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In this article, we develop and study methods for evaluating forecasters and forecasting
questions in dynamic environments. These methods, based on item response models,
are useful in situations where items vary in difficulty, and we wish to evaluate
forecasters based on the difficulty of the items that they forecasted correctly. In
addition, the methods are useful in situations where we need to compare forecasters
who make predictions at different pointsin time or for different items. We first extend
traditional models to handle subjective probabilities, and we then apply a specific
model to geopolitical forecasts. We evaluate the model’s ability to accommodate the
data, compare the model’s estimates of forecaster ability to estimates of forecaster
ability based on scoring rules, and externally validate the model’s item estimates. We
also highlight some shortcomings of the traditional models and discuss some further
extensions. The analyses illustrate the models' potential for widespread use in fore-
casting and subjective probability evauation.

Keywords: forecasting, probability judgment, item response theory, scoring rules, continuous

response model

Supplemental materials: http://dx.doi.org/10.1037/dec0000032.supp

The assessment of forecaster ability is often
of interest in applied contexts, especialy when
there exist conflicting opinions and we wish to
know whom to believe. This assessment is rel-
evant to applications such as weather forecast-
ing, sports betting, and political predictions,
where the forecasts and the forecasters often
exhibit large variability.

In the situation where all forecasters predict
the same events at the same point in time,

comparisons are relatively straightforward: One
waits for the events to resolve themselves, then
computes an accuracy metric (often a proper
scoring rule) for each forecaster. Forecasters
can then be ranked according to their average
metric across all problems, providing informa:
tion about the forecasters’ relative ability. These
metrics have been traditionally applied to situ-
ations where (@) the items are equally “good” at
measuring forecasters' abilities, (b) the items
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are equaly difficult for all forecasters, and (c)
forecasters have responded to the same set of
items. Condition (a) is likely violated in do-
mains involving geopolitical events, where
novel forecasting questions must be manually
developed and old questions cannot be reused.
There is no guarantee that the newly developed
guestions are as good (or as bad) as the previ-
ously developed questions. Condition (b) is vi-
olated when forecasters make judgments at dif-
ferent points in time: Political forecasters may
provide predictions of international events at
different times, sports pundits may predict this
season’ s basketball champion at different points
in time, and so on. When this happens, fore-
caster ability may be artificially inflated by the
easiness of the forecasted events. For example, a
westher forecaster predicting rain for next week
will naturally look worse than awesther forecaster
predicting rain for tomorrow. Condition (C) is vi-
olated in most real applications, where busy fore-
castersfail to respond to al inquiries. It is difficult
to compare two weather forecasters, one of whom
forecasted rain in Seettle and the other of whom
forecasted rain in Phoenix.

When the previous three conditions are vio-
lated, scoring rules and other traditional fore-
caster assessmentsfail because they cannot han-
dle items that differ from forecaster to
forecaster. Differing items occur when forecast-
ers have predicted few common items, when
forecasts are reported at different pointsin time,
or when some items are better than others (for
assessing forecaster ability). To address these
issues, we adopt a model-based approach using
ideas from item response theory (IRT; de Ayala,
2009; Embretson & Reise, 2000; Lord &
Novick, 1968). IRT methods were originally
designed to compare school students, as op-
posed to forecasters, on intellectual ability. In
this context, overlapping sets of items are ad-
ministered to a large number of students. On
each item, each student’s response is coded as
either 0 or 1, where O means “incorrect” and 1
means “correct” (though there exist extensions
to other types of items). Models arising from
IRT then generally decompose the probability
that individua i is correct on item j, p;, into
effects of item difficulty and effects of individ-
ual ability. Students ability estimates can be
influenced by the specific items that were cor-
rectly answered; correct responses can be
weighted by the extent to which the correctly

answered item is diagnostic of ability. Further-
more, IRT is developed to the point that, even if
some individuals answer no common items, itis
till possible to scale them on ability (e.g., Fi-
scher, 1981). This latter feature is especialy
applicable to forecasting scenarios, where the
forecasted events often vary widely.

While IRT models appear useful for comparing
forecasters on ability, the traditiond modes are
not immediately applicable to forecasting data.
This is because traditional IRT models are fit to
binary or ordinal data that reflect whether or not a
particular individual correctly answered a partic-
ular item. This differs from forecasting contexts,
where forecasters assign a probability in [0,1]
reflecting their certainty that a particular event
occurs (assuming only two possible outcomes,
event occurrence and event nonoccurrence). Once
the outcome is known, forecaster accuracy is usu-
ally represented by a continuous number, such as
the Brier or logarithmic score (e.g., Merkle &
Steyvers, 2013; O'Hagan et al., 2006). Alterna-
tively, components of the Brier score involving
cdibration or discrimination are sometimes used
(Lichtenstein, Fischhoff, & Phillips, 1982; Y ates,
1982). Budescu and Johnson (2011) present a
model for assessing cdibration that is smilar in
spirit to the models considered here.

We firg formaly review some standard IRT
models and describe extensions to probability
judgments. Next, we apply these models to geo-
political forecasts, highlighting differences be-
tween IRT ahility estimates and simple estimates
based on average Brier scores. We dso examine
out-of-sample model predictions and the model’s
ability to accommodate mgjor data petterns. H-
naly, we discuss further modd issues and exten-
sons

Traditional IRT Models and Extensions

As mentioned previously, traditional IRT
models predict the probability that individual i
is correct on item j, denoted here as p;;. One of
the smplest models, the Rasch model, makes
this prediction via the equation

logit(p;;) = 6; — 3, )

where 6; is the ability of person i and §; is
the difficulty of item j. The logit operator,
logit (p;) = log(p;/(1 — py)), ensures that the
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model’s accuracy predictions (i.e., predictions of
the p;) are bounded between 0 and 1. According
to the model, the chance that a person is correct
depends on her ability relative to item difficulty. If
aperson’s ahility equds item difficulty, her prob-
ability of being correct is .5. Conversdly, as a
person’s ability increases (assuming fixed item
difficulty), her probability of being correct goesto 1.

Many Rasch model extensions have been
proposed (e.g., De Boeck et a., 2011), and
some of the extensions are useful for modeling
forecasts. When forecasters make predictions at
different pointsin time, we must account for the
facts that item difficulty changes over the life of
an item and that forecasters may update their
forecasts multiple times for a single item. To
handle the “changing item difficulty” feature of
the data, a dynamic Rasch model has been de-
veloped (Verhelst & Glas, 1993). This model
was originally designed to account for feedback
effects on multiple-choice tests, whereby accu-
racy feedback on previous items impacts on€'s
accuracy on the current item. In this context, the
Rasch model was extended to include a “num-
ber of previous items correct” covariate. The
previous model becomes

logit(p;;) = 6; — §; + B, 2

where t; is, for example, the number of items
that subject i has correctly answered when she
reaches item j. In forecasting contexts, t;; could
instead represent the time at which aforecast is
reported, relative to the time that the item ex-
pires. The B parameter describes the extent to
which the subject’ s within-test learning impacts
item difficulty. This change is nonlinear on the
probability scale, because 3 is modeled on the
logit scale. The B parameter could possibly be
given an i subscript to reflect individual differ-
ences in feedback effects.

