
Online Appendix for

Identification and Estimation of Forward-looking Behavior: The Case of Consumer

Stockpiling

Andrew Ching and Matthew Osborne

10 Appendix: Figures

0 2000 4000 6000 8000 10000

−0.
15

−0.
10

−0.
05

0.0
0

Price Coefficient Underlying Mean

Gibbs Step

Val
ue

0 2000 4000 6000 8000 10000

−0.
35

−0.
30

−0.
25

−0.
20

−0.
15

Stockout Cost Underlying Mean

Gibbs Step

Val
ue

0 2000 4000 6000 8000 10000

0.1
5

0.2
0

0.2
5

0.3
0

0.3
5

0.4
0

Discount Factor Underlying Mean

Gibbs Step

Val
ue

0 2000 4000 6000 8000 10000

−3.
0

−2.
5

−2.
0

−1.
5

−1.
0

Storage Bound Underlying Mean

Gibbs Step

Val
ue

Figure 9: Appendix Figure: Plots of Gibbs Draws for Selected Dynamic Parameters

48

11 Appendix: Extension of Theoretical Model to Stochastic Con-

sumption Rate

This section shows how the proofs in the paper of Propositions 1 and 2 can be extended to a model

with stochastic consumption shocks. In this extension, we assume that the consumption shock

takes on two values, 1 and 2, and that the probability a low value shock is πc. We first prove the

following Lemma which corresponds to Lemma 1 from the paper:

Lemma 4 The value function V (I) is increasing in inventory for I < b+ 3 and sufficiently small

ω1.

Proof.

To begin, we propose an optimal policy which is that consumers only purchase when they run

out. Under this optimal policy the value functions will be:

V (0) = −p+ πcβV (b− 1) + (1− πc)βV (b− 2)− ω1,

V (1) = πcβV (0) + (1− πc)(−p+ βV (b− 1)− ω1),

V (2) = πc(βV (1)− ω1) + (1− πc)βV (0), ...

V (I) = πcβV (I − 1) + (1− πc)βV (I − 2)− ωB, ...

where B is the number of bottles at the end of the period.

We’ve defined the value functions as a system of equations we can solve. In particular for any

inventory level I we can solve backwards until we’ve expressed V (I) in terms of V (1) and V (0).

Let’s write

V (I) = AIV (1) +BIV (0)− CIω1.

For I ≤ b+ 1. For I > b+ 2 there will be terms involving ω2, etc, but we won’t worry about these

for now. The terms AI , BI and CI are positive and are functions of β and πc. We’ll focus more on

these terms later but for now one useful thing to note is that

AI = πcβAI−1 + (1− πc)βAI−2,

49

and the same formula holds for BI . For C(I) the relevant equation is CI = πcβCI−1 + (1 −

πc)βCI−2 + 1.

Notice that if we do this we can solve for V (1) and V (0) as follows:

V (0) =
((1− πc)(βAN−1 −AN)− 1)p+ (CN [(1− πc)βAN−1 − 1]−AN (1− πc)[βCN−1 + 1])ω1

(BN − 1)((1− πc)βAN−1 − 1)−AN (πcβ + (1− πc)BN−1)

Now for V (1) we get

V (1) =
[(1− πc)(Bn − βBN−1) + πc(1− β)− 1]p+ [(BN − 1)(1− πc)(βCN−1 + 1)− CN (πcβ + (1− πc)βBN−1)]ω

(BN − 1)((1− πc)βAN−1 − 1)−AN (πcβ + (1− πc)BN−1)

In the steps below, we will show the value function is increasing when ω1 = 0. Then, we will use

continuity of the value function in ω1 to argue it will still be increasing for small positive ω1 values.

Next we show that V (0) < 0, V (1) > V (0), and V (2) > V (1). Let’s start on V (0). First we

will show that the numerator (1 − πc)(βAN−1 − AN) − 1 < 0. Note that we can substitute in for

AN and rewrite this as

β(1− πc)
2(AN−1 −AN−2) < 1.

It will be sufficient to show that AN−1 − AN−2 < 1. To do this I will show that AI < 1. We can

do this inductively. Recall that the equation for AI is

AI = β(πcAI−1 + (1− πc)AI−2).

If AI−1 < 1 and AI−2 < 1 then it must be that AI < 1. We only need to prove that A2 and

A3 (the starting values of A) are less than 1. Note that A2 = πcβ < 1. We can compute A3 =

β(π2
cβ+(1−πc)). To show A3 < 1 notice that if we think of A3 as a function of πc it is maximized

when πc = 1/(2β). If we plug this into A3 then we find A3 = β − 1/4 < 1. This proves the

numerator of V (0) is negative. Now let’s try to prove the denominator of V (0) is positive.

We can use induction type arguments to do this too. It will be convienient to rewrite the

denominator as

(1−BN)(1− (1− πc)βAN−1)−AN (πcβ + (1− πc)βBN−1)

and to prove that 1 − BN > πcβ + (1 − πc)βBN−1 and 1 − (1 − πc)βAN−1 > AN . Let’s start

with the A inequality. This is equivalent to βAN−1 + β(1 − πc)AN−2 < 1. Let’s assume that

βAI−1 + β(1 − πc)AI−2 < 1. We want to show this implies that βAI + β(1 − πc)AI−1 < 1. Note

we can write

50

βAI + β(1− πc)AI−1 = β2πcAI−1 + β2(1− πc)AI−2 + β(1− πc)AI−1

= β(1 + πc(β − 1))AI−1 + β2(1− πc)AN−2

< βAI + β(1− πc)AI−1 < 1

Then we just have to prove the base case which is that β2(π2
cβ+(1−πc))+β2(1−πc)πc < 1. This

is true since we can reduce the inequality to β2(1 + π2
c (β − 1)) < 1.

Now let’s do the B inequality. We will rewrite the inequality as πcβ+(1−πc)βBN−1+BN < 1.

Assume that πcβ + (1− πc)βBI−2 +BI−1 < 1. Then we can write

BI + β(1− πc)βBI−1 + πcβ = βπcBI−1 + β(1− πc)BI−2 + (1− πc)βBI−1 + βπc

= βBI−1 + β(1− πc)BI−2 + βπc

< πcβ + (1− πc)βBI−2 +BI−1 < 1

Again we have to prove the initial case, which is πcβ + (1 − πc)
2β2 + πc(1 − πc)β

2 < 1. We can

reduce this inequality to β(πc + β(1− πc)) < 1, and it is easy to see this will be true.

