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Implicit Coalitions in 
a Generalized Prisoner's Dilemma 

PETER S. FADER 
The Wharton School 
University of Pennsylvania 

JOHN R. HAUSER 
Sloan School of Management 
Massachusetts Institute of Technology 

The presence of a third party can affect attempts by two players to cooperate in a 
three-player, continuous-alternative, repeated Prisoner's Dilemma-like game. If the third 
player is uncooperative, two players may find it advantageous to cooperate implicitly, at a 
level somewhere between full (i.e., three-way) cooperation and full defection. We examine 
this phenomenon of implicit coalitions via two sequential computer tournaments (38 
algorithms in tourney 1,44 algorithms in tourney 2). In both tournaments, each with a 
different payoff function, the ability to recognize and/or encourage implicit coalitions 
seems to be a key indicator of success. This result holds up in a test of robustness. We also 
examine other properties, including those identified earlier by Axelrod (1980a, 1980b). 

MORE THAN TWO PLAYERS 

At a time when the superpowers appear to be moving toward some 
degree of cooperation on nuclear weapons, there is a growing concern 
about the nuclear capability among a number of nations in the Middle 
East (Barnaby, 1987). One concern is whether the presence of a 
noncooperating outside player will encourage or discourage cooperation 
among the superpowers. It is not yet clear how these outside players will 
affect the level of cooperation the superpowers might achieve. 

Consider the dramatic effect of outside players on OPEC. After a 
decade of highly profitable cooperation (collusion) the cartel collapsed, 
partially because of increased production by non-OPEC nations such as 
the United Kingdom. Member nations began to  cheat more and more 
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from the agreed price and production guidelines, reaching a climax in 
1986 when Saudi Arabia was no longer willing to be the sole cooperator. 
Early in 1986, the Saudis finally gave up their attempts to maintain 
cooperation and began increasing output and offering price discounts in 
an attempt to "punish" the United Kingdom. Oil prices dropped as low 
as $8/barrel. Recently, the Saudis and OPEC have attempted to 
stabilize prices at a more moderate level than before, finally acknowl- 
edging the critical role of outside nations. 

In another example, firms in the U.S. microelectronics industries, 
adversely affected by the growing influence and economic power of 
foreign competition, have formed the Microelectronics and Computer 
Technology Corporation to cooperate on basic and applied research 
(Griffin, 1987). Although members risk loss of competitive research 
advantage relative to other U.S. firms, the potential gains may well 
justify the almost $50 million investment. 

Whether or not it is in the social good to  encourage such coalitions, it 
is importarit to understand how coalitions can influence the development 
of effective strategies in games involving more than two players. This 
article addresses the role of implicit coalitions in a repeated, generalized 
Prisoner's Dilemma (GPD). The classical Prisoner's Dilemma, a two- 
player, two-act game, captures the essential conflict between unilateral 
incentives (i.e., more sales through price discounts) and group incentives 
(price restraint and higher profits). The GPD extends this basic form of 
conflict to a richer, more complicated setting-an N-player game with 
many possible actions, either discrete (e.g., number of warheads) or 
continuous (e.g., price levels or R&D investment). After formalizing the 
GPD and motivating implicit coalitions, we describe two competitive 
strategy tournaments in the spirit of Axelrod (1980a, 1980b). Results of 
the tournaments illustrate the importance of implicit coalitions in a 
repeated GPD. We describe one strategy that seems to encourage 
coalitions and we test its robustness across a series of environments that 
vary from very "nice" to very "nasty." 

FORMALIZATION 

CLASSICAL PRISONERS DILEMMA 

Over its 30-year lifespan, the P D  has been one of the most frequently 
studied phenomena in economics, political science, sociology, and 
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Player 2 
c2 J32 

c, 
Player 1 

Figure 1: 	 Classic Prisoner's Dilemma. Subscripts on actions (C, D) and payoffs (t, r, p, s) 
indicate the player. 

psychology. (See Axelrod, 1984, for a review of these and other 
applications of the PD.) The classic 2 X 2 P D  allows each player to  
either cooperate (C) or defect (D). If both players cooperate in a given 
period, then each is rewarded with a payoff of r points. If one player 
defects from mutual cooperation, she or he receives the temptation 
payoff of 1 ,  while the cooperating player gets the "sucker's payoff'of s.If 
both choose to defect, then each receives the punishment payoff of p. 

Figure 1 illustrates a typical set of payoffs for the 2 X 2 PD. A quick 
scan of Figure 1 reveals that each player has the unilateral incentive to 
defect, regardless of the other player's decision, but if the two players 
cooperate, both achieve high scores. Thus, if this were a one-shot game, 
each would be best off defecting since there would be no incentive to  
deviate from that action. However, if the game were repeated, strategies 
might change. 

In general, the P D  property holds if the payoffs r, t, s, and p must 
meet certain constraints. The essential property, once again, is that each 
player has a dominant alternative (to defect), but if both defect, the 
resulting payoff (p)is less than the payoff for mutual cooperation (r). 
Specifically, 

(1) 	 Regardless of what our opponent does, we are best off defecting. If she or he 
cooperates we prefer to defect (i.e., t > r), and if she or he defects we still favor 
defection ( p > s). 

(2) 	Regardless of what option we choose, we are better off if our opponent is lenient 
and chooses a dominated alternative (cooperation). Thus r > s for when we 
cooperate, and t>p for when we defect. 

(3) 	Mutual cooperation is always preferred to mutual defection: r >p. 

These three sets of inequalities can be combined into one compound 
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inequality: t > r > p  >s. This is the heart of the PD. When the game is 
repeated, some researchers add a fourth condition to discourage 
oscillations: 

(4) 	 Continued cooperation is better than alternating between cooperation and 
defection: 2r > t + s. 

GENERALIZED PRISONER'S DILEMMA (GPD) 

In order to study implicit coalitions among N players we use the P D  
framework to balance unilateral incentives with group cooperation. We 
do not claim that all conflict situations are PD's; we claim only that 
many interesting situations are consistent with the P D  paradigm. Thus 
we state a set of conditions that apply to Nplayers and that, in the case of 
two players, reduce to the classical P D  conditions. 

