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Multipart tariffs are widely favored within service industries as an efficient means of mapping prices to
differential levels of consumer demand. Whether they benefit consumers, however, is far less clear as they

pose individuals with a potentially difficult task of dynamically allocating usage over the course of each billing
cycle. In this paper we explore this welfare issue by examining the ability of individuals to optimally allocate
consumption over time in a stylized cellular-phone usage task for which there exists a known optimal dynamic
utilization policy. Actual call behavior over time is modeled using a dynamic choice model that allows decision
makers to both discount the future (be myopic) and be subject to random errors when making call decisions.
Our analysis provides a “half empty, half full” view of intuitive optimality. Participants rapidly learn to exhibit
farsightedness, yet learning is incomplete with some level of allocation errors persisting even after repeated
experience. We also find evidence for an asymmetric effect in which participants who are exogenously switched
from a low (high) to high (low) allowance plan make more (fewer) errors in the new plan. The effect persists
even when participants make their own plan choices. Finally, interventions that provide usage information to
help participants eradicate errors have limited effectiveness.
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discounting
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1. Introduction
The multipart tariff is one of the most widely used
approaches to pricing in service industries such as
cellular phones, electricity distribution, vehicle leas-
ing, retail banking, and online retailing. By charg-
ing consumers different prices for different levels of
consumption, multipart tariffs have the advantage of
allowing firms both to price discriminate among con-
sumers who have different levels of demand and
fairly allocate limited capacity to those who need it
the most (Bagh and Bhargava 2013, Oren et al. 1985).
Whether such pricing mechanisms offer comparable
welfare benefits for consumers, however, is far less
clear.

The primary source of concern is that multipart
tariffs potentially complicate otherwise simple deci-
sions about service utilization and tariff choice. Under
a typical pay-per-use plan, for example, a consumer
who wishes to decide whether to consume a unit of
a service (such as place a phone call) simply needs to
assess whether the marginal utility of usage exceeds
its marginal cost. Under multipart plans, however, the
decision is rendered more complex by the need to also
consider how consumption in the present may affect
the marginal cost of future consumption. If consumers

find it difficult to make present-future consumption
trade-offs, or lose track of accumulated usage under a
given plan (e.g., Grubb and Osborne 2013), multipart
tariffs could distort consumption patterns in a way
that departs from what would be optimal for the con-
sumer in the long term. An example would be cell-
phone consumers who too quickly use up their “free
minutes” (the monthly allowance), exposing them to
otherwise avoidable overage charges (which represent
an increase in marginal cost) later in the month.

How pervasive are such consumer errors within
the context of multipart tariffs? The empirical evi-
dence, based largely on aggregate (typically monthly)
usage, is somewhat mixed. Bar-Gill and Stone (2009),
for example, find that cell-phone consumers are often
poor judges of the calling plans that best match their
actual usage. In their work, consumers exceeded their
call allowance 17% of the time (by an average of 33%),
and those who did not exceed it used, on average,
just 47% of their call allowance. Likewise, Ascarza
et al. (2012) report that consumers increase usage
when switching from two-part (fixed access fee and
pay-per-use rate) to three-part tariffs (fixed access fee,
usage allowance, and overage rate), an inflation they
attribute to a biased tendency to increase usage when
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consumption within the usage allowance is perceived
as “free.” Finally, Lambrecht and Skiera (2006), Lam-
brecht et al. (2007), Goettler and Clay (2011), and
Ater and Landsman (2013) all offer suggestive evi-
dence that consumers themselves sense the difficul-
ties of making usage decisions under multipart tariffs,
with many preferring flat-rate plans to multipart tar-
iffs even when total ex post cost is higher.

Two sets of factors limit the strength of conclu-
sions about optimality that can be drawn from data
on aggregate usage. First, because such data do not
reveal the full set of beliefs held by consumers when
they were making decisions–such as their expecta-
tions of future usage, consumption utility, and tempo-
ral planning horizon–it is impossible to draw strong
conclusions about the optimality of these decisions.
For example, a consumer who is observed incur-
ring overage charges might well have been behav-
ing optimally if she was strategically responding to
an unexpected surge in consumption opportunities
providing high utility. Second, as noted by Miravete
(2003), even if consumers do err when choosing plans
and/or making consumption decisions, such mistakes
may be transient, diminishing over time as consumers
become more skilled in forecasting their usage pat-
terns and disciplining consumption during a billing
cycle.

The purpose of this paper is to take a first step
toward empirically assessing the ability of individ-
uals to make optimal usage decisions under multi-
part pricing schemes. We do so by studying how con-
sumers make call-by-call usage allocation decisions
under three-part tariffs in a controlled laboratory task
for which there is a known optimal policy for con-
sumption over time. In this task, participants make a
series of decisions about whether to accept or reject
a series of incoming phone calls that have a known
stochastic arrival rate. As in natural settings, when
calls arrive, participants observe the utility of the call
(simulating caller ID), decide whether to accept each
call, and can terminate calls. Participants play for a
monetary incentive with the goal of maximizing the
total net utility of their phone usage decisions over a
time horizon.

We emerge from the work with four key findings.
First, we show how participants’ call-acceptance deci-
sions in the task can be captured by a heterogeneous
dynamic utility model that assumes that they are for-
ward looking when making call-acceptance decisions,
but subject to both differential rates of temporal dis-
counting and random errors in usage. Estimates of
the structural parameters of the model suggest that
although participants quickly learn to avoid myopia
(excessive discounting) when making decisions in the
task, random errors are more persistent, which forms

the main source of departures from optimality among
experienced users. Second, although aggregate per-
formance improves relative to normative benchmarks
with game experience, this convergence is incomplete
and displays several sustained departures from opti-
mality. Among these is a tendency for behavior to
be “noisier” as the free allowance is increased in the
three-part tariff, and participants who are exogenously
switched from a low (high) to high (low) allowance
plan make more (fewer) errors in the new plan. Third,
this asymmetry persists even when allowing partic-
ipants to self-select into plans. Finally, interventions
such as providing subjects with full information about
talk time usage and/or creating an alert when reach-
ing 80% of free allowance has almost no effect on
performance, suggesting that inattention to usage is
unlikely to be a major driver of errors.

The remainder of this paper is organized as fol-
lows. In §2, we describe the general form of the
decision task faced by participants in our labora-
tory setting, and develop a dynamic choice model
of consumer decision making that incorporates tem-
poral discounting, random errors, learning, and het-
erogeneity. In §3, we explain our design choices and
describe the experimental setting in which we collect
data. In §4, we report the findings from four stud-
ies based on our experimental paradigm along with
robustness checks. We conclude in §5 with a discus-
sion of the work’s implications for researchers and
regulators.

2. Theory and Model Development
2.1. Overview
In this paper we study how individuals solve a series
of cell-phone calling tasks that have the following
structure:

A consumer i faces a series of incoming calls in game g
(out of a total of G games) and must decide whether
to accept or decline each opportunity. The costs of calls
are governed by a three-part-tariff (TPT) plan ℘ig in
which the consumer pays a fixed up-front fee Fig for
the first W̄ig seconds of “free” talk time, with over-
age charges of cig units per second. Upon receiving a
call at time t the consumer first observes its marginal
utility per second uigt , which is an independent and
identically distributed (i.i.d.) draw from a known dis-
tribution h4uigt5. If she accepts the call it lasts for up
to L seconds. Once a call is accepted, the consumer
can terminate the call at any time or accept another
incoming call whose utility can be observed even while
an accepted call is in progress. Time is discrete, and
calls arrive as a Bernoulli process with a fixed, known,
probability p in each second. The consumer’s goal is
to make a series of accept, switch, or reject decisions
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that maximize total net call utility over a finite time
horizon of T seconds.