Second, to handle the “forecast update” feature
of the data, we need to make some assumptions
about how updated forecasts are influenced by
previous forecasts. In the simplest case, we can
assume that item difficulty changes over time and
that thisfully accounts for the forecaster’ s updated
response. In this article, we generally employ this
smplifying assumption. In a more complex case,
we must jointly model the number of updates and
the forecast reported a each update. Some issues
underlying the estimation of these models were
considered by Bdockenholt (1993). In particular,

we may assume that the frequency of forecast
updatesisimpacted by the forecaster and/or by the
item, and that a forecaster’s updated forecast is
dependent on her previous forecast. The models
that we describe could potentially be extended in
these manners.

Now that we have discussed some traditional
IRT models and extensions, we discuss novel
model extensionsto handle probability judgments.

IRT Models of Probability Judgments

A key feature of probability judgments in-
volves the fact that they are bounded from be-
low by 0 and from above by 1. There exists
some previous work on IRT models for these
types of doubly bounded data, initiated by
Samejima (1973) and applied/refined by a small
number of others (Begjar, 1977; Ferrando, 2001;
M{ller, 1987; Muthén, 1989; Noel & Dauvier,
2007). The recent work of Noel and Dauvier
(2007) is notable because it employs a beta-
distributed likelihood, whereas the others em-
ploy logit- or probit-normal likelihoods. We
take an approach that has similarities to Same-
jima, in that we first transform the probability
judgments to be unbounded, then fit a model
with normally distributed error (i.e, a one-
factor model) to the transformed data. Once this
model has been estimated, the parameter esti-
mates can be transformed to IRT parameter
estimates using theory that connects factor anal-
ysis models to IRT models (Takane & de
Leeuw, 1987). This allows us to extract param-
eter estimates that have simple interpretations.

Model Conceptualization

We generaly fit models to respondent i's
probit-transformed forecast for item j, denoted
Y;;- This is essentially equivalent to the logit
transformation described previously (e.g., Mc-
Donald, 1999). We assume there are exactly
two possible outcomes for each item, and that
Yi*j always holds respondent i’s forecast associ-
ated with the realized outcome (so that larger
forecasts are always better).

The models that we estimate are variants of a
traditional, one-factor model. As described
later, these models are highly related to the IRT
models discussed in the previous section. As-
suming J items and | forecasts, a preliminary
model may be written as
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Vi= b AG e i=1 =1,
3

where y;; is individual i’s observed, probit-
transformed forecast on item j, p; is the mean
forecast for item J, 0; is respondent i’ s ability, A
reflects the extent to which ability is useful on
item j, and €; is the residua associated with
individual i’s#orecast on item j. Because larger
forecasts are always better, the . parameters are
related to item easiness: Larger values of w
reflect easier items, and smaller values of p
reflect harder items. As is standard for factor
models, we further assume that

0; ~ N(O, 1) (4

&~ N(0, 4 %), 5)

where the 6; and g; are assumed independent.
The fixed mean and precision on the hyperdis-
tribution of the 6, act as identification con-
straints; these parameters are undefined because
the 0; parameters are unobserved, so that the
fixed mean and precision “set the scale” for the
6;. As further described in “Model Estimation
and Use,” the precision of 1 isenforced on each
iteration of the Markov chain Monte Carlo a-
gorithm through a parameter expansion tech-
nique.

A variant of the previous model allows time
to have an impact on difficulty:

Yij = bo; + (by; — bgy)exp(—bati)) + \;6; + ey,
(6)

where t;; is the time at which individual i fore-
casted item j (measured as days until the item
expires), by, reflectsitem j’s easiness as days to
item expiration goes to infinity, b;; reflectsitem
j's easiness at the time the item resolves (i.e.,
theitem’s “irreducible uncertainty”), and b, de-
scribes the change in item easiness over time.
This exponential function is advantageous in
that its parameter interpretations are meaningful
to practitioners, but many others could be con-
ceptualized. A linear function of timeis simpler
and still allows for nonlinear change in proba-
bilistic forecasts over time (because the linear
equation is on the probit scale). Alternatively,

autoregressive/moving average functions may
help account for autocorrelation in forecasts
over time.

For stability in model estimation, the t;; from
Equation (6) are scaled so that the values stay
relatively close to zero. While this scaling can
ease model estimation, it can also make it more
difficult to accurately estimate the b, parameters
(because the scaling leads to few data points
with large, negative values of t;). We have still
found the scaling to be useful, however, because
fast model convergence has been more impor-
tant to us than the accuracy of b, estimates.

The previous model assigns four unique pa-
rameters to each item: two item easiness param-
eters by and by, aloading A, and an error vari-
ance §s. We could also dlow b, to be unique to
each item, though experience has indicated that
this is not necessarily helpful (further discus-
sion on this point later). Regardless of thisissue,
the model parameters can be transformed to IRT
parameters using theoretical results on the
equivalence between factor models and item
response models (e.g., Takane & de Leeuw,
1987). In effect, the probit forecasts y;; are
treated as latent variables giving rise to the
binary outcomes associated with item resolu-
tion. The parameter transformations are useful
for interpretation purposes, whereby one wishes
to describe items via their difficulty and dis-
crimination rather than the four parameters from
the factor model.

To convert the factor model parameter esti-
mates to item response estimates, we take (Ta
kane & de Leeuw, 1987)

Yo, = by 2 O
Yaj = byl 2 ®
vj = boj + (by; — byj)exp(—boti))  (9)

o = Ny V2, (10)
with the ability estimates 6; remaining unchanged.
Equation (9) assumes afixed timepoint, t;, so that
the equation is related to item j’s difficulty at the
time individual i provided aforecast. These trans-
formed parameters then correspond to a two-pa-
rameter IRT model (i.e,, two unique parameters
per item) for binary outcomes y;;:
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yij ~ Bernoulli(pij,) (11)

where, as just mentioned, y; isrelated to item j’s
easiness at timet;;, and o is the extent to which
item j discriminates between forecasters of dif-
ferent ability. These transformed parameters
provide no more information than the original,
factor analysis parameters. However, as men-
tioned previously, the transformed parameters
interpretations are advantageous for forecasting
situations. In addition, the parameter transfor-
mations illustrate that previous IRT model ex-
tensions are relevant to the modeling of fore-
casting data.