Next we want to show V (1) > V (0). Since we have proven that the denominators of these terms

are positive we need to show that

(1− πc)(BN − βBN−1) + πc(1− β)− 1 > (1− πc)(βAN−1 −AN)− 1

We can rewrite this inequality as

(1− πc)(β(AN−1 +BN−1)− (AN +BN)) < πc(1− β)

It is sufficient to show that β(AN−1 +BN−1)− (AN +BN) < 0. Inductive arguments can be used

here. First consider the base cases. The base case at 2 boils down to showing β2 < (1−πc)β+πcβ
2.

This inequality is equivalent to β < (1 − πc) + πcβ or β < 1 (we’d actually get equality is πc = 1

but I don’t think that is a problem).

Next, we also need to show that β(A3 + B3) < A4 + B4. This is straightforward. We know

A4 +B4 = π2
cβ

2 + (1− π2
c)β

2. We need to show that (1− πc)β
2 + πcβ

3 < π2
cβ

2 + (1− π2
c)β

2. This

inequality reduces to (β − 1)πc < (β − 1)π2
c . It is easy to see this is true since πc is a fraction and

β < 1.

51

To finish we use complete induction. Suppose for all n < I it is the case that β(An−1+Bn−1) <

An +Bn. Then we can show

β(AI−1 +BI−1) < AI +BI

⇐⇒ β(β(πc(AI−2 +BI−2) + (1− πc)(AI−3 +BI−3)) < β(πc(AI−1 +BI−1) + (1− πc)(AI−2 +BI−2))

⇐⇒ β(πc(AI−2 +BI−2) + (1− πc)(AI−3 +BI−3) < πc(AI−1 +BI−1) + (1− πc)(AI−2 +BI−2)

Our induction assumption implies β(πc(AI−2 + BI−2) < πc(AI−1 + BI−1) and β((1 − πc)(AI−3 +

BI−3) < (1− πc)(AI−2 +BI−2).

We also need to show V (2) > V (1). Here is how to do it. We need to prove that βπcV (1) +

β(1 − πc)V (0) > V (1). Using our formulas above and the fact that the denominator of the V ’s is

negative we can reduce the inequality to

β2(1− π − c)2AN−1 + (1− βπc)(1− πc)βBN−1

> β(1− πc)
2AN + (1− βπc)(1− πc)BN + (1− βπc)(πc(1− β)− 1) + β(1− πc)

⇐⇒ (1− πc)([β(1− πc)(βAN−1 −AN)] + (1− βπc)[βBN−1 −BN]) > (β − 1)(π2
cβ − πc + 1)

The right side of the inequality is negative so to make things a bit easier I’m going to multiply

both sides by -1 and work with an upper bound. Suppose that

(1− πc)([β(1− πc)(AI − βAI−1)] + (1− βπc)[BI − βBI−1]) < (1− β)(π2
cβ − πc + 1)

for all I ≤ N . Then we can write the N + 1 case as

52

(1− πc)([β(1− πc)(AN+1 − βAN)] + (1− βπc)[BN+1 − βBN])

= (1− πc)([β(1− πc)(βπcAN + β(1− πc)AN−1 − β(βπcAN−1 + β(1− πc)AN−2)] +

(1− βπc)[β(1− πc)(βπcBN + β(1− πc)BN−1 − β(βπcBN−1 + β(1− πc)BN−2)])

= βπc[β(1− πc)(AN − βAN−1) + (1− βπc)(BN − βBN−1)]

β(1− πc)[β(1− πc)(AN−1 − βAN−2) + (1− βπc)(BN−1 − βBN−2)]

< βπc(1− β)(π2
cβ − πc + 1) + β(1− πc)(1− β)(π2

cβ − πc + 1)

< (1− β)(π2
cβ − πc + 1)

Last we need to show the base case, for 2, 3 and 4. Recall that A2 = πcβ, B2 = (1 − πc)β, A3 =

π2
cβ

2+(1−πc)β, B3 = πc(1−πc)β
2, A4 = π3

cβ
3+2πc(1−πc)β

2, and B4 = π2
c (1−πc)β

3+(1−πc)
2β2.

First we prove the case for time periods 2 and 3. It turns out that the left side of the inequality is

(1− πc)[β(1− πc)(π
2
cβ

2 − πcβ
2 + (1− πc)β) + +(1− βπc)(1− πc)β

2(πc − 1)] = 0

. So that part follows. Then we do the same for periods 3 and 4. To start notice that we can write

the left hand side of the inequality as

β2(1− πc)
2[β(1− πc)(2πc − 1− (1− πc)β) + (1− βπc)(π

2
cβ + 1− πc − πcβ)]

We want to simplify the stuff inside the square brackets. If you do a bunch of algebra you can

reduce this to

πcβ − β + 2πcβ
2 − β2 + 1− πc − π3

cβ
2

= −(1− πc)β + (−π3
c + 2πc − 1)β2 + (1− πc)

We can factor the term multiplying β2 into 1 − πc and π2
c + πc − 1. So then then the inequality

becomes

β2(1− πc)
3(1− β + (π2

c + πc − 1)β2) < (1− β)(π2
cβ − πc + 1)

Note that we can show that π2
c+πc−1 < 0. This is a quadratic that is -1 when πc is 0, is 0 when πc is

1, and is strictly increasing in that interval. So it is sufficient to show that β2(1−πc)
3 < π2

cβ−πc+1.

53

This is straightforward because β2(1 − πc)
3 < 1 − πc < π2

cβ − πc + 1. The right inequality holds

since π2
cβ > 0 and the left one holds since β(1− πc)

2 < 1.

To show the value function is increasing in inventory for all I we can use the fact we showed

V (1) > V (0) and apply complete induction. We assume that our statement is true for all inventory

levels n less than I. In other words, if n < I we assume that V (n) > V (n − 1) (in particular

it means that V (I − 1) > V (I − 2) > V (I − 3) > ...). We want to show that this implies that

V (I) > V (I − 1).

Let’s start by noticing that V (I − 1) > V (I − 2) implies the following:

V (I − 1)− V (I − 2) = (AI−1 −AI−2)V (1) + (BI−1 −BI−2)V (0) > 0

There are two things we will need to complete the proof. First, notice that

AI −AI−1 = βπcAI−1 + β(1− πc)AI−2 −AI−1

= βπc(AI−1 −AI−2) + β(AI−2 −AI−1)

and the same holds true for the B series. The second thing we want to show is that βV (I − 2) ≥

V (I − 1). Note that

V (I − 1) = βπcV (I − 2) + β(1− πc)V (I − 3)

So we want to argue that

V (I − 2) ≥ πcV (I − 2) + (1− πc)V (I − 3).

