at inventory level I. Define vj to be the choice-specific

value of buying j packages at inventory level I and parameter vector θ = (α, β, ν, ω1, ..., ωM ):

vj(I;θ) = −αp1{j = 1} − ωB(j,I,1) − ν1{I = 0}+ βV (max{I + bj − 1, 0}). (15)

Under the logit error assumption we can write the choice probabilities in terms of choice-specific

17



5 10 15

0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5

Period

T
h
e
o
re

ti
c
a
l 
C

h
o
ic

e
 P

ro
b
a
b
ili

ty

β = 0

β = 0.5

β = 0.75

β = 0.99

Figure 2: Probability of purchase in period t given inventory of 16 (2 packages) in period 0, where

c = 1 for all periods. Parameter values ν = 0.25, ω1 = 0.1, ω2 = 0.25, ω3 = 0.75, η = 1, M = 3,

p = 2, and logit error term.

values as follows

log(P̂ (I))− log(1− P̂ (I)) = v1(I;θ)− v0(I;θ). (16)

If a consumer can hold up to M packages, then the number of parameters we need to identify is

M + 3: there are M different values of ωB, there is the stockout cost ν, the discount factor β, and

the price coefficient α. As a result, we need to be able to compute the moments in equation (16) for

at least M+3 different values of inventory. In particular, the preceding informal discussion suggests

that in order to identify all the model parameters, one must at least observe choice probabilities

when inventory is 0 (to pin down the stockout cost), 1 (to pin down ω1), and at least once for every

possible number of packages a consumer can hold: In other words, if a consumer can hold up to M

packages we need to observe the choice probability at a value of I in the interval [2, b+1], the interval

[b+ 2, 2b+ 1], and so on up to [(M − 1)b,Mb] (to pin down ω2 up to ωM and α). Additionally, for

at least one package size we should observe two inventory levels so we can compute the slope of the

purchase probability with respect to inventory, which will map into the discount factor as a result
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of our exclusion restriction. Denote the values of inventory defined thus as I = (I1, I2, I3, ..., IM+3),

where I1 = 0, I2 = 1, and I3 through IM+2 are in the intervals [2, b], [b + 1, 2b], etc, and the final

value IM+3 is the value that lies in one of the intervals [2, b], [b+1, 2b], etc, but is different from I3

through IM+2.

Define the parameter vector we want to identify as θ = (α, β, ν, ω1, ..., ωM ), and denote the

difference in choice-specific values on the right hand side of equation (16) as ∆v(I;θ) = v1(I;θ)−

v0(I;θ). Define the vector of choice-specific value differences ∆v(I;θ) to be the vector of ∆v(I;θ)’s

evaluated at the inventory levels I: ∆v(I;θ) = (∆v(I1;θ),∆v(I2;θ), ..., v(IM+3;θ)). Suppose the

researcher observes choices generated by the model outlined above, at a parameter value θ0. Given

a dataset with N observations, we define the vector of such choice probabilities for the state vector

I as P̂ 0(I;N). The parameters of the dynamic discrete choice model proposed in our paper are

identified if the solution to the system of equations

∆v(I;θ) = lim
N→∞

log(P̂ 0(I;N))− log(1− P̂ 0(I;N)) (17)

in terms of θ is θ = θ0. Our assumption that the dimension of ∆v(I;θ) is at least M + 3, which

equals the number of parameters, is necessary to allow for identification. If the system of equations

defined by (17) is full rank at θ = θ0, then the parameter θ0 is locally identified as a consequence of

the Implicit Function Theorem: in some neighborhood of θ0 there is a unique solution to equation

(17) and the solution is θ = θ0. We formalize the assumptions necessary for local identification

in Online Appendix 12.1. The rank condition can be verified by the researcher for a given set of

choice probabilities.

Abbring and Daljord (2016) provide examples of dynamic discrete choice model specifications

where local identification holds but global identification fails: there may be two or more distinct

values of the discount factor, and distinct flow utility parameters, that can rationalize the same

observed choice probabilities.10 Abbring and Daljord (2016) argue that if there are two states,

IA and IB, where the difference v1(IA;θ) − v0(IA;θ) − (v1(IB;θ) − v1(IB;θ)) is monotonic in β,

then the model parameters are globally identified. In our case, this monotonicity is difficult to

verify when there is an error term since the value functions are complicated functions of all the

model parameters. However, we can gain some insight from analyzing the explicit formulas for

the choice-specific values derived in the proof of Proposition 2. Suppose that η is small, and that

IA and IB are chosen such that storage costs do not change (i.e., the exclusion restriction holds),

and suppose WLOG that IA > IB and α = 1. Then the difference in choice-specific values will be

10Here the parameters are distinct in the sense that there is an open neigborhood around each one that does not

contain the others.
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approximately βIAp− βIBp. Generally the equation βIAp− βIBp = log(P̂ (IA))− log(1− P̂ (IA))−

(log(P̂ (IB))− log(1− P̂ (IB))) will have two solutions strictly between 0 and 1.11 We can guarantee

a unique solution to β however if we observe choice probabilities at inventory values of IA, IB,

IA + 1, and IB + 1, and if the storage costs do not change in this interval. In this case there will

be two equations to solve for β:

βIB+1(βIA−IB − 1) = (log(P̂ (IA + 1))− log(1− P̂ (IA + 1))− log(P̂ (IB + 1))− log(1− P̂ (IB + 1)))/p

βIB (βIA−IB − 1) = (log(P̂ (IA))− log(1− P̂ (IA))− log(P̂ (IB))− log(1− P̂ (IB)))/p

Note that if we divide the first equation by the second we can solve uniquely for β, which will

be the ratio of log choice probability differences. Although the above example required observing

choice probabilities at four values of inventory in some interval where storage costs do not change,

it would be sufficient to observe choice probabilities at three values of inventory that are one unit

apart, i.e., IB, IA = IB + 1, and IA + 1.

We make two comments on three simplifying assumptions stated at the beginning of the section.

First, the assumption that prices do not vary, and that consumers can only purchase one package

at a time, can be relaxed. If we relax these assumptions, identification in fact becomes easier,

because there are more moments to help pin down the parameters. The tradeoff is that the model

becomes more complicated to analyze, and we must completely rely on numerical solution of the

model, which we leave to Section 6.2. The second comment relates to the assumption of inventory

that is integral and consumption rates that are fixed over time. Under stochastic consumption

rates, we can prove analogs to Propositions 1 and 2 (see Online Appendix 11). As a result, the

identification arguments will not be substantially different. Continuous inventory should also not

be problematic: even if inventory is continuous, as long as the exclusion restrictions hold there

will be some areas of the state space where current utility does not vary with inventory, but the

value function will if β > 0. We explore identification with continuous inventory (and a particular

function form assumption on the storage cost function) using artificial data experiments in Online

Appendix 13.