Although abstract in form, this stylized task cap-
tures many of the common features of real-world call-
ing problems. As in natural settings the consumer
must decide how best to utilize “free” talk time under
a budget that mimics monthly billing cycles, she faces
potential overage charges that can exceed the average
unit time cost (fixed fee divided by “free” talk time),
the likely utility of an incoming call is known (e.g.,
the consumer is assumed to have “caller ID”), call
duration is under the control of the consumer, and
she has the ability to switch to a new incoming call
while on a current call. Likewise, because the task will
be played repeatedly, there are opportunities to learn,
and the consumer faces the possibility of plan changes
that she must adapt to. That said, we do not accom-
modate all features of real-world calling in order to
retain a form that yields a clear optimal policy. We
do not, for example, allow subjects to make outgo-
ing calls, allow for rollover of unused call allowance,
or distinguish between off-peak and on-peak usage,
and every call’s duration has the same upper bound.
In the discussion we address the degree to which
the current findings might be expected to gener-
alize to a broader range of dynamic consumption
problems.

2.2. Normative Theory and Empirical Model
In this section we describe how call acceptance deci-
sions would be made by a rational decision maker
who seeks to maximize net call utility over a finite
time horizon. Because one of our central research
goals is to examine how actual acceptance decisions
compare to this optimal benchmark, the model allows
for two behavioral features that might change over
games as participants gain task experience: intertem-
poral discounting, or the tendency to give more
weight to the value of calls that are immediately at
hand versus those that may lie in the future, and time-
varying random response errors. Following Salisbury
and Feinberg (2010), these errors reflect unobserved
drivers of utility that lie outside the rational policy,
such as momentary lapses of attention and transient
errors that arise from making decisions via nonnor-
mative heuristics.

In §2.2.1 we first describe how a utility-maximizing
consumer would solve our focal decision problem
given that she discounts future utilities absent ran-
dom choice errors, and we then extend this model in
§2.2.2 to allow for such errors. In §2.2.3 we discuss
the form of the model that we estimate empirically,
which includes heterogeneity in discounting and error
propensities.

2.2.1. The Optimal Policy Without Random Choice
Errors. Consider the optimal policy for consumer i
who wishes to maximize utility over a discounted
finite time horizon in game g with discount fac-
tor �ig under a TPT plan ℘ig (with fixed fee Fig , “free”
allowance W̄ig , and per-second overage charge cig5 by
making a series of decisions {�igt}. The consumer is
assumed to be intertemporally risk neutral in assess-
ing the expected total utility of future calls.1 Note that
the discount factor is allowed to be consumer-specific
and game-specific. Let t ∈ 81121 0 0 0 1 T } be the decision
times within game g, where T is the total number of
seconds. Assume that in each second there is a con-
stant probability p of an arriving call with strictly pos-
itive and stochastic utility uigt with p.d.f. h4uigt5. For
notational convenience, we set uigt = 0 to represent
the event of no call arriving at time t (which occurs
with probability 1−p5, yielding the mixed probability
distribution f 4uigt5 = 41 − p5 · I4uigt = 05 + p · h4uigt5 ·

I4uigt > 05.
At time t, a consumer derives current-period utility

K4uigt1uigt1Digt1wigt1�igt5 from new call acceptance
(�igt = 1) or existing call continuation (�igt = 0) and
obtains zero utility from termination or rejection of a
call (�igt = −1). As shown in Figure 1, the space of call
decisions ãigt4uigt1uigt5 depends on available new and
existing calls and period utility is a function of uigt ,
the value of an incoming call (could be 0 if none);
uigt , the value of an ongoing call (could be 0 if none);
Digt , the number of seconds remaining on an exist-
ing call; and wigt , the number of free seconds (or talk
time) used.

The consumer’s expected utility is given by

E

[ T
∑

t=1

�t−1
ig ·K4uigt1uigt1Digt1wigt1�igt ∈ãigt4uigt1uigt55

]

1

and can be formulated as a dynamic programming
problem as shown in Equation (1), where Vigt4uigt1
uigtDigt1wigt1�igt5 is the conditional value function and

V̄ig1 t+14uig1 t+11Dig1 t+11wig1 t+15

≡ Euig1 t+1

[

max
�ig1 t+1

Vig1 t+14uig1 t+11uig1 t+11

Dig1 t+11wig1 t+11�ig1 t+15
]

is the expected continuation value conditional on
future state parameters. State variables include uigt1

1 In our experimental work we will examine whether observed
departures from optimality might accrue because of risk aversion
among consumers. We impose intertemporal risk neutrality here
both for model identification and to make the analysis consistent
with prior dynamic consumer utility models, which also make the
same assumption (e.g., Erdem and Keane 1996).
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Figure 1 (Color online) Current Period Utility K as a Function of State Variables and Decision

Yes

Yes

�igt ∈ {1, 0, –1}

K{uigt, uigt, Digt, Wigt, �igt) =

�igt ∈ {1, –1} �igt ∈ {0, –1} �igt ∈ {–1}

Yes

 No

uigt > 0

No No

uigt > 0 uigt > 0

[uigt – cigI(wigt ≥ Wig)]I(uigt > 0)I(Digt > 0), �igt = 0

0, �igt = –1

[uigt – cigI(wigt ≥ Wig)]I(uigt > 0), �igt = 1

Note. For a respondent i, game g, and time t , uigt is the value of an incoming call,uigt is the value of an ongoing call, Digt is the number of seconds remaining
on an existing call, wigt is talk time used, and �igt denotes the decision being new call acceptance (�igt = 1), existing call continuation (�igt = 0), or termination
or rejection of a call (�igt = −1).

uigt1Digt , and wigt but only uigt is unknown prior to the
start of time t

Vigt4uigt1uigt1Digt1wigt1�igt5

=















































6uigt−cigI4wigt ≥W̄ig5

+�igV̄ig1t+14uigt1L−11wigt+157
·I4uigt>051�igt=1

6uigt−cigI4wigt ≥W̄ig5

+�igV̄ig1t+14uigt1Digt−11wigt+157
·I4uigt>05I4Digt>051�igt=0

�igV̄ig1t+140101wigt51�igt=−10

(1)

In Web Appendix A (available as supplemental mate-
rial at http://dx.doi.org/10.1287/mksc.2014.0877), we
lay out formal propositions that characterize the prop-
erties of the above value function and the optimal
call-acceptance policy that follows from solving this
dynamic program. Most have a strong intuitive flavor.
For example, if the consumer has an incoming call but
no existing call at time t 4uigt > 01uigt = 05, the opti-
mal decision of whether to accept (�igt = 15 or reject
(�igt = −15 the call involves a trade-off between imme-
diate call utility (less any overage charge) and its
associated opportunity cost: the difference in expected
future utility from saving this unit of talk time for
future consumption and taking the call. Once a call
is accepted, a rational consumer then needs to decide
how long to stay on it. In the absence of another
incoming call, the optimal call continuation decision
has a similar intuition to call acceptance. A rational
consumer might, however, choose to switch calls if
a new competing one arrives. In this situation three
decisions are possible (ãigt = 81101−19): continue the
current call, take the new call, or terminate the cur-
rent call without taking the new one. In this case the
consumer would compute the same trade-off between

present utility and future opportunity costs as above,
but here via two steps, first deciding which of the two
calls offers the higher level of long-run utility, and
then deciding whether the better of the two is worth
continuing or taking (which could cause both calls to
be rejected).

2.2.2. Introducing Random Choice Errors. It is
unlikely, of course, that consumers would always
trade-off utility and costs in an optimal manner. Even
if they understood the optimal policy, its application
may occasionally be disrupted by lapses of atten-
tion or transient mood effects that are unobserved
by the analyst. Likewise, in the course of learning
how best to accept calls, consumers might randomly
try out a mix of heuristic policies that sometimes
lead them to accept calls they should decline and
sometimes reject those that should be accepted. To
capture the effect of such errors in the decisions
of consumer i in game g, we introduce a time-
varying additive i.i.d. extreme value type I shock term
�igt4�igt5 with scale parameter �ig in the model for-
mulation (Rust 1987, Salisbury and Feinberg 2010)
such that the consumer chooses the decision �∗

igt =

arg max�igt
6Vigt4uigt1uigt1Digt1wigt1�igt5+ �igt4�igt57. We

nonparametrically capture learning that may reduce
transient errors across games by allowing �ig to be
game specific.