Several researchers have proposed and analyzed N-player PDs, 
usually to study the behavior of large groups or entire communities. For 
example, each person finds it easier to litter than to carry paper to a 
wastebasket, but society as a whole is better off if no one litters. This 
scenario is often referred to  as the "Tragedy of the Commons," first 
proposed by Hardin (1968). (See also Hamburger, 1979; Goehring and 
Kahan, 1976; Taylor, 1976; Dawes, 1980; and Schelling, 1973.) The 
primary mode of analysis for many players is the payoff functions C(n) 
and D(n), which describe the payoffs to each cooperator and each 
defector when exactly n parties cooperate. 

While these N-player models are an excellent way to study situations 
involving many players facing a binary alternative, we are more 
concerned with games involving fewer players and more alternatives. 
For example, we wish to study how two cooperators should respond to a 
defector when all three players have a continuous range of alternatives 
available to  them. We seek to  determine, among other things, whether 
they should continue to cooperate, switch to defection, or take some 
action between cooperation and defection. To address these issues our 
generalization must deal with continuous actions. 

We define the GPD in terms of payoffs, P, and actions, A. In  
particular, let Pi(A1, Az, . . . ,AN) be the payoff to player i ifthe Nplayers 
take actions A1 through AN. We assume the payoffs are symmetric.' We 

1. This is not a critical assumption. For example, positive linear transformations that 
vary by player do not affect our analysis. By symmetric we mean P,(. . . , A , ,. . . ,AJ ,. . .) = 
4(. . . ,A],. . .,A,, . . . ). 
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define two key actions, the short-term, noncooperative, payoff-max- 
imizing action, Ad, and the joint-payoff-maximizing action, A". and 
A"correspond to D and C in the classical PD. Each player can maximize 
its payoffs by choosing Ad, regardless of the actions of the other players. 
At the other extreme, if all players cooperate and choose the same 
action, A" will maximize joint payoffs. 

For simplicity of exposition we first consider games in which Ad is 
fixed and invariant with respect to competitors' actions. We relax this 
assumption in the second tournament. In some games, cooperation 
means less action-fewer weapons, less quantity produced, or less 
aggression. In other games, cooperation means more action-more 
missiles removed from the European theater, higher prices, or more 
joint research. Without loss of generality, we consider the latter class of 
games and assume Ad is less than A'. Therefore, "high" action is taken to 
mean more cooperative action throughout this article. 

We now define a GPD. Because our players are symmetric, we state 
the conditions for player 1. It is understood that each condition applies 
to all players. 

(1) 	 As long as A,> A ~ ,player 1 increases its short-term payoff by defecting further: 

An alternative interpretation is that unilateral movement toward 
cooperation decreases payoffs. This condition generalizes t >r andp> s 
in the classical PD. Note that by the definition of as the payoff 
maximizing action, we implicitly assume that payoffs decrease when 
actions are decreased below Ad. 

(2) 	Any move toward unilateral cooperation by an opponent increases the payoff to 
player 1: 

This condition generalizes r > s and t >p .  Note that it applies for all 
feasible actions by all of player 1's competitors. 
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(3) 	 Mutual cooperation is profitable. If all players increase their actions by the same 
amount, all are better off (as long as no actions exceed A'. 

This condition generalizes r > p .  Note that we have defined condition 3 
for all actions, not just symmetric actions and, by the definition of A as 
the joint-payoff maximizing action, we have assumed implicitly that 
condition 3 reverses for all A, above A'. 

(4) 	We wish to rule out profitable oscillations in an analogy to 2r > t + s. There are 
many possible generalizations to this condition; we choose asimple one by making 
it unattractive to take turns reducing actions unilaterally. That is, 

AN EXAMPLE 

Our first tournament was framed in terms of a triopoly in which 
scores correspond to profits and the actions are prices. For realism we 
chose the commonly used "constant elasticity" model of consumer 
response to prices in a differentiated triopoly. The parameters of the 
model, the elasticities, were chosen to be consistent with empirical 
estimates for avariety of markets (e.g., Telser, 1962; Lambin, Naert, and 
Bultez, 1975; Lambin, 1976; Simon, 1979). We assumed "constant 
returns to  sca1e"and chose scaling constants so the payoffs were easy to 
understand. 

Specifically, the payoff function we used was (in terms of player 1): 

A little calculus (taking the derivative of equation 1 and setting it 
equal to zero) yields the noncooperative payoff-maximizing action, A* = 
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Players 2 and 3 

Player 1 

Figure 2: Example Payoffs When Players 2 and 3 Choose Identical Actions 

1.40, which is independent of competitive actions. By assuming A, = A2 
= A3, we can solve for the cooperative action, Ac = 1.50. The reader can 
verify that conditions 1 through 4 hold for equation 1. 

When we restrict actions to and A", the game defined by equation 1 
becomes the classical PD. Suppose, for the sake of illustration, that 
players 2 and 3 are committed to choose the same action as each other. 
Figure 2 shows the possible payoffs under this restriction. These 
payoffs, although asymmetric because P' ( A ~ ,Ac, Ac) # P1 ( A ~ ,  Ac),A ~ ,  
clearly obey the constraints for the classical PD. Of course, this 
restriction on players 2 and 3 is not realistic, nor is it imposed in the 
tournaments. Figure 2 simply illustrates the close relationship between 
the classical P D  and the GPD. 

Before proceeding to our analysis of implicit coalitions, we note one 
more important feature of the GPD model, the envious price. Many 
researchers have noted that human players in experimental P D  games 
often defect in an attempt to beat their rivals rather than to score well for 
themselves. In the GPD, adistinct action, Ae, is associated with this type 
of behavior. The envious action is defined as the action that maximizes 
one player's share of total payoffs. It is consistent with the notion of 
difference maximization as discussed by Shubik (1959). Any player who 
misses the main point of the game (i.e., maximize own score) and instead 
plays to maximize share of total payoffs will frequently choose the 
envious action. In the game based on equation 1, the envious action is 
calculated to be Ae = 151 11 = 1.36. In an oligopoly, managers might 
choose an envious action if they are rewarded on outcomes relative to 
other firms in the industry (i.e., bonuses based on market share). Note 
that in the short run, players rarely have a legitimate incentive to choose 
Ae. They can always do better for themselves (in a single period) by 
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raising actions from Ae to A" However, Ae might prove useful as a 
severe punishment for noncooperative behavior.2 

IMPLICIT COALITIONS 

Suppose player 3 in a repeated three-player game has chosen a 
strategy of consistently choosing Ad. HOW should players 1 and 2 react? 