We assumed that V (I− 2) > V (I− 3), so πcV (I− 2)+ (1−πc)V (I− 3) is maximized when πc = 1.

Then equality holds. Otherwise the inequality must be strict since we are increasing weight on

V (I − 3).

Now notice that we can write V (I)− V (I − 1) as

V (I)− V (I − 1) = (AI −AI−1)V (1) + (BI −BI−1)V (0)

= (βπc(AI−1 −AI−2) + β(AI−2 −AI−1))V (1) + (βπc(BI−1 −BI−2) + β(BI−2 −BI−1))V (0)

= βπc(V (I − 1)− V (I − 2)) + βV (I − 2)− V (I − 1)

54

Our induction assumption was V (I − 1) > V (I − 2) so βπc(V (I − 1)− V (I − 2)) > 0. Additionally

we proved above that βV (I − 2) − V (I − 1) > 0. Hence, V (I) − V (I − 1) > 0 and the lemma is

proved.

Last we note that all the value functions are continuous in ω1. This fact will imply that the set

of inequalities we proved above will still hold for small values of ω1.

Note that in the Lemma above the bound of b + 3 is necessary since the consumption shocks

can be at most 2. We can use Lemma 4 to prove the Lemma 5, an analog to Lemma 2 from the

paper, which is that the proposed policy is optimal.

Lemma 5 For all β > 0, it is optimal to purchase only when I − c < 0.

Proof.

We now prove that the proposed policy is optimal. To do this we will show that the value

functions we derived in the last lemma are consistent with the optimality conditions. This implies

policies derived from them are optimal.

We can prove this lemma inductively. We first note that the consumer will always make a

purchase if she is going to run out. To see this, note that the value of purchasing will be −p−ω1+

βV (b− cit), while the value from running out and not purchasing is −ν + βV (0). Since the value

function is increasing in inventory due to Lemma 1, and we have assumed p < ν − ω1, the payoff

from purchasing is higher than the payoff from running out. Before we continue we note that this

part of the proof is the only place where we use Lemma 1. Lemma 1 is a bit stronger than we need

- we really only need it to be the case that V (b − 2) − V (0) ≥ 0 and V (b − 1) − V (0) ≥ 0. These

two conditions are harder to prove, but we think they should be true under weaker conditions than

what is required to prove Lemma 1.

Next we want to show that the payoff from not purchasing is higher than the payoff from

purchasing when the consumer will not run out. It is sufficient to demonstrate that

βV (0) > −p− ω1 + βV (b),

for I = 0 and

βV (I)− ω1 > −p− ω2 + βV (b+ I),

for I ≥ 0. We begin by showing that βV (0) > −p+ βV (b) and βV (1)−ω1 > −p−ω2 + βV (b+1),

and then use induction after. To show the first inequality note that following the optimal policy at

0 inventory it must be the case that V (0) = −p+βπcV (b−1)+β(1−πc)V (b−2)−ω1 = −p+V (b).

55

Thus V (b)− V (0) = p. Since β < 1 and p+ ω1 is positive, it must be that β(V (b)− V (0)) < p. It

is easy to see this implies βV (0) > −p− ω1 + βV (b).

Similar logic can be used to show βV (1) − ω1 > −p − ω2 + βV (b + 1). First note that we can

write V (1) as follows:

V (1) = βπcV (0) + β(1− πc)V (b− 1)− (1− πc)p− (1− πc)ω1

= βπc(V (b)− p) + β(1− πc)V (b− 1)− (1− πc)p− (1− πc)ω1

= V (b+ 1)− (1− πc(1− β))p+ πcω1

The inequality is true since β(V (b+ 1)− V (1)) < (1− πc(1− β))p− πcω1 < p+ ω2 − ω1.

Now we will use induction to prove optimality generally. Suppose that the inequality is true up

to b + I, in other words that β(V (b + n) − V (n)) < p + ωB − ωB−1 for 0 ≤ n ≤ I. We will work

with the value function difference β(V (b+n+1)−V (n+1)). First, assume no storage cost change

between I + 1, I, and I − 1. Then we can write this difference as

β(V (b+ I + 1)− V (I + 1)) = β(πcβ(V (b+ I)− V (I)) + (1− πc)β(V (b+ I − 1)− V (I − 1))− (ωB − ωB−1))

< βp

< p+ ωB − ωB−1,

where the second inequality follows from the induction assumption. Note that our assumption that

storage costs are weakly increasing is important here.

Suppose there is a storage cost change between I + 1 and I. Then the inequalities become

β(V (b+ I + 1)− V (I + 1)) = β(πcβ(V (b+ I)− V (I))− πc(ωB − ωB−1) +

(1− πc)β(V (b+ I − 1)− V (I − 1))− (1− πc)(ωB−1 − ωB−2))

< β(p+ (1− πc)(ωB − ωB−1) + πc(ωB−1 − ωB−2))

< p+ ωB − ωB−1,

The last inequality will follow as a result of weak convexity of the storage cost function. The case

where storage costs change between I and I − 1 is similar. Thus, the policy proposed is optimal.

56

The above two Lemmas lead to an analog of Proposition 1, which we outline below:

Assumptions A1’-A8’

1. Consumption shocks are in the set {1, 2}. The probability that cit = 1 is πc.

2. The maximum number of packages that can be purchased in a period is J = 1.

3. Prices are fixed over time at a level p > 0.

4. The package size b is greater than or equal to 2.

5. The weight on the error term, η, is small.

6. The stockout cost ν is strictly positive.

7. ω1 is small, and p < ν − ω1.

8. The storage cost function is weakly increasing and weakly convex.

Proposition 3 If assumptions A1’-A8’ hold, and η = 0, then the expected future value of making

a purchase, β(V (I + b − c) − V (I − c)), is decreasing in I for I ≥ c.21 It is strictly decreasing if

β > 0 and 0 if β = 0.

Proof. The proposition can be proved with Lemma 5 in hand. The inequality we wish to prove is

V (I + 1 + b− c)− V (I + 1− c) < V (I + b− c)− V (I − c).

