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As firms collect greater amounts of data about their customers from an
ever broader set of “touchpoints,” a new set of methodological
challenges arises. Companies often collect data from these various
platforms at differing levels of aggregation, and it is not clear how to
merge these data sources to draw meaningful inferences about
customer-level behavior patterns. In this article, the authors provide a
method that firms can use, based on readily available data, to gauge and
monitor multiplatform media usage. The key innovation in the method is
a Bayesian data-fusion approach that enables researchers to combine
individual-level usage data (readily available for most digital platforms)
with aggregated data on usage over time (typically available for
traditional platforms). This method enables the authors to disentangle the
intraday correlations between platforms (i.e., the usage of one platform
vs. another on a given day) from longer-term correlations across users
(i.e., heavy/light usage of multiple platforms over time). The authors
conclude with a discussion of how this method can be used in a variety
of marketing contexts for which data have become readily available,
such as gauging the interplay between online and brick-and-mortar
purchasing behavior.
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When U.S. fans wanted to know what happened on a par-
ticular day of the 1990 Fédération Internacionale de Foot-
ball Association (FIFA) World Cup tournament, they had
few choices: they could see a final score on the evening
news or read about it in a newspaper the following day. In
sharp contrast, World Cup fans in 2010 could choose among
numerous media platforms to follow every game in real
time: they could follow continually updated coverage on a
traditional website or on their mobile phones; they could
watch every game live on television; or they could watch
online streaming video, either live or recorded. This rapid
proliferation of media delivery platforms is changing how
media is consumed—not just for the World Cup but for all
types of content. From a business perspective, the multitude
of platforms provides both opportunities for greater media
exposure and higher advertising reach (the “currency” of
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the media business) but also poses greater challenges for
media companies trying to decide whether to invest in
developing content for each new platform. To make these
decisions, companies need tools to monitor how media con-
sumers use the many available channels and the changing
relationships between them.
Luckily, there is a wealth of behavioral data on how and

when media users access content that can answer these
questions. All the emerging media platforms—including
websites, mobile devices, and online streaming video 
platforms—create a record of what each user has viewed,
providing a rich opportunity for companies to investigate
media consumption at the individual level. In many cases,
firms can track a user’s behavior across platforms. As media
consumption migrates to these highly measurable platforms,
companies regularly have the data necessary to constantly
monitor how people use multiple platforms at the same
time. However, data on the viewing of traditional media,
particularly television (the most widely used medium),
remain scant. Globally, only a small fraction of households
have transitioned to measurable television systems, and
even if a cable or satellite provider recorded television
usage for an individual household, technology differences
between television and the Internet make it difficult to link
that household’s television usage to its digital media usage.
This presents a challenge for today’s media companies: they
want to understand how people are using traditional media
such as television in conjunction with the emerging digital
media platforms, but they lack detailed data on television
viewing behavior. The only readily available data on televi-
sion viewing on a broad scale is aggregate ratings data.1
Thus, many companies’ data on media consumption are of
mixed structure: panel data for digital platforms (on which
individual usage is tracked daily) along with aggregate daily
or hourly viewership for television and other traditional
media. The goal of this research is to address the methodo -
logical problem of understanding consumer behavior given
this general data structure.
In particular, we develop a Bayesian data-fusion approach

to provide inferences for mixed-level (individual-level and
aggregate) data and apply it to a case study on multiplatform
media consumption. We begin by specifying a model for
individual behavior. In specifying the individual-level model,
our primary interest is to understand the correlations in usage
among platforms so that we can identify whether usage of
two (or more) platforms is positively or negatively related.
This motivates our use of a hierarchical multivariate logit
model featuring a vector of platform-specific intercepts for
each consumer. Within this structure, we allow for negative
or positive correlations among the platform intercepts for
each user as well as negative or positive correlations among
daily error terms. This enables us to distinguish the daily
substitution among platforms (i.e., use of one platform on a

given day may be correlated with use of another platform
on that same day) versus the long-term positive correlations
that researchers typically find in media consumption behavior
(i.e., people who consume more often on one platform may be
more likely to consume more on other platforms over the long
run). We find it somewhat amusing, therefore, that this is
one of those rare occasions in which elements of covariance
matrices are truly parameters of interest to understand the
relationship between platforms (and not just nuisance
parameters to soak up unexplained variation). With these
parameters that measure the relationships among media
channels, content providers can gauge whether new platforms
are detracting from or enhancing consumption on existing
platforms, and this information is critical for determining
whether to invest in a new channel. In our case study, we
demonstrate this by using the estimated model to forecast the
impact on viewership by changing which content is available
on the mobile channel, the most recent platform entrant.
If data on individual-level media consumption matched

across all platforms were available, we could straightfor-
wardly estimate this hierarchical model using Markov chain
Monte Carlo (MCMC) methods. However, when one (or
more) platforms is only measured in aggregate, model esti-
mation is not straightforward. Our goal is to relate the
aggregate behavior observed for one channel to the observed
individual-level behavior for the other channels, thus enabling
us to make a coherent inference about the joint distribution
of behavior across all channels. This is akin, but not identi-
cal, to the “direct approach to data fusion” that Gilula, McCul-
loch, and Rossi (2006, p. 74) propose: They define data
fusion as “the problem of how to make inferences about the
joint distribution of two sets of random variables (here-
inafter called the ‘target’ variables) when only information
on the marginal distribution of each set is available.” In their
setting, they observe the target variables for two separate
sets of people. As they point out, the joint distribution is not
identified without additional data and model assumptions.
To identify the joint distribution, they use a set of common
variables that are observed at the individual level in both
data sets under the assumption that the variables to be linked
are independent conditional on the common variables.
Our setting varies substantially from that of Gilula, Mc -

Culloch, and Rossi (2006). We do not have a set of individual-
level linking variables that span the platforms. In addition,
for one of the platforms, we do not observe any data at the
individual level. In this way, our (dis)aggregate data prob-
lem combines elements of the data-fusion problem with the
problem of estimating an individual-level model from
aggregate data. To handle the aggregate data, we compute
the likelihood for it by integrating over the individual-level
likelihood of our core model to obtain the marginal likeli-
hood. We accomplished this within the MCMC framework
through data augmentation (Tanner and Wong 1987), in
which, within the Gibbs sampler, we simulate (many) sets of
individual-level behaviors that are exactly consistent with
the observed aggregate data. This approach is similar to
methods in the marketing literature for estimating individual-
level choice models from aggregate data (Albuquerque and
Bronnenberg 2009; Chen and Yang 2007; Musalem, Brad-
low, and Raju 2008), albeit in a context of a multivariate
model rather than a choice model and in a situation in which
there is mixed aggregate and disaggregate data.