One option is to punish the defector by reciprocating her or his totally 
noncooperative behavior. For example, Axelrod (1981) showed that 
this type of strategy (ALL-Ad) is a best response to itself in the two- 
player game. But in the multiplayer game, defection in response to only 
one player defecting may be too severe. On the other hand, maintaining 
two-way cooperation at Ac also may not be the best response to a 
one-player defection. For example, in Figure 2, mutual (three-way) 
defection yields a higher payoff than two-way cooperation at AC, that is, 
PI(, Ad, A ~ , A ~ )  12 > 11 = P1(AC, AC, A ~ ) .  = 

Fortunately, players 1 and 2 have other options besides Ad and Ac. 
They may find it best to choose some other action, somewhere between 
Ad and A", that yields payoffs greater than three-way mutual defection. 
If they cooperate properly, their (mutual) motivation is to choose an 
action that maximizes their joint payoff against the defecting third 
player. We call this action the implicit coalition action, A". For a 
three-player game with player 3 as the defector, it is defined (for player 
1) as: 

P,(A~',A", AS)= max IPI(A,, A,, A3)1 
* i  


In the example above, A" = 1319= 1.444 for any third-player action. 
In general, the best coalition price will depend on the third player's 
action, but in the first GPD game it is invariant, just like Ad. In an 
N-player game there are N-2 possible coalition actions corresponding to 
coalitions of 2,3,  . . . ,N-1 players. (One might also wish to define Ad 
and Ac as coalition prices for coalitions of 1 and Nplayers, respectively.) 

2. Abreu (1986) has recently proposed a class of strategies known as "carrot and stick" 
strategies that use severe punishments (as low as A' and even lower) as a credible threat to 
enforce maximally collusive behavior. 
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Figure 3: Illustration of Payoffs When Actions Are Limited to A", A'",and A ~ .  (The first, 
second, and third lines refer to the payoffs to players 1,2,  and 3, respectively.) 

Figure 3 illustrates the impact of implicit coalitions. Notice that for a 
fixed action by player 3, the best cooperative response by players 1and 2 
is always A'".Furthermore, the subgame between players 1and 2 is itself 
a two-player PD in which cooperation becomes A'', while defection is 
still Ad. 

At this point it is clear that there may be some motivation for implicit 
coalitions to form. We have not demonstrated whether or not it is 
advantageous to play strategies that seek to form coalitions in repeated 
games. Nonetheless, we propose three strategies for the repeated GPD 
that recognize and use the concept of implicit coalitions. The first, 
COALITION, limits action to AC,A", Ad.The second, COALENC, uses 
the continuous nature of the action set to encourage coalitions. The 
third, GENERIC, is a generalization of the first two and proves useful 
when we describe the tournaments. Without loss of generality, we 
continue to state the algorithms from the perspective of player 1. 

COALITION is the simplest possible implicit coalition strategy. It 
begins each game at AC.In later rounds it does the following: 

COAL.TTION: i t , (r)  = A" it' inax{itz. .4-?} >A" and  min{A,.  A.? j < AC 

Ad i f  A,. Ai < A" 
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where Al(t) is player 1's action in round t ,  and A2 and A3 are actions in 
round t - I. 

COALENC is similar to COALITION, except that it recognizes and 
tries to take advantage of the fully continuous nature of the action set: 

COALENC will maintain total cooperation (at A') if both other players 
cooperate at A", and it will defect to Ad only if both players defect to (or 
below) A ~ .  However, at all other times it will hedge toward the implicit 
coalition price, A'", by aligning itself with the player closer to A'". 

Finally, we acknowledge that more complex responses are possible in 
the three ranges of competitors' actions. Indeed, such complex algo- 
rithms were entered in the tournaments. We define GENERIC as a 
generic implicit coalition strategy wherefi andf2 are general functions 
mapping the actions in t - I (or earlier) onto the ranges [Ad, Aic] and 
[Aic, A"], respectively: 

(;b.IVFRIC: A,(i)= 1. A "  and ~ - i i i n ( ~ l , ..4-<1<.4" 

THE TOURNAMENT APPROACH 

Given the importance of the P D  and its extension, the GPD, it is 
natural to  try to find a "best" strategy for a GPD game that is repeated 
over many rounds. (In the repeated game, we assume that the payoffs in 
any one round depend only on the actions in that round, but each player 
can observe the previous actions by his or her competitors.) Unfor- 
tunately, as Axelrod (1981) showed for the classical PD,  there is no 
single best strategy. Against different sets of competitors, different 
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strategies may be best. For example, ALL-A~is the (unique) best 
response to a pair of players choosing ALL-A~, but COALITION is a 
best response (although not unique) if competitors are known to be 
playing COALITION. 

Axelrod (1980a, 1980b) pioneered a methodology to identify strat- 
egies for the classical P D  that perform well against a wide range of 
competitors. In order to generate a rich environment, Axelrod spon- 
sored a contest, inviting game theorists to submit strategies in the form 
of computer subroutines for a repeated P D  game. Each entry "played" 
every other entry in a round robin tournament. The objective was to 
earn the highest total score across all games. Entries could be simple or 
complex; some participants even created strategies that tried to identify 
opponent's strategies and then act appropriately against them. 

The winner was the simplest entry of all, TIT-FOR-TAT, which 
starts cooperatively and in each subsequent period does whatever its 
opponent did in the previous round. Axelrod described several key 
properties that helped distinguish the most successful strategies, such as 
niceness, which means "never be the first to defect." 

A second tournament was run soon after the first tournament's 
results were tallied. This time Axelrod received 62 entries from 
participants, representing a wide range of ages, disciplines, and 
geographic origins. The winner, once again, was TIT-FOR-TAT, 
suggesting that its first-round victory was no fluke. The second 
tournament reconfirmed the importance of niceness; Axelrod also 
identified pivotal properties such as forgiveness (i.e., do not be too 
severe when punishing opposing defections), provocability (i.e., never 
let an opposing defection go unacknowledged), and lack of envy (i.e., do 
not intentionally try to reduce competitors' scores). In essence, cooper- 
ation can be achieved based upon appropriate reciprocity. Axelrod's 
tournaments have provoked praise and criticism, but they have raised a 
number of interesting ideas. We seek to apply the tournament method- 
ology to study implicit coalitions in the GPD. 