In the extreme case, as �ig → 0, a consumer’s actions
are perfectly characterized by the optimal policy for
her given discount factor �ig . On the other hand, a
larger �ig indicates a noisy policy that deviates with
increasing probability from what is optimal given the
consumer’s �ig (cf. McKelvey and Palfrey 1995). As
�ig → �, consumer i makes completely random deci-
sions in game g. The expected continuation value
V̄ig1 t+14uig1 t+11Dig1 t+11wig1 t+15 ≡ Euig1 t+1

6V̄ig1 t+14uig1 t+11
uig1 t+11Dig1 t+11wig1 t+157 is now a function of ex ante
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value function V̄ig1 t+14uig1 t+11uig1 t+11Dig1 t+11wig1 t+15,
which requires integrating over a vector of future
shock terms �ig1 t+1, unknown to both the con-
sumer and researcher. Note that current-period error
terms �igt are assumed known to the consumer at
time t and only realized for �igt ∈ãigt4uigt1uigt5. How-
ever, the researcher only knows the distribution of
these shocks and must integrate over them to arrive at
the probability of making decision �igt .

Given that the error terms are distributed extreme
value type I, closed-form solutions are available for
conditional choice probabilities and the ex ante value
function (Arcidiacono and Ellickson 2011, Rust 1987)
as shown in Equations (2) and (3), respectively. Here,
the term �max

igt = arg max�igt
Pr4�igt � uigt1uigt1Digt1wigt5,

and � is the Euler-Mascheroni constant

Pr4�igt �uigt1uigt1Digt1wigt5

=
exp4Vigt4uigt1uigt1Digt1wigt1�igt5/�ig5

∑

m�ãigt4uigt1uigt 5
exp4Vigt4uigt1uigt1Digt1wigt1m5/�ig5

1

(2)
V̄igt4uigt1uigt1Digt1wigt5

=−ln4Pr4�max
igt �uigt1uigt1Digt1wigt55

+Vigt4uigt1uigt1Digt1wigt�
max
igt 5+��ig0 (3)

The ex ante value function can be interpreted as
the value function for the decision with the highest
probability of being chosen plus an upside coming
from possible shocks that may make other decisions
more attractive. The term involving � does not affect
conditional choice probabilities. As noted before, in
the limiting case of �ig → 0, the ex ante value function
becomes equivalent to the conditional value function
given �max

igt as the decision rule becomes deterministic
(i.e., Pr4�max

igt � uigt1uigt1Digt1wigt5→ 1).
Given a vector of observed consumer deci-

sions Yig≡8�ig11�ig21 0 0 0 1 �igT 9 and call arrivals Xig ≡

8uig11uig21 0 0 0 1uigT 9 for each game, we can construct
the likelihood function for consumer i over G games
using the standard assumption of conditional inde-
pendence of the temporal error terms (e.g., Rust 1987)
as shown below

G
∏

g=1

p4Yig � �ig1�ig1Xig1℘ig5

=

G
∏

g=1

T
∏

t=1

Pr4�igt � uigt1uigt1Digt1wigt50 (4)

State variables at each decision node can be con-
structed from Xig and Yig . The data therefore consti-
tute discrete choices made at different values of state
parameters. An important point to note is that Xig

is independent of Yig by design—arriving calls have
nothing to do with the decisions the consumer made
in the past.

2.2.3. Model Identification and Heterogeneity.
Our dynamic choice model has two parameters to
capture decision making by consumer i in game g:
an intertemporal discount factor (�ig) and error scale
parameter (�ig). The scale parameter is usually set to
a constant (e.g., Arcidiacono and Ellickson 2011) to
estimate the slopes of a latent utility function. Since
call utilities are assumed known to both the consumer
and researcher (we provide them in the experimental
task), the slope for current period utility is essentially
fixed to a value of 1, which allows us to estimate �ig .2

We also assume that state transition probabilities are
known to both the consumer and researcher (since
they are explicitly provided in the experimental task)
unlike models estimated on field data (e.g., Erdem
and Keane 1996), which allows us to pin down the
discount factor based on observed choices across a
large variation of state parameters at different points
in game time (cf. Dubé et al. 2013) as it is the only
unknown driving the systematic portion of condi-
tional choice probabilities in Equation (2).

The estimation of individual- and game-specific
parameters will, however, be challenging because of
sampling variation in call arrivals such that some
games’ data may be less informative than others for a
particular pair of parameters (see Web Appendix E).
To circumvent this issue of data sparseness and ad-
dress heterogeneity across consumers as well, we pro-
pose a latent class framework in which the model
parameters for each segment are allowed to vary
across games nonparametrically (Kamakura and Rus-
sell 1989).3 Note that an important substantive benefit
of allowing for multiple segments with game-specific
parameters is that it will capture heterogeneity in
learning within the subject pool—for example, some
segments may learn to become optimal quickly,
whereas others may not despite repeated experience.
Further, our nonparametric specification (which nests
the case of allowing a linear trend over games for each
parameter) of how the segment level parameters (the
discount factor and scale parameter) vary over the six
games imposes no a priori restriction on the direction
and speed of learning, which is important since pat-
terns may not be monotonic. The likelihood function

2 As long as the slope for one term in the period utility function is
fixed, the scale parameter is identified along with slopes of other
terms. We exploit this in one of our robustness checks in which we
estimate curvature in the per-period utility.
3 We assume homogeneity within a segment, consistent with typi-
cal latent class models. Although there may be heterogeneity even
within a latent class, since the objective of this paper is to charac-
terize the overall effects of three-part tariffs on learning and usage,
we do not introduce further heterogeneity into the model. Further,
several individual-level posterior distributions closely resemble the
“segment average” given the sparseness of information in data
from any given person-game.
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for a data set of N subjects playing G games each is
as follows:

N
∏

i=1

S
∑

s=1

p4i ∈ s5
G
∏

g=1

p4Yig � �gs1�gs1Xig1℘ig51 (5)

where p4i ∈ s5 is the probability that subject i belongs
to segment s and p4Yig � �gs1�gs1Xig1℘ig5 the like-
lihood function for a person-game formed using
conditional choice probabilities with segment level
parameters (Equation (2)). Note that a homogenous
model would have 12 parameters (two game-specific
parameters by six games), a two-segment model
would have 25 parameters (including the probability
of segment membership), and so forth.

3. Empirical Setting
In this section we describe our experimental design,
starting with the selection of task parameters and the
associated normative predictions in §3.1. In §3, we
provide an overview of the experimental method and
studies that we ran.

3.1. Design Considerations and Normative
Predictions

One of the major challenges in designing the exper-
iment was to choose task parameters (e.g., the free
allowance W̄ , the overage cost per second c, the time
horizon T , and the probability distribution of call
events f 4u5) that would allow us to efficiently identify
the parameters of the empirical model described above
while minimizing the task burden on participants.

For example, while it would be desirable to observe
a large number of call choices made in different con-
texts from each participant, pilot work suggested that
participants became fatigued when the task lasted
longer than 25–30 minutes. We also found that par-
ticipants typically took twice the amount of time as
the number of game-time seconds across all games
to complete the task (including the time for decision
making whenever a call arrives). As a result, we deter-
mined that six games with T = 120 seconds would
provide a sufficiently large number of games to assess
learning and adaptation to plan changes, while also
providing a long enough time horizon to create suffi-
cient present/future trade-offs.