We now mention some additional issues be-
fore moving to model estimation. First, as
shown in Equation (4), the person ability pa-
rameter 0; is typicaly treated as a random ef-
fect. Therefore, these parameters are not typi-
cally estimated using maximum likelihood
methods but can be obtained via, for example,
regression-based methods or Bayesian methods
(we use the latter in this paper). Second, while
the models outlined previously are related to the
traditional, 2-parameter IRT model, we can also
obtain a Rasch-like model as a special case
(using a probit, as opposed to alogit, link func-
tion). This is generally accomplished by re-
stricting the \; to al be equal and the s; to all be
equal.

Finally, we can define some simpler models
that are useful for model comparison. These
models include only item effects or only fore-
caster effects:

Y =b + g (13)

Yij =6 t &j, (14)
where the top equation includes fixed item ef-
fects and the bottom equation includes fixed
forecaster effects (and the residual in both equa-
tions follows a N(O, oz?) distribution). These
models can be easily estimated via standard
regression or analysis of variance (ANOVA)
methods.

Model Estimation and Use

Estimation of the models is handled via
Bayesian methods. In the analyses that follow,

we generally fit Bayesian versions of the model
from (6) via Markov chain Monte Carlo, trans-
forming the resulting parameters to IRT param-
eters via Equations (7) to (10). JAGS code
(Plummer, 2003) for model estimation is pro-
vided as supplemental material to this article
(available online).

To improve chain mixing and convergence,
we use the parameter expansion technique de-
scribed by Ghosh and Dunson (2009). In short,
we sample from amodel with unidentified A and
0 parameters. At each sampling iteration, we
transform these unidentified parameters to a
unique solution. The unidentified parameters,
which we denote \* and 6", have prior distribu-
tions of

N ~N@O1) V j (15)
0, ~N@©O,67Y) Vi (16)
&1~ Gamma(.01, .01). (17)

These sampled parameters are then trans-
formed to the desired model parameters via

N = sign(ANjb V2 (18)

0; = sign(\y) V%6, (19)
wheresi gn()\’;) equalseither 1 or —1, depending
on whether \] is positive or negative.

Other model parameters are not involved in
the parameter expansion approach. They re-
ceive priors of

b ~ N(0,.5) V | (20)
by ~N(O,.5) V j (1)
b, ~ N(0, .5) (22)
P ~ Inv-Gamma(.01, .01) V j, (29)

where the normal distributions are parameter-
ized with precisions, as opposed to variances. In
the analyses that follow, the priors on the bs
appear to have little impact on the outcomes
unlessthe precision terms are very small. In that
case, parameter convergence sometimes fails
when forecasts associated with an item become
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extreme (close to 0 or 1). This is because the
model parameters are operating on the probit
scale, where they can stray toward —o or +co.

To monitor convergence, we use time series
plots and the Gelman-Rubin statistic (Gelman
& Rubin, 1992). Throughout the analyses that
follow, these statistics aways indicate that the
model parameters converge to the posterior dis-
tribution. Missing data are assumed to be miss-
ing at random (e.g., Little & Rubin, 2002), so
that the missingness mechanism can be ignored.
This assumption is generaly valid here (de-
scribed further) but is not likely to bevalid in all
applications. We expand on this issue in the
General Discussion.

Application: Geopolitical Forecasts

To study the model’s application to rea data,
we used geopolitical forecasts collected from Sep-
tember 2011 to April 2013 as part of aforecasting
tournament. The tournament included five univer-
sity-based teams and was sponsored by the Intel-
ligence Advanced Research Projects Activity. The
forecasts used here arise from the team that won
the tournament.

Method

A total of 1,593 national and international
participants submitted probability judgments
associated with 199 questions on the goodjudg-
mentproject.com Web site. Participants were
randomly assigned to different conditions (in-
volving whether or not they received probabil-
ity training and whether or not they worked in
groups), and they were encouraged to forecast
as many questions as possible over time. Fur-
ther details on the data collection methods can
be found in Mellers et al. (2014).

In the current article, we focus on a subset of
the full dataset: 241 participants who responded
to nearly al of 133 two-aternative forecasting
guestions. We chose this subset because we
expected it to yield the most reliable results. In
particular, because these subjects forecasted
nearly al of the questions, they have the most
experience and should therefore have the most
stable ability levels. In addition, we focused on
two-alternative questions for ease in modeling:
while questions with more than two alternatives
could be incorporated into the model, these
questions may differ from the others in diffi-

culty or in response strategies. We wished to
avoid this heterogeneity. Finally, the focus on
participants who responded to nearly all the
questions helped us to avoid complicated miss-
ing data issues. In particular, it is unlikely that
the full dataset fulfills the missing at random
assumption (e.g., Little & Rubin, 2002) that is
commonly employed. While reliance on fre-
guent forecasters solves the missing data issues,
it also creates a selection effect: The frequent
forecasters undoubtedly differ from infrequent
forecasters, so that parameter estimates are
likely to change if we included infrequent fore-
casters.

In the following sections, we first examine the
model’s predictive gbility. In traditiona IRT con-
texts, such an examination is complicated by the
facts that (a) the observed data consist of only Os
and 1s, and (b) traditional estimation methods
(e.g., margind maximum likelihood) do not di-
rectly estimate the 6 parameters. However, study
of out-of-sample predictions is straightforward in
the current, Bayesian context.

Following the examination of predictions, we
compare the models' estimates of forecaster abil-
ity to the average Brier score, which is often used
as a metric of forecaster ability. After making a
general comparison, we further examine the pre-
cision of ahility estimates when asmall number of
items have been forecasted. Findly, we use the
IRT models to study the impact of time and of
item covariates on item difficulty.

Out-of-Sample Predictions

There are many ways to study the model’s
ability to accommodate the observed data, in-
cluding posterior predictive checks, residual
analyses, and out-of-sample predictions. We fo-
cus on the latter option here, randomly deleting
30% of the forecasts from the origina dataset.
Following this deletion, there still exists some
data from each item and each judge. These data
are used to fit the model from Equation (6),
obtaining estimates of y and « for each item and
of § for each judge (Equation [12]). The esti-
mates are then used to predict the deleted fore-
casts, allowing us to compare the predictions to
the observed, held-out data.