1Some television ratings providers, such as Nielsen, Kantar, and GfK,
do collect and sell both television viewing and Internet usage data for a
limited number of households; they collect such data by recruiting users to
join a media panel and providing them with devices to measure their media
consumption across platforms. This is typically referred to as “user-centric”
measurement. Such panels are not only expensive to run but also subject to
significant selection bias and panelist compliance problems. Here, we
focus on lower-cost, more reliable “site-centric” data (as in Zheng, Fader,
and Padmanabhan 2012).



To link the aggregate and disaggregate data together, we
exploit the longitudinal nature of our data (a feature not
present in the problems that Gilula, McCulloch, and Rossi
2006 discuss). Specifically, we exploit the repeated meas-
ures of consumer behavior across platforms to identify the
intraday correlations between platforms. Note that we can-
not identify the correlations between platform-specific
intercepts for the aggregate channel and each of the other
channels because we do not have any linking variables.
However, we demonstrate, through a parameter recovery
study using synthetic data, that the intraday correlations
between platforms can be recovered even when usage for
one of the platforms is only measured in aggregate. Further-
more, our approach enables us to make inferences on the
basis of all the observed data and to fully characterize the
posterior uncertainty that arises even though we do not have
the ideal individual-level data, as is the case in other
Bayesian approaches to missing data (Little and Rubin
2002) but not in more ad hoc approaches to data fusion.
Although we motivate the development of this model

from the perspective of media consumption, we emphasize
that the general data structure we describe here occurs in
many other settings, and thus researchers could apply these
statistical methods in other contexts. It is remarkably com-
mon for marketers to observe consumer behavior across
multiple platforms, and they often observe these data in dis-
aggregate for some platforms and in aggregate for others.
For example, retailers traditionally have not tracked indi-
vidual customers’ visits or purchases at physical stores but
do have accurate data on aggregate traffic and sales for each
store. By contrast, retailers do regularly track visits and pur-
chases at the individual level in online stores. The same
model we propose for multiplatform media consumption
could be applied directly to this type of multiplatform
online/ offline store visit behavior or purchase behavior. Sur-
prisingly, despite the ubiquitous nature of this data structure
in marketing, no direct method exists to perform the mixed
aggregate and disaggregate data fusion that we present here.

APPLICATION TO WORLD CUP MEDIA
CONSUMPTION

To preview the interesting nature of our applied case
study and to motivate the data structure for which our
mathematical model is built, we briefly describe the data
here (and offer more details when we present the case
study). We demonstrate our method using data on multiplat-
form media consumption during the 2010 FIFA World Cup.
The core data in our case study are observations of digital
media usage for a random sample of 2,000 ESPN users
based primarily in North America. For each of these users,
we observe daily consumption across three platforms: a tra-
ditional website (ESPN.com), online streaming video, and a
mobile website.2 We augment this with aggregate ratings for
World Cup games broadcast on television during the same
period. Although our data and case study are limited to a

particular type of content at a particular point in time, most
major content providers collect data that are similar to the
data we use, and other content providers could use the basic
modeling approach we propose to measure and understand the
changing relationships among platforms as media consump-
tion behavior evolves and new platforms are introduced.

RELATED LITERATURE
Media planners have shown interest in how users interact

with multiple platforms, particularly as new media platforms
have begun to proliferate (see, e.g., Franz 2000). A key
question in the literature is whether consumers use multiple
media platforms at the same time.3 Prior theoretical work
has shown that rational media consumers use multiple plat-
forms under certain circumstances (Parker and Van Alstyne
2005). However, most of the empirical work in this area
only suggests that individual users might be using multiple
media platforms. For example, Joo, Wilbur, and Zhu (2012)
find that there is a relationship between the airing of televi-
sion advertisements and aggregate online search behavior,
suggesting that individual users must be using television
and search at the same time. Similarly, aggregate marketing
mix models have shown synergy effects between advertis-
ing channels (Naik and Peters 2009; Naik and Raman
2003), and the most likely explanation for this synergy is
that individual consumers are viewing content on multiple
channels and that the cross-channel repetition is highly
effective. Thus, the issue of whether viewers use multiple
media platforms is of great interest to media planners, but
few empirical studies have investigated individual-level
multichannel media consumption directly, partly because of
past data scarcity. Although it is not our primary focus, this
is one of the first academic articles to examine multiplat-
form media consumption using directly observed behavior.
Prior survey-based studies of multiplatform user behavior
have also focused on advertising exposures and advertisers’
questions (e.g., “Which advertisements should I place and
where should I place them to maximize sales?”), whereas
our case study focuses on the media planning problem from
the content provider’s perspective (e.g., “On which plat-
forms should I place content?”).
Although our study does contribute to the body of work

on multichannel media consumption, our focus is more
methodological, in the vein of empirical work that has
developed models for closely related data structures. Our
core data structure is one in which consumers engage in
multiple activities over time, and thus, our individual-level
model is structurally similar to those that examine which
websites users visit over time (Danaher 2007), which cate-
gories consumers purchase from over time (e.g., Manchanda,
Ansari, and Gupta 1999), and which distribution channels a
customer uses over time (e.g., Ansari, Mela, and Neslin
2008). However, although all these studies model a person’s
multiplatform usage over time, none has tackled the issue of
when data on usage of one (or more) of the platforms is only
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2Indeed, our data are, in a sense, “as good as it gets” for media content
providers because many ESPN users self-identify (i.e., log in) as they use
content across the three platforms we observe. However, as we discuss in
the conclusion, the approach we propose could be extended to a situation
in which individual-level data are unmatched, that is, one in which there is
a distinct group of users for one or more platforms.