Given T = 120, it was important to choose an allow-
ance W̄ that was neither too high nor too low in order
to facilitate identification of individuals’ intertempo-
ral discount rates. In particular, to identify these rates
we had to choose W̄ such that participants faced
consequential trade-offs in most periods of the game
when deciding whether to accept a call now versus
saving the talk time for future calls. Based on pilot
work we found that allowances of 20 seconds (one-
sixth the total time) and 40 seconds (one-third) cap-
tured scenarios that were perceived by participants

as reflecting sparse and ample free-talk time budgets,
where opportunity costs were more and less salient,
respectively. We also chose maximum call length L= 8
to allow for the real-world feature of call termination
(which requires L> 1) and potentially multiple oppor-
tunities to switch to other calls (in this case, up to
seven opportunities since at most one call can arrive
per second in our task). Though the fixed fee was
sunk, we choose values of $80 ($20) for the plan with
a 40-second (20-second) allowance to ensure task real-
ism and set the expected surplus under both plans for
a consumer who does not discount future call values
(�= 1) to be roughly equal.

The choices for the distribution of call arrivals f 4u5
and overage rates c were crucial in determining the
call acceptance threshold. We chose f 4u = 05 = 008 so
that the average probability of a call arriving was 0.2,
with an expected number of 24 calls in a 120-second
time horizon, providing a reasonable number of deci-
sion opportunities to participants within a game. A
higher f 4u = 05 decreased the likelihood of overage
by rendering call opportunities too sparse.

For participants to make trade-offs about present
and future call consumption, the overage charge
should exceed some of the call values. We chose three
call values (low: uL = $0025, medium: uM = $0075, and
high: uH = $6), which arrive with known probabilities
(f 4uL5 = 0011 f 4uM 5 = 00051 f 4uH 5 = 0005) and set the
overage charge c to $4 (falling between uL and uH ).4

The large value differential between the high- and
medium-valued calls simplified the consumer’s deci-
sion calculus while allowing for efficient recovery of
our model parameters.

In Figures 2 and 3, we present the optimal poli-
cies for when to accept low-valued (uL5 and medium-
valued (uM 5 calls under the above set of plan and
game characteristics, for both a consumer who does
not discount future call values (�= 15 and one who is
more myopic. High-valued (uH 5 calls should always
be accepted regardless of temporal discounting.

From Figures 2(a) and 2(b), the higher the amount
of free allowance consumed, the more judicious a
consumer should be in taking low-valued calls (solid
line) and medium-valued calls (dotted line). These
lower-valued calls can be accepted earlier under a
plan with a larger allowance since there is a larger
pool of “free” seconds before the consumer starts
approaching the overage phase. As the prospect of
overage nears, both types of calls should generally
be avoided. Under discounting for the 40-second
allowance plan (Figures 3(a) and 3(b)) consumers
would accept lower-valued calls much sooner than

4 A c that is too low makes overage essentially inconsequential,
whereas a c that is too high would preclude some calls from ever
being rational to accept.
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Figure 2 Earliest Time (in Seconds) for a Consumer Following the
Optimal Policy to Accept Call with Given Utility Under Each
Plan When (a) �= 11 W̄ = 40, (b) �= 11 W̄ = 20

Note. Low-value call decisions are represented by the solid line while
medium-value call decisions are represented by the dotted line.

a consumer who does not discount future call val-
ues (� = 1), and then shift to a higher acceptance
threshold as the overage phase approaches. The tim-
ing of these inflection points varies by discount fac-
tor; a more myopic consumer will continue accept-
ing lower-valued calls for a longer period of time
before applying more stringent standards. Note that
a low-valued call becomes unattractive more quickly
than a medium-valued call with increasing usage. The
intuition is similar for the 20-second allowance plan.
Plan and game characteristics other than the ones we
chose can also lead to meaningful differences in opti-
mal policies that can be exploited for estimating struc-
tural parameters. An interesting direction for future
research is to understand the boundary conditions
of how these characteristics interact with consumer
behavioral patterns.

Figure 3 Earliest Time (in Seconds) for a Consumer Following the
Optimal Policy to Accept Call with Given Utility Under Each
Plan When (a) �= 00951 W̄ = 40, (b) �= 00901 W̄ = 40

Notes. Low-value call decisions are represented by the solid line and
medium-value call decisions are represented by the dotted line. Note that it is
never optimal to accept low- or medium-valued calls once the call allowance
is fully used up in our experimental design.

3.2. Overview of Method and Studies
Each of the experimental studies described below
has a similar structure. In all cases participants first
played a 30-second practice game to familiarize them-
selves with the task and interface, and then proceeded
to play six games for compensation. After each game,
the net utility was displayed to the participant, break-
ing down the total value of calls consumed less fixed
and overage costs. For incentive compatibility, we
informed participants that all amounts shown above
were in game dollars and revealed the exchange rate
to convert net accumulated game dollars over the six
games to a bonus payment in U.S. dollars (over and
above a show-up fee). The show-up fee and exchange
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rate varied depending on the platform we used to
run each study. Web Appendix B contains illustrative
call arrival patterns and decisions and how these help
identify model parameters. In Web Appendix C, we
include the full set of instructions to participants as
they undertook the task.

The overall experiment comprised four main stud-
ies and several follow-up studies that allowed us to
examine call behavior under different plan charac-
teristics. In study 1, we examine consumer learning
as a function of plan allowance by exposing each
subject to one of two TPT plans for six games. In
study 2, we examine consumer learning and adapta-
tion to imposed plan change by exposing each subject
to one TPT plan for three games and the other for the
remaining three games. In study 3, we replicate the
structure of study 2 but allow for initial plan choice
and the option to switch after three games, as a test
of whether self-selection impacts within-game behav-
ior. In study 4, we examine the effect of risk attitude
on intertemporal discounting. Two follow-up stud-
ies then tested the robustness of the earlier findings
to manipulations that might act to improve the effi-
ciency of call decisions: (1) providing a pop-up alert
when subjects use up 80% of their free allowance, and
(2) providing the alert and a visible real-time counter
of talk time used. Additional follow-up studies tested
for sunk cost effects arising from the fixed fee of the
TPT and curvature in current period utility. For each
study, we present model-free evidence of how sub-
jects performed as a function of experience and/or
plan changes using the natural benchmark of a con-
sumer who does not discount future call values with
no random errors in decision making.

We also present model estimates obtained by run-
ning an MCMC algorithm that is detailed in Web
Appendix D. In addition to typical model selection
criteria such as log marginal likelihood (Newton and
Raftery 1994) and DIC (Spiegelhalter et al. 2002) for
determining the appropriate number of latent classes,
we also considered segment size for model selec-
tion. We find that a two-segment model considerably
improves fit over a homogeneous model, as there
appear to be two highly heterogeneous subgroups in
the data. Additional segments continue to subdivide
one of these subgroups to better fit the data but do
not add new diagnostic insights (see Web Appendix F
for fit statistics for a range of models with up to four
latent classes and various nested cases) and in some
instances result in segment sizes that are too small for
robust parameter recovery (see Web Appendix E). To
permit intuitive and robust like-for-like comparisons
across studies and conditions, we present results for
all studies using a two-segment latent class model.

4. Results
4.1. Study 1—Learning Under the Same Plan

4.1.1. Motivation and Procedure. The purpose of
this study is to quantify how consumer temporal dis-
counting and random response errors change with
game experience as a function of tariff allowance.
Consumers might be expected to consider a larger
planning horizon (consistent with a higher discount
factor) and reduce the propensity for random errors
as they receive feedback from bills. In particular, it
has been widely noted that “as-if” optimality often
arises by the recurrent application of simple trial-and-
error (reinforcement) learning rules based on repeat-
ing behaviors that yield positive outcomes (low bills
and high utility) and avoiding those that do not (e.g.,
Meyer and Hutchinson 2001, Kunreuther et al. 2009,
Young 2009). But whether and with what speed rein-
forcement rules will allow calling behavior to con-
verge to optimality in this task is unclear. A potential
barrier is the noisy nature of feedback that cellphone
customers receive; if one ends a game facing overage
charges and wants to learn from this experience, one
has to imagine the counterfactual policy that would
have yielded lower charges but still provided high
levels of call utility.