Figure 1 displays observed forecasts (x-axis)
versus out-of-sample model predictions (y-
axis), both of which are probit transformed. The
right panel displays predictions for the IRT
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Item effects only; R?=0.15

Forecaster effects only; R%2=0.05

IRT predictions; R?=0.43

Predicted forecast (probit)

oo em—
Predicted forecast (probit)
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4@ . s g8
LI HaH d .

Predicted forecast (probif)
0
1

Reported forecast (probit)

Reported forecast (probit)

0 1 2 3 -3 2 -1 0 1 2 3
Reported forecast (probit)

Figure 1. Observed forecasts (probit transformed) versus out-of-sample model predictions.
Predictions are based on item effects only (left panel), forecaster effects only (middie panel),
and the dynamic item response theory (IRT) model (right panel).

model described previously, while the other
panels display predictions for the “fixed item
effects only” model (Equation [13]) and the
“fixed forecaster effects only” model (Equation
[14]). This figure displays both some successes
and shortcomings of the IRT model. Focusing
0n successes, we see a general positive trend in
the right panel, with a correlation of 0.66 be-
tween observed and predicted forecasts. This
implies an R? of 0.43. In contrast, the model that
only includes effects of items (and not of fore-
casters or time) has an R? around 0.15, and the
model that only includes effects of forecasters
(and not of items or time) has an R? of about
0.05. Thus, we can conclude that the dynamic
IRT model is making better predictions than
simpler counterparts.

Focusing on shortcomings, the model predic-
tions appear to be worst for probit forecasts
around —3 or 3, which correspond to probabi-
listic forecasts of 0 or 1. This partialy reflects

Residual (probit scale)
2 4

4 2 0

-6

0 20 40 60 80 100
Item ID (ordered by Brier score)

the fact that forecasters overuse forecasts of O or
1 because these forecasts have clear verbal in-
terpretations (see, e.g., Fischhoff & Bruine de
Bruin, 1999). Relatedly, the model predictions
have a lower bound around —2, which corre-
sponds to a probability of about .12. This means
that forecasters are never predicted to provide
incorrect, extreme forecasts. Later in the article,
we consider some model extensions to address
these issues.

To further examine the model’s fit, Figure 2
displaysresidual plots of model predictions (out
of sample) by item and by forecaster, respec-
tively. The x-axes contain item and forecaster
IDs, which are ordered by average Brier score
(the user/item with best Brier score has ID 1,
and higher 1Ds reflect usergitems with worse
Brier scores). Theforecaster plot indicates some
heteroscedasticity, with points on the right side
having greater variability than points on the left
side. In addition, some outlying negative resid-

Residual (probit scale)
2 4
[

4 2 0
|

-6
l

0 50 150 250
Forecaster ID (ordered by Brier score)

Figure 2. Out-of-sample model residuals by item (left panel) and forecaster (right panel).
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uals appear in both plots. These come from
situations where the forecaster assigned proba-
bilities near zero to the realized outcome; these
issues are further incantations of the previously
discussed issue associated with model predic-
tions.

Ability Estimates

The previous section examined out-of-
sample model predictions using a partialy de-
leted dataset. In this section, we fit the same
model to the full dataset and to small numbers
of items. We generally compare model-based
ability estimates to Brier scores, as the Brier
score is often the default forecaster evaluation
metric in practice. The Brier score weights each
item equally, however, which may be subopti-
mal in forecasting environments. The item re-
sponse model, on the other hand, differentially
weights items depending on the extent to which
they discriminate forecasters of different abili-
ties. The prior distributions used to estimate the
models were the same as the prior distributions
used in the previous section.

Full data estimates. Figure 3 compares
model-based ability estimates to mean Brier
scores for the 241 forecasters in the data. There
is a clear relationship between the two metrics,
with a Spearman correlation of —0.43 (the cor-
relation is negative because larger Brier scores
are bad, while larger ability estimates are good).

Ability estimate
oo

0.1 0.2 03 0.4
Brier score

Figure 3. Model-based ability estimates versus mean
Brier scores. See the online article for the color version of
this figure.

The model-based ability estimates are more
closely related to each forecaster’ s median Brier
score (not shown), with a Spearman correlation
of —0.84. Use of the median Brier score dimin-
ishes the impact of bad forecasts, so this strong
correlation implies that the model also exhibits
a diminished impact of bad forecasts.

In addition, we examined the relationship be-
tween the model-based ability estimates and
mean standardized Brier scores (i.e., Brier
scores converted to z-scores on an item-by-item
basis). The standardized Brier score is a heuris-
tic method for adjusting scores based on item
difficulty; a forecaster with a bad Brier score
can dtill get a good standardized score if her
prediction was better than the crowd. We ex-
pected that the standardized Brier scores would
be more similar to the IRT estimates because
they are both relative measures. Nonetheless,
the scatter plot (not pictured) looks similar to
Figure 3, with the Spearman correlation be-
tween standardized Brier scores and model-
based estimates being —0.59.

To further study relationships between the
ability metrics, we identified four individualsin
Figure 3 for closer comparison. The first two
individuals are the person with the best Brier
score (red + on the left of the figure) and the
person with the best IRT-based ability estimate
(red X at the top). We aso selected two indi-
viduals who are related to these first two: The
person who is most similar to the best Brier
score on ability while being most dissimilar on
Brier score (black plus on the right), and the
person who is most similar to the best ability
estimate on Brier score while being most dis-
similar on ability (black X at the bottom). We
plotted these individuals' forecasts to examine
their response styles and the items for which
they provided good/bad forecasts. These plots
are displayed in Figure 4; the x-axis displays
item IDs (ordered by mean Brier score),
whereas the y-axis displays the Brier score that
each person obtained for each item. The top row
displays plots for the “plusses’ (similar ability
estimates, dissimilar Brier scores), while the
bottom row displays plots for the “Xs’ (similar
Brier scores, dissimilar ability estimates).
Points are shaded to represent the time at which
they were made; lighter points represent fore-
casts that were made closer to event resolution.

Comparing the two panelsin the top row, we
see that the individuals arrived at similar IRT
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Figure4. Comparison of best-ranking forecasters, as determined by average Brier score and
by the model. Each panel corresponds to one of the points in Figure 3 (see panel labels).
Light-colored points represent forecasts that were made closer to event resolution.

ability estimates in different manners. The per-
son in the left panel generally made good fore-
casts up to item 100 (approximately), then made
bad forecasts. In contrast, the person in the right
panel generally made some bad forecasts across
the full range of items, but the bad forecasts
were often made far from event resolution (i.e.,
many points are dark). The IRT model takes
into account the time at which each forecast is
made, which resulted in the similar ability esti-
mates assighed to these two individuals. This
reflects a major advantage of the model-based
estimates: they allow us to account for time of
reported forecast.