3The vocabulary to describe this behavior is still evolving. The theoreti-
cal literature has used “multihoming” to refer to a scenario in which con-
sumers use one or more platforms but not necessarily at the same time
(Parker and Van Alstyne 2005), whereas other work has proposed “multi-
plexing” to refer to consumers who use two media platforms simultane-
ously (Lin, Venkataraman, and Jap 2011).
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available in aggregate. This is somewhat surprising given how
frequently this general data structure occurs in practice.
As we mentioned previously, prior research has addressed

the problem of estimating multinomial choice models from
aggregate data, most notably in the generalized method of
moments framework using the best linear prediction method
(Berry, Levinsohn, and Pakes 1995; Nevo 2000). Albur-
querque and Bronnenberg (2009) extend this approach to
the situation in which both aggregate shares over time and
aggregate data on purchase set size and penetration rates are
available. These articles all propose moment conditions that
researchers can use to estimate an individual-level multi-
nomial choice model from different types of aggregate data.
By contrast, we use Bayesian data augmentation to relate the
aggregated data to the marginal likelihood of the individual-
level model. In this way, we are more methodologically akin
to Chen and Yang (2007), who estimate a multinomial logit
model using Bayesian data augmentation, and to Musalem,
Bradlow, and Raju (2008), who show that data augmentation
can be used not only to estimate an individual-level model
from aggregate choice data but also to handle the situation in
which covariates are only observed in aggregate (e.g., estimat-
ing which consumers have access to a coupon when only
aggregate data on how many coupons were distributed is
available). However, none of these prior approaches to esti-
mating individual-level models from aggregate data address
how to estimate a multivariate outcome (rather than a choice)
or how to proceed when some outcomes are observed at the
individual level and others are only observed in aggregate.
We have structured the remainder of the article as fol-

lows: In the next section, we describe a model that enables
us to fuse the aforementioned aggregate and disaggregate
data. We then report a synthetic data study that explores the
extent to which correlations can be recovered when one
platform is measured in aggregate. To illustrate the method,
we report the application to the FIFA World Cup data,
including a set of forecasts predicting ESPN usage had the
company not provided coverage (either fully or in part) on
its new mobile platform. We conclude with a discussion of
potential applications and extensions of the method.
A HIERARCHICAL BAYESIAN MULTIVARIATE LOGIT

MODEL FOR MULTIPLATFORM USAGE
Model for Disaggregate Multiplatform Behavior
We focus first on developing a model for disaggregate

data in which, for each user in the sample, we observe a
vector of binary outcomes, yikt, indicating whether a user, i =
1, ..., N, accessed content on a given platform k = 1, ..., K on
day t = 1, ..., T. After laying out the model for disaggregate
data, we discuss modifications for the situation in which one
or more platforms are observed only in aggregate.
We model yikt with a multivariate hierarchical logistic

regression:
(1) yikt ~ Bernoulli(pikt)

(2) logit(pikt) = ik + xktbk + ekt,
where xkt is a vector of covariates describing the content
available on platform k on day t, which is multiplied by a
vector of platform-specific coefficients bk. The residual appeal
of the platform after controlling for the covariates, ik, is user-
specific, so this can thus be considered a mixed-effects model.

The vector i = (i1, ..., iK) is assumed to be normally
distributed across the population:
(3) i|, S ~ NK(, S), i.i.d.
We include the parameter i to accommodate differences in
overall usage rates among active users across the platforms.
The matrix S captures the covariance among consumers’
propensities to use each of the platforms and, as we men-
tioned previously, is one of the sets of model parameters of
greatest interest because it represents the covariance among
baseline usage propensities across platforms over time.
The error term et = (e1t, ..., eKt) from Equation 2 is also

modeled as a multivariate normal:
(4) et|Se ~ NK(0, Se), i.i.d.,
which allows for correlations among the propensities to use
each of the platforms on a given day through Se.4
This defines our core model for multiplatform consumer

behavior. However, in many marketing data sets, we observe
a large number of users who are completely inactive during
the observation period. If we include these inactive con-
sumers in the estimation of S, we would likely find strong
positive correlations between platforms induced by this one
group of consumers who are inactive on all platforms. To
avoid this, we model each user as either completely inactive
(zero on all platforms for each and every day) or active with
probability pactive, a classic “spike-at-zero” mixture model
(Morrison and Schmittlein 1988). We use Ii to indicate
(latently) whether user i is active. This aspect of the model
would not be necessary in situations in which most of the
users have some observed activity.
If yit = (yi1t, ..., yiKt) is the vector of observed platform

usage for user i in period t, the full likelihood for the hierar-
chical model is given by

In summary, the model we propose for consumers’ disag-
gregate media consumption across multiple platforms is a
hierarchical multivariate logit model with a spike at zero for
a consumer’s use of multiple media platforms. Our model
extends the basic multivariate logit framework (Glonek and
McCullagh 1995) by decomposing individual-level cross-day
platform effects through S from within-day cross-platform
effects through Se. This structure enables us to determine the
short- and long-term correlations between media platforms,
which, as we explained previously, is critical for media
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4This specification assumes that et is independent of et + 1, although this
raises the question whether this assumption is warranted. That is, is view-
ership likely to be higher today conditional on viewership being high yes-
terday? To confirm this assumption in our case study, we calculated the
lag-one autocorrelation of the residuals for each platform. None of the
residual sequences showed significant autocorrelation.



planners who want to understand how consumers combine
the use of channels. The hierarchical Bayesian framework
also enables us to determine which individual users within
the sample are most likely to watch each platform through
the estimates of ik. We tested a similar hierarchical multi-
variate probit specification (Chib and Greenberg 1998;
Rossi, Allenby, and McCulloch 2005) and found it to have
similar fit.
Model for Mixed Aggregate and Disaggregate Data
As we described previously, companies often do not

observe individual-level data, yikt, for the full set of plat-
forms of interest. Typically, they have detailed panel data
suitable for estimating the aforementioned model for newer
digital platforms (e.g., website visits in the case of media
consumption, online visits in the case of a multichannel
retailer), but data on usage of traditional platforms (e.g.,
television, brick-and-mortar store purchases) are only avail-
able in aggregate.
Although our method can be applied when more than one

channel is observed in aggregate, for simplicity of exposi-
tion, we assume that there is only one platform observed in
aggregate and that this is the Kth platform. For this plat-
form, we do not observe yiKt but instead observe YKt = SiyiKt
for each time period. We can obtain the likelihood for the
observed disaggregate and aggregate data by integrating the
likelihood of the model over all possible values of {yiKt}
that meet this constraint as follows:

where the integral is taken over all possible values of the set
{yiKt} that meet the sum constraint implied by the observed
aggregate viewership. This is the likelihood we use in mak-
ing posterior inferences.
We can estimate this model in the Bayesian framework