11To see this, note we can write βIA −βIB =
(

log(P̂ (IA))− log(1− P̂ (IA))− (log(P̂ (IB))− log(1− P̂ (IB)))
)

/p as

βIB (βIA−IB −1) =
(

log(P̂ (IA))− log(1− P̂ (IA))− (log(P̂ (IB))− log(1− P̂ (IB)))
)

/p. The difference βIA−βIB ≤ 0

and equals zero at β = 0 and β = 1. The derivative of this equation will be βIB−1(IAβ
IA−IB − (IA − IB)). This

derivative will be positive if β > (IB/IA)
1/(IA−IB), and negative otherwise. The term βIA − βIB thus has a unique

minimum, and for any value of
(

log(P̂ (IA))− log(1− P̂ (IA))− (log(P̂ (IB))− log(1− P̂ (IB)))
)

/p between 0 and the

minimum of the function there will be two solutions.
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6 Identification with Unobserved Inventory

Scanner datasets that are typically used by researchers to estimate stockpiling models do not

track consumer inventory, meaning that the identification strategy based on exclusion restrictions

described in the previous section does not directly apply. In this section we discuss the type

of variation in the data that can identify the model parameters when inventory is not observed.

Although inventory is unobserved, the time between purchases, which is correlated with inventory, is

observed. As a result, the discount factor may be identified from the impact of interpurchase time on

a consumer’s purchase probability, which is captured by the purchase hazard. The complication here

is that inventory is unobserved, and it must be integrated out when forming the likelihood. Since

this probability is analytically complicated, most of our analysis focuses on numerical simulations.

In this section we relax the assumption of a constant consumption rate, and allow the consump-

tion rate cit to be stochastic. In the numerical solutions below we will assume that the package

size, b, is 8 units, and consumption shocks are in the set {1, 2}. We denote the probability that an

individual receives a consumption draw of 1 as πc. We will allow consumers to store up to M = 3

packages and assume the error term is standard logit. When we compute the purchase hazard, we

will need to simulate out the steady state distribution of inventory in the population. To do this

we will simulate purchases for 500 individuals for 600 periods. We will assume that in period 0 all

individuals have 0 inventory. We find that aggregate inventory appears to reach the steady state at

around 50 periods, so we will use periods 400 to 600 to compute steady state inventory. For much

of the discussion (except the final discussion of Section 6.2) we will also hold prices fixed over time

at a level of 2.

Remarks: It is worth comparing our approach here with that in Hendel and Nevo (2006b),

which proposes a series of tests for the presence of forward-looking behavior in storable goods

markets. The paper develops a stockpiling model with endogenous consumption from inventory,

and where consumers are able to purchase quantities in continuous amounts. In their setting,

the key difference between a myopic consumer and a forward-looking consumer is that a myopic

consumer will alway purchase exactly the amount she will consume in the period where the purchase

occurs, while a forward-looking consumer will purchase for future consumption. An implication of

the model developed by Hendel and Nevo (2006b) is that the purchase hazard will be completely

flat for myopic individuals, which allows a clean test for the presence of forward-looking behavior.

This type of analysis will apply well to settings where consumers have the ability to purchase

the product category in small increments: for example, canned tuna or soup. A key difference

between Hendel and Nevo (2006b)’s setting and ours is that in our setting myopic consumers will

purchase more than they can consume in a single period, since package sizes are large relative to
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consumption rates. As a result, in our setting the purchase hazard will not be completely flat

for myopic individuals, violating the implications of Hendel and Nevo (2006b). Because of this

complication, we rely on exclusion restrictions to separate out myopic consumers from forward-

looking consumers, rather than relying on identification from quantity purchased. Because we rely

on exclusion restrictions, we can identify the discount factor in situations where consumers are

only able to purchase a single package in a purchase occasion. Another key difference is that in

our setting we assume consumption rates are exogenous, in the sense that consumers use enough

of a product to satisfy an exogenous consumption need (for example, one does not get extra utility

from consuming more laundry detergent than is needed to do the weekly laundry, or one seldom

gets extra utility from drinking more coffee than his/her consumption need). We note that the

exclusion restriction may be violated in a setting where consumption is endogenous, since optimal

consumption (and hence flow utility) can be a function of inventory.

6.1 Identification with Unobserved Inventory, and no Storage Costs

We begin by considering the case where ωi = 0 for i = 1, ...,M . In Figure 3 we plot the aggregate

probability of purchase in period t + τ given a purchase in period t for different values of the

discount factor. The discount factor primarily affects two features of the purchase hazard. The

first feature is the slope of the purchase hazard in the periods immediately after a purchase occurs.

For our particular parameterization, a purchase increases an individual’s inventory by 8 units. Since

consumption shocks are at most 2 units, it will take someone at least 4 periods to run out and

incur a stockout cost. To see the implications of this, consider the purchase hazard for a myopic

individual, shown by the black line in Figure 3. For the first 3 periods after a purchase, the purchase

hazard is flat, since a myopic consumer’s flow utility is fixed over this interval. In contrast, for a

forward-looking consumer the purchase hazard has a positive slope over the first 3 periods, and

this slope increases as the discount factor rises. This occurs because the expected future value of

purchase rises as inventory drops, as we showed in Proposition 2. It is notable that without storage

costs, there is a clean test for whether individuals are forward-looking or not - if individuals are

myopic the purchase hazard should be flat for the initial few periods after a purchase, provided

that it takes some time for individuals to run out of a package after a purchase (which we maintain

in Assumption X3). If consumption rates are very high, then the purchase hazard will always be

flat, and the discount factor will not be identified. Intuitively, if individuals always use up all their

inventory right after a purchase, then it will be difficult or impossible to tell if individuals are

myopic or not. We discuss this implication in a more formal context in Online Appendix 12.2.

The second, and more subtle difference between the purchase hazards, is that the purchase
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hazard becomes smoother as β rises (note that this feature of the purchase hazard also arises in the

purchase probabilities with observed inventory in Figure 2). The intuition here is that a myopic

consumer is not willing to trade off future utility for current utility, so her purchase hazard will

start to rise sharply at τ = 4, when people in the population start to run out. In contrast, a

forward-looking consumer will be more willing to purchase early, and so the purchase hazard will

be smoother for such a consumer.
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Figure 3: Probability of purchase in period t+τ given purchase of 1 package in period t. Parameter

values ν = 0.25, πc = 0.5, ω1 = 0, ω2 = 0, ω3 = 0, η = 1, M = 3, p = 2, and logit error term.

The identification problem with unobserved inventory becomes more complicated than with

observed inventory since we have to consider separate identification of the discount factor β, the

stockout cost ν, and the probability of a low consumption shock πc. A feature of the model that

aids identification is that ν and πc have very different effects on the purchase hazard than β. Figure

4 shows how ν affects the purchase hazard, for low and high values of the discount factor. Most of

the impact of a change in ν on the purchase hazard occurs during later rather than earlier periods.

This is sensible since ν should have more impact on purchase decisions when consumers begin to

run out. Importantly, the shape of the purchase hazard is preserved as ν changes - for the low

value of β, the purchase hazard displays a lot of curvature around period 4 for different values of
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ν. Similarly, the purchase hazard is very smooth for high values of β for different values of ν. The

impact of πc on the purchase hazard for different values of β is shown in Figure 5. For low values of

β, the impact of changing the probability of a low shock is similar to that of ν. For high values of

β, changing πc shifts the purchase hazard up and down. Our analysis suggests that ν and πc could

be difficult to separately identify if β is low. Indeed, we encounter this problem in our empirical

application in section 8.2, and need to calibrate the consumption rate prior to estimating other

structural parameters.12 The price coefficient, α, will shift the overall purchase probability and will

simply shift the purchase hazard up or down, and so (in the absence of price variation) it will be

identified by the average purchase probability.
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Figure 4: Probability of purchase in period t+τ given purchase of 1 package in period t, for different

values of the stockout cost. Parameter values πc = 0.5, ω1 = 0, ω2 = 0, ω3 = 0, η = 1, M = 3, p = 2,

α = 1 and logit error term.