Comparing the two panels in the bottom row,
we see that the IRT model rewarded the indi-

vidual on the left who generally made extreme
forecasts. The person on the right, on the other
hand, generally reported forecasts closer to .5,
which resulted in alower ability estimate. Com-
parison of the two panels in the left column
reinforces these ideas: we see that the person
with the best Brier score (top |eft panel) avoided
extreme errors, whereby one assigns a probabil-
ity of 1 to the incorrect outcome. However, the
person also made less-extreme judgments when
she was uncertain, and she had particular trou-
ble with the most difficult items (as measured
by the Brier score; those on the far right side of
the graph). In contrast, the person with the best
ability estimate (bottom left panel) used ex-
treme judgments and often made a perfect fore-
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cast on the most difficult items. The model
therefore rewarded this person for usually mak-
ing perfect forecasts, even for many difficult
items. Compared with the Brier score, we see
that the model rewards correct, extreme judg-
ments and lightly penalizes incorrect, extreme
judgments. In short, the model rewards fore-
casters who are willing to take risks, while the
Brier score rewards forecasters who are more
conservative. While different decision makers
will value different types of forecasters, we
found the model’s handling of extreme fore-
casts to be appealing. In the General Discus-
sion, we provide further thoughts about
model-based ability estimates and proper
scoring rules.

Estimates from few items. Are the IRT
ability estimates related to future performance
on unseen items? To answer this question, we
created a scenario where we observe a small
number of forecasts from a small group of in-
dividuals (and many forecasts from a large
group of individuals). We estimate the ability of
the small group via IRT models and Brier
scores. We then examine whether the small
group’s ability estimates are related to their
ability estimates from a separate set of test
forecasts.

In this analysis, we partitioned the origina
data to create 20 sets of training and test data.
Within each set, the training data were com-
prised of all forecasts from 90% of forecasters
and 10 randomly chosen forecasts from the re-
maining 10% of forecasters (the “test” forecast-
ers). Using the training data, we measured the
test forecasters' abilities via three methods:
mean Brier score, mean standardized Brier
score (described in the previous section), and
the IRT model (Equation [6]).

After obtaining ability estimates with the
training data, we used the test data to reesti-

Table 1

mate test forecasters’ abilities. The test data
included 66 new forecasts from the test fore-
casters and all forecasts from the other fore-
casters. This analysis was set up to mimic
applied situations where we have large
amounts of data on some forecasters, and we
wish to accurately measure new forecasters
abilities using small amounts of data (here, 10
forecasts).

The results are most efficiently described via
Spearman correlations between each training
measure and its test measure. These results are
displayed in Table 1, containing the mean cor-
relation (with interquartile ranges) across the 20
replications. We generally observe greater con-
sistency in the IRT ability measures from the
training to the test set, compared with the Brier
scores. In particular, the mean correlation be-
tween training and Test Brier scores is .48;
between training and test standardized Brier
scoresis.59; and between training and Test IRT
estimates is .73. While the intervals associated
with each measure overlap, the ordering is con-
sistent across all 20 replications: the IRT esti-
mates always exhibit the largest correlation, fol-
lowed by the standardized Brier scores,
followed by the regular Brier scores.

These results suggest that, when a forecaster
provides only a small number of forecasts, the
IRT model provides an ability estimate that
better generalizes to future IRT ability esti-
mates. This is because the IRT model has two
advantages over the Brier score: It can account
for the time at which a forecast was made, and
it uses information about all forecasters in as-
signing an ability estimate to any single fore-
caster. The former advantage can help the
model handle incorrect, long-term forecasts, a
forecaster’s ability estimate is not penalized as
much if he or she makes a bad forecast at atime
when the item is difficult. The latter advantage

Matrix Reflecting Mean Spearman Correlations (Over 20 Replications) Between
Training and Test Ability Estimates (Brier Scores, Standardized Brier Scores,
and Item Response Theory [IRT] Estimates)

Test Train Brier Train Standardized Brier Train IRT
Brier 0.48 (0.36-0.56)
Standardized Brier 0.59 (0.47-0.7)
Test IRT 0.73 (0.67-0.79)
Note. Interquartile ranges are displayed in parentheses.
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can help the model account for item difficulty; it
lightly penalizes bad forecasts on items that are
difficult for everyone, and it heavily penalizes
bad forecasts on items that are easy. While
standardized Brier scores address the latter ad-
vantage, they do not address the former advan-

tage.

Relation of Model Parameters to
Covariates

Finally, we examine covariates both within
and outside the model. We first examine the
estimated impact of time on item difficulty. We
then examine the extent to which the estimated
item parameters are related to external ratings of
item “surprisingness.”

Effectsof time. In comparing the by and b,
estimates associated with each item, we found
that b, > b, for all but one item. Because b,
represents easiness at item resolution and b,
represents easiness as days to resolution go to
oo, this implies that items usually become easier
over time. In Figure 5, we graph the estimated
effect of time on item easiness for three ran-
domly selected items. As we move from left to
right in the figure, we get closer to event reso-
[ution.

It is seen that, at 80 days before item resolu-
tion, the item represented by the solid (dashed)
line is easiest (hardest). These difficulties

1.0

0.8
1

Predicted forecast for correct alternative
0.4 0.6
L

0.2

T T T T T
80 60 40 20 0

Days to resolution

Figure 5. Predicted effects of time on item difficulty,
where time is measured by days to resolution (numbers
closer to O are closer to resolution). Lines depict three
different randomly chosen items.

change differentially over time, so that, around
30 days before item resolution, the dashed line
is no longer the most difficult. Finaly, near O
days before resolution, the solid and dashed
lines converge. The items that varied greatly in
easiness around 80 days to resolution have now
become equally easy.

These results show that the model estimates
support our intuition of items becoming easier
over time. In addition, they illustrate why we
employ ab, parameter that isfixed across items:
the by and b, parameters specify the magnitude
of change in item difficulty over time, whichin
turn influences the speed at which items change.
We do not need an additional, item-specific b,
parameter to obtain different rates of change
across items.

Relation to external covariates. We also
compared the model’s estimated parameters to
an external variable: the extent to which the
outcome of each item was surprising. After each
item resolved (i.e., ex post), surprisingness was
rated by two subject matter experts (who did not
create the items) on a scale from 0-10, where
10 means “most surprising” and O means “least
surprising.” An item was given a high rating if
its outcome would have been surprising to an
informed observer a the time the item was
initially created (when the outcome was un-
known). Ratings were averaged across the two
raters for the analyses here.