MITCSI: THE FIRST 

GPD TOURNAMENT 


In November 1984 we announced our first tournament (named 
MITCS1, for MIT Competitive Strategy Tournament), similar in 
design to Axelrod's second tournament but featuring the Generalized 
Prisoner's Dilemma. The game was posed as a managerial problem with 
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price as the sole strategic variable. Each game in the tourney was the 
repeated GPD game defined in equation 1 with three programmed 
strategies choosing actions each period from a continuous range. As in 
Axelrod's tournament, each possible grouping of entries engaged in five 
repeated games, and the overall winner was the strategy that amassed 
the highest total score across all games in which it participated. 
Contestants were given full information about the payoff function used, 
and in every game each player had access to the past actions of all three 
players in that game. Entries were submitted in the form of FORTRAN 
IV subroutines. 

By July 1985, we had received over 40 algorithms (including several 
duplicates) from a diverse group of participants around the world. The 
field of entrants included economists, political scientists, game theorists, 
marketing academics, and managers. Several universities and major 
corporations submitted the best and most creative entries they found 
after running their own minitournaments. Thus the pool of algorithms 
available for this first empirical analysis of the GPD contains a wide 
variety of creative efforts from some very strategically minded people. 

DESCRIPTION OF ENTRIES 

Many entrants, having learned Axelrod's lessons, attempted to 
generalize TIT-FOR-TAT. Six strategies recognized implicit coalitions 
and incorporated the implicit coalition action, A", into their algorithms. 
We label these algorithms IC for implicit coalition. Several IC  entries fit 
into the GENERIC framework, including some that used very complex 
functions for f~andf2, involving many of the previous decisions of each 
competitor, not just their most recent actions. 

Most algorithms tried to incorporate continuous alternatives, but 
participants did so in a variety of ways, including: 

MIN: Start at A". In all subsequent rounds, choose the minimum of your 
competitors' actions from the previous rounds. 

MAX: Start at A". In all subsequent rounds, choose the maximum of your 
competitors' actions from the previous round. 

AVG: Start at A'. In all subsequent rounds, choose the average of your competitors' 
actions from the previous round. 

Each of these strategies leads to very different types of behavior. 
MAX is extremely forgiving but not highly provocable. (Recall that 
"higher" action is more cooperative.) Two MAXs, playing together 
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against a nasty competitor, will remain at A", ignoring the exploitative 
moves by the third player. On the other hand, MIN is extremely 
competitive, and raises its action only if both competitors do so first. 
AVG is the most moderate of the three, trying to balance forgiveness 
and provocability at the same time. (Axelrod himself entered AVG into 
the tournament.) 

A slightly more complicated generalization of TIT-FOR-TAT is 
MXCM (pronouned "maxcum") which also starts at A", but in later 
rounds mimics the previous action of the strategy (not including itself) 
with the greatest cumulative score at that point in the game. Thus 
MXCM does not attempt to use the previous action of both com-
petitors-it considers only the stronger of the two (in terms of 
cumulative score) and adopts the passive mimicking strategy, just like 
TIT-FOR-TAT in the two-player game. Like AVG, MXCM is both 
provocable and forgiving since it follows any action made by the leading 
strategy. However, MXCM is distinguished from AVG because it is able 
to ignore ineffective strategies. In contrast, AVG will always give equal 
weight to the actions of both competitors, regardless of how well they 
perform. 

Other entrants made no attempt to  generalize TIT-FOR-TAT. Some 
used different variants of a strategy suggested by Friedman (1971) that 
begins each game at A" and stays there until any competitor defects, in 
which case it goes to Ad and stays there for all subsequent rounds. We 
label this type of strategy XTRM. 

A few participants chose constant strategies (e.g., always cooperate 
[ALL-A"], always defect [ALL-Ad], or always be envious [ALL-Ae]), 
or random (RND) strategies that chose actions randomly from the range 
[Ad,AC]or used a random walk technique. Hence most of the algorithms 
could be classified into one of eight broad categories: MIN, MAX, 
AVG, MXCM, IC, XTRM, constant action, or RND. 

Beyond these general descriptions of strategy types, the entries 
differed due to specific tactics or features that were frequently employed. 
For example: Following Axelrod (1984), strategies that start the game 
cooperatively and are never the first to cut action below A" are termed 
nice, as opposed to nasty strategies, which can be the first to defect. 

SeEf-awarenessallows strategies to consider the previous decisions of 
all three players (not just the two competitors) when choosing actions. 
This feature tended to reduce cycling and echo effects. 

Many strategies restricted their actions to  the range [Ad,AC], since 
there is no way to increase payoffs by choosing actions outside of this 
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range. Strategies that were willing to go below Ad or above A" are known 
as unbounded. 

Some strategies tried to induce cooperation by raising actions slightly 
above the level specified by a general strategy type (e.g. play MIN but 
add a few units to  the minimum action). These strategies have action-
raising initiative. On the other hand, some strategies have action-cutting 
initiative,that is, they were willing to go below the specified action level, 
usually in an attempt to punish an earlier cut made by a competitor. 

Finally, several strategies occasionally used the envious action Ae to 
try to outscore their competitors (rather than maximizing their own 
scores). 

These descriptions are admittedly vague. The actual implementation 
of some of these features can vary greatly from strategy to strategy. For 
instance, action-raising algorithms can vary the magnitude and fre- 
quency of their increases. For ease of exposition, we ignore fine-grained 
differences among algorithms, since the mere presence of a particular 
feature was generally more important than the manner in which it was 
implemented. 

RESULTS AND INTERPRETATION 

Table 1presents a summary of the strategies and their performances. 
The strategies are ranked by their average score per round. For 
comparison, mutual cooperation pays 20 units per period to each 
player, while each period of mutual defection (i.e., all three players 
choosing Ad) yields approximately 12 units to  each player. (See Figure 3 
for additional payoff comparisons.) 