In this study, participants were 125 members of a
subject pool of a large northeastern university. All
studies were run in a computer lab. Subjects were
paid $10 to participate and could earn a bonus (typ-
ically between $0 and $2.50) based on an exchange
rate of US$1 for every 400 game dollars). Upon being
seated participants first read the overall task instruc-
tions and were randomly allocated to a plan with an
allowance of either 20 seconds (55 subjects) or 40 sec-
onds (70 subjects). Participants then made decisions
under this plan for all six games. We used a prede-
fined criterion of task comprehension (accepting 33%
or fewer of high-value calls across six games implies
lack of task understanding) to screen out subjects not
meeting this criterion.5 After screening, there remain
44 subjects in the 20-second condition and 63 subjects
in the 40-second condition.6 The exact experimental
instructions used and screen shots of the game are
provided in Web Appendix C.

4.1.2. Findings: Overall Performance. In Table 1,
we show descriptive statistics for number of call
arrivals by type and how many were accepted on
average across the six games in each condition.
As expected, most high-value calls are accepted. A

5 The qualitative features of the aggregate descriptive statistics do
not change with the exclusion of these subjects.
6 A two-sample test of proportions shows that the proportions of
subjects screened out in each condition are not statistically different
(p-value = 0011).
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Table 1 Descriptive Statistics for Study 1—the Values Shown Are
Averages Across the Six Games Played by Each Participant,
with Across-Participant Standard Deviations in Parentheses

Statistics across
participants over the Expected call 20-second plan 40-second plan
set of six games arrivals allowance allowance

Total calls 144 145 (12) 145 (11)
Total low- and 108 110 (12) 107 (10)

medium-valued calls
Number of accepted N/A 16 (17) 23 (15)

low- and medium-
valued calls

Total high-valued calls 36 35 (6) 38 (6)
Number of accepted N/A 32 (7) 35 (8)

high value calls

smaller number of low- and medium-value calls
(lumped together) are accepted, though there is high
variance across subjects.7

In Figures 4 and 5 we plot how participants’
call-acceptance decisions corresponded to those pre-
scribed by a fully optimal (� = 1) error-free policy in
the 20-second and 40-second plans, respectively.

The figures plot the incidences of three types of
potential decision errors: failing to correctly accept
a new call, failing to correctly continue an existing
call, or failing to correctly reject a call. In Figures 4(a)
and 5(a) we see that participants were quite skilled
at accepting calls that they should (which would usu-
ally be any high-value call) almost from the start, and
this achievement increased with play experience. In
the first game for the 40-second allowance condition,
for example, participants correctly accepted 81% of all
optimal calls, and this increased to 92% by the sixth
game. In addition, as shown in Figures 4(b) and 5(b),
participants were even more skilled at knowing when
to continue calls that should be continued; across
all games in both plan conditions participants exhib-
ited normative continuation behavior in 99% of all
accepted calls.

In contrast, participants were far less skilled at
knowing when to decline the low- and medium-value
calls that should be rejected (especially early on in
a game). As shown in Figure 4(c) (Figure 5(c)) for
the 20-second (40-second) allowance condition, par-
ticipants successfully rejected or terminated only 17%
(14%) of all calls that should have been declined,
including both new and ongoing ones in game one.
With experience decision-making abilities increased,
but learning was far from complete, with 62% (53%)

7 Most subjects exceed their free allowance since high-value calls
continue to arrive in the overage phase and are worth more than
overage cost. In our setting therefore, exceeding overage is not a
diagnostic statistic.

of correct rejections and terminations for the 20-
second (40-second) plan condition in game six. Par-
ticipants in aggregate seem to do worse in the larger
allowance plan even after experience.

4.1.3. Model Results. Although the descriptive
results show that participants were able to learn
to adopt more efficient call-acceptance policies with
experience in the task (albeit to a limit), they are silent
on the source of the learning; specifically, whether it
might have been due to participants being more far-
sighted as the task went on, or becoming more con-
sistent in the application of an otherwise farsighted
policy. We can explore this by examining the across-
game properties of the two key parameters of our
two-segment behavioral-structural model that we fit
to participants’ behavior in the task: implied dis-
count rates and scale parameters. In Figures 6 and 7
we plot the posterior mean and 95% posterior inter-
val of the parameters obtained from our MCMC
implementation.

Figure 6 shows the game-by-game variation for the
model parameters for the two segments (that we label
as “error-prone” and “learner,” respectively) for the
W = 20 plan. The across-game variation of the param-
eters for the error-prone segment does not show any
trend, whereas that for the learner segment clearly
shows a pattern. For the latter, the discount param-
eter (which determines the level of farsightedness)
increases over games, whereas the scale parameter
(which determines the level of errors) decreases over
games. We test for consumer learning by examining
whether the difference between two structural param-
eters in adjacent games includes 0 in the 95% posterior
interval, as shown in Table 2 for the scale parameter
of the learner segment.

The improvements are not statistically significant
beyond game five. The pattern in Figure 6 and Table 2
are both indicative of consumer learning—consumers
in the learner segment are becoming more farsighted
and are reducing their errors. The learner segment
constitutes 84% of the subjects (with the posterior
probability of segment membership practically 100%
indicating clear separation into latent classes). In
Figure 7, we show that the larger allowance plan
(W = 40) also features a learner segment (segment 2,
67% of the subjects). Notably, the scale parameter (�)
under the larger allowance plan is significantly larger
than that under the smaller allowance plan for each
of the games except the first one (for the learner seg-
ment), suggesting that subjects learn to reduce errors
to a greater extent in the smaller allowance plan.

Note that under both plans, a residual amount of
error remains after six games of experience even in
the learner segment, since some subjects do not learn
to eliminate errors. Though even the error-prone seg-
ment learns to reduce errors, residual error variance is
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Figure 4 (Color online) Study 1 (20-Second Allowance)
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Notes. Most of the calls that should be accepted are high-value ones, hence the overall trajectory is virtually identical to the high-value call acceptance trajectory
(graph a). Subjects learn to reject new low- and medium-value calls with experience but performance asymptotes after three games (graph c). The overall call
rejection trajectory is lower than for new call rejection since this includes incorrect continuation of ongoing calls that should be rejected.

Figure 5 (Color online) Study 1 (40-Second Allowance)
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Note. Similar to Figure 4, learning to reject new low- and medium-value calls asymptotes after three to four games.

Table 2 Study 1—95% Posterior Interval for Difference in Learner Segment’s Error Scale Parameter
Between Game Pairs

Conditions (imposed) �2L − �1L �3L − �2L �4L − �3L �5L − �4L �6L − �5L

Study 1, 20-second allowance (− 6021−405) (−1071−009) (−0071−003) (−0031001) (−0031000)
Study 1, 40-second allowance (−2001−000) (−2041−103) (−1001−000) (−0081−001) (−0041001)

Note. Learning is indicated if the posterior interval excludes nonnegative values (in bold).

significantly higher than the learner segment in both
conditions. Further, consumer learning does not con-
tinue beyond game five (see Table 2).

4.2. Study 2—Imposed Plan Change

4.2.1. Motivation and Procedure. In natural set-
tings consumers are often faced with changes in

plans, either because of voluntary choices or policy
changes imposed by their service provider. There is
anecdotal evidence that plan changes have at least a
short-term effect in degrading the efficiency of calling
decisions, because heuristic policies learned under the
previous regime may have little applicability to the
new one. For example, consider a consumer who has
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Figure 6 Study 1: Posterior Means and 95% Credible Interval of Parameters by Segment and Game for Study 1’s 20-Second Allowance Plan
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Notes. Note that intervals are wider for large values of log(lambda) and low values of beta, since identification from the data is more challenging for such
values. Each graph has a different y-axis range to emphasize variations of interest. Learners improve mostly in the first three games.