Model parameters for comparison included
each item's easiness (y,), discrimination (a),
and residual variability (). Surprising items
should be related to these parameters. items
whose outcomes are surprising may be more
difficult, they may fail to discriminate between
forecasters of differing abilities, and they may
induce greater residual variability. Therefore, if
the model’s item estimates match reality, they
should be related to the external rating.

Figure 6 displays scatterplots between the
model’s item estimates and the external rating
(below the main diagonal), with correlations
between each pair of variables appearing above
the main diagonal. Focusing on the signs of
model parameters’ correlations with surprise
ratings, we see that less-surprising items are
easier, discriminate better between forecasters
of different ability, and have lower residua
variability. The magnitudes of these correla
tionsarerelatively small, being —.09 (easiness),
—.26 (discrimination), and .14 (residual vari-



This document is copyrighted by the American Psychological Association or one of its allied publishers.
This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

12 MERKLE, STEYVERS, MELLERS, AND TETLOCK

02 02 06

1 3 5 7
S S Y[ [

i 0.30

-0.36 || -0.09 [ |

0.2 0.6
| 1 | 1
PR
LW,
R

-0.68 || -0.26

S - _%e G
o © « °, -
. L]
oS3 . o .o .;: - ,(\_I
-:-‘ b $ -& . \V O 1 4 -
. i
Joade o0 |20 o . |- @
° - o * * .. -
L2 L] .
o © o %o} | <
. L] o
. . .
~ -
L] L . L] o e
Tt tShee e e 3% o ot %t
ol ..-,..: . o |o% o0 2 ols .. ".’ ... . .
1 AL % | |7 o a2t | |20 surprise
o - o o Wy o 9 o o o . .
oo o P aee® ¢ o ® Ope . .
=1 00 o B0 L4 Ve o & ® Mme™*e oo
“%0e L4 oo 0o 0 ¢ o900 o
- - LY ) o ooogpe Sem O0®
L] L] . oo ® e .
T T T T | A I /N AT B |
0 2 4 6 0.4 0.8 1.2

Figure 6. Scatterplots between item parameters and surprise ratings. The vy, parameter
is related to item easiness at resolution, the o parameter is item discrimination, and the
s parameter is item residual variability. Pearson correlations are displayed in the upper

triangle.

ability). The previously discussed model short-
comings likely dampen the correlations, as well
as the residua variability in the ratings of sur-
prisingness. Overall, however, the correlations
between item parameters and the external vari-
able are in the expected directions and provide
further evidence that the model is capturing the
data in a meaningful way.

Model Evaluation Summary

In summary, the model predictions are rea
sonably accurate, and the model parameter es-
timates correspond to our expectations about
their behavior (as illustrated through the rela-
tionship with external variables). The main
weakness of the model lies in its inability to
accommodate incorrect, extreme forecasts. The
model is also unable to account for the overuse

of forecasts of .5. These issues are potentially
addressed via an item response model of ordinal
judgments, which is studied in the next section.

Ordinal Model

As developed thus far, the IRT model does
a poor job of handling the extreme forecasts
of 0 and 1. Furthermore, the model cannot
handle the overuse of .5 that is commonly
observed in many datasets (Bruine de Bruin,
Fischhoff, Millstein, & Halpern-Felsher,
2000). To handle these issues, multiple model
alterations are possible. The alteration that we
consider in detail here (with others being de-
scribed in the General Discussion) involves
treating the reported forecasts as ordered cat-
egories instead of as continuous judgments.
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This mimics the manner by which confidence
judgments are typically collected and mod-
eled in cognitive psychology tasks (Pleskac &
Busemeyer, 2010; Ratcliff & Starns, 2009;
Van Zandt, 2000). For example, in recogni-
tion memory experiments, subjects must re-
port whether or not a focal word appeared on
a previous list of words. Their confidence is
not typically reported on a continuous scale;
instead it may be reported on a 6-category
scale ranging from “certain the word previ-
ously appeared” to “certain the word did not
appear.” The rationale for this scale is that
subjects can only discriminate between a
small number of confidence levels (for exam-
ple, uncertain, somewhat certain, and certain).
Thisimplies that geopolitical forecasts of, for
example, .2 and .4 might be treated equiva-
lently because forecasters have no cognitive
basis for discriminating between such judg-
ments.

Model Detail and Method

The model described here is an ordinal
version of the continuous model that we de-
scribed previously. We assume a continuous,
latent variable that drives the judgments Y™.
This variable is similar to the probit-transformed
forecasts used previoudly, except that the variable
is now unobserved. Multiple threshold parame-
ters determine the reported, ordinal category.
The model employs ideas related to the
graded response model that is popular in psy-
chometrics (Samejima, 1969, 1997), the sig-
nal detection models that are popular in cog-
nitive science (DeCarlo, Kim, & Johnson,
2011; Wickens, 2002), and the proportional
odds model that is popular in statistics (Ful-
lerton, 2009; McCullagh, 1980). The thresh-
olds change over time in the current applica-
tion, reflecting the fact that problem difficulty
tends to change over time.

Formally, we define the latent variable as

*

yij =)\j6i +Qj, (24)
where the g; and the 0; arise from separate
standard normal distributions. Assuming m or-
dered categories, we then compute (M—1)
threshold parameters via the equation

Gjm = bojm + (byj — bojmexp(—bt;;)

m=1...,(M—-1) (25)
where the bs are free parameters, t; was defined
previously (as time until the problem resolves),
and bgj; < bgp <... <bgm - 1)- The observed
response y;; is then determined via

1 if yi; <0
2 ify,>q andy; <qs,
yi=1 ij~ i 1=% (26

This model can also be written via probit-
transformed, cumulative probabilities of re-
sponding to each category or below; further
detail on the multiple ways of writing these
models is provided by Smithson and Merkle
(2013).

We fit the model to the full dataset used
earlier in the article, with M = 5: probability
judgments of 0 were coded as Category 1, prob-
ability judgmentsin [.01, .49] were Category 2,
.5 was Category 3, [.51, .99] was Category 4,
and 1 was Category 5. This coding collapses
away much information, and codings for larger
values of M could be conceptualized. We were
interested in the extent to which forecaster abil-
ity estimates differed when treating the fore-
casts as ordered categories, compared with con-
tinuous judgments. This comparison provides
information about the extent to which the orig-
inal model’s (mis)handling of extreme forecasts
impacts ability estimates, as well as the extent
to which continuous forecasts are more useful
than categorical forecasts. Prior distributions on
model parameters were the same as those used
for the original model.