6.2 Nonzero Storage Costs

If individuals have storage costs, the identification argument becomes somewhat more complicated

because increases in storage costs can also increase the slope and decrease the curvature of the

purchase hazard. To see why, note that when an individual makes a purchase, there is some chance

that she has a small amount of a package left over. An individual in this situation will use up

the package within a few periods after the purchase, and will observe a decrease in their storage

costs. That decrease in storage costs will lead to an increase in the probability of a purchase. To

12In the empirical model consumption rates are constant, but πc essentially controls the average consumption rate

in our simulation, which is πc+2(1−πc). A similar identification issue should arise even with a constant consumption

rate.
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Figure 5: Probability of purchase in period t+τ given purchase of 1 package in period t, for different

values of πc. Parameter values ν = 0.25, πc = 0.5, ω1 = 0, ω2 = 0, ω3 = 0, η = 1, M = 3, p = 2,

α = 1 and logit error term.

show that this is the case, in Figure 6 we compute the purchase hazards for different discount

factors, with ω3 = 0.5. The purchase hazard for a myopic consumer is positively sloped in the first

3 periods after a purchase - recall in Figure 3 a myopic consumer’s purchase hazard was flat in this

region, suggesting that the positive storage cost parameter is responsible for the increase in slope.

Additionally, the black line in in Figure 6 is also smoother than the one in Figure 3, suggesting

that storage costs can smooth out the purchase hazard.

How do we approach the issue of identification in the presence of storage costs? In the following

discussion we explore two different avenues. One avenue is to argue that, because of the exclusion

restrictions, there will not be enough storage cost parameters to completely fit the purchase hazard.

In our example, we compute the purchase hazard for 8 periods, which means we have at least 8

moments. The number of parameters we have to fit these moments is 7 - three storage cost

parameters (ω1, ω2,and ω3), the stockout cost parameter (ν), the discount factor (β), the price

coefficient (α), and the probability of a low consumption shock (πc). Focusing on the discount

factor, it is the case that even in the presence of storage costs, an increase in the discount factor

still increases the slope of the purchase hazard (at least in early periods) and decreases its curvature.

As a result, unless a rank condition fails letting the discount factor be free will provide an improved

fit to these features of the purchase hazard. We state this rank condition in Online Appendix 12.2 -

local identification can be obtained if the rank of the Jacobian of the theoretical purchase hazard is

at least as large as the number of model parameters one needs to estimate. The exclusion restrictions
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Figure 6: Probability of purchase in period t+τ given purchase of 1 package in period t. Parameter

values ν = 0.25, πc = 0.5, ω1 = 0, ω2 = 0, ω3 = 0.5, η = 1, M = 3, p = 2, α = 1 and logit error term.

X1 through X3 will help to guarantee that this rank condition holds. Exclusion restriction X1

reduces the number of model parameters that one needs to estimate to something manageable.

Assumption X3 guarantees that individuals will not run out so quickly that the purchase hazard

becomes degenerate. A caveat to the formal approach is that the rank condition which may be

difficult to verify in practice. Moreover, the identification result will be local, rather than global,

as global identification will be more difficult to verify.

A second solution is to focus on additional moments that may be generated by price variation,

and stockpiling in response to price variation. A forward-looking consumer should become more

sensitive to discounts as her inventory drops, since the value of avoiding future stockouts is higher

the higher is the discount factor. To examine this, we analyze an extension to the model where

we allow the price variable to take on two values, 1 and 2, where the value of the price follows a

Markov transition process. The probability of the price 2 given 2 occurred the previous period is

0.8, and the probability of 2 given last period’s price was 1 is 0.9. Thus most of the time prices

are high, but periodically they drop to the low price for a short time, as is commonly observed in

scanner data for storable goods. Additionally, we relax the restriction that individuals can only
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purchase a single package, and allow individuals to purchase up to 2 packages at once. Because

we assume that the transition process for prices is known to consumers, individuals may stock up

when prices are low.

One measure of an individual’s propensity to stock up is the amount by which the probability

a person buys 2 units relative to 1 unit increases when the price drops. Intuitively, if a consumer

is myopic she has no need to purchase more than a single package - as a result, the propensity to

purchase more than one package should be driven entirely by the error distribution. However, a

forward-looking consumer should become relatively more likely to purchase multiple units at low

prices, and this likelihood should increase as inventory drops. In Figure 7, we plot the ratio of

probability of buying 2 units to 1 unit at the low price minus the same ratio at the high price, given

t periods have elapsed since the last purchase occured. The left panel shows how this probability

difference changes if there are no storage costs. It is notable that for a myopic individual, the

propensity to stockpile in response to deals is completely unaffected by inventory, since the moment

we show in the graph is totally flat. However, this moment increases as inventory drops for forward-

looking individuals, and the slope of the curve rises with larger values of β. The right panel shows

the same moment with positive storage costs. Here, the propensity to stockpile in response to low

prices still rises if inventory is sufficiently low. An important point to note is that if the discount

factor is low, the slope of the lines are relatively unaffected by the storage cost (compare the black

and red lines on the left panel to the right panel). However, if the discount factor is high, the storage

costs decrease the slope of the line, which is intuitive - if storage costs are high and individuals

are forward-looking they should have less incentive to stockpile at low prices. The fact that the

storage costs and discount factor have the opposite effect on the propensity to stockpile, while they

both increase the slope of the purchase hazard, will help us to separately identify them. We note

that price variation will also identify the price coefficient, but the price coefficient can be identified

from the average change in the purchase probability for the low versus the high price; the preceding

argument relies on how stockpiling in response to deal sensitivity changes as inventory changes.

6.3 Identification with Consumer Unobserved Heterogeneity

All of the analysis above has assumed that there is no persistent unobserved heterogeneity across

consumers. A formal argument for identification with persistent unobserved heterogeneity would

rely on the time dimension of our data going to infinity at a rate that is fast enough relative to

the cross-sectional dimension that one could estimate the purchase hazards and average purchase

quantities described above on an individual basis. Using this type of argument one could, in

principle, identify individual-specific discount factors. In field settings infinite amounts of data are
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Figure 7: Ratio of probability of buying 2 units to 1 unit at p = 1 minus the same ratio at p = 2

in period t, given purchase of 1 package in period 0. Parameter values ν = 0.25, πc = 0.5, ω1 =

0, ω2 = 0, ω3 = 0 or 0.5, η = 1, M = 3, and logit error term.

not available, and so rather than allowing parameters to be individual specific, the researcher would

have to rely on distributional assumptions about the unobserved heterogeneity to aid identification.