through data augmentation of yiKt using standard MCMC
methods (Tanner and Wong 1987). Instead of treating yiKt
as a nuisance parameter, the data augmentation approach
treats “missing” data such as yiKt as a parameter to be esti-
mated conditional on the constraint. Under the MCMC
framework, this results in draws from the posterior of all the
model parameters as well as from the posterior of yiKt con-
ditional on the model structure and all observed data.
We note that when the Kth platform is only observed in

aggregate, the last row and column of S, corresponding to
the covariance between the propensity to use the aggregate
platform and the other platforms on a given day, is not iden-
tified. Intuitively, we never observe which individual con-
sumers are using the Kth platform on a given day, so it is
impossible to estimate the covariance in the platform inter-
cepts between the aggregated platform and the others. How-
ever, as we demonstrate in a simulation study reported in
the next section, the covariance in Se is identified through
the repeated measures over time. Consequently, we fix the
covariance elements of S associated with the Kth platform
to zero. Note that this model still allows for an i.i.d. Bernoulli
error for daily television usage through Equation 1.
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We obtain posterior samples for the population-level
parameters (, bk, S, and Se) and the individual-level
parameters (i as well as the “missing” sets of individual-level
viewership {yiKt}) using an MCMC sampler implemented
in WinBUGS (Spiegelhalter, Thomas, and Best 1999). We
use diffuse but proper priors, as we describe in the Web
Appendix (www.marketingpower.com/jmr_webappendix).
The Web Appendix also includes details on how to specify
the margin constraint in WinBUGS. All code is available
from the authors on request.
In the next section, we report the results of a parameter

recovery study showing that the approach makes accurate
inferences about the true population-level parameters, par-
ticularly the correlations S and Se, when the data are gen-
erated according to the true model. We also explore parame-
ter recovery when the model is slightly misspecified in an
important way that enables us to test a fundamental assump-
tion that we made.

PARAMETER RECOVERY
The first parameter recovery study tests the empirical

identification of the individual-level model when one platform
is observed in aggregate. For this study, we generated a rela-
tively modestly sized data set (N = 200, K = 3, J = 30) accord-
ing to the true individual-level model and then aggregated the
observed individual-level yikt for platform K = 3 to Y3t. As
Table 1 illustrates, the parameters of the population-level dis-
tributions, particularly the correlations in S and Se, can all be
reasonably recovered (i.e., the posterior covers the values of
the population-level parameters used to generate the synthetic
data). Furthermore, the posterior is significantly narrower than
the associated priors, indicating that the likelihood contributes
to the posterior; that is, there is some “learning” from the data.
This suggests that the parameters we estimate, particularly
the correlations in people’s long-term propensity to use the
various platforms in Se, are identified by the data/ likelihood
combination as well as by the other model parameters.
However, as we discussed in the previous subsection, the

correlations of the individual-level platform intercepts
between the aggregated platform K and the other platforms
are not identified; therefore, without any other identifying
information, we fix the correlations to be zero. Yet what if
this is a misspecification and the platform intercepts for the
Kth platform are correlated with the intercepts for one of the
disaggregated platforms? Does this negatively affect (bias)
parameter recovery for the identified parameters? To assess
this, we generated a second synthetic data set (N = 500, K =
3, J = 30) in which the correlation in S between the first
and the Kth platform is nonzero and set equal to .4, whereas
all other correlations were set to zero. As Table 2 shows, we
correctly recovered all the parameters (except the unidenti-
fied correlation that we did not estimate), and our ability to
recover the empirically identified parameters was not
degraded. Thus, we find evidence that there is minimal bias
in the parameter estimates even when there is a correlation
between the platform intercepts (which, as we stated previ-
ously, the data did not identify).

APPLICATION TO FIFA WORLD CUP VIEWING
BEHAVIOR

To demonstrate the model and its use for forecasting and
understanding media channel interplay, we applied it to a
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data set on the multiplatform media consumption of 2,000
ESPN registered users5 for each day from June 4 to July 11,
2010, during the 2010 FIFA World Cup, the most watched
sporting event in the world. The observation window
includes the week before the start of the World Cup tourna-
ment, which began on June 11, 2010, and concludes with
the final championship game on July 11, 2010. This project
was part of a larger initiative (with many participating
media research firms) called ESPN XP (Crupi 2010),
designed to help ESPN and their advertisers better under-
stand cross-platform user behavior.
Because the focus of this ESPN project was to shed light

on multiplatform behavior, and because the majority of U.S.

users did not yet have smartphones or other mobile devices
at the time of the tournament, the target population from
which we sampled were users who were observed to use
mobile services (for any ESPN content) sometime in the
year before the tournament. These users are important to the
company because they represent what we might consider
the vanguard of mobile users. For each user on each day, we
observe a binary vector indicating whether he or she
watched or read soccer-related content on each of three
media platforms: (1) ordinary digital content on the regular
magazine-format website (ESPN.com), (2) live or archived
streaming video of full games available on the ESPN3.com
platform (a separate website from ESPN.com),6 and (3)
ESPN Mobile (a site specifically formatted for mobile
phones and tablet devices with a smaller screen that
includes mobile friendly features such as “ESPN Game-
cast”). The sample is not conditional on the user being a
soccer fan or even having consumed soccer content before
the tournament; thus, it is not surprising that approximately
half of the sampled users, who are primarily based in the
United States, did not access any soccer-related content dur-
ing the tournament (therefore the need for the aforemen-
tioned spike at zero). Figure 1 shows the total daily reach
for each platform.
We combine these digital media data with aggregate data

on television ratings provided by The Nielsen Company.
Specifically, Nielsen provided its estimate of the total frac-
tion of U.S. households that watched any of the televised
English-language broadcasts of World Cup games for each
day during the tournament.7 As we discussed previously,
our model is designed for the situation in which we observe
YKt, the total number of people who watched television
among our panel of digital users. To accommodate the rat-
ings data within our framework, we make one assumption:
that the fraction of our digital users who watched the televi-
sion broadcast of the World Cup approximately matches the
fraction of total U.S. households who watched on television
as reported by Nielsen. That is, we assume our sample of
digital platform users who watched the World Cup on televi-
sion to be the same proportion as the general population.
Because television is currently the most popular media plat-
form, we find this assumption reasonable. Note, however,
that YKt is directly observed in many other applications. For
example, some media companies may have access to televi-
sion consumption data specifically for digital media users;
or, in another context (to which our methodology applies), a
multiplatform retailer may know the total sales in brick-