The winning algorithm, entered by Terry Elrod of Vanderbilt 
University, was the simplest possible IC  strategy, COALITION. 
Recognizing implicit coalitions proved to be the single most important 
factor in the tournament. The top four algorithms in the tournament 
recognized the coalition property, and all six IC  strategies finished in the 
top 10 overall. Another interesting factor was how the strategies dealt 
with the continuous nature of the actions. Most entrants used simple 
heuristics (e.g. MIN, MAX, AVG) to address this problem, withvarying 
degrees of success. The standard averaging strategy (i.e. nice, bounded 
AVG with no self-awareness, envy, or action-raising/ -cutting initiative) 
finished in sixth place, easily beating standard MAX (ranked eleventh) 
and standard MIN (twelfth). 

Several of the descriptive features were highly influential. First and 
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TABLE 1 


Official MlTCS 1 Results 


Rank Entrant 

1 Terry Elrod 
2 (anonymous) 
3 Avraham Beja & Shlomo Kalish 
4 Steve Shugan 
5 (MIT)~ 
6 Gary A. Lines 
7 (MIT) 
8 Steve Shugan 
9 Beja & Kalish 

10 (MIT) 

1I Terry Elrod, John Roberts 

12 Gary Gaeth & Gerard Tellis, 


Terry Elrod, Gary A. Lines 

13 James M. Lattin 

14 John A. Cadley 

15 Steve Borgatti 

16 Steve Borgatti 

17 John A. Cadley 

I8 (MIT) 

19 Robert Axelrod 

20 John Roberts 

21 Barbara Bruner & James Olver 

22 Robert F. Bordley 

23 Robert E. Marks 

24 Robert E. Marks 

25 James M. Lattin 

26 Shlomo Maital 

27 Beja & Kalish 

28 Robert E. Marks 

29 Steve Borgatti 

30 Roland Rust, Robert F. Bordley, 


John Roberts 

3 1 Beja & Kalish 

32 (MIT) 

33 Shlomo Maital 

34 Robert F. Bordley 

35 Kenneth L. Stott, Jr. 


Francis J. Vasko & Floyd E. Wolf 
36 Robert E. Marks 
37 (anonymous) 
38 (anonymous) 

Strategy 
Type 

IC 
IC 
IC 
IC 
A V G ~  
AVG 
MIN 
IC 
IC 
MXCM 
MAX 

MIN 
MAX 
XTRM 
MIN 
MIN 
XTRM 
4 

AVG 
A V G ~  
AVG 
MIN 
X T R M ~  
X T R M ~  
ALL-A" 
MXCM 
RND' 
8 

MIN 

ALL-A~ 
RND' 
R N D ~  
MXCM 
MIN 

ALL-A' 
ALL-A' 
MINI '  

AVG" 

Average 
Score 

~eatures' per Round 

S U R  E 
S C 

N S U R  E 
N U E 
N U R  

U R C 
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TABLE 1 Continued 

NOTES: 
(1) 	 Default features include niceness, no self-awareness, bounded actions, no action-raising or 

cutting initiative, and no envy. Exceptions are noted as N for nastiness, S for self-awareness, U for 
unbounded actions, R for action-raising initiative, C for action-cutting initiative, and E for envy. 

(2) 	 (MIT) denotes an algorithm entered by a member of the MIT community that was not eligible to 
win the tournament. Post-tournament testing indicates that the inclusion of these entries does not 
affect the ordering of the top algorithms. 

(3) 	 Weighted average of all three players' actions, using cumulative scores as weights. 

(4) 	 Mimics previous move of one opponent on odd rounds, other opponent on even rounds. 

( 5 )  	 Geometric mean of opponents' previous actions. 
(6) 	 ~ t % ~ sat ACfor two opposing defections before going to Ae, 
(7) 	 Random walk centered around % ((A + A ~ ) .  
(8) 	 Mimics actions of one opponent chosen at random at start of game; actions limited to range [Ae, 

A"]. 
(9) 	 Uniform random variable between and A'. 

(10) Only algorithm to introduce action increases above A'. 
(11) Only algorithm to introduce action cuts below Ae, 

foremost is niceness, reconfirming the findings of Axelrod. Nice 
algorithms were able to reap great benefits by avoiding the short-term 
temptation to defect. The best nasty strategy played standard AVG most 
of the time, but would occasionally make small cuts as long as both 
competitors remained at A'. If either competitor responded to these 
cuts, this strategy would return to standard AVG for the remainder of 
the game. This clever form of exploitation helped make this algorithm 
far more successful than other nasty entries, but still could not provide 
any better than a twenty-first place finish. 

Other important features were boundedness and lack of envy. Only 
one successful algorithm ever exhibited envious behavior, but that 
strategy (ranked second) would only go to Ae if both competitors were at 
or below Ae in the previous round, a fairly rare occurrence. Perhaps if 
this second-ranked strategy did not try to battle envious competitors on 
their terms, it might have been able to win the tournament. 

The value of bounded actions can be seen by comparing standard 
AVG and MIN (ranked sixth and twelfth, respectively) to their 
equivalent but unbounded counterparts (ranked nineteenth and twenty- 
second, respectively). Boundedness was worth nearly 0.70 units per 
round to AVG and nearly 0.90 units per round to MIN. 

Several entrants found self-awareness to be a blessing. For example, 
some strategies, unlike TIT-FOR-TAT, considered their own previous 
decisions in determining future actions, for example, averaging across 
all three players (ranked fifth), and three-player MXCM (tenth place). 
But self-awareness was a curse to others, including those who used it as a 
ratchet on actions. The algorithms ranked eighth and fifteenth, for 
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TABLE 2 

Revised MITCSl Results 


Average 
New Old Strategy Profits 
Rank Entrant Rank Type ~eatures' per Round 

1 COALENC - IC 17.353 
2 Terry Elrod 1 IC 17.257 
3 (anonymous) 2 IC S U R E 17.249 
4 Avraham Beja & Shlomo Kalish 3 IC S C 17.245 
5 Steve Shugan 4 IC 17.235 
6 (MIT)' 5 AVG' S 17.225 
7 Gary A. Lines 6 AVG 17.175 
8 (MIT) 7 MIN S R 17.136 
9 Steve Shugan 8 IC S 17.101 

10 Beja & Kalish 9 IC S C 17.000 

NOTES: 
(1) 	 Default features include niceness, no self-awareness, bounded actions, no action-raising or -cutting 

initiative, and no envy. Exceptions are noted as N for nastiness, S for self-awareness, U for unbounded 
actions, R for action-raising initiative, C for action-cutting initiative, and E for envy. 