7 Artificial Data Experiments

To provide further evidence that the model above can be identified in realistic settings, and to better

understand when identification may become more difficult, we perform a series of artificial data

experiments. As in the previous section, we perform our analysis on a dataset of 500 households

who make purchases over 600 periods. We assume in period 1 everyone starts with 0 inventory;

since in real data consumers will likely have been making purchases prior to the beginning of the

data collection, we assume that the researcher only observes periods 201 to 600. The estimation

method we use is in this section is simulated maximum likelihood. Since initial inventories are

unobserved to the researcher, they must be simulated out. The approach we take is to use periods

201 to 400 to simulate initial inventories, and periods 401 to 601 to estimate parameters. In period

201 we assume all consumers begin with zero inventory, and draw a series of consumption shocks

for each consumer. With simulated consumption shocks and observed purchase quantities one

can construct an estimate of inventory in period 401. Our procedure of using the first part of

a sample to construct inventories is standard in the literature (Erdem, Imai, and Keane (2003),

Hendel and Nevo (2006a)). We use 100 simulated paths of consumption shocks for each household

in constructing the likelihood.
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Table 1: Price Transitions Used in Artificial Data Experiment

pt = 0.5 pt = 1 pt = 2

pt−1 = 0.5 0.1 0 0.9

pt−1 = 1 0 0.1 0.9

pt−1 = 2 0.1 0.1 0.8

To estimate the price coefficient we need sufficient price variation. We allow for 3 prices and

use the price transition matrix shown in Table 1 to generate price processes. For the rest of the

structure of the model, we allow consumers to purchase 2 packages at most, the package size b = 8,

consumption shocks are in the set {1, 2}, and consumers can hold at most 3 packages. The error

term is assumed to be logit and the weight on it is set to η = 1.

The results of the artificial data experiment are shown in Table 2. The top panel shows how

the parameter identification is affected by including storage costs and by letting the storage cost

function be more flexible. In the first 3 columns of this panel, we estimate the model in a situation

where storage costs are zero. The first column shows the estimated parameters, the second the

standard errors, and the third is the true values of the parameters. All the parameters are well

identified. The next three columns show how the results change if we allow ω3 to be free, while

holding ω1 and ω2 fixed at 0. The parameter estimates are still close to the truth, although the

standard errors are quite a bit larger. If we allow all 3 storage cost parameters to be positive, and

estimate all of them, the standard errors rise significantly, although the parameter estimates are

relatively close to the truth.13 Note that the precision on the discount factor drops as the number

of storage cost parameters increases. This highlights the importance of exclusion restrictions. They

allow for more precise identification of the discount factor when it is applied to more of the state

space: for instance, in cases where it might be reasonable to assume that the cost of storing the

first 1 or 2 packages is 0. Turning to the other parameters, the storage cost coefficients are also

imprecisely estimated, especially ω3 - its standard error is three times higher than the estimate

from the situation where ω1 and ω2 are fixed. This also highlights the fact that assuming zero

storage costs for the first few packages may aid identification. It is notable that all the other model

parameters, such as α, ν and πc, are well-identified even if storage costs are flexible.

The bottom panel of the table shows how identification of the discount factor varies as consumers

13We do not show the results when we allow for 2 storage costs to be free to save space; in that case the standard

errors are a little higher than when we have only a single storage cost free.
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Table 2: Artificial Data Experiment: Results

No Storage Costs ω2 Free ω1, ω2 Free

Parameter Est S.E. Truth Est S.E. Truth Est S.E. Truth

Price Coeff (α) 1.004 0.007 1 1.002 0.014 1 1.001 0.015 1

Stockout Cost (ν) 0.098 0.01 0.1 0.103 0.006 0.1 0.101 0.036 0.1

Discount Factor (β) 0.957 0.016 0.95 0.957 0.032 0.95 0.954 0.067 0.95

ω1 - - 0 - - 0 0.105 0.059 0.1

ω2 - - 0 - - 0 0.243 0.051 0.25

ω3 - - 0 0.499 0.055 0.5 0.508 0.142 0.5

πc 0.489 0.007 0.5 0.49 4.72e-04 0.5 0.5 0.002 0.5

β = 0.001 β = 0.6 β = 0.99

Parameter Est S.E. Truth Est S.E. Truth Est S.E. Truth

Price Coeff (α) 1.002 0.007 1 1.002 0.009 1 1 0.014 1

Stockout Cost (ν) 0.096 0.022 0.1 0.1 0.011 0.1 0.102 0.006 0.1

Discount Factor (β) 0.001 0.149 0.001 0.619 0.052 0.6 0.994 0.034 0.99

ω1 - - 0 - - 0 - - 0

ω2 - - 0 - - 0 - - 0

ω3 0.479 0.061 0.5 0.47 0.044 0.5 0.488 0.059 0.5

πc 0.492 0.001 0.5 0.496 2.80e-04 0.5 0.494 4.03e-04 0.5

get more forward-looking. The first column shows the case where consumers are essentially myopic.

In this case, the discount factor is not precisely identified. The reason for this is that a consumer

with a positive, but low discount factor such behaves very similarly to a myopic consumer. As the

discount factor rises, the precision with which we can estimate it also rises.

Before turning to the empirical application, we note that we have also performed our artificial

data experiments under the assumption that inventory is discrete rather than continuous. This

exercise is presented in Online Appendix ??. Our findings in that section are similar: we can

identify the discount factor well in general.
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8 Empirical Application

8.1 Data

To demonstrate how to apply our technique in practice we estimate a stockpiling model using

individual level IRI data in the laundry detergent category (Bronnenberg, Kruger, and Mela 2008).

An observation in our data is a household-week pair. The data we are currently using covers the

years 2001 through 2007. Estimation uses the final 3 years of the data while the first 4 are used to

construct initial inventories. In our sample we include households who only purchase the 5 most

popular sizes of detergent: the 50 oz, 80 oz size, 100 oz size, the 128 oz size, and the 200 oz size. We

restrict the sample to include households who purchase from the top 25 brands by overall purchase

share. We also allow consumers to purchase up to 5 bottles units of a size - for instance people will

sometimes purchase 2 or 3 bottles of the 100 oz bottle. We remove households who ever purchase

different products within the same week (this is very infrequent), or who purchase more than 5

bottles of a product in a week. We only include households who make at least 5 purchases between

2005 and 2007, and for whom the maximum number of weeks between purchases is smaller than 40

weeks. This will cut out households who disappear from the sample for long periods of time, and

who may be making laundry detergent purchases that aren’t recorded in the data. Additionally,

for all households in the data we compute an estimate of the weekly consumption rate and drop

individuals for whom the estimated rate is extremely high or low. Extremely low consumption

rates likely indicate missing data or purchases made outisde the store sample. Our final sample

contains 540 households.