Results

A scatter plot of forecaster ability under the
continuous model (x-axis) and under the ordinal
model (y-axis) is displayed in Figure 7. This
illustrates a surprisingly strong correlation of
0.87 between the models' ability estimates, with
the best forecasters being especially similar
across the models. The low-ahility forecasters
exhibit greater variability between models, and
this is likely related to the original model’s
problems with incorrect, extreme judgments:
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Ordinal model

Original (continuous) model

Figure 7. Comparison of forecaster ability estimates
from the “continuous forecast” model and from the ordi-
nal model.

Bad forecasters provide more of these judg-
ments, so that the resulting ability estimates
diverge.

The similarity between the two models’ abil-
ity estimates provides interesting results about
the original model and about the forecasters.
Focusing on the former, the results imply that
the original model’ s shortcomings involving ex-
treme judgments do not have a large impact on
the resulting ability estimates. Focusing on fore-
casters, it was surprising that results remained
similar when we discard alarge amount of data;
when all continuous judgments from .01 to .49
(and from .51 to .99) are collapsed into asingle
category. While this implies that it may be
sufficient to elicit forecasts on an ordinal, as
opposed to continuous scale, ordinal scales may
induce other problems. First, the optimal num-
ber of ordered categories (M) to use in any
particular application is unclear, and fixing M to
a small value may be too restrictive in some
applications. A forecaster may report a “cer-
tain” judgment on one item, then encounter a
new item for which she is more certain than she
was on the original item. Second, the use of
ordered categories may disallow base rate infor-
mation that is important for some geopolitical
items. For example, items involving elections
may benefit from polling data, results of similar
elections, and so on. Thisinformation may yield
a quantitative estimate that is more precise than

an ordered category, and the forecaster may use
this estimate as a prior probability for judging
the focal election. Forcing the forecaster to use
an ordered category may not alow the fore-
caster to communicate all of her knowledge.

General Discussion

In this article, we first tailored item response
models to probability judgments. These models
can handle many issues that traditional forecast
evaluation methods cannot, including the facts
that (a) forecasters forecast the same item at
different points in time, (b) forecasters forecast
different subsets of items, and (c) items differ in
the extent to which they measure ability. There-
fore, the models offer novel methods for eval-
uating forecasters and questions in redlistic sit-
uations. In fitting the models to data from a
geopolitical forecasting tournament, we empir-
ically observed both strengths and weaknesses
of the models. Strengths included the facts that
the model’ s out-of-sampl e predictions were rea-
sonable and that the model’s item estimates
were related to external measures of item sur-
prisingness. Weaknesses were related to ex-
treme, incorrect forecasts: the model could not
accommodate these forecasts, and it may not
adequately penalize forecasters who were fre-
guently extreme and incorrect. In the next sec-
tions, we describe extensions to handle these
and other issues. These extensions are related to
extreme forecasts, “proper” ability estimates,
item evaluation, missing data, and dimensional-
ity of forecaster ability. We also consider some
methodological issues involved in the evalua-
tion of probability judgments.

Extreme Forecasts

As described previously, we implemented an
ordina model to address the original model’s
inability to accommodate extreme forecasts
(and overuse of .5). While the ordinal model
handled extreme forecasts, it was unsatisfactory
from the standpoint that data were being dis-
carded (i.e., many distinct forecasts were col-
lapsed into a single category). It may instead be
worthwhile to consider aternative models that
treat the forecasts as continuous while smulta-
neously accounting for overuse of forecasts in
{0, .5, 1}. One alternative involves develop-
ment of a two-component mixture model that
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can handle overuse of particular forecasts,
which is related to the traditional three-
parameter item response models (Birnbaum,
1968). The traditional model assumes that indi-
viduals sometimes respond correctly by guess-
ing, regardless of their ability. In a forecasting
mixture model, we might instead assume that
forecasters sometimes provide judgments of 0,
.5, or 1 that are unrelated to the specific ques-
tion's difficulty or to the specific forecaster’'s
ability. There are likely to be estimation diffi-
culties associated with this model because of the
parameter identification issues inherent in mix-
ture models (see Smithson, Merkle, &
Verkuilen, 2011, for a genera discussion of
mixture models for probability judgments).

Other researchers have addressed overuse of
forecasts through rounding or through modified
link functions. For example, Kleinjans and Van
Soest (2014) develop a model whereby subjects
arrive at probability judgments through various
types of rounding. A judgment of, say, .07 im-
plies that the subject’s true belief lies some-
where between .065 and .075; her judgment is
rounded to the nearest multiple of .01. An ex-
treme judgment of 1, however, may be obtained
through other types of rounding: the subject
may be rounding to the nearest multiple of .1, so
that the judgment of 1 merely implies that her
true belief is greater than .95. The overuse of {0,
.5, 1} arises because subjects can arrive at these
judgments through multiple types of rounding
(to the nearest multiple of .01, .05, .1, .25, or .5).
These multiple types of rounding lead to afive-
component mixture model, which makesit chal-
lenging to implement rounding within the
model proposed here.

Related to rounding, others have employed
truncated or censored distributions to account
for the extreme judgments of 0 and 1. Muthén
(1989) uses a censored model to handle extreme
judgments, whereby all judgments that are more
extreme than the censoring point simply assume
an extreme value of 0 or 1. Ferrando (2001)
relatedly describes use of a truncated normal
distribution to model bounded responses (such
as probability judgments), using an identity link
function instead of the logit or probit. Neither of
these models immediately handle the abun-
dance of .5 judgments, though additional cen-
soring points may be employed to handle these
judgments.

Proper Ability Estimates

Scoring metrics such as the Brier score or
logarithmic score are popular in forecasting
contexts because they are proper: Forecasters
can expect to receive the best score when their
forecasts match the true probability of event
occurrence. This, in turn, is thought to motivate
forecasters to be honest; to report their honest
belief about the probability of event occurrence.

The model-based ability metric proposed in
this article (from the IRT model of continuous
judgments) is not proper. For atraditional, two-
parameter IRT model applied to binary data, the
sufficient statistic for ability (6;) is Ejajyij,
where o isitem j’s discrimination and y;; indi-
cates Whether or not subject i correctly an-
swered item | (e.g., Baker & Kim, 2004). Trans-
lating these results to the current model (in
Equation [6]), we can show that the sufficient
statistic for 6; involves a weighted sum of the
y;;. This amounts to an “absolute error” metric,
w‘hich encourages reporting of a median judg-
ment instead of a mean judgment (Gneiting,
2011). That is, assuming one’'s uncertainty
about the forecast is represented by a probabil-
ity distribution, then the proposed model en-
courages reporting of that distribution’s median
instead of the mean. Models whose ability esti-
mates are related to the Brier score or to other
proper scoring rules require further study, but
the inclusion of specific scoring rules into tra-
ditional IRT models has recently been consid-
ered by Bo, Lewis, and Budescu (2015).