(2) (MIT) denotes an algorithm entered by a member of the MIT community. 
(3) 	 Weighted average of all three players' actions, using cumulative scores as weights. 

example, only let their actions move downwards, regardless of the 
cooperative gestures made by their competitors. 

Little can be said about the effectiveness of action-raising and action- 
cutting initiative. Some of the nice, bounded entries were able to 
encourage cooperation and discourage cheating with appropriate 
rewards and penalties, but these successes were counterbalanced by the 
unsuccessful strategies that brought on their own demise by raising or 
cutting actions too much at the wrong times. 

Table 1 seems to depict a tight three-way battle for first place. 
However, it should be noted that each algorithm played in nearly 1,000 
three-player matches in each of the five games in the tournament. This 
information, combined with the fact that each match lasted approxi- 
mately 200 rounds, implies that each strategy chose actions in nearly 1 
million total rounds. Thus a difference of .Ol units on a payoff-per- 
round basis is equivalent to a 10,000 units difference in total score. 

AN ALTERNATIVE CHAMPION 

The winning algorithm, COALITION, was the only highly ranked 
strategy that did not acknowledge the continuity of actions. Apparently, 
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none of its top rivals could use the continuous nature of the action space 
enough to overcome the winner's discrete simplicity. However, this does 
not imply that the task is impossible; COALENC, described earlier, 
would have easily won the tournament had it been entered. 

Table 2 shows the top 10 entries in the revised tournament with 
COALENC included. Note that the relative rankings of the original 
strategies are unchanged, although average scores have increased 
because of the presence of the cooperative newcomer. The margin of 
victory for the new algorithm is quite significant; the gap between first 
and second place is larger than the margin between second and seventh 
place. 

More importantly, the success of this algorithm is not very sensitive 
to variations in the competitive environment. Extreme changes, such as 
doubling the presence of all nasty entries, usually cannot unseat this new 
winner. Many of the procedures that Axelrod used to  demonstrate the 
robustness of TIT-FOR-TAT have been applied to this tournament, 
with strong results favoring COALENC. 

MITCS2: THE SECOND 

GPD TOURNAMENT 


One of the unique aspects of the payoff function used in MITCSl is 
separability, which leads to unique, invariant values for Ad and AiC. 
Because the implicit coalition action never changes, it is relatively easy 
for coalition-seeking algorithms to achieve their goal. In more general 
situations, the best action for a coalition should depend on the actions of 
noncoalition players. For example, the coalition response to an envious 
player might be harsher (i.e., lower coalition action) than the coalition 
response to a small defection. (Recall once again that higher action is 
defined as more cooperative). With this in mind, we sought to determine 
whether the success of COALITION and COALENC was unique to the 
payoff function and competitive environment of MITCSI, or whether it 
could be replicated in an environment that is potentially less favorable 
to implicit coalitions. 

Soon after we completed the analysis of MITCSl, we announced a 
second tournament, MITCS2, with the following payoff function: 

n, = 200(8 - 6A, + A2 + A,) (A, - 1) - 180. (2) 
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Equation 2 corresponds to a linear demand function in economics. As 
before, payoffs are symmetric and the equation satisfies the GPD 
conditions. The scaling constants were chosen to match closely the 
payoffs in MITCSl; full cooperation (A1 = A2 = A3 = AC) pays 20 units 
per player per round, and full defection (A1 = A2 = A3 = Ad) pays 12 units 
per player per round. 

The key difference between MITCSI and MITCS2 is that the short- 
term payoff-maximizing action (Ad) and the implicit coalition action 
(A") now depend on competitors' actions. Specifically, for fixed 
competitive actions, 

For example, if player 3 chooses ALL-1.40, then Allc = A21C= 1.440. 
However, if player 3 chooses ALL-A~via equation 3, then ~3~ = 1.407, 
and Allc = A21C= 1.441. All entrants were aware of MITCSl and the 
success of COALITION and COALENC. Each subset of three entries 
was matched for five games of 200 rounds3 and the winner was the 
strategy with the highest total (or average) payoffs. 

TOURNAMENT RESULTS 

By fall of 1986, 32 entries had been submitted to MITCS2. Five 
strategies were thrown out due to coding errors or illegal tactics. The 
remaining 27 entries were combined with 11 strategies carried over 
(some with slight modifications) from MITCS 1. These strategies were 
included again because they led to interesting pricing behavior in the 
original tournament. Finally, suggestions from other individuals who 
did not wish officially to participate led to 6 more submissions, thus 
rounding out the field of 44 unique entries. 

A brief description of each entry is shown in Table 3, where the entries 
are ranked by average scores per round. 

3. Since no entries used any explicit end-game maneuvers, the game length was fixed 
at 200 rounds for all games. 

http:ALL-1.40


TABLE 3 

MITCS2 Official Results 

Strategy N = Lower Mean Score 
Rank Entrant Type' Nasty Bound per Round 

1 Robert E. Marks COALENC 
2 Robert L. Bishop, Tony Haig COALENC 
3 Paul R. Pudaite COALENC 
4 John Hulland COALENC 
5 Neil Bergmann COALENC 
6 Tony Haig COALENC 
7 James M. Lattin COALENC 
8 (MITCSI #7)3 M1N.R 
9 Scott A. Neslin AVG.S 

10 Scott A. Neslin AVG.S 
11 -4 MXCM.S 
12 Robert L. Bishop COALENC 

AVG 

14 (MITCSI #5) 
15 -

16 Karel Najman AVG.S 
17 (MITCSI #6) AVG 

18 James M. Lattin 

~escr ip t ion~ 

A" = (26 + Az + A3)/20 
Original COALENC (with Arc = 1319) 
A'" = (13 + A3)/10; looks back two rounds 
A'" = (13 + As)/10 
A" = (13 + A3)/10 
A'" = (13 + A3)llO; looks back two rounds 
A'" = 1.44 
Standard MIN with random 2c pnce increases 
Linear learning model: complex averaging 
procedure 
Vanation of #9 above (i.e., different parameters) 
Mimics previous price of second-best firm 
A'" = 1319; uses max {A2, (193 + A3)/10) when Az < 
A'" 
Gradually shifts from MAX to MIN as game 
progresses 
Weighted average of all 3 players' previous prices 
Unweighted average of all 3 players' previous 3 
prices 
Unweighted average of all 3 players' previous prices 
Standard AVG: average of opponents' previous 
prices 
Complex adaptive learning model 
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Table 3 shows two striking patterns. Most of the COALENC 
generalizations cluster toward the top, and 15 out of the 16 bottom 
entries are nasty (i.e., willing to initiate defections). One pattern that is 
not immediately obvious, however, is the possible link between the 
success of the COALENC entries and the method of choosing a value 
of A'". 