Some statistics on our sample are shown in Table 3. An average household makes a purchase

every 10 weeks, and in most weeks no purchase occurs. In our sample, consumers mostly purchase

the smallest size bottle containing 100 ounces. Table 4 shows the purchase shares (the number

bottles purchased of a particular brand divided by the total number of bottles purchased in the

sample) as well as average prices (in cents per ounce) for each brand. (When constructing the

sample we initially include the top 25 brands by purchase share. After reducing the sample to 540

households by removing those who purchase too infrequently or who purchase too much, only 18

brands have positive purchases) We are also interested in understanding the relationship between

discount factors and demographic variables. Sample averages of these demographic variables are

shown in Table 5. We include four demographic variables, all of which are coded as dummy

variables. The income variable codes whether the household’s income is above $35,000 (the median

in our estimation sample), whether the household head’s age is about 55 years (also the median

household age in the sample), whether the household head has a college degree, and whether the
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Table 3: Characteristics of Household Data

Number of households 540

Avg interpurchase time (weeks) 9.9

Fraction of weeks with 0 bottles bought 0.902

Fraction of weeks with 1 bottles bought 0.072

Fraction of weeks with 2 bottles bought 0.018

Fraction of weeks with 3+ bottles bought 0.026

Fraction of purchases where 100 oz size chosen 0.709

Fraction of purchases where 128 oz size chosen 0.146

Fraction of purchases where 200 oz size chosen 0.096

Fraction of purchases where 50 oz size chosen 0.029

Fraction of purchases where 80 oz size chosen 0.02

household has 3 or more individuals in it. The estimation sample somewhat oversamples elderly

households and households with 2 individuals, relative to the U.S. population.

8.2 Estimation Details

This section outlines the estimation procedure used to recover the model parameters. Although we

argue above that stockpiling models can in principle be identified under relatively flexible specifica-

tions of the storage cost function and distribution of consumption shocks, in practice such flexibility

can greatly increase the computational burden of estimation. With respect to consumption shocks,

we have found that modeling stochastic consumption shocks greatly increases the computational

burden of estimation since the shocks need to be integrated out while estimating the other model

parameters. Therefore, instead of using simulated maximum likelihood to estimate our model, we

use the modified Bayesian MCMC algorithm proposed by Imai, Jain, and Ching (2009).14 As we

use MCMC to estimate our model, we would need to add another Gibbs step to our estimation

routine where we draw the consumption shocks for every individual and every period in the data.

Moreover, for standard distributions of consumption shocks (such as a normal distribution) the

posterior density of the shocks given the data will not have a form that is easy to draw from, neces-

sitating the use of a Metropolis-Hastings step. Adding this step to the algorithm substantially slows

14Ching, Imai, Ishihara, and Jain (2012) provides a practitioner’s guide to this approach.
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Table 4: Brand Level Purchase Shares and Prices

Brand Purchase Share Price (Cents Per Ounce)

TIDE 22.6 8.63

XTRA 9.8 2.49

PUREX 10 4.84

ALL 7.1 5.65

ARM & HAMMER 10.4 4.71

ERA 6.1 5.26

DYNAMO 11.5 4.6

WISK 8.9 6.3

PRIVATE LABEL 4 3.53

CHEER 1.5 7.13

FAB 1 6.13

YES 2.4 4.51

AJAX FRESH 0.4 3.2

GAIN 0.5 6.18

AJAX 0.5 3.14

TREND 0.4 2.22

SUN 1 4.44

SOLO 1.7 3.88

IVORY SNOW 0.2 10.46

Table 5: Averages of Demographic Dummy Variables

Variable Average

HH Income ≥ $35,000 0.6

HH Head Age ≥ 55 0.59

HH Head has college degree 0.22

HH Size 3+ 0.36
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down convergence.15 As a result, we assume that consumption rates may vary across individuals,

but are fixed over time.

The other issue we introduced in the previous paragraph related to the specification of the

storage cost function and the way inventory is modeled. Significant computational complications

arise in situations where individuals can choose among more than a single size of bottle or brand.

In our dataset individuals choose among 5 different package sizes and 19 brands. Adding multiple

brands and package sizes to the stylized model will increase in the size of the state space. This is

because one would need to: (i) track inventory for each brand, and a price for each brand separately;

(ii) track the number of bottles of each size held in inventory, and model the order in which different

sizes of bottles are consumed. The inventory composition would matter to the consumer since her

storage cost will decrease as she uses up a bottle. A consumer who has two small bottles in her

inventory will lower her storage cost more quickly than someone who has two large bottles. An

additional complication is that multiple package sizes would require us to model the order in which

packages are consumed. For instance, if a consumer has a large bottle and a small bottle in her

inventory we would have to decide whether she would use the small bottle before the large one, or

vice versa. Below we will first describe how we handle the issues arising from including different

bottle sizes, and then from including multiple brands.

First, to deal with the issues arising from multiple bottle sizes, we make a simplification in how

we model storage costs. Specifically, we assume that each consumer has an upper bound on the

amount that they can store, which we call ωi, and that storage costs are zero before the amount

stored hits ωi. An intuitive explanation for this assumption is that a consumer has some storage

space dedicated to bottles of laundry detergent, and that she does not purchase more bottles than

what she can put in that space. Formally, our formulation of the storage cost is

s(I;ωi) =







0 if I ≤ ωi

∞ otherwise

With this formulation, we do not have to model the composition of bottles in inventory or the

order in which bottles are used. Even though we have put inventory directly into the storage cost

function for convenience, the exclusion restriction still holds since storage costs are zero until the

bound is reached, and a consumer will never purchase more than she can store. The storage cost

bound ωi is an individual specific parameter we estimate.

Second, to deal with issues arising from including brand differentiation, we follow Hendel and

15Some earlier empirical work on stockpiling such as Hendel and Nevo (2006a) and Sun (2005) has included

stochastic consumption shocks, but those papers did not model unobserved preference heterogeneity as we do.
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Nevo (2006a) and make two simplifying assumptions: (i) consumers only care about brand differ-

entiation at the time of purchase, and (ii) a form of inclusive value sufficiency modified from what

Hendel and Nevo (2006a) proposed (the modifications we use were introduced in Osborne (2017)).

Assumption (i) means that all utility from consuming a particular brand arises when a consumer

makes a purchase, and at the time of consumption only the overall level of inventory matters.16

This implies that the composition of the inventory does not matter, and it drastically reduces the

size of the state space. We assume that the flow utility received from a particular brand scales lin-

early with the number of packages purchased: the flow utility from purchasing j packages of brand

k is equal to j
J
ξik, where one of the ξik coefficients is normalized to zero.17 The assumption that

brand utility scales with the number of packages purchased relates the inclusive value sufficiency

assumption (ii), and we will show below that it will help reduce the size of the model’s state space.

The consumer’s flow utility function from buying j > 0 units of size x of brand k can be written

down as:

uit(k, x, j, Iit, εijt, pit, ci;θi) (18)

=







j
J
ξik − s(Bi,t+1(j, Iit, ci);ωi)− αipixktj + εijxkt if Iit + b(x)j ≥ ci

j
J
ξik − νi

cit−(Iit+b(x)j)
ci

− αipixktj + εijxkt otherwise
,

where b(x) is the number of ounces in a bottle of size x. Before we write down the Bellman equation

we need to clarify the elements of the consumer’s choice set. Consumers can either purchase nothing

(j = 0), or purchase j > 0 units of a single brand-size combination (k, x). Denoting the feasible set

of (j, k, x) combinations as C, the consumer value function can be written as:

Vit(Iit,pit) = Eεit max
(j,k,x)∈C

{uit(k, x, j, Iit, εijkt,pit, ci;θi) + βiEpi,t+1|pitV (Ii,t+1, pi,t+1)}, (19)

where pit is a vector of brand-size level prices. Our second assumption of inclusive value sufficiency

(IVS) simplifies the state space by assuming that rather than tracking individual prices, consumers

track the expected flow utility arising from each available package size, which are the inclusive

values. The standard formulation of IVS used in Hendel and Nevo (2006a) relies on the assumption

16Formally, assumption (i) means that the consumption utility, γi, does not depend on the brand purchased (as we

argued earlier, the parameter γi is not identified so we normalize γi = 0).