Consider the case where I − c = 0. Using Lemma 2 we can show that

V (b)− V (0) = p

V (b+ 1)− V (1) = (1− πc(1− β))p− πcω1

It is clear from the equations above that V (b + 1) − V (1) < V (b) − V (0) since p > 0, 0 ≤ β < 1,

and 0 ≤ πc ≤ 1. We also need to show that V (b + 2) − V (2) < V (b + 1) − V (1). We can use the

fact that V (2) = βπcV (1)+β(1−πc)V (0)−πcω1 to show that V (b+2)−V (2) = p(βπc(1−πc(1−

β) + β(1− πc))− (1 + βπ2
c − πc)ω1. It is sufficient to show the inequality

21If the convexity of the storage cost function is violated the proposition still holds, but only for I ∈ [0, b− 1].

57

βπc(1− πc(1− β) + β(1− πc) < 1− πc(1− β)

⇐⇒ β − πc(1− β)(1− πcβ) < 1

The second inequality will always be true since β < 1.

Now we use the induction step. Suppose that V (n + b) − V (n) < V (n + b) − V (n) for all

n = 0, ..., I + 1 (we can subsume the c into I since it occurs in all the arguments of V). There are

a few cases we want to consider. Suppose that there is no storage cost change between I + 2, I,

and I − 1. In that case the inequality we want to prove is

V (I + 2 + b)− V (I + 2) < V (I + 1 + b)− V (I + 1)

⇐⇒ πcβ(V (I + 1 + b)− V (I + 1)) + (1− πc)β(V (I + b)− V (I))

< πcβ(V (I + b)− V (I)) + (1− πc)β(V (I + b− 1)− V (I − 1))

The second inequality in the above equation will be true due to our induction assumption. This

proves the proposition up to the level I + 1 = b.

Now suppose we observe a storage cost change between I + 1 and I, or I and I − 1. Then, in

addition to the above inequality, it will need to be the case that

ωB − ωB−1 ≥ ωB−1 − ωB−2,

which is just convexity of storage costs. We note that this is an assumption that is commonly made

in prior reasearch on stockpiling.

The second proposition we want to prove is that as β rises, the increase in the expected future

payoff from making a purchase goes up as inventory goes down for inventory that is below some

bound I. We show this in the following proposition:

Proposition 4 If assumptions A1-A8 hold, η = 0, then the expected future value of purchase from

an increase in inventory, β [V (I + b)− V (I))], is strictly increasing in β for inventory a for a range

I ∈ [0, I], where I ≥ 0.

Proof. First we note that this payoff will be 0 if β = 0. We first want to show there is some area of

the state space where V (b+ I)−V (I) > 0. In this area, it is sufficient to show that V (b+ I)−V (I)

58

is weakly increasing in β for the increasingness result to go through. We will use induction to do

this.

The base cases are V (N)− V (0) and V (N + 1)− V (0). We know that V (N)− V (0) = p > 0,

so it must be that
∂V (N)− V (0)

∂β
= 0.

Note that this shows that I ≥ 0. We also know that V (N+1)−V (1) = (1−πc(1−β))p−(1−πc)ω1.

The derivative of this with respect to β is πcp ≥ 0. As long as (1 − πc(1 − β))p − (1 − πc)ω1 ≥ 0

then the derivative of β(V (b+ 1)− V (1)) will be increasing.

Now do the induction step. Suppose that V (N + n) − V (n) is weakly increasing in β for all

n ≤ I, and additionally that V (N +n)−V (n) > 0 for all points prior to I. Then let’s look at I+1.

We can write

V (N + I + 1)− V (I + 1) = βπc(VN+I − VI) + β(1− πc)(VN+I−1 − VI−1) + ∆ω,

where ∆ω is a difference in storage costs (which is not a function of β). Both the terms VN+I − VI

and VN+I−1 − VI−1 are increasing in β by the induction assumption. This implies that V (N + I +

1)−V (I+1) is increasing in β. As long as V (N +I+1)−V (I+1) > 0, β(V (N +I+1)−V (I+1))

will also be increasing in β.

Note that the interval over which the expected future payoff is increasing, [0, I], will rise storage

costs decrease. If there are no storage costs then it can be shown that I = ∞, because in that

case the value function is strictly increasing in inventory, meaning the expected future payoff from

purchase is always positive.

12 Appendix: Formal Identification Conditions and Proofs

12.1 Formal Identification Assumptions with Observed Inventory

In this section we provide a set of more formal conditions for identification, to complement the

discussion in Section 5. Recall that we wish to identify M + 3 parameters: the storage costs,

the stockout cost, the price coefficient, and the discount factor. If inventory is observed, the

consumption rate is identified from the rate at which inventory is depleted from period to period.

We maintain Assumptions A1-A7, as well as Assumptions E1 and E2. We add an additional

assumption below:

Assumptions I1-I3:

59

1. The distribution of the error term is type 1 extreme value.

2. Purchase probabilities are observed to the researcher at the following values of inventory:

I1 = 0

I2 = 1

I2+i ∈ [(i− 1)b+ 1, ib], i = 1, ...,M

IM+3 ∈ [2,Mb] and IM+3 /∈ {I1, I2, ..., IM+2}

3. Define I = (I1, ..., IM+3), ∆v(I;θ) = v1(I;θ) − v0(I;θ) from equation (15), the vector of

∆v(I;θ) at I to be ∆v(I;θ), and P̂ 0(I;N) to be the vector of observed choice probabilities

generated at the true parameter vector, θ0. Then assume that the system of equations defined

by

∆v(I;θ) = lim
N→∞

log(P̂ 0(I;N))− log(1− P̂ 0(I;N)) (21)

has full rank in a neigborhood of θ0.

We also add the following rank condition:

Proposition 5 If assumptions A1-A7 and I1-I3 hold then the parameter vector θ is uniquely iden-

tified in a neighborhood of θ0.

Proof. The system of equations described in (21) has M + 3 equations and M + 3 unknowns,

and is full rank. As a result, the Implicit Function Theorem implies that the system can be

solved uniquely for θ in a neighborhood of θ0, and that solution must be θ0. In particular, note

that under the type 1 extreme value assumption the value functions will be continuous, so that

limN→∞ log(P̂ 0(I;N)) − log(1 − P̂ 0(I;N)) = ∆v(I;θ0) due to Slutsky’s Theorem. Since the

system of equations (21) is invertible around θ0 due to the rank condition, the inverse must be

θ = θ0.

We note that the assumption of a Type 1 extreme value error can be relaxed - it is sufficient

that the error term’s CDF is such that one can recover differences in choice specific values from

theoretical choice probabilities.