The winning entry, submitted by Robert Marks of the Australian 
Graduate School of Management, features an unusual type of coalition 
action. It uses equation 4 to calculate an A'" against player 3 and 
averages this action with an A'" calculated against player 2. Thus, for 
instance, if Az = 1.50 and A3 = 1.40, this algorithm would act like 
COALENC with A'"= (1.44 + 1.4511 2 = 1.445, as compared to a A'" of 
1.44that equation 4 would suggest (and most COALENC entries would 
use). 

At first glance this may seem like an inefficient rule, since it will often 
lead to coalitions with an action slightly above the optimal"^'". But 
notice which routine came in a close second: the original version of 
COALENC with A"= 1319= 1.444.. . .This is also arelatively high (i.e., 
more cooperative) coalition action; it will exceed the A'" suggested by 
equation 4 whenever the noncooperative player is below 1.444. . . . A 
pattern emerges: The top two strategies consistently choose higher 
coalition actions than any of the other COALENC entries. As further 
evidence, note that the "worst of the best," entry 7, will generally choose 
the lowest A'",1.440. 

We briefly summarize some of the other results of interest. First, 
notice the rather mediocre performance of the entries that attempt to 
generalize COALITION, as compared to its sterling performance in 
MITCSl. Part of this drop can be attributed to the different mix of 
strategies in MITCS2 compared to MITCS 1: With the presence of more 
sophisticated entries (such as the COALENC generalizations), the 
discrete pricing policy begins to hurt COALITION. This is particularly 
true when action-cutting exists at moderate levels. But much of 
COALITION'S drop is due to the new payoff function: Without a fixed 
A'"to rely on, any coalition seeker must be more flexible and forgiving in 
trying to establish a successful coalition. 

Another prominent result from MITCSl was the need for a lower 
bound on one's actions. Most entrants to MITCS2 recognized this idea 
and used one of two lower bounds-fixed at 1.40 or floating ( A ~ ) .The 
results in Table 3 show no significant advantage for one method or the 
other. For example, entries 4 and 5 are exactly the same except for their 
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lower bounds, and in each of the five constituent games in the tourney, 
these entries finish with nearly identical scores. This finding should not 
be considered too surprising; after all, when action cutting is severe 
enough to require bounded actions, Ad is usually quite close to  1.40 
anyway. 

Finally, another result worth mentioning is the relative performance 
of three standard algorithms. In MITCS2, just as in MITCSl, AVG 
(entry 17) earns higher payoffs than MAX (entry 19), and both beat out 
MIN (entry 25). The value of having bounded actions can be seen once 
again by comparing entries 17 to 20 and 25 to  27. Boundedness does not 
appear to  be as valuable as in MITCSl, but this is only because of the 
smaller number of extreme action cutters. Only three entries (41,43, and 
44) ever initiate cuts below 1.40. 

A NEW ALTERNATIVE CHAMPION 

MITCS2 confirms the importance of the implicit coalition phe- 
nomenon, but suggests that algorithms can be fine-tuned to achieve 
greater payoffs. In fact, the higher the target coalition action, the better 
the algorithm seems to perform. We call this new property magnanimity. 
The success of the magnanimous entries seems to result from the fact 
that a high A'" is less likely to be viewed as a noncooperative action. In 
contrast, a less magnanimous algorithm (e.g., entry 7) often will be 
mistaken for a defector. Matchups between entry 7 and discrete 
COALITION strategies with higher AiC's will quickly degenerate into 
(Ad, Ad, Ad) behavior because the two potential cooperators cannot 
agree on a coalition action. Of course, there is a limit to magnanimity; 
too high a coalition action allows an algorithm to be exploited. 

To generate a slightly more magnanimous strategy, we included 
another potentially beneficial property, self-awareness, into the A'" 
calculation. If cooperative players incorporate their own previous 
actions in determining which A'' to choose, the resulting coalition action 
will tend to  be higher and more stable. (It is higher whenever A1 > (A2 + 
A3)/2.) Furthermore, a common A'" calculation would avoid the 
possibility of different subsets of players seeking different coalition 
actions. We believe that these two effects would cause environments 
with general payoff functions to become more like the MITCS 1 world, 
where stable coalitions are easily established and maintained. 

Our new strategy, named CEAVG3 (for coalition encourager, based 
on the average of all 3 coalition actions), is still a COALENC strategy; 
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only the coalition reaction function is different. In CEAVG3, instead of 
calculating and averaging our A" against players 2 and 3, we perform the 
same task with respect to all threeplayers. The new coalition reaction 
function, therefore, is 

Although the coalition actions and payoffs for the new strategy are 
only slightly higher than those of entry I ,  this small increase combined 
with the moderating influence of the lagged A1 term helps the new 
strategy to achieve a first-place finish when placed among the MITCS2 
entries. Table 4 shows the revised payoff figures. (Only the top five 
entries are shown; the overall standings are barely affected by the 
presence of the new strategy .) 

Since CEAVG3 is a COALENC strategy, its behavior (and payoffs) 
will often be indistinguishable from the other COALENCs. However, in 
the cases in which these entries do differ, CEAVG3 does well enough to 
win the revised MITCS2 tournament by a relatively comfortable 
margin. 

TEST OF ROBUSTNESS 


No tournament can tell us which single strategy is truly "best," or 
which set of strategies will do well in the widest set of environments. But 
a series of tournaments coupied with some reasoning can raise some 
valid hypotheses and insights. 