6Although both ESPN.com and ESPN3.com are viewed on the Internet,
from the point of view of ESPN and its users, ESPN3.com is a distinct plat-
form with an entirely different interface than ESPN.com and is only avail-
able to users who subscribe to certain cable providers. Unfortunately, from
a back-end technology perspective, the same server hosted video for both
sites, and ESPN commingled data on usage of ESPN3.com and streaming
video embedded in ESPN.com. However, because nearly all the video on
ESPN.com was in the form of short clips, with longer full-game videos
reserved for ESPN3.com, we were able to approximate ESPN3. com usage
by only counting the user as having watched ESPN3. com if he or she
viewed a video for more than three minutes.
7We focused our analysis specifically on English speakers because the

ESPN. com, ESPN3.com, and ESPN Mobile audiences are English-language
oriented. We excluded from our analysis broadcasts on Spanish-language
television and the relatively fewer users of ESPN’s Spanish-language web-
site, ESPN Deportes.

5Some might question whether registered users are the appropriate group
on which to focus. We chose this group for two reasons. First, they can be
tracked longitudinally over time and across platforms (because they log
in), which is critical to the study of multiplatform behavior. Second, they
are fairly representative of ESPN users as a whole because ESPN has
designed their platforms to encourage a majority of their users to log in
(e.g., for fantasy sports games). The only other practical alternative for
studying multiplatform media behavior is to analyze data from an opt-in,
multiplatform media consumption panel (e.g., from Nielsen), which raises
another set of selection issues.

Table 1
ESTIMATED MODEL PARAMETERS FOR SYNTHETIC DATA

GENERATED ACCORDING TO THE TRUE MODEL

Posterior 2.5th 97.5th
Parameters True Mean Percentile Percentile
[1] –.500 –.696 –.978 –.435
[2] –.300 –.120 –.379 .137
[3] –.800 –.695 –.999 –.393
S[1, 1] .500 .458 .327 .630
S[1, 2] .200 .163 .059 .282
S[2, 2] .500 .605 .390 .871
Se[1, 1] .700 .535 .306 .917
Se[1, 2] .350 .215 .041 .462
Se[1, 3] .280 .251 .030 .559
Se[2, 2] .700 .433 .230 .772
Se[2, 3] .210 .196 –.010 .478
Se[3, 3] .700 .759 .440 1.285

Table 2
ESTIMATED MODEL PARAMETERS FOR SYNTHETIC DATA

GENERATED FROM A MISSPECIFIED MODEL

Posterior 2.5th 97.5th
Parameters True Mean Percentile Percentile
[1] –.500 –.277 –.525 .037
[2] –.300 –.165 –.463 .093
[3] –.800 –.833 –.966 –.645
S[1, 1] .500 .482 .403 .572
S[1, 2] .000 .019 –.046 .083
S[1, 3] .200 N.A. N.A. N.A.
S[2, 2] .500 .633 .530 .744
S[2, 3] .000 N.A. N.A. N.A.
S[3, 3] .500 N.A. N.A. N.A.
Se[1, 1] .700 .652 .408 1.025
Se[1, 2] .000 .026 –.214 .267
Se[1, 3] .000 .070 –.062 .225
Se[2, 2] .700 .727 .449 1.159
Se[2, 3] .000 .048 –.092 .208
Se[3, 3] .700 .262 .066 .425
Notes: N.A. = not applicable.



and-mortar stores precisely. When applying the method, we
suggest analysts carefully consider this assumption in their
applications.
Covariates to Control for Tournament Content
We selected the covariates we specify in xkt to account

for the relationship between the tournament content and
viewing behavior. Without controlling for spikes in reach
that are driven by tournament content (as Figure 1 illus-
trates), it would be difficult to interpret the correlations
between platforms that are our primary interest. Although
our covariates are specific to tournament content, in other
applications, a similar set of covariates could be included to
represent seasonality, promotions, and other outside factors
that are known to influence the behavior being studied.
It is commonly understood in practice that television

reach is greater on weekends and online reach is greater on
weekdays, reflecting the intuition that television is gener-
ally more accessible on weekends and that viewers turn to
online coverage when they are at work. Thus, we included a
dummy variable indicating whether the day was a weekend,
which enables us to confirm previously observed weekend/
weekday effects for television and online as well as to deter-

mine whether the new mobile platform displays a similar
pattern to online or television.
Regarding the tournament itself, there is little prior litera-

ture addressing what might drive viewership in this setting.
We assume that the teams that play on a given day have a
substantial impact on reach; therefore, we introduce a set of
covariates to control for such effects, including (1) a
dummy for whether the U.S. team played, (2) a dummy for
whether any of the three top teams (Brazil, Spain, and the
Netherlands, according to the May 2010 FIFA soccer rank-
ings) played, and (3) a dummy indicating whether any of the
three teams with strong cultural connections to the United
States (England, Mexico, and Australia) played.8 Assuming
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Figure 1
DAILY SOCCER REACH FOR ESPN MEDIA PLATFORMS DURING THE 2010 WORLD CUP
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Notes: For 2,000 registered users with mobile usage in the past 12 months. Days on which tournament games occur are shaded. Days on which the U.S.
team was playing are highlighted in boxes.