17We have made a restriction that the flow utility for the brand does not depend on the particular package size

chosen - ξ is not indexed by x. We experimented with allowing the ξik coefficients to vary across sizes, x, but found

it difficult to identify brand-package size interactions.
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of logit errors, and under their formulation the number of inclusive values equals the number of

packages multiplied by the number of packages an individual can purchase. Osborne (2017) shows

that the number of inclusive values one needs to track can be further reduced to only the number

of packages, under the assumption that flow utility scales with the number of packages purchased,

coupled with an assumption that the choice specific error can be written in the form of a nested

logit:

εijxkt = eijt +
j

J
vixkt,

where the distribution of vixkt is Type 1 extreme value and the distribution of eijt has a distribution

of the form denoted as C(λ) from Cardell (1997), where λ = j/J (note the C(λ) notation does

not refer to choice sets, but to a particular distribution derived in Cardell (1997)). Denoting C1

as the set of feasible (j, x) combinations and C2(x) as the set of brands which are available in size

x, the two aforementioned assumptions entail that an individual’s expected utility over brands for

choosing j packages of size x can be written as

j

J
Ωit(x) =

j

J
ln





∑

k∈C2(x)

exp (ξixk − Jαipixkt)



 .

Details on the above derivation are shown in Online Appendix 14. To summarize, our implemen-

tation of IVS assumes that consumers track Ωit(x), rather than each individual price pixkt. As a

result, the Bellman equation in equation (19) can be written as

V (Iit,Ωit) = ln





∑

(j,x)∈C1

exp{
j

J
Ωit(x)− νi

ci − (Iit + bj)

cit
1{Iit < ci}+ βiEΩit|Ωi,t−1

V (Ii,t+1,Ωit)}



 ,(20)

where Ωit is an X-dimensional vector of inclusive values for all package sizes.

To estimate the model we use the Bayesian estimation method of Imai, Jain, and Ching (2009)

(henceforth abbreviated IJC). Hendel and Nevo (2006a) propose a three step estimation method

that uses maximum likelihood, but their approah cannot allow for unobserved heterogeneity across

individuals. The IJC method can more easily handle unobserved heterogeneity than the standard

approach since one does not have to solve the value function repeatedly - rather one iterates on the

value function over the course of the MCMC chain making solution much faster.

In addition to the different specification used for storage cost, we make three other more minor

changes to the model specification from the specification used for artificial data experiments. First,

we incorporate a fixed cost of purchase, FCi, which is the disutility a consumer receives from
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making a purchase. We found it necessary to include this parameter in order to properly fit the

low frequency of purchase we observe in the data.

Second, rather than estimating consumption rates we calibrate them from the data. Consistent

with what we note earlier, we found it difficult to identify both the consumption rate and the

stockout cost together, and this problem seemed especially pronounced when the discount factor

was low. Thus, we set each individual’s consumption rate to the total quantity purchased over

the estimation period, divided by the total number of weeks where the individual is observed. To

ensure our results are not materially affected by this assumption, we perform a robustness exercise

where we increase every individual’s consumption rate by 25% and re-estimate the model.18 We

find our parameter estimates are relatively insensitive to the consumption rate.

The third change relates to store visits. In the data, there are some weeks where consumers

do not visit any store. To capture this, the third change we have made is that we assume there is

an exogenous probability a consumer goes to the store, which we estimate prior to estimating the

other model parameters. This probability is incorporated into consumers’ expectations when they

update their value functions in equation (20).

For simplicity of our exposition below, we outline how the solution of the model works when

it is assumed that consumers always visit a store. We found it difficult to identify unobserved

heterogeneity in brand coefficients, so we assume that all those parameters are fixed across the

population. However, we do allow for unobserved heterogeneity as well as demographic interactions

in the price coefficient, the cost of stocking out, the discount factor, the fixed cost of purchase, and

the upper bound on storage.

We allow for unobserved heterogeneity in all other model parameters except for two of the

brand coefficients - we found we could not identify all the variances of all the brand coefficients.

The basic steps of the algorithm are as follows:

1. Draw the population-varying parameters using Metropolis-Hastings,

2. draw the means and of population-varying parameters,

3. draw the variance of population-varying parameters,

4. draw the population-fixed parameters using Metropolis-Hastings, and

18If an individual always purchases more of a product at the time she runs out, which we might expect with

necessities such as laundry detergent, the calibrated consumption rate will equal the underlying consumption rate.

We have found in simulations that if stockout costs are low enough that individuals sometimes wait a few periods

after running out to make a purchase, the calibrated rate somewhate understates the actual consumption rate.
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5. update the value function.

We describe how we implement steps 1 to 4 in Online Appendix 15.1, and step 5 in Online

Appendix 15.2. Some other details related to the construction of the inclusive value transition

process and setup of the MCMC chain are described in Online Appendices 15.3 and 15.4.

8.3 Estimation Results

This section presents our estimation results. Table 6 shows the estimates of the brand parameters.

Since none of these parameters vary across the population, we present the posterior mean of the

6,000 saved draws as well as the 95% confidence interval around the estimated mean.19 Table

7 shows the estimates of the non-brand model parameters: the price coefficient, stockout cost,

discount factor, fixed cost of purchase, and inventory bound. Since all of these parameters vary

across the population, we show the 25th, 50th, and 75th percentiles as well as the population mean.

To compute an estimated moment, say the 25th percentile, first for each Gibbs draw we compute

the 25th percentile of the population distribution of taste draws for the price coefficient. The

estimated 25th percentile is the average of the 25th percentiles over all 6,000 saved Gibbs draws.

The second row shows the 95% confidence bounds on each of the estimated moments. There is a

significant amount of heterogeneity in all of these model parameters. Stockout costs, as well as the

fixed cost of purchase, are all large in utility terms.20 Turning to the discount factor, the population

average of the weekly discount factor is about 0.73, which is much lower than the value of 0.995

that would be consistent with rational expecations assumption. There is also some heterogeneity

across individuals in discount factors. This can be seen in Figure 8, where we plot a kernel density

of the average estimated discount factor for the population (for each individual, we compute the

average of the discount factor estimate for all saved draws). Most individuals’ discount factors lie

between about 0.6 and 0.85. Although our estimated discount factors are less than the rational

expectations benchmark assumed in past work, low estimated discount factors are consistent with

some other field studies that allow the parameter to be free (for example, Yao, Mela, Chiang, and

Chen (2012) estimate in data on cellular phone usage that consumer discount factors are around

0.91).