60

12.2 Formal Identification Conditions with Unobserved Inventory

This section provides some more formal conditions for identification of the parameter vector θ =

(α, ν, β, ω1, ..., ωM , πc) in the presence of unobserved inventory, as discussed in Section 6. Define

the steady state distribution of inventory as πI(θ). Let the indicator dt = 1 if a purchase occurs,

and 0 otherwise. Moreover, we will maintain the assumption that prices are fixed over time. Then,

define the purchase hazard, which is the probability of a purchase occuring in period t+ τ given no

purchases in the intervening periods, conditional on observed inventory level I in period t as

φτ (θ; I) = Prob(dt+τ = 1|dt = 1, dt+1 = 0, ..., dt+τ−1 = 0; It = I,θ). (22)

Note that to construct the probability in equation (22), we must integrate out over the sequence

of consumption shocks that occur in the intervening τ periods between t and t + τ . Since inven-

tory is unobserved, the purchase hazard cannot be computed empirically without a fully specified

econometric model. However, the researcher could flexibly estimate the aggregate purchase hazard,

which is the average probability of a purchase in period t+ τ given a purchase occurs in period t.22

We define the aggregate purchase hazard as

Φτ (θ) =
I
∑

I=0

πI(θ)φτ (θ; I). (23)

We make the following assumptions:

Assumptions U1-U2

1. Assume that the theoretical purchase hazard defined in equation (22) can be computed for

M + 4 periods, and define this purchase hazard to be

Φ(θ) =











Φ1(θ)
...

ΦM+4(θ)











. (24)

Assume that the the Jacobian of Φ(θ) is full rank in a neighborhood of the true parameter

vector θ0.

2. The researcher observes the empirical purchase hazard, Φ̂(θ0;N).

Then the following condition can be shown:

22Here we assume prices are fixed over time, but price variation is observed in actual data. In this case the research

would need to estimate the purchase hazard conditional on the history of observed prices.

61

Proposition 6 If Assumptions A1-A7, E1 to E2, and U1-U2 hold then the parameter vector θ

can be identified in a neighborhood of θ0.

Proof. The proof is an application of the Implicit Function Theorem. The empirical purchase

hazard, Φ(θ0;N), will be continuous in θ0 as a result of assumptions E1 and E2, and by Slutsky’s

Theorem limN→∞ Φ̂(θ0;N) = Φ(θ0;N). The rank condition implies Φ(θ) is invertible around

θ = θ0, and so the solution to the system of equations in equation (24) must be θ = θ0.

The rank condition in U1 may be verified by the researcher. We comment briefly on some

additional assumptions which will help the rank condition hold. First, note that in practice the

purchase hazard can be computed for some finite number of periods. The larger is the number

of periods relative to the number of parameters needed to be estimated, the more overidentifying

restrictions will be imposed and as a result the model parameters will be more easily identified.

The exclusion restrictions help identification in this sense, as they reduce the number of parameters

that need to be estimated.

A second condition that needs to hold is that individuals should not run out of inventory too

quickly. To see why a violation of this condition could be problematic, suppose that there are

no storage costs, and that πc = 0, b = 2 and M = 1: ie, all individuals use up a package every

period and nobody ever holds more than a single package. In this case all inventory will be used

at the beginning of the purchase hazard, the purchase hazard will be completely flat, and it will be

impossible to identify the discount factor which we argue is identified from the slope of the purchase

hazard. Each element of equation (24) will simply be the purchase probability, and the rank of

the Jacobian of equation (24) will be 1. Intuitively, in this case we would never know whether the

purchase hazard was flat because individuals are myopic, or because the consumption rate is high

enough that they do not stockpile.

13 Appendix: Artificial Data Experiment with Continuous Inven-

tory

In this section we describe an additional artificial data experiment where inventory is continuous

rather than discrete. We solve for consumer value functions and simulate choices in a market where

the utility parameterization is similar to that developed in Section 3. One difference is in how

we model storage costs. We run experiments under two different formulations: One is a piecewise

linear formulation, where the storage cost is zero for the first three packages and increases linearly

by an amount ω for the next packages after that (we assume the maximum number of packages a

consumer can purchase is 10. The other assumes that storage costs increase quadratically in the

62

number of packages. We emphasize that in this formulation of the model we continue to maintain

the exclusion restriction (except for one instance we discuss at the end of the section): storage

costs still depend on the number of packages held, rather than the amount of inventory held within

those packages. Prices are assumed to follow a discrete Markov process. We simulate a dataset of

1000 consumers, for 700 periods. We assume in the initial simulation period that all consumers

start with inventory of 0. In a data set tracking the behavior of real consumers, consumers will

have been making purchases prior to the beginning of the data collection, so initial inventories will

be unknown. To mimic this in the simulated data we remove the first 200 periods and estimate

the model parameters using the final 500 periods. We estimate the model using the nested fixed

point algorithm (Rust 1987) on the simulated data to see how well we can recover the model

parameters. Note that when we estimate the model, we need to construct initial inventories in

order to evaluate the likelihood. To do this we take the observed 500 periods and split them in

half. We assume that in the initial period all consumers have zero inventory, simulate consumption

rates, and compute inventory in period 250 as the sum of observed purchases minus consumption

rates (where we enforce the restriction that inventory is greater than or equal to zero at each

period). We evaluate the likelihood on the final 250 periods for each consumer. To verify that 250

periods is enough to accurately simulate initial inventories, we simulate the model and compute

moments of the inventory distribution over time, finding that the inventory distribution looks like

it becomes stationary after about 50 periods. We use a simplex algorithm, with a penalty function

to enforce nonnegativity constraints, to maximize the likelihood.23

We run the artificial data experiment for 8 different parameterizations of the model. The results

of the experiment for the first 6 parameterizations are shown in Table 9. The upper half of the

table and first 3 columns of the table show, respectively, the estimated parameters, standard errors,

and true parameters for the basic specification from the last section. The results here suggest the

model parameters are well identified - the estimated parameter values are close to the true values.

Turning to the lower half of the table we see under the heading β = 0.6 that identification is

relatively clean for this value of β. The story changes somewhat for the last two sets of estimates,

under β = 0.3 and α = 0.02. When β = 0.3, the estimates of β, the stockout cost ν, and the storage

cost ω become significantly worse. The reason for worse identification is similar to what happened

in Section 7 when the discount factor was close to zero. In this case consumers behave in a manner

that is very close to myopic for low values of β, and so identification of the discount factor becomes

more difficult. It is also notable that the storage costs and stockout costs get harder to identify for

23We experimented with derivative based methods as well but found the simplex reached slightly higher likelihood

values. Occasionally the derivative based methods would stop at the starting points.