8We also explored the possibility of using a shrinkage model to estimate
a media attraction effect for every team, but this proved difficult with the
available data. A total of 32 teams began the tournament and were assigned
into eight groups of 4 teams each and played a round robin with the other
teams in their group. From the results of this group stage, half the teams
(two from each group) proceeded to a knockout-style, one-and-done elimi-
nation tournament. This results in a tournament schedule in which half the
teams only play on three days, sometimes perfectly overlapping with
another team, giving us limited information from which to infer attractive-
ness effects for each of them.
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that a greater number of games and games that are more
critical may drive additional reach, we also include
variables for the total number of games on a given day and
the number of teams that would be eliminated from the tour-
nament on that day if they failed to win—that is, the num-
ber of teams that must “win or go home.”
Although we present and interpret the parameter esti-

mates for these effects, we caution that the estimates for
models of this type are subject to the usual potential biases
due to collinearity, missing variables, missing interactions,
and other misspecifications (although we did guard against
them as much as possible). In general, this type of regres-
sion is commonly used in practice and, like any other
regression analysis with nonexperimental data, we find that
the parameter estimates for these effects provide some
actionable insights for a media company that aims to under-
stand the drivers of multichannel media viewership. For
example, as we discuss when we report the parameter esti-
mates, understanding whether mobile usage is higher or
lower on weekends (controlling for other aspects of the con-
tent) can provide insight into whether weekend mobile cov-
erage should be emphasized or deemphasized.
As in the synthetic data parameter recovery studies, we

estimated the model in WinBUGS. Posterior inferences are
based on 50,000 draws from the posterior. We discarded the
first 50,000 draws on the basis of trace plots and Gelman–
Rubin diagnostics against a second chain run from an inde-
pendent starting point (Gelman and Rubin 1992). Further-
more, as is appropriate for all complex models, we performed
two types of model assessment, in sample and out of sample.
For our out-of-sample assessment, we performed two analy-
ses, one temporal (omitting the final days) and the other
cross-sectional (using one set of viewers to predict another),
thus running a stringent set of model tests showing that this
model is appropriate for our media-consumption data.
Model Assessment
Our assessment of model fit focuses on a series of poste-

rior predictive checks at varying levels of disaggregation
(Gelman, Meng, and Stern 1996) that evaluate the model’s
ability to fit features of the data that are important to media
planners. Following the usual procedure for computing pos-
terior predictions, we generated 100 posterior predictive data
sets using 100 sets of parameters randomly sampled from
the posterior draws obtained from the MCMC sampler. (For
more detail, see the Web Appendix at www.marketingpower.
com/jmr_webappendix.) We then compared the posterior
distributions for these statistics with actuals computed from
the data and report the quantile of the observed value within
the posterior predictive distribution to assess the ability of
the model to correctly recover these key statistics.
Fit of multiplatform usage patterns. By comparing the

posterior predictions for the percentage of users who use
each combination of platforms, we can assess whether the
model is picking up the appropriate covariation—that is,
cross-platform usage, our central question of interest. The
last two columns of Table 3 report the ability of the model
to predict the 23 contingency table of aggregate usage over
the course of the tournament for each combination of the
digital platforms. (Because we do not observe television
usage at the individual level and thus cannot compute tele-
vision’s actual cross-platform contingencies, we do not

include it in this posterior predictive check.) As the data
show, the fit is good, with the true values all falling within
the .15 and .75 quantiles of the estimated posterior, suggesting
that the dual covariance structure adequately captures the
covariances we observe among platforms in the ESPN data.
Tracking plots for daily reach. Figure 2 plots the poste-

rior mean prediction for daily reach (solid line) compared
with the actual daily reach (dotted line) for all four plat-
forms. We also show posterior uncertainty by plotting the
daily reach predictions for the 100 posterior draws with
gray lines. These tracking plots show an excellent fit
between the model and the data: the overall mean absolute
error between the predicted daily reach (posterior mean)
and the actual reach is low: .78% for ESPN.com, .71%
ESPN3.com, and 1.82% for ESPN Mobile, suggesting that
the model adequately captures the major features of the total
daily reach in the data, including the day-to-day variation.
In Figure 3, we show that the model also does an excel-

lent job at predicting cumulative reach for the digital plat-
forms. Media planners frequently use cumulative reach
(defined as the total number of unique users who have
viewed content on a particular platform through to a spe-
cific day) to understand how many viewers could be
reached over the course of an entire media event such as the
World Cup. Note that, as before, we cannot compute the
actual cumulative reach for television, because we do not
observe which users are viewing on each day; however, we
report the model prediction for completeness. The model
suggests that cumulative reach for television levels out
approximately halfway through the tournament, indicating
that most of those who watch a game on television will watch
their first game fairly early in the tournament; relatively few
viewers wait until the knockout stage to first watch a game.
Figures 2 and 3 demonstrate that the model, estimated

from the full 38 days of data, can fit the observed patterns in
the data well. In practice, researchers might imagine using
the model to make predictions for the future; therefore, to
test the model’s forecasting accuracy, we reestimated the
model using the first 36 days of data and then predicted the
response for the final two days (the third place and final
games). This corresponds with the scenario in which we
estimate the model just after the 36th day of the tournament
and then use it to predict reach for the final two days on the
basis of the teams that are scheduled to play on those days.
Figure 4 shows the predicted daily reach for this “two-ahead”
prediction with the two out-of-sample forecasts shown with
solid circles for the actual reach and open circles for the pre-

Table 3
COMPARISON OF ESTIMATED AND ACTUAL MULTIPLATFORM

USAGE

Predicted
Actual Mean Quantile

No access .631 .605 .66
Only ESPN.com .043 .045 .34
Only ESPN3.com .058 .058 .45
Only ESPN Mobile .064 .063 .48
ESPN.com and ESPN3.com .132 .125 .75
ESPN.com and ESPN Mobile .018 .021 .27
ESPN3.com and ESPN Mobile .017 .021 .17
All three platforms .057 .062 .27



diction. As the plots illustrate, the predictions are good, and
all observed values fall within the prediction error of the
model (represented by the gray lines). The model does
underpredict television viewing for the finals, although the
actual viewership was within the range the model predicted.
This underprediction is most likely due to a spike in adver-
tising and consumer interest that is specific to the final
game. Because our model incorporates no effects that are
specific to the tournament stage, we find this performance
quite reasonable.