Taking our results at face value it may be tempting to argue that our estimates suggest con-

19In Figure 9 of Online Appendix 10 plots the estimated mean parameter b at each of the 10,000 Gibbs steps for

selected parameters. The parameters seem to stabilize at or before draw 4,000.

20The inventory bound is presented in hundreds of ounces, meaning that individuals have a large amount of free

space for laundry detergent.
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sumers are irrational, as weekly a discount factor of 0.73 would translate to a yearly discount factor

of close to 0, implying consumers are essentially myopic when making financial decisions where the

time horizon was on the order of a year. With a discount factor at this range, it essentially implies

that consumers make their purchase decisions thinking a couple of weeks ahead. Since consumer

package goods are small ticket items, such a short planning horizon may be reasonable and could

be rationalized as rational behavior taking into account sarced mental resources. When making

important financial decisions, consumers may behave in a more forward-looking way due to the fact

that more money is on the line - there are more gains to plan for a longer horizon and hence it is

worth exerting more mental resource to think further ahead.

Table 8 shows the estimated marginal impact of each demographic variable on all the parameters

which are allowed to vary across the population. The first column of this table shows the estimated

parameter at the modal value of the demographic variables. For example, if we denote the modal

demographics as Z then for the price coefficient we show in the first column exp(b′kZ), where k

is the row of b corresponding to the untransformed price coefficient. The table shows the value

averaged across saved draws. Each column shows how the estimated parameter changes when the

corresponding demographic variable is changed from zero to one. For example, if a household is

high income its price coefficient is closer to zero by 0.009 (i.e., higher income households are more

price sensitive). The results indicate that higher income households, older households, and larger

households are more forward-looking, although the overall effects of the demographics are not large

when compared to the amount of unobserved heterogeneity. This finding suggests that most of the

heterogeneity in discount factors seems to be driven by unobserved factors is consistent with the

results of Dubé, Hitsch, and Jindal (2014).

We also estimated two alternative model specifications as a robustness check. In one specifi-

cation, we increase all consumption rates by 25% and estimate the full model. We find that our

parameter estimates are similar to the basic specification. In particular the estimated discount fac-

tors are a little bit higher, as the average discount factor is about 0.79. We also estimate a version

of the model where we fix the discount factor to be zero across the population, to verify we are

indeed able to tell apart forward-looking from myopic behavior. The forward-looking model fits the

data better, having a Deviance Information Criterion of 82967.69, while that of the myopic model

is higher at 83132.69. The average marginal likelihood of the forward-looking model is -40988.16

while the myopic model is -41051.3. A complete set of results from these specifications are available

from the authors upon request.
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Table 6: Brand Parameter Estimates

Parameter Average Posterior Estimates 95% CI

XTRA -4.32 [-4.46, -4.17]

PUREX -3.91 [-4.02, -3.79]

ALL -2.92 [-3.01, -2.8]

ARM & HAMMER -3.13 [-3.25, -3.01]

ERA -3.27 [-3.38, -3.16]

DYNAMO -3.52 [-3.67, -3.35]

WISK -2.32 [-2.43, -2.21]

PRIVATE LABEL -5.66 [-5.81, -5.47]

CHEER -2.64 [-2.84, -2.43]

FAB -4.4 [-4.72, -4.12]

YES -4.94 [-5.21, -4.68]

AJAX FRESH -6.24 [-6.65, -5.87]

GAIN -4.64 [-4.98, -4.31]

AJAX -6.23 [-6.6, -5.86]

TREND -6.6 [-6.98, -6.24]

SUN -5.04 [-5.46, -4.64]

SOLO -6.11 [-6.41, -5.82]

IVORY SNOW -3.8 [-4.32, -3.33]

Notes: The first column of the table show the average of the estimated posterior

distribution of the brand parameters. The second shows the 95% confidence

bound around the mean. Brand coefficients for Tide (the most popular prod-

uct) are normalized to be zero across the population.
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Figure 8: Kernel Density of Individual-Specific Discount Factor Estimates.
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Table 7: Dynamic Parameter Estimates

Parameter 1st Quartile Median Mean 3rd Quartile

Price Coefficient -0.23 -0.16 -0.19 -0.11

[-0.25, -0.22] [-0.17, -0.16] [-0.2, -0.19] [-0.11, -0.1]

Stockout Cost 0.28 0.39 0.44 0.53

[0.24, 0.32] [0.34, 0.43] [0.39, 0.49] [0.46, 0.61]

Discount Factor 0.67 0.74 0.73 0.8

[0.59, 0.72] [0.66, 0.78] [0.65, 0.77] [0.73, 0.83]

Fixed Cost of Purchase -4.09 -3.38 -3.36 -2.68

[-4.19, -4] [-3.46, -3.3] [-3.42, -3.3] [-2.77, -2.6]

Inventory Bound 12.04 15.57 16.07 19.59

[9.32, 16.46] [13.04, 19.87] [13.58, 19.98] [16.07, 23.55]

Notes: This table shows average moments of the posterior distribution of the population distribution of the

dynamic parameters. For example, the median columns shows the average of the population median of a

given parameter, where the average is taken across MCMC draws. Square brackets show 95% confidence

intervals.

9 Conclusion

We note that our strategy to identify the consumer discount factor will work well for many, but

not all product categories. Product categories which fit our framework should have three key

features. First, they should be product categories where a consumer does not gain from consuming

beyond weekly needs. Products such as laundry detergent, ketchup, instant or ground coffee will

fit this criterion well. One does not gain utility from consuming more laundry detergent than

what is necessary to do laundry, or more ketchup than what is necessary to put on a hamburger.

Products where temptation is a large part of purchase, such as ice cream or potato chips, may not

“provide” exclusion restrictions. The reason for this is that the more of the product one has in

inventory, the more one is tempted to consume the product, and the more one gains in current

utility. The second key feature is that the cost of storing a product (in terms of space used) does

not in general change as inventory drops. This feature will exist in product categories where a

product’s package size does not decrease with inventory - outside of rare instances where one has

multiple packages and a package is used up, the space taken up by packages won’t change as the

amount in a package changes. For products such as laundry detergent, where the product is a liquid
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Table 8: Marginal Effects of Demographic Variables

Parameter Baseline HH Income HH Head Age HH Head College HH Size

Price Coefficient -0.174 0.009 0.005 0.003 0.004

[0.002, 0.015] [-0.002, 0.011] [-0.004, 0.009] [-0.002, 0.011]

Stockout Cost 0.579 -0.087 -0.091 -0.027 -0.049

[-0.117, -0.058] [-0.121, -0.061] [-0.055, 0.001] [-0.075, -0.022]

Discount Factor 0.646 0.036 0.038 0.012 0.021

[0.021, 0.051] [0.022, 0.053] [-0.001, 0.025] [0.008, 0.034]

Fixed Cost of Purchase -1.945 -0.502 -0.516 -0.172 -0.305

[-0.651, -0.351] [-0.668, -0.367] [-0.331, -0.012] [-0.457, -0.153]

Inventory Bound 18.98 -1.228 -1.331 -0.418 -0.765

[-1.959, -0.431] [-2.074, -0.505] [-1, 0.12] [-1.397, -0.159]

Notes: This table shows the estimated impact of changing one of the demographic dummy variables from zero to one on a

particular parameter. The respective demographic dummy variables are defined to be 1 under the following conditions: Income

above $35,000; age of household head above 55; household head has a college degree; size of household is more than 2 individuals.