63

lower values of β. The poorer identification of the stockout cost likely occurs because, following our

discussion in Section 6.1, when an individual is myopic the stockout cost only affects her purchase

decision at the moment she runs out. The poor identification of the storage cost occurs because

myopic individuals seldom purchase more than 1 package. It is also notable that when the price

coefficient, α, is very low the stockout cost becomes hard to identify, as can be seen in the last 3

columns of the table. The reason this occurs is that price variation helps identify the stockout cost:

an individual may decide to pay the stockout cost if prices are sufficiently high. If an individual is

price insensitive then this price variation does not affect individuals choices much. Fortunately the

discount factor is still well-identified in this situation, suggesting the exclusion restrictions provide

identifying power.

Table 10 shows simulated results for a quadratic storage cost, rather than the piecewise linear

function. We assume that the linear part of storage costs is 0, and estimate the quadratic coef-

ficient ω. To show that the exclusion restriction has identifying power, we run the artificial data

experiment in two scenarios. In the first three columns, we maintain the assumption that storage

costs are functions of the number of packages only, enforcing the exclusion restriction. In Column

2, we estimate the parameters in a situation where storage costs are assumed to be continuous

rather than discrete (we simulate the model under continuous storage costs and maintain that as-

sumption when we estimate the model). The model specification in Column 2 corresponds to the

standard specification used in prior work. All the parameters are still well-identified, suggesting

that the nonlinear restrictions from the dynamic model provide some identification. However, it

is notable that the standard errors are higher (and sometimes very much higher as in the case of

the consumption rates). This suggests that the exclusion restrictions provide identifying variation

beyond the functional form restrictions of the model.

14 Appendix: Extension to Inclusive Value Sufficiency

This section describes in detail how the extensions to Inclusive Value Sufficiency (IVS) first proposed

in Osborne (2017) can be used to reduce the size of the price state space. Recall that we index

brands by k, package sizes by x, and the number of packages chosen by j. Under standard IVS,

where error terms are assumed to follow a logit distribution and brand level utilities do not scale

with the number of packages chosen, the inclusive value will be a function of both the package size

chosen, x, and the number of packages chosen, j:

Ωit(x, j) = ln

(

∑

k

exp(ξixk − αipixktj)

)

.

64

Table 9: Results of Artificial Data Experiment (Quasilinear Storage Cost)

Param Estimate S.E. Truth Estimate S.E. Truth Estimate S.E. Truth

β = 0.95 β = 0.99 β=0.9

c 0.001 (0.002) 0 0.001 (0.002) 0 0.001 (0.003) 0

c 2.012 (0.001) 2 2.011 (0.001) 2 2.014 (0.002) 2

α 0.05 (4.1e-04) 0.05 0.05 (4.4e-04) 0.05 0.05 (4.0e-04) 0.05

ν 0.983 (0.023) 1 0.964 (0.029) 1 0.965 (0.019) 1

β 0.946 (0.002) 0.95 0.985 (0.002) 0.99 0.897 (0.003) 0.9

ω 0.099 (0.003) 0.1 0.101 (0.002) 0.1 0.097 (0.004) 0.1

β=0.6 β=0.3 α=0.02

c 0.004 (0.007) 0 3.9e-04 (0.006) 0 0.001 (0.002) 0

c 2.004 (0.005) 2 2.002 (0.004) 2 2 (0.001) 2

α 0.05 (3.4e-04) 0.05 0.05 (3.9e-04) 0.05 0.02 (1.4e-04) 0.02

ν 0.967 (0.045) 1 0.876 (0.088) 1 0.565 (0.045) 1

β 0.615 (0.023) 0.6 0.407 (0.064) 0.3 0.944 (0.008) 0.95

ω 0.086 (0.009) 0.1 0.071 (0.013) 0.1 0.11 (0.011) 0.1

Table 10: Estimation with and without the Exclusion Restriction (Quadratic Storage Cost)

Param Estimate S.E. Truth Estimate S.E. Truth

Discrete Continuous

c 0.001 (0.006) 0 0.001 (0.024) 0

c 2.013 (0.006) 2 2.013 (0.024) 2

α 0.05 (4.1e-04) 0.05 0.05 (4.3e-04) 0.05

ν 0.975 (0.025) 1 0.987 (0.028) 1

β 0.946 (0.002) 0.95 0.945 (0.002) 0.95

ω 0.005 (1.8e-04) 0.005 0.005 (2.0e-04) 0.005

65

The number of inclusive values one would have to track will be equal to XK. The idea behind

the extension to IVS is to essentially be able to factor j out of the inclusive value. To do this, two

assumptions are necessary. First, that brand level utility scales with j, and second, that the error

term follows a nested logit distribution where the outer nest corresponds to the choice of package

size and number of packages, and the inner nest corresponds to the brand choice. Regarding the

first assumption, we assume that the flow utility for choosing j packages of brand k can be written

as j
J
ξixk, so that the inclusive value can be written as

Ωit(x, j) = ln

(

∑

k

exp

(

j

J
[ξixk − αiJpixkt]

)

)

.

Regarding the second assumption, it can be shown using derivations from McFadden (1981) that

if a choice-specific error follows an extreme value distribution with scale parameter λ then the

expected utility can be written as

EU = λ ln

(

∑

k

exp

(

j

J
[ξixk − αiJpixkt]/λ

)

)

.

We assume the choice-specific error across package sizes, number of packages and brands follows a

nested logit distribution following Cardell (1997). Under this assumption we need the λ parameter

to be between 0 and 1, which is why we assume that it is equal to j/J . As a result, the inclusive

value can be written as

Ωit(x, j) =
j

J
ln

(

∑

k

exp(ξixk − αiJpixkt)

)

.

Note that since j can be factored out of the inclusive value, it is not necessary to track a different

inclusive value for each j, and it is sufficient to write the inclusive value as Ωit(x).

15 Appendix: Steps for implementing the IJC algorithm

Before explain the estimation details, we introduce some additional notation. Denote the vector of

population-varying parameters drawn in step 1 as θi1, and the population-fixed parameters in step

2 as θ2. We assume that the individual- specific parameters are derived from a normal distribution

with mean b
′
Zi and variance W , where Zi is a matrix of demographic characteristics for household

i. Since some of the parameters must be bounded (such as the discount factor or price coefficient)

we assume that they are transformations of underlying normal parameters. We assume that the

price coefficient, the stockout cost, and the consumption rates are lognormal. The transformation

applied to produce the discount factor is exp(x)/(1 + exp(x)), where x is normal. The inventory

66

bound transformation is M ∗ exp(x)/(1 + exp(x)), where the maximum inventory bound M is set

to be equivalent to holding 24 of the largest package size of detergent (in terms of volume, this is

4800 liquid ounces of detergent). We will denote the untransformed parameters as θ̃i1, and the

transformed parameters as θi1 = T (θ̃i1). Note that we assume that θ̃i1 ∼ N(b′Zi,W).