Although Figure 4 shows a temporal holdout validation,
we also wanted to consider a cross-sectional holdout valida-
tion. To illustrate how the model fits to a new set of users,
Figure 5 shows the tracking plot of daily reach for a differ-
ent random sample of 2,000 ESPN users we did not use in
the estimation. As Figure 5 demonstrates, the fit is reason-
ably comparable to the fit to the estimation data, suggesting
no overfitting for this sample of users. (Average hit rate =
.914, .925, and .979 for the ESPN.com, ESPN3.com, and
mobile platforms, respectively. We define a person’s hit rate
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Figure 2
TRACKING PLOTS OF DAILY REACH FOR EACH PLATFORM

A: Reach, ESPN.com B: Reach, Streaming Video

C: Reach, ESPN Mobile D: Reach, Television

Notes: We draw the mean of the generated statistics with a dashed line and compare it with the actual statistic (computed directly from the sample), drawn
with a solid line. To show the forecast uncertainty, we also draw the prediction for each of 100 random draws from the posterior with gray lines.
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as the proportion of days the model correctly predicts his or
her usage incidence.)
Returning to the model estimated from all 38 days with

the original 2,000 consumers, our final assessment is
intended to determine how well the model fits people’s
media usage patterns. We compute the hit rate for individu-
als. As Table 4 indicates, the model does much better than
chance at predicting a person’s usage with average hit rates

of .922, .929, and .990 for all three digital platforms. (We
do not report individual hit rates for television because we
do not observe individual-level usage on television.) Table
4 also reports the percentage of users who have an average
hit rate over the 38 days that is greater than .5 and .95.
In summary, we find that the model we propose fits this

multiplatform media usage data well, capturing its key
aspects: the aggregate daily and cumulative reach, the pattern

Figure 3
TRACKING PLOTS OF CUMULATIVE REACH FOR EACH PLATFORM

A: Cumulative Reach, ESPN.com B: Cumulative Reach, Streaming Video

C: Cumulative Reach, ESPN Mobile D: Cumulative Reach, Television

Notes: We draw the mean of the generated statistics with a dashed line and compare it with the actual statistic (computed directly from the sample), drawn
with a solid line. To show the forecast uncertainty, we also draw the prediction for each of 100 random draws from the posterior with gray lines. For the tele-
vision platform only, the aggregate daily usage on game days was observed, and the individual-level usage was not available. Consequently, when we draw
the posterior predictive plots for television, we can compute the true daily reach but not the true cumulative reach.
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of co-usage among platforms, and individuals’ daily usage.
Holdout validations show that the model makes accurate
aggregate predictions both for new time periods and for 
new groups of customers. In the Web Appendix (www. 
marketingpower. com/jmr_webappendix), we also report
several additional posterior predictive checks, demonstrat-
ing that the model does a reasonable job recovering the
heterogeneity among users (i.e., the number of light and
heavy users) and the patterns of usage over time (i.e., how
many users “jump in” and “drop out” during the tourna-
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Figure 4
FORECAST OF REACH FOR SEMIFINAL AND FINAL GAME DAYS

A: Reach, ESPN.com B: Reach, Streaming Video

C: Reach, ESPN Mobile D: Reach, Television

Notes: We draw the mean of the generated statistics with a dashed line and compare it with the actual statistic (computed directly from the sample), drawn
with a solid line. To show the forecast uncertainty, we also draw the prediction for each of 100 random draws from the posterior with gray lines.
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Table 4
HIT RATES FOR INDIVIDUAL USERS

Percentage Percentage
of Users of Users

with Hit Rate with Hit Rate
Platform Average Better Than .5 Better Than .95
ESPN.com .922 96.0 67.7
ESPN3.com .929 98.0 64.1
ESPN Mobile .990 99.9 92.8
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ment). We suggest that similar model assessments be per-
formed for other applications of the model. With this assur-
ance that the model accurately reflects these key aspects of
the data, we next turn to interpreting the estimated parame-
ters of the model.
Parameter Estimates and Implications
To illustrate how the parameters of the model can be

interpreted, we discuss, in turn, the parameters that describe

the attractiveness of each platform, the heterogeneity around
their means, and the correlations of platform preferences
over time (S) and in intraday platform usage (Se). Follow-
ing that, we present the platform-specific effects for the
tournament characteristics, xkt.
Platform intercepts and user heterogeneity. The posterior

mean value for pactive is .498, indicating that of our sample,
49.8% of the registered users are “active”; that is, they have
some predicted probability of accessing soccer content dur-

Figure 5
TRACKING PLOTS OF DAILY REACH FOR EACH PLATFORM FOR ANOTHER SET OF CUSTOMERS

A: Reach, ESPN.com B: Reach, Streaming Video

C: Reach, ESPN Mobile

Notes: We draw the mean of the generated statistics with a dashed line and compare it with the actual statistic (computed directly from the sample), drawn
with a solid line. To show the forecast uncertainty, we also draw the prediction for each of 100 random draws from the posterior with gray lines. The figure on
the television platform is the same as the one in Figure 2, because individual-level observations on the television platform are not available.
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ing the World Cup tournament. Thus, we estimate almost
half the sample to be in a spike at zero for each day and each
platform, suggesting the necessity for this part of the model.
Note that this is consistent with the raw data, in which
61.3% of our sample of 2,000 users has no observed usage
on any of the digital platforms. Depending on how the sam-
ple is constructed, we would expect this value to vary
widely for other data sets, and the spike-at-zero component
may not even be needed for data sets in which nearly all
users have some observable activity.
The general attractiveness to users of the ESPN.com,

ESPN3.com, mobile, and television platforms is reflected
by the parameter vector  = (1, 2, 3, 4), the population
mean of (i1, i2, i3, i4). As Table 5 shows, the intercepts
for each platform are in the range of –7 to –2 on the logit
scale, suggesting that baseline (i.e., on nontournament days)
usage of soccer content among active users is still close to
zero. This is consistent with the data, in which, for those
users who visit at least once, we observe heterogeneous
marginal proportions ranging from a low of 2.6% to a high
of 100%. Unsurprisingly, we find that television is the most
popular platform at baseline (4 = –2.06).
Managerially, it is important to keep in mind that these

estimates are based on a sample of users who have been
known to use the mobile platform (possibly for non-soccer-
related content). We deemed this group to be most relevant
because they represent the vanguard of mobile device users
who had used the platform prior to 2010. It is notable, then,
that they do not strongly prefer the mobile platform over the

others. Indeed, the mobile platform has the lowest estimated
population mean for the intercept (3 = –6.33), indicating
that on days when tournament games are not being played,
users are very unlikely to access soccer content on their
mobile device. We would expect that this may change over
time as consumers become more familiar with mobile devices.
We also find, unsurprisingly, substantial variation around

these population means, with standard errors for the popula-
tion distribution in the range of 2.0–2.5, indicating that
some users are significantly more (or less) likely to access
certain platforms [diag(S) = (6.358, 4.233, 5.012)]. In con-
trast, the variances in Se are small [diag(Se) = (.089, .105,
.105, .067)], indicating that after we account for the user’s
general propensity to use a platform, there is little residual
error in the daily usage probabilities (other than that driven
by the aggregate tournament effects).
Correlation structure. The correlation structure between