Figure 7 Study 1: Posterior Means and 95% Credible Interval of Parameters by Segment and Game for Study 1’s 40-Second Allowance Plan
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Note. Each graph has a different y-axis range to emphasize variations of interest. Learners improve mostly in the first three games.

become skilled at making call decisions under a plan
with a low free allowance who then transitions to a
plan with a larger allowance. If the consumer exhibits
rule carryover (e.g., Restle 1962), she would, at least
for a while, maintain higher standards for call qual-
ity as if she were in a low-allowance regime, to avoid
incurring overage charges for which there was little
real risk. On the other hand, work by Lichtenstein
and Fischhoff (1977) and Alba and Hutchinson (2000)
suggest that we might see the opposite bias by virtue
of what they term the “hard-easy” effect: the larger
allowance plan is objectively a harder regime since it
involves a larger set of policies to ponder over prior
to overage, yet the consumer may misconstrue the
regime as one where heuristics that insure vigilance

are no longer required, resulting in lower standards
for the quality of accepted calls. The hard-easy effect
would predict worse (better) performance when tran-
sitioning to a higher (lower) allowance plan whereas
the rule carryover effect’s predictions would be in the
opposite direction.

The purpose of this study is to examine consumer
learning and adaptation to imposed plan change by
exposing each subject to one TPT plan for three games
and the other for the remaining three games. Partici-
pants were 156 members of a subject pool recruited on
Amazon Mechanical Turk, an online platform for run-
ning tasks, which offers access to a stable and diverse
subject pool (Mason and Suri 2012). We put in place
the following requirements for subjects to qualify for

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

91
.1

07
.2

26
] 

on
 2

8 
Ja

nu
ar

y 
20

15
, a

t 1
2:

58
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Gopalakrishnan, Iyengar, and Meyer: Consumer Dynamic Usage Allocation and Learning
Marketing Science 34(1), pp. 116–133, © 2015 INFORMS 127

our study: a historical task approval rate greater than
or equal to 95%, at least 50 tasks approved to date,
and based in the United States. Subjects who qualified
could see our task posted and undertake it by click-
ing on the URL that led to our web-based study (ran
on Mozilla Firefox browser). Subjects were paid $3 to
participate and could earn a bonus (typically between
$0–$1) based on an exchange rate of US$1 for every
1,000 game dollars.

Subjects were randomly assigned to start with a 40-
second allowance TPT plan (cell 1) or a 20-second
allowance TPT plan (cell 2), and experienced an
imposed change to the other plan after three games.
From the original pool, 47 were screened out based on
a predefined criterion of task comprehension (accept-
ing 33% or fewer of all high value calls across the
six games). Of the remaining 109 subjects, 43 were in
cell 1 and 66 were in cell 2.8

4.2.2. Findings: Overall Performance. Similar to
study 1, participants were skilled in correctly continu-
ing calls once taken with an average of 98% accuracy
across all games in both conditions. We plot the rel-
ative incidence of call acceptance and rejection deci-
sion errors for cell 1 and cell 2 (Figure 8). Participants
accept on average 80% of the calls they should ratio-
nally take (Figures 8(a) and 8(c)) across six games in
both cells, and although there is learning in the first
two games, we see little evidence of a disruptive effect
of plan change on this error type.

In contrast, we observe a tangible and asymmetric
effect of plan changes on the kind of decision errors
that were most prominent in study 1: correct rejections
of low- and medium-value calls. Participants who first
became familiar with a large plan allowance and then
were switched to a smaller plan allowance improved
decision accuracy after the plan change (Figure 8(b)).
In contrast, participants who first became familiar
with a small plan allowance and were then switched
to a larger plan allowance performed worse after the
plan change, and only partially recovered from this
deterioration by game six (Figure 8(d)). As can be
seen in Figure 8(d), increased acceptance of medium-
value calls that should be rejected drives much of the
deterioration.

4.2.3. Model Results. The results suggest that,
similar to study 1, there are two very different types
of subjects. Subjects in the error-prone segment are
erratic in their temporal discounting and exhibit a
large amount of randomness. Learner subjects, who
represent over 60% of the subjects in both cells, exhibit
a learning pattern. The latent classes clearly distin-
guish learners from error-prone subjects as evidenced

8 A two-sample test of proportions shows that the proportions of
subjects screened out in each condition are not statistically different
(p-value = 0018).

by the virtually 100% posterior probability of each
subject belonging to one of the segments. To exam-
ine how the task-change effects were manifested in
the structural parameters of the behavioral model,
in Figure 9(a) we plot the estimates for the scenario
in which participants in the learner segment started
with a 40-second allowance and were then switched
to a 20-second allowance.

Subjects in the learner segment (63% of subjects)
become more farsighted from game one to game two
and from game two to game three. The learning effect
is much more pronounced from game one to game
two for the discount parameter (�). However, learn-
ing asymptotes after game three, and does not seem
affected by plan change. For the scale parameter (�),
learning is significant between games two and three,
and games three and four (see Table 3). This reduction
in errors when switched to the lower allowance plan
largely explains the aggregate effect in Figure 9(a).

For the case where participants started with a 20-
second allowance and were then switched to a 40-
second allowance, we again see evidence of two dif-
ferent segments; 60.7% of subjects consist of learners
who quickly learn to become farsighted while reduc-
ing noisy deviations within the first three games (Fig-
ure 9(b)). We find that even these learners become
noisier when shifted to the higher allowance plan
(starting from game four), but recover after some
experience in the new plan. Thus there is clear asym-
metry in the learning behavior across the two experi-
mental conditions for subjects in the learner segment,
in the direction suggested by the hard-easy effect.

4.3. Study 3—Performance Under Volitional Plan
Choice

4.3.1. Motivation and Procedure. One potential
limitation of the findings of incomplete learning in
study 1 and the asymmetric effect of plan switches
in study 2 is that both were uncovered in settings
where plans were exogenously imposed on decision
makers. In natural settings, consumers can self-select
into the plans that best fit their own needs and deci-
sion skills. Hence, if participants are aware of their
differential abilities to make efficient calling decisions
under different plan types, we might expect both
higher achievement overall and the asymmetric biases
observed in studies 1 and 2 to vanish—or at least be
mollified—under plan choice.

To test this, we recruited a new panel of 140 partici-
pants from Amazon Mechanical Turk, using the same
recruitment criteria as study 2. In this new study, par-
ticipants were initially offered a choice of a 40-second
allowance plan at a fixed fee of $80 or a 20-second
allowance plan at a fixed fee of $20, after playing
a practice game. Participants were given the oppor-
tunity to change plans after three games. The fixed
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Figure 8 (Color online) Study 2: Cell 1 (40-Second Allowance for First Three Games, 20-Second Allowance for Last Three Games) and Cell 2
(20-Second Allowance for First Three Games, 40-Second Allowance for Last Three Games)
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(b) Cell 1—Do consumers reject calls optimally?

(d) Cell 2—Do consumers reject calls optimally?(c) Cell 2—Do consumers take the calls they ought to?
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Notes. Subjects correctly reject more low- and medium-value calls after transitioning to the lower allowance plan. Subjects correctly reject fewer medium-value
calls after transitioning to the higher allowance plan.

Figure 9 (Color online) Study 2: Posterior Means and 95% Credible Interval of Parameters for Learner Segment by Game for (a) Study 2’s Imposed
40- to 20-Second Plan Transition, and (b) Study 2’s Imposed 20- to 40-Second Plan Transition

g
g
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Note. The dotted vertical line demarcates the plan transition point.