COALENC strategies did well in both MITCS1 and MITCS2, but 
these tournaments represent relatively "nice" environments. To deter- 
mine the sensitivity of COALENC strategies to environments, we 
performed a test of robustness, similar to the post-tournament work of 
Axelrod (1984). We generated 200 new environments using different 
combinations of the MITCS2 entries. We first used a stepwise 
procedure to identify a subset of eight representative entries that 
faithfully reproduce the overall payoffs and standings of MITCS2, 
using only a small fraction of the full tournament. The eight represen- 
tatives (7, 16,20,23,28,33,37, and 41) form an environment involving 
36 games with each of the MITCS2 entries, but yield overall average 
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TABLE 5 
Strategy Performance in Simulated Environments 

entry score entry score entry score entry score entry score 

11 16.186 1A 16.866 1A 17.364 1A 17.833 12 18.867 
1A 16.162 2 16.861 2 17.357 1 17.826 21 18.821 

2 16.159 1 16.860 1 17.356 2 17.825 1A 18.780 
1 16.155 3 16.859 3 17.352 3 17.822 2 18.774 
3 16.150 4 16.853 9 17.351 5 17.817 1 18.774 
4 16.144 5 16.852 4 17.346 4 17.816 11 18.771 
5 16.143 6 16.841 5 17.346 8 17.809 3 18.766 
6 16.132 7 16.839 10 17.343 6 17.806 5 18.762 
7 16.106 8 16.819 8 17.337 9 17.804 4 18.761 
9 16.105 9 16.818 -6 17.335 7 17.800 24 18.757 

Nastiest Moderately 
Nasty 

Mid-range Moderately 
Nice 

Nicest 

entry type entry type entry type 

1A 
1 
2 
3 
4 

COALENC 
COALENC 
COALENC 
COALENC 
COALENC 

5 
6 
7 
8 
9 

COALENC 
COALENC 
COALENC 
M1N.R 
AVG.S 

10 
11 
12 
21 
24 

AVG.S 
MXCM.S 
COALENC 
COALITION 
COALITION 

payoffs that have a correlation coefficient of 99.4% with the scores from 
the full tournament (5,175 games per entry). 

To generate each stimulated environment, we took random combi- 
nations of each of the eight representatives, also accounting for the 
residuals between the actual and minitournament payoffs. This proce- 
dure was repeated 200 times, thereby producing a wide range of 
environments. 

As a proxy for the niceness or nastiness of each environment, we use 
the average payoffs across all 45 entries. The 200 environments are 
sorted by this index and broken into five equal-sized groups. We ranked 
the score for each strategy within each group. Table 5 summarizes the 
results by giving the top 10 finishers in each environment. For ease of 
reference, the basic strategy types are shown below for each listed entry. 
(The entry numbers refer to MITCS2 rankings.) 

Table 5 shows a clear, consistent pattern supporting the results of 
Tables 3 and 4. The top strategies are very stable in moderate 
environments, and fall only slightly in more extreme cases. It is 
encouraging to see that the COALENC entries perform so well even in 
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very nasty environments. Even in the single nastiest environment, where 
over 60% of the random weight is allocated to the nasty representatives, 
four COALENC entries finish in the top 10, and only one nasty strategy 
finishes in the top 25. 

One surprise that emerged out of the simulations is entry 11. This 
strategy is based on a very unusual notion: It identifies the second-best 
player in each game (in terms of cumulative payoffs) and mimics that 
player's previous action. This rule adapts very well to  extreme environ- 
ments (good or bad) since it goes along with coalitions in a most 
magnanimous way (good in nice environments) but never initiates 
coalition behavior (good in nasty environments). If we look at 
alternative measures of performance, such as number of first-place 
finishes in the 200 simulations, then 11 appears to be even stronger. It  is 
the winner in 50 of the environments, more than any other MITCS2 
entry.4 

SUMMARY 

This article has examined the role of implicit coalitions in a 
generalized prisoner's dilemma. We find the GPD interesting because it 
extends the classical P D  to more realistic situations of more than two 
(but not many) players and it gives players the option of choosing 
actions from a continuous set. When we extend the P D  to the GPD we 
find the possibility of implicit coalitions, that is, coalitions of coop- 
erating players in an otherwise unfriendly world. We also expect, 
intuitively, that strategies that use the continuous nature of the action 
space will do better than those that do not. 

We tested our conjectures in two three-player GPD's, as described by 
equations 1 and 2. Our methodology was that of computer tournaments. 
In both tournaments, implicit coalitions proved to be the key feature 
that distinguished the most successful strategies (in terms of average 
score). In MITCSl a simple discrete COALITION strategy won and 
other coalition strategies fared well. However, a specific coalitionencouraging 
strategy, COALENC, would have won had it been entered. In MITCS2, 
several different variants of COALENC did surprisingly well, especially 

4. Although entry 11 is ~ilost adept at winning, it does have its bad moments. It finishes 
out of the top ten 40.5% of the time, including a low of twenty-ninth place in one 
environment. CEAVG3, for comparison, is far more robust with only 15.5% of its 
rankings below the top ten, never lower than fifteenth place. 
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considering the differences in the payoff function from MITCSl to 
MITCS2. Among the COALENC entries, magnanimity seemed to 
distinguish the very best algorithms. Finally, COALENC strategies held 
up very well in avariety of hypothetical environments, although at least 
one alternative algorithm did well in the nastiest of environments. 
Despite the fine showing of CEAVG3 and the other COALENC entries, 
we dare not make our claims too strong. The GPD is arich and complex 
problem and our tournaments only begin to tap its complexity. 
Nonetheless, we do feel confident that implicit coalitions are important 
and should be considered in any situation modeled by a GPD. 

As in all research, interesting questions remain. Beyond the obvious 
questions of more than three players, alternative payoff functions, and 
still more complex algorithms, we feel that further investigation of 
magnanimity and further exploitation of continuous action are war- 
ranted. Algorithms that have greater adaptability to recognize compet- 
itors deserve attention. 

One interesting theme that emerged was that it often pays to be more 
cooperative than a simple one-for-one matching policy (such as TIT- 
FOR-TAT) would suggest. For example, in the second tournament, 
magnanimity implies that strategies should shade toward being more 
cooperative when choosing implicit coalition actions. Even in COAL- 
ENC, when both actions are below A'", the strategy chooses the more 
cooperative action of the other two players. Further investigation of this 
theme should prove fruitful. 

Beyond computer tournaments, there are possibilities for GPD 
experiments on human subjects and descriptive research to determine 
which real-world conflict situations are best modeled by GPDs and 
implicit coalitions. Finally, we view implicit coalitions as an excellent 
concept to examine the overlap (or differences) in the approaches used 
by cooperative and noncooperative game theory to study multiple- 
player conflict situations.5 
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