The baseline column shows the predicted value of a parameter at the mode of the demographic distribution. The modal values

are high income, older household head, no college degree, and two individuals in the household.

stored in bottles, this assumption will hold: the cost of storing the product only depends on the

number of bottles held, but not the amount of inventory within a bottle. If this were not the case,

we would not have exclusion restrictions because inventory would affect storage costs continuously,

which are part of a consumer’s current period payoffs. Product categories we think would work

well with our identification strategy include laundry detergent, ketchup, cereal, deodorant, facial

tissue, household cleaners, mustard, mayonnaise, margarine, peanut butter, or shampoo.

The third key feature is that the consumption rate is small relatively to package size, such

that it takes consumers several periods to use up a package. As we have argued throughout the

paper, both the slope and curvature of the purchase hazard will help identify the discount factor.

If consumers use up a package of the product very quickly, then the purchase hazard will have little

to no curvature, and it will provide less information about how forward-looking consumers are.

Consumer stockpiling behavior in consumer package goods is often cited as an example where

consumers are forward-looking. However, previous research (most notably, Erdem, Imai, and Keane
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(2003), Hendel and Nevo (2006a)) assumes (i) consumer are homogeneous in their discount factors,

and (ii) consumers do not arbitrage and hence discount factor can be set according to the prevail-

ing interest rate. By explicitly modeling storage costs to depend on number packages instead of

inventory, our model generates exclusion restrictions that have not been previously studied. By

exploring these exclusion restrictions and using recently developed estimation methods, we are able

to relax these two assumptions. To classical economists, our findings may be surprising because

consumers are not only heterogeneous in their discount factors, but their magnitudes are also sig-

nificantly lower than what the interest rate predicts. Our estimated weekly discount factors average

at around 0.69, lower than the value of 0.99 this is obtained if one uses a common interest rate to set

it. The differences are large and they could lead to material impact on the results of counterfactual

experiments conducted in prior research which fixes consumer discount factors.

For instance, Erdem, Imai, and Keane (2003) quantify the importance of consumer expectations

in their response to promotions using a dynamic structural model of purchases in the ketchup

category. The modeling approach in that paper has many similarities to ours, but the discount

factor is fixed to the rational expectations benchmark. Their paper finds that long run cross-

price elasticities are much greater than short run cross-price elasticities, and that temporary price

reductions drive category expansion rather than switching between brands. If the actual discount

factor is smaller than the calibrated value, then long run and short run elasticities cross-elasticities

should be closer to each other. As a result, if a manager were to incorrectly assume a value of

the discount factor that was too high, she would choose an optimal price that was too low and

react too much to competitor price changes. The paper also quantifies the impact on firm profits of

switching from a Hi-Lo pricing strategy to an Everyday Low Price Strategy, and finds for a leading

ketchup brand that such a change in strategy can increase profits. The increase in profits may be

driven by the fact that under Hi-Lo pricing, some of the current period increase in quantity arising

from a temporary price discount steals from future demand. If individuals are myopic they will

be less likely to stockpile at low prices, which will dampen this effect and may make Hi-Lo pricing

more profitable.

An important factor that drives the profitability of Hi-Lo pricing is heterogeneity in the ability of

consumers to stockpile (Hendel and Nevo (2013), Hong, McAfee, and Nayyar (2002)). Hi-Lo pricing

is a form of intertemporal price discrimination: price sensitive individuals will also tend to wait for

promotions, while price insensitive individuals will not stockpile and will usually be charged the

high price. Hendel and Nevo (2013) empirically examine the implications of banning intertemporal

price discrimination on welfare and profits, and find that intertemporal price discrimination is

profitable. In their paper, the discount factor is also fixed and the ability of consumers to stockpile
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is driven by differences in storage cost. Our paper allows for another dimension of heterogeneity:

differences across individuals with respect to the discount factor. Although we find evidence of

heterogeneity in individual discount factors, we also find most individuals are relatively myopic.

As a result, studies which fix the discount factor at a high value mightl overstate the profitability

of a Hi-Lo pricing strategy.

Although our approach relies on a fixed consumption rate, in situations where consumption is

endogenous a price promotion will lead to both increased current consumption, as well as stockpil-

ing, and it is managerially relevant to be able to separate the two drivers of the increase in purchase.

For example, Sun (2005) finds in two product categoryies that a temporary 25% price discount will

substantially increase consumption for two or three weeks after prices return to baseline levels. If

consumers are less myopic than the rational expectations baseline, then most of the consumption

increase arising from a temporary price discount will occur during the period when the discount

occurs.

Our results also have policy relevance, as Hendel and Nevo (2006a) argue that ignoring con-

sumers’ forward-looking incentives would lead to overestimation of price-cost margins, underesti-

mation of cross-price elasticities, and overestimates of the amount of substitution to the outside

alternative. The latter two findings imply that using estimates from a static demand model could

lead to misleading policy decisions in approving mergers (an antitrust authority that relied on static

demand estimates would be too lenient). However, our findings suggest that the standard practice

of setting the discount factor using the prevailing interest rate could generate the opposite outcome,

i.e., price-cost margins would be underestimated, and hence merger decisions would be made too

conservatively. In particular, it is common for researchers to use price-cost margins to test whether

firms collude. Using a discount factor that is too high would increase the incidence of type I errors,

i.e., rejecting the collusion hypothesis when it is indeed happening.

References

Abbring, J. and O. Daljord (2016). Identifying the discount factor in dynamic discrete choice

models. Working Paper.

Akça, S. and T. Otter (2015). Identifying the discount factor of forward looking consumers based

on consumption from inventory. Working Paper.

Bronnenberg, B., M. Kruger, and C. Mela (2008). The IRI marketing data set. Marketing

Science 27(4), 745–748.

Cardell, N. S. (1997). Variance components structures for the extreme-value and logistic distri-

44



butions with application to models of heterogeneity. Econometric Theory 13(2), 185–213.

Chevalier, J. and A. Goolsbee (2009). Are durable-goods consumers forward-looking? evidence

from college textbooks. Quarterly Journal of Economics 124(4), 1854–1884.

Ching, A., T. Erdem, and M. P. Keane (2014). A simple method to estimate the roles of learning,

inventories, and category consideration in consumer choice. Journal of Choice Modelling 13,

60–72.

Ching, A., S. Imai, M. Ishihara, and N. Jain (2012). A practitioner’s guide to bayesian

estimation of discrete choice dynamic programming models. Quantitative Marketing and

Economics 10(2), 151–196.

Chung, D., T. Steenburgh, and K. Sudhir (2013). Do bonuses enhance sales productivity? a

dynamic structural analysis of bonus-based compensation plans. Marketing Science 33(2),

165–187.

Coase, R. H. (1972). Durability and monopoly. Journal of Law and Economics 15, 143–149.

Crawford, G. and M. Shum (2005, July). Uncertainty and learning in pharmaceutical demand.

Econometrica 37, 1137–1174.
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