15.1 Steps 1 to 4: Drawing the model parameters

We use the random walk Metropolis-Hastings Algorithm to implement Step 1 of the Gibbs sampler,

and draw the individual specific parameters on a household-by-household basis. To that end we

describe how we draw an individual θi1. Suppose that we are at step g of the Gibbs sampler.

First, conditional on the last step’s draw of θ̃i1, which we call θ̃
0
i1, we draw a candidate θ̃

1
i1 from

N(θ̃
0
i1, ρ1W g−1), where W g−1 is last iteration’s estimate of the variance matrix. Our new utility

parameters will be θ
1
i1 = T (θ̃

1
i1). We then compute the joint likelihood of brand and size purchase

at the old draw and the candidate draw. To implement this we first need an estimate of each

consumer’s value function. As we describe further in Section 15.2, we compute this estimate by

averaging over past value functions, using the nearest neighbor approach of Norets (2009). The

choice probability can be written as the probability of the observed brand choice (kit) given package

size choice (xit) and number of bottles (jit), multiplied by the probability of the observed size choice.

For a given individual the probability of a particular brand choice given their choice of size is

Pr(kit|xit, pit;θi1,θ2) =
exp (ξxit,kit − Jαpi,xit,kit,t)

∑

l∈C2(xit)
exp (ξxit,l − Jαpi,xit,l,t)

.24 (25)

The probability of a particular size choice can be written independently from the brand choice as

Pr(xit, jit|Ωit;θi1,θ2) =
exp

(

jit
J
Ωit(xit) + ũ(Iit, jit, xit;θi1,θ2) + βÊV i(Ii,t+1,Ωit;θi1,θ2))

)

∑

(j,x)∈C exp
(

jit
J
Ωit(x, j) + ũ(Iit, j, x;θi1,θ2) + βÊV i(Ii,t+1,Ωit;θi1,θ2)

) ,

(26)

where ÊV (Ii,t+1,Ωit;θi1,θ2) is the estimated expected value function, and

ũ(Iit, jit, xit;θi1,θ2) = −νi
ci − (Iit + xitjit)

ci
1{Iit < ci}.

25

24Note that the number of bottles purchased, jit, drops out of this choice probability due to the distributional

assumptions made on the error term.

25The stockout cost enters utility slightly differently in the empirical model, to capture the idea that if a small

amount of detergent is left in the bottle the consumer may use a bit of it to do laundry.

67

Note that to compute this probability we need to compute the inclusive valuesΩit, which themselves

are functions of θi1 and θ2 parameter draws. To construct the estimated value function we will

also need to compute the transition process for the inclusive values. We discuss how the inclusive

values and their transition process are computed in Section 15.3.

The likelihood used for the Metropolis-Hastings accept-reject step will be

Li(θi1,θ2) =

Ti
∏

t=1

Pr(kit|xit, jit, pit;θi1,θ2)Pr(xit, jit|Ωit(1);θi1,θ2).

The candidate draw will be accepted with probability

L(θ1
i1,θ2)

L(θ0
i1,θ2)

k(θ̃
0
i1)

k(θ̃
1
i1)

,

where k denotes the prior density on θi1. Under our assumption of normality of the parameters

this prior is simply the multivariate normal with mean bg−1 and variance W g−1.

After drawing the population-varying parameters we draw the mean (b) and variance (W)

parameters that generate them (Steps 2 and 3). Conditional on the θi1 draws and the demographics

Zi, the b parameters are drawn using standard Bayesian regression. We put a relatively diffuse

prior on the b, using a normal distribution with mean zero and variance matrix of 1000I.26. We

also assume a relatively diffuse prior on W . If the dimensionality of θi1,g is K, then the prior

variance matrix is set to I ∗ (K + 3) ∗ 0.01.27 Given this prior, a posterior draw on the variance

matrix can be computed given b, θi1,g and Zi from an inverse Wishart distribution.28

The fourth step is to draw the population-fixed parameters θ2. This step proceeds in largely

the same way as the first step. A candidate draw θ
1
2 is taken from N(θ0

2, ρ2W 2), and is accepted

with probability

∏I
i=1 Li(θi1,θ

1
2)

∏I
i=1 Li(θi1,θ

0
2)

k(θ0
2)

k(θ1
2)
.

26The dimension of I corresponds to vec(b)

27Our choice of prior variance matrix was informed by artificial data experiments, where we generated data from

the myopic inventory model with heterogeneous coefficients, and recovered the parameter distributions. We found

that when prior variances were too wide the estimator had some difficulty recovering small variance parameters, but

scaling down the prior by a factor of about 0.01 mitigated this problem, while still allowing us to recover larger

variance parameters.

28For more details on the process using to generate the hyperparameters we refer the readers to Rossi, Allenby,

and McCulloch (2005). Our code for drawing these parameters is heavily based on the C++ code provided with the

book.

68

We set the prior on θ2 to be noninformative.

15.2 Step 5: Updating the value function

After a new vector of parameters are drawn, the value functions are updated at the current param-

eter draw. There are two steps necessary in updating the value function. First, we construct an

estimate of the value function at the current parameter draw. Second, we perform a single update

to the value function.

We first describe how the estimated value function is constructed. The estimated value function

is constructed by integrating over the transition density of inclusive values, and by averaging over

past value functions. Importantly, when we average over past value functions, we put more weight

on value functions which were computed at parameter draws close to the current draw. For each

individual in the data, we store the value function on a grid of 100 inventory points and 100 random

price draws (meaning we update the value function for each consumer on a grid of 10,000 points).

Index the inventory grid points using s1 and the price grid points using s2. The random prices are

drawn from the empirical distribution of prices, which we denote as h(·). Since we assume that

the value functions are functions of inclusive values, rather than prices, the first thing we do is to

compute the inclusive value at each price grid draw which arises at the current parameter draw.

We denote this inclusive value as Ωs2 .
29 Once the inclusive values are computed, we compute a set

of importance weights, wns
(Ωs2), which are used when integrating out the transition probabilities

in the value function:

wns
(Ωs2) =

F (Ωns
|Ωs2 ;θi1,θ2)

h(Ωns
)

,

where F (Ωt|Ωt−1;θi1,θ2) is the transition density of the inclusive values at the current parameter

draw.