Table 3 Study 2–95% Posterior Interval for Difference in Learner Segment’s Error Scale Parameter
Between Game Pairs

Conditions (imposed) �2L − �1L �3L − �2L �4L − �3L �5L − �4L �6L − �5L

Study 2, low to high allowance (−5021−209) (−0071−002) (0011006) (−0051000) (−0031001)
Study 2, high to low allowance (−1041001) (−1091−009) (−1011−004) (−0031001) (−0031001)

Notes. Learning or deterioration is indicated if the posterior interval excludes zero (in bold). The shaded cells
indicate transition because of plan change.
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fees were chosen such that the expected surplus for
a consumer who does not discount future call val-
ues is about the same across the two plans. From the
original pool, 33 were screened out based on a prede-
fined criterion of task comprehension (accepting 33%
or fewer of all high-value calls across the six games).
Of the remaining 107 subjects, 29 started in the 40-
second allowance plan and 78 started in the 20-second
allowance plan. Twelve out of 29 subjects starting in
the 40-second plan switched to the 20-second plan
after three games, whereas 32 out of 78 starting in the
20-second plan switched to the 40-second plan after
three games.

4.3.2. Findings: Overall Performance. In Fig-
ure 10 we plot the key measure of performance—
percentage of calls that were incorrectly pursued
when in fact optimal to reject—for each of the four
possible plan-choice combinations: those who started
with the 40-second plan and stayed with it (N = 17),
those who stayed with the 40 and switched to a 20
(N = 12), those who started with the 20-second plan
and stayed (N = 46), and those who started with a 20
and switched to a more generous plan (N = 32). The
other performance measures (correct acceptance and
continuance of calls) were similar to the correspond-
ing imposed plan conditions in studies 1 and 2.

By comparing the panels of Figure 10 with those
from studies 1 and 2 (Figures 4, 5, and 8) we see an
immediate answer to the question of whether having
free choice helped: it did not. Similar to study 1, those
who stuck to the same plan throughout displayed
steady learning (Figures 10(a) and 10(b)). Likewise,
the self-selection data show an asymmetric effect of
learning for those who switched plans. As shown
in Figure 10(c), switchers from the higher to lower
plan allowance learn at a gentle rate (the solid line)
while correct rejection of low- and medium-valued
calls improves mildly. In contrast, switchers from the
lower to higher plan allowance perform worse (solid
line in Figure 10(d)), which is especially driven by
increased usage allocation to medium-valued calls.

4.3.3. Model Results. For the cases where par-
ticipants switched plans—either from 40 to 20 sec-
onds or 20 to 40 seconds—we find that learning
appears to come more from participants reducing
response errors (�) than from overcoming myopia (�),
in line with the earlier studies. We find that partic-
ipants significantly improve learning after choosing
a lower allowance, whereas those choosing a higher
allowance plan regress to some extent9 as shown in
Table 4.

9 Though we observe an increase in � when participants choose
a higher allowance plan, the effect is not significant perhaps
because of the lower sample size resulting from self-selection in
this condition.

4.4. Study 4—Effect of Risk Attitude on
Discounting

Note that in our task there is no uncertainty in cur-
rent period utility. There is, however, uncertainty in
the distribution of future payoffs, which raises the
possibility that our estimates of time discounting may
also be capturing individual differences in risk aver-
sion. Specifically, respondents may appear to be giv-
ing more weight to immediate (and certain) call val-
ues less because they are myopic and more because
they prefer certain over uncertain call values. To test
this we recruited a sample (N = 41) of participants
to perform the 40-second calling task described in
study 1, and also took measures of their risk atti-
tudes using the lottery task described by Holt and
Laury (2002). Details of the lottery task are in Web
Appendix G. We test whether this risk measure (Ri)
moderates each individual’s discount factor (�ig) by
incorporating it as a covariate in our structural model
and allowing slopes (�s) to be latent class-specific (i.e.,
�ig = function4�gs1�s1Ri55.

The mean raw risk aversion score of the 41 par-
ticipants was 6.22 (the risk-neutral score is 4) indi-
cating that subjects on average tended toward being
risk averse in line with Holt and Laury (2002). We
subtract four from the raw score to yield the risk atti-
tude covariate (higher than zero indicates risk aver-
sion, less than zero indicates risk seeking).

We find that the error-prone segment has a risk
attitude slope that is not statistically different from
zero, whereas the learner segment has a slope that is
positive (0.11) whose 95% posterior interval excludes
zero. The result suggests individuals who are more
risk averse as measured by the Holt and Laury (2002)
task were, surprisingly, also more forward looking in
our simulation task. Whether this result might gen-
eralize to other settings is uncertain, as there have
been relatively few prior attempts to examine the rela-
tionship between risk and intertemporal discounting
(e.g., Andersen et al. 2008, Coble and Lusk 2010). As
the learning curves for discounting and random error
propensities remain similar to those in study 1, this
result suggests that our model is capturing intertem-
poral preference effects that go beyond the effects of
relative risk aversion, which appear empirically small.

4.5. Robustness Checks
In this section, we describe additional studies and
analyses that test the robustness of our findings from
the main set of studies. First, decision errors might be
reduced if participants were given more information
about their usage of time in the task—something the
Federal Communications Commission has negotiated
with telecom companies to implement (Jiang 2013).
To test usage-awareness effects, we modified the 40-
second plan condition of study 1 such that partici-
pants were provided with either a pop-up alert when
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Figure 10 (Color online) Study 3: Call Rejection Performance for All Four Self-Selected Cells That Participants Could End Up in, Based on Their First
and Second Plan Choice

Table 4 Study 1—95% Posterior Interval for Difference in Learner Segment’s Error Scale Parameter
Between Game Pairs

Conditions (self-selected) �2L − �1L �3L − �2L �4L − �3L �5L − �4L �6L − �5L

Study 3, Low to high allowance (−2041−009) (−1001−004) (−0001006) (−0031003) (−0051000)
Study 3, High to low allowance (−3071−101) (−0081005) (−1061−007) (−0041003) (−0041003)

Notes. Learning or deterioration is indicated if the posterior interval excludes zero (in bold). The shaded cells
indicate transition due to plan change.

they used up 80% of their free allowance (call alert
study), or an alert and visible real-time counter of talk
time used (usage display study). Participants learned
more quickly early on to achieve a higher correct call
rejection percentage of 29% (35%) in the first three
games of the call alert (usage display) study as com-
pared to the study 1 40-second plan condition (23%
average over first three games). However, participants
achieve approximately the same performance in the
final three games (original study: 49%, call alert study:
46%, usage display study: 47%) indicating that these
interventions do not lift overall performance after par-
ticipants build task experience.

Second, we reduced the size of the fixed fee (from
$80 to $20) in the 40-second plan condition of study 1
to understand if the larger up-front fee of the 40-
second plan relative to the 20-second plan may be
driving our results, since participants may be driven
by a need to use as many seconds as possible to justify
the larger fixed fee (a sunk cost effect akin to Arkes
and Blumer 1985). The reduced fixed-fee study causes
a slight lift in correct call rejection performance (58%
average in final three games) but does not markedly
change the learning curve compared to the corre-
sponding study 1 condition.

Finally, we tested for curvature effects in current
period utility using study 1 data by running a model
that included a quadratic net current utility (call value
less any cost) term and allowed the slope for the
quadratic term to vary by latent class membership.10

We find that the slope coefficient is very close to the
lower bound of zero for both segments and the DIC
for this model is worse than the original model for
the 40-second plan (17,210 versus 17,200), reflecting
that the two additional curvature slope parameters
did not improve fit. This result makes sense in our
setting where call utilities are explicitly given to sub-
jects (hence no uncertainty in current period utility),
who have an incentive proportional to maximizing
net utility.

5. Discussion
The purpose of this paper was to investigate the abil-
ity of individuals to make optimal call-usage deci-
sions under multipart pricing schemes. Our findings

10 We restrict this slope to be between zero and an upper bound
computed to ensure that the resulting utility function is concave
and increasing. The slope is identified because we set the slope of
the linear net utility term to 1.
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are based on data drawn from a series of controlled
laboratory experiments in which participants made a
series of decisions whether to accept simulated incom-
ing phone calls in a setting for which there was a
known optimal usage policy. Although the laboratory
environment lacked the ecological realism that would
have come from studying call behavior in the field
(e.g., Grubb 2009), it had the advantage of allowing
us to draw strong inferences about intuitive optimal-
ity that would be otherwise difficult to achieve. For
example, by providing participants with the distri-
bution of arriving calls we were able to tease apart
variance in usage behavior that accrued to varying
rational expectations about future calls and how par-
ticipants traded off the present versus future value of
those calls.