Item Attributes

In traditional IRT applications, models pro-
vide estimates of item attributes (typicaly dif-
ficulty and discrimination) in addition to esti-
mates of respondents’ ability. The item
attributes are especially useful because the
items can be reused: we can administer test
itemsto aninitial group of students, then select the
best items for wide-scale adminigration. Thisis dif-
ferent from many forecasting situations, where,
once we know an item’s outcome, the item is
expired and cannot be reused. As a result, we
cannot immediately use IRT models to prede-
termine which items are of suitable difficulty.
Instead, we could extend the models to include
additional item covariates that are related to
difficulty (e.g., De Boeck & Wilson, 2004).
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This would alow us to estimate the impact of
covariates on item difficulty, providing infor-
mation about the relative difficulty of different
item types.

Missing Data

Many forecasting scenarios lead to large
amounts of missing data: forecasters may re-
spond to only a small proportion of items, new
forecasters may enter the panel, and old fore-
casters may leave the panel. In the current arti-
cle, we bypassed these issues by examining a
subset of frequent forecasters. Here, we con-
sider some model extensions to handle the miss-
ing data issues.

Focusing on forecasters who respond to a
small proportion of items, it is easiest to ig-
nore the missing data points and model only
the observed data. This amounts to assuming
that the data are missing at random (e.g.,
Little & Rubin, 2002), an assumption that can
be violated if, for example, the good forecast-
ers are able to select easy questions. When
this assumption is violated (so that the data
are missing not at random), then we must
simultaneously model the reported forecasts
and a binary variable denoting whether or not
each forecaster responded to each item. The
approach of O’'Muircheartaigh and Moustaki
(1999) appears promising for accomplishing
this. Their approach involves a two-dimen-
sional ability model, where the first dimen-
sion is forecaster ability and enters the model
in the same way as the model used in the
current article. The second dimension is then
“response propensity,” and it is used to model
the binary response data (indicating whether
or not a forecaster responded to an item). Itis
important to note that this second dimension
also influences the reported forecasts, which
allows for situations where the reported fore-
casts are related to item selection. This ap-
proach is an extension of the model reported
in this article and can potentially be estimated
via Bayesian methods.

The situation where new forecasters enter
and old forecasters |eave can be addressed via
linking and equating methods that have been
thoroughly studied in traditional IRT contexts
(e.g., von Davier, 2013). In short, these meth-
ods allow us to place forecasters' abilities on
a common scale even when different forecast-

ers respond to different items. To do so, there
is typically a requirement that either (a) ev-
eryone has responded to at least one common
item, or (b) some people have responded to all
items. These requirements may be partially
relaxed, however, for situations where each
person potentially responds to a unique subset
of items. Fischer (1981) describes necessary
and sufficient conditions under which the Ra-
sch model can be fit to these types of incom-
plete data. Importantly, responses must be
“connected,” in the (rough) sense that each
person’s chosen items must overlap with
other people’s chosen items. For forecasting
contexts, it is perhaps safest to present incom-
ing forecasters with some practice items to
which everyone has responded. Alternatively,
if there are a subset of committed forecasters
who respond to all items, then this should be
sufficient to employ the methods described
here.

Dimensionality of Ability

The IRT models described in this article
assume that ability is unidimensional; that
each forecaster’ s ability can be described by a
single number. In the previous section, we
discussed adding a dimension to accommo-
date missing data issues. We could more gen-
erally assume multiple dimensions of fore-
casting ability, where different dimensions
reflect different types of ability. For example,
one dimension might reflect ability to make
long-term estimates, a second dimension
might reflect subject-matter knowledge, and
so on. These models are increasingly difficult
to fit as the number of dimensionsincrease. In
addition, the dimensions may be modeled as
either compensatory or noncompensatory. In
the former case, low ability on one dimension
can be offset by high ability on another di-
mension. In the latter case, one must have
high ability on all relevant dimensions in or-
der to exhibit good performance. These ex-
tensions, along with the previous extensions
to address model shortcomings, may lead to
important advances in forecast assessment.
Further work is needed to ensure that these
complex models can be reliably estimated in
general forecasting situations.
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Methodological |ssues

Finaly, we remark on some issues sur-
rounding the statistical analysis of probability
judgments. Previous researchers (Erev, Wall-
sten, & Budescu, 1994; Wallsten, 1996) have
noted that different probability judgment
analysis methods can lead to conflicting con-
clusions about the judges/forecasters. These
researchers have focused on calibration,
which is the correspondence between the
probability judgments and the outcomes. For
example, if a well-calibrated forecaster re-
peatedly reports forecasts of 60%, then 60%
of those events should occur. Erev et al.
(1994) showed that one's conclusions about
calibration can be reversed, depending on
whether probability judgments are treated as
response variables or as predictor variablesin
the analysis. The modeling of probability
judgments conditioned on objective probabil-
ity of event occurrence is associated with
underconfidence, and the modeling of event
outcomes conditioned on probability judg-
ments is associated with overconfidence.
Wallsten (1996) further summarizes the is-
sues and notes that “ The most useful analyses
generally will be those that rely on the re-
sponse distributions conditional on true or
fal se statements or on objective probabilities”
(pp. 225-226).

The models proposed here implicitly condi-
tion on event outcomes (which Wallsten calls
“true or false statements’), because our Y™ is
defined as the probability judgment for the
outcome that occurred. However, the impact
of this conditioning on our conclusions is
unclear because we are not characterizing
judges’ calibration in an absolute sense (i.e.,
we are not characterizing judges as undercon-
fident, overconfident, or well-calibrated). In-
stead, we are characterizing judges' relative
forecasting ability, which is partially based on
calibration but also includes aspects of dis-
crimination, noise, and so on. Furthermore,
we draw no conclusions about judges abso-
lute ability: The model can tell us, for exam-
ple, which judge is better than all the others,
but it does not tell us whether that judge's
forecasts are highly predictive of the event
outcomes. We conjecture that the relative na-
ture of the proposed model resolves some of
the above-noted statistical issues.

Conclusion

In summary, IRT models of forecasts af-
ford a useful framework for evaluating fore-
casters and items in realistic environments.
They formalize researchers intuitions about
question difficulty dynamically changing over
time and about questions' discriminations be-
tween forecasters of varying abilities. Fur-
thermore, many model extensions are avail-
able that allow for data analyses that were
impossible with other traditional analyses
(say, scoring rules or traditional regression/
ANOVA models). These extensions provide
avenues for future research, resulting in a
family of models that can potentially handle
many dynamic forecasting situations.
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