The second element is to average over past value functions. For the past g = 1, ..., G Gibbs draws

we have V̂i at each of the inventory states s1 and the past importance draws on the inclusive values

s2. Denote the saved value functions and parameter draws respectively as V̂ g
i ,θ

g
i1,θ

g
2, g = 1, ..., G.

We compute kernel weights φg(θi1,θ2) = φ([θi1,θ2]− [θg
i1,θ

g
2]) where φ(·) is a multivariate normal

kernel function. Our value function estimate is then

29An alternative approach we experimented with was to propose an importance distribution for inclusive values

and to draw inclusive values from that. We found that this approach would sometimes lead to numerical errors when

computing transition probabilities, if the current parameter draw was very far from all of the drawn inclusive values.

(maybe move this down)

69

Ṽi(Is1 ,Ωs2 ;θi1,θ2) =

G
∑

g=1

Ns
∑

ns=1

V̂ g(Is1 ,Ωns
;θg

i1,θ
g
2)φg(θi1,θ2)wns

(Ωs2)
∑G

g=1

∑Ns

ns=1 φg(θi1,θ2)wns
(Ωs2)

.

When we update the value function, we may need to compute the expected value function

at inventory points that are not on the grid. To do this we interpolate the Ṽi(Is1 ,Ωs2 ;θi1,θ2)

over inventory states using linear interpolation. Then the expected value function estimate at any

inventory point I is

ÊV i(I,Ωs2 ;θi1,θ2) = Ṽi(I
′

s1
,Ωs2 ;θi1,θ2) +

I − I ′s1

I
′

s1
− I ′s1

Ṽi(I
′

s1
,Ωs2 ;θi1,θ2),

where I ′s1 is the largest inventory grid point that is smaller than I and I
′

s1
is the smallest grid

point that is larger than I. We will use ÊV i(I,Ωs2 ;θi1,θ2) when updating the value function, as

we describe in the next paragraph. Before moving on, we also note that when we compute choice

probabilities in Section 15.1 we also need to compute the expected value function; for this we use

a similar procedure to the above (the main difference is that the value function approximation is

evaluated at an inclusive value derived from an observed price, rather than a particular inclusive

value grid point).

Denote this value function estimate as ÊV i(I,Ω;θi1,θ2). We will index inventory grid points

(which are fixed across Gibbs iterations) with s1 and inclusive value grid points (which are random)

with s2. Then at a particular grid point s1, s2, with state variables Is1 ,Ωs2 , the updated value

function is

V̂i(Is1 ,Ωs2 ;θi1;θ2) =
∑

(j,x)∈C

log
(

exp
(

Ω̂s2(x, j) + ũ(Is1 , j, x;θi1;θ2) + βÊV i(I
′

s1
,Ωs1 ;θi1,θ2)

))

.

(27)

15.3 Inclusive value transition process

When we take a new draw on the parameters θi1 and θ2 we need to compute new inclusive values,

as well as to estimate their transition processes, and the functions for approximating the inclusive

values for j > 1. Our approach follows Hendel and Nevo (2006a), except we estimate the inclusive

value transition process at the individual rather than population level. To do this, first we compute

the inclusive values Ωit(x) for each household and time period. Then, for each household in the

data, we run a regression of Ωit(x) on Ωit for each value of x, i.e.:

Ωit(x) = κ0,i,x +
X
∑

k=1

κk,i,xΩi,t−1(k) + ǫit,x.

70

Each regression is run separately for each individual i. We assume that the errors ǫit = (ǫit,1, ..., ǫit,X)

are normally distributed and i.i.d. over time and individuals. We put no restrictions on the variance

matrix of the errors, and we allow the variance to be individual-specific.30

15.4 Setup of the Gibbs Sampler

In this section we describe some details of the setup of the Gibbs sampler. The computer code we

use is written in R and C++ and designed to take advantage of parallel processing in the value

function averaging and updating. Our code for Bayesian estimation makes use of routines from

Rossi, Allenby, and McCulloch (2005) for summarizing the model output as well as for drawing the

heirarchical parameters. For the Metropolis-Hastings steps in steps 1 and 4 of the Gibbs sampler

we need to set the parameters ρ1 and ρ2, which control the variance of the random walk process for

the population-varying and population-fixed parameters, respectively. Each of these parameters

are tuned so that the acceptance rate over the course of the sampler is about 30%. We tune the

parameter ρ1 every iteration: if the fraction of household level parameters that are accepted is above

30%, we increase ρ1 by 10%; otherwise we decrease it by 10%. For ρ2, we adjust the parameter

every 25 iterations: if the number of acceptances for the past 25 iterations is above 30%, then the

ρ2 parameter is decreased by 25%; otherwise it is increasd by 25%. The ρ parameters move some

initially but settle down after about 500 iterations.

To compute theW 2 matrix, we estimate the dynamic stockpiling model assuming no unobserved

heterogeneity using the 3 step method of Hendel and Nevo (2006a), and compute the inverse

information matrix of the likelihood function. We set W 2 to be the submatrix of the inverse

information matrix corresponding to the parameters which are set to be fixed across the population.

We found this procedure for setting W 2 worked well in artificial data experiments.

For the value function approximation we choose G = 30, and we use a diagonal bandwidth

matrix with bandwidth parameter set to (4/(3G))0.2. We found these values worked well in artificial

data experiments where we tested out the sampler. As we discussed above we evaluate the value

function on 100 grid points. Grid points for inventory are chosen between 0 and the maximum

inventory value of 4800 ounces, with the first 20 points of the points being clustered equally between

0 and 70 ounces (around the size of a smaller package of detergent) and the rest between 700 and

30We experimented with more flexible functional forms for the inclusive value transition process, such one where

we used a spline basis. We found that the more flexible models sometimes had issues with overfitting or collinearity;

if two variables were collinear then the algorithm we use to run the regression would crash, and occasionally a very

flexible functional form would come close to perfectly fitting the data, resulting in an error variance matrix that was

close to singular.

71

4800. We choose more points near zero since the incentive to purchase in advance of running

out becomes more important for low inventory levels, and we want to make sure we capture that

behavior well.31 We run the Gibbs sampler for 10,000 iterations. The draws appear to converge at

about 4,000 iterations, so we drop the first 4,000 draws to reduce burn-in.

31Equivalently, most of the nonlinearity in the value function occurs for low inventory levels, so having more

interpolation points in that region of the state space ensures our approximation to the value function is good.

72