One of our major findings was that mean usage
behavior approached that which would be optimal
under different plans given repeated experience, as
evidenced by increasing farsightedness and reduced
errors in responses over time. However, we also found
learning to be incomplete, with participants still mak-
ing the error of incorrectly accepting too many lower-
valued calls despite multiple rounds of experience.
The experiments also revealed an asymmetric bias in
achievement when participants were forcibly switched
between plans that varied in the amount of free talk
time. Specifically, transitioning from a large to small
allowance plan accelerated learning whereas the con-
verse resulted in regression. The direction of this
asymmetric effect is in line with the hard-easy effect
(Lichtenstein and Fischhoff 1977) rather than a uni-
form tendency to carry over polices learned in one
context to another (Restle 1962). Perhaps most surpris-
ingly, these results proved to be robust to such manip-
ulations as allowing participants to choose their own
plans, providing warnings when their free talk time
was almost used up, and by making talk time visible,
as well as to risk preferences. We also find systematic
evidence for a small but highly error-prone segment
whose learning asymptotes at much higher levels of
error variance compared to the “learners.”

In line with past research that has investigated how
plan characteristics impact consumption (e.g., Ascarza
et al. 2012, Leider and Sahin 2014) we find that
increasing free allowance results in overconsumption
of lower-valued calls that ought to be rejected. Our
work suggests this is due to increased errors under
plans with large “free” allowances, rather than a util-
ity bias for “free” minutes or suboptimal threshold
policies. Other work has considered how consumers’
inattention to past usage may impact their future con-
sumption under multipart tariffs (e.g., Grubb 2014,
Grubb and Osborne 2013, Jiang 2013). For instance,
Jiang (2013) and Grubb and Osborne (2013) cite evi-
dence of a lack of bunching at points when the free

Table 5 Lift in Average Bonus for Learner Segment by Using
Error-Free Optimal Policy with No Discounting of Future Call
Values for Study 1

Game 1 Game 2 Game 3 Game 4 Game 5 Game 6

20-second allowance (%) 254 42 20 7 6 4
40-second allowance (%) 195 54 20 12 9 5

allowance is used up and attribute this to consumer
inattention to usage. Interestingly, we find little evi-
dence that inattention drives suboptimal usage allo-
cation in our experimental setting. Consumers accept
too many lower-valued calls and deplete their free
allowance, therefore resulting in overage when they
take the higher-valued calls that they should ratio-
nally accept.

Subjects in the “learner” segment who did not
largely eliminate errors fell prey to a flat maximum
around the objective function as shown in Table 5,
as the lift from eliminating game six errors is about
5% for study 1 conditions. Cognitive miserliness can
explain this result as additional effort to improve per-
formance has diminishing payoffs for learner sub-
jects. Yet, error-prone subjects could have substantially
improved earnings relative to learners by updating
their decision-making strategies with game feedback.
In study 1, subjects in the 20-second (40-second) plan
allowance who were classified as error-prone earned
an average bonus of $0.27 ($0.60) compared to an aver-
age of $1.57 ($1.69) for those in the learner segment.
One possibility is that these subjects simply could not
exercise the discipline needed to avoid lower-valued
calls—these types of consumers may be especially
prone to incurring overage charges and racking up
higher monthly bills (whether it comes as a shock
or not).

Although observed in a laboratory setting, we sug-
gest that the findings may aid recent attempts to
inform telecom regulators (such as the Federal Com-
munications Commission) seeking to enhance con-
sumer welfare under multipart tariffs (e.g., Grubb
and Osborne 2013, Jiang 2013). To date, most actions
that have been introduced to help consumers avoid
“bill shock” have been based on the assumption that
usage errors accrue primarily because of usage inat-
tention. If true, providing consumers with more com-
plete information about usage (such as limit alerts)
should allow them to properly balance short-term and
long-term costs when making usage decisions. One
of the key findings of our work, however, is such
interventions may be less successful than widely pre-
sumed; the usage biases we observed were robust to
usage-limit alerts and posting elapsed usage. The rea-
son is that the errors we observed were not primar-
ily caused by inattention, but rather by participants
being overly myopic when first exposed to a plan and
then making too many errors later—two sources not
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remedied by making them more informed about time.
Knowing this, it might be more useful to communi-
cate projected usage costs in the future rather than
how much talk time has been used. Likewise, our data
also show that consumers cannot be counted on to
be aware of their own biases and choose the plans
to which they are cognitively best suited, as allow-
ing free choice of plans also did little to mitigate the
pattern of errors.

But although there may be no simple fix either for
usage or plan choice errors, the positive message here
is that, with experience, these errors diminish; hence,
in some cases the best consumer healing tool may
just be time itself. In other cases where errors may
not diminish quickly (such as for the error-prone seg-
ment), more detailed interventions may be needed.
For instance, providing a planning tool that projects
usage and overage costs at the current run rate may
draw more attention to the future consequences of cur-
rent decisions. Tools such as intelligent virtual assis-
tants (e.g., Siri in the Apple iOS system) may be able to
learn user preferences and biases over time and pro-
vide recommendations when it may help the user.

One of the limitations of our work is that our data
were drawn from behavior in an experimental task
that simplified the real-world problem of cell-phone
usage. In our setting, participants were not tempted
to make outgoing calls, call value and duration were
known upon arrival and uncorrelated, and there was
no data usage of the phone. Given these simplifica-
tions, the view of consumer optimality that we offered
may, if anything, be an optimistic one relative to that
which we might observe in a more complex task set-
ting. In field settings, consumers may have signifi-
cantly lower attention because of the longer time span
of the billing cycle and distractions because of other
activities. Further, the distribution of call utilities is
likely much more complex than the design choices we
implemented, which can slow down learning. As a
result, the value of alerts and other interventions in
the field may have benefits beyond what we demon-
strate in our experiments.

Future experimental work can probe the bound-
aries of the biases uncovered here by changing the
task design. On one hand, task difficulty could be
increased by providing a larger set of call values (and
probabilities), extending the calling task over a longer
time period, and adding more distractions to mimic
real-world task attention spans, all of which would be
expected to exacerbate decision errors. On the other
hand, learning effects may be stronger if participants
played a larger set of games—though they would
almost certainly need breaks during the task to avoid
mental depletion.

In this same light, researchers can explore the
effects uncovered in this paper using field data by

combining data sources, whether through consumer
“call diaries,” recalled distribution of calls on a suit-
able importance scale, or by exploiting natural vari-
ation in the data. Using either natural experiments
(e.g., Yao et al. 2012), or imposing exclusion restric-
tions to separate current and future payoffs (e.g.,
Chung et al. 2014) can help pin down discount rates,
which are essential to understand temporal usage
trade-offs, along with patterns of learning and error
variance. Akin to Dubé et al. (2013), our approach
demonstrates that experiments can help with identifi-
cation of structural parameters that are challenging to
recover using field data. Augmenting field data with
experimental data could yield further insights on con-
sumer primitives.

We hope that our work in the cell-phone con-
sumption context encourages future research in sev-
eral other related domains such as diet management
(e.g., Guthrie et al. 1995), consumption of goods using
credit cards (e.g., Gross and Souleles 2002), the use of
banking products (e.g., Stango and Zinman 2009), and
health insurance (e.g., Aron-Dine et al. 2012). Under-
standing what assumptions typically used in empir-
ical models hold in terms of underlying dynamic
usage behavior can better aid both researchers and
practitioners in their attempts to better anticipate the
consequences of policy actions on consumer behavior
and welfare.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287/mksc.2014.0877.
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