the channels across time and within each day is one of the
central areas of interest to media planners. As we described
previously, we summarize such long-term and daily usage
effects in two ways. The first is the covariance among users’
propensities to use each of the platforms over the course of
the tournament, captured by S, and the second is the
covariance among usage of the platforms on a given day,
captured by Se. Table 5 summarizes the estimates of the two
covariance matrices. We observe a strong correlation between
ESPN.com and ESPN3.com at the long-term level (cross-
day posterior mean correlation = .795). Thus, heavy users
of ESPN.com also tend to be heavy users of ESPN3.com,
which is not surprising given that users access both plat-
forms with the same type of device; thus, all users who
access ESPN.com have the ability to access ESPN3.com.
(Note that this correlation estimate is only for active users,
because the spike at zero “absorbs” nonusers; the estimate
of the correlation would have been higher if we had
included the inactive users.) Indeed, knowing that there are
some users with a high propensity to use ESPN.com but not
ESPN3.com suggests a relatively easy opportunity for
ESPN to expand viewership. Notably, we do not find a cor-
relation between ESPN.com and ESPN3.com at the daily
level (correlation = –.030). Using ESPN.com on a given day
does not seem to be related to an increase in streaming
video usage on ESPN3.com that same day.
The relationship with ESPN’s mobile platform is signifi-

cantly different and is of great business importance given the
recent investments that ESPN (and many other media compa-
nies) has made in its mobile platforms. The mobile channel
does not show any significant long-term or daily correla-
tions with any other platforms. The only correlation that is
directionally negative is the correlation between ESPN.com
and ESPN Mobile at –.153 (2.5 percentile = –.244, 97.5 per-
centile = .512). This suggests that mobile usage is not can-
nibalizing usage of the other platforms (except, perhaps,
ESPN.com) and is incremental.
Finally, we are able to estimate the within-day correlations

between television and the other three platforms. As Table 5
indicates, the posterior intervals for all the correlations
between television and the other platforms contain zero,
suggesting that television usage on a given day is neither
positively nor negatively correlated with the use of the digital
channels. Notably, the posterior mean correlation between
ESPN3.com and television is –.140 (2.5th percentile =
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Table 5
ESTIMATED MODEL PARAMETERS: INTERCEPTS AND 

ERROR STRUCTURE (, S, Se)

2.5th 97.5th
Parameters Mean Percentile Percentile
Proportion of Active Users (pactive)
pactive .498 .455 .536

Population Mean for Platform Intercepts ()
ESPN.com –5.01 –5.01 –4.66
ESPN3.com –3.81 –3.82 –3.49
ESPN Mobile –6.33 –6.31 –5.96
Television –2.06 –2.06 –1.66

Correlation for Platform Intercepts (S)
ESPN.com/ESPN3.com .795 .749 .835
ESPN.com/ESPN Mobile .056 –.065 .171
ESPN3.com/ESPN Mobile .028 –.089 .144

Variance for Platform Intercepts (S)
ESPN.com 6.358 5.279 7.550
ESPN3.com 4.233 3.326 5.023
ESPN Mobile 5.012 3.994 6.340

Correlation for Daily Error Terms (Se)
ESPN.com/ESPN3.com –.030 –.385 .329
ESPN.com/ESPN Mobile –.153 –.244 .512
ESPN.com/television .083 –.321 .466
ESPN3.com/ESPN Mobile .114 –.275 .476
ESPN3.com/television –.140 –.508 .269
ESPN Mobile/television .016 –.404 .436

Variance for Daily Error Terms (Se)
ESPN.com .089 .051 .149
ESPN3.com .105 .062 .172
ESPN Mobile .105 .053 .191
Television .067 .037 .117
Notes: When the posterior interval does not contain zero, the posterior

mean appears in boldface.
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–.508, 97.5th percentile = .269), suggesting (directionally)
that ESPN3.com and television do compete weakly with
each other. This is consistent with the observation that tele-
vision and ESPN3.com offer similar content (i.e., video of
full games). By monitoring this parameter over time, as
more data is accumulated, ESPN can keep better track of the
relationship between ESPN3.com and television, an issue of
key business importance.
In summary, we find no significant negative correlations

between these four channels, suggesting that ESPN’s con-
tent distribution platforms are not at saturation and that new
platforms represent an opportunity to generate incremental
reach. This is consistent with ESPN’s belief that new plat-
forms do not compete with the old but instead enable users
to consume media at times that they previously could not.
In addition, our finding that the mobile platform seems to
provide incremental reach but is still not the most popular
platform is consistent with ESPN’s philosophy that users
will choose “the best screen available at a given time”
(Enoch 2009). We next provide a brief interpretation of the
effects of the tournament content.
Tournament effects. As we described previously, the tour-

nament effects include dummy variables for (1) whether a
given day was on a weekend, (2) the number of games
played, (3) the number of teams that must “win or go home”
on a given day, (4) whether the U.S. team played, (5) whether
one of three culturally significant teams (England, Aus-
tralia, or Mexico) played, and (6) whether one of the three
top-ranked teams (Spain, Brazil, or the Netherlands) played.
Table 6 gives the posterior summaries for these coefficients.
Our results are consistent with the common notion in

practice that, on weekends, people are more likely to watch
television (b14 = .852) and less likely to go online (b11 =
–.475 and b12 = –.396). (These parameters correspond to
users being 2.3 times as likely to watch television on the
weekend and about .6 times as likely to go online on the
weekend.) However, we find no weekend effect for the
mobile platform (b13 = .035). This provides important
insight for ESPN planners; it seems that unlike the other
media platforms, ESPN Mobile is equally accessible and
used on both weekends and weekdays. Although we can
only speculate on how consumers will use mobile in the
future, this lack of a day-of-week effect suggests that media
plans for the mobile platform will be different from those
for television and online.
Turning to the tournament content itself, we observe a

sensible significant effect for the number of games played
on a given day. When there are a large number of games,
ESPN.com becomes a more attractive platform, whereas the
other platforms are relatively unaffected. We do not find
effects on any of the platforms for the number of teams that
must “win or go home.” That is, we do not observe any evi-
dence that “clincher” games attract more viewership on any
of the platforms.9
With regard to our set of dummy variables for which

teams are playing, we find that all platforms, particularly
the mobile and television platforms, are more popular when
the U.S. team is playing. The estimated parameters indicate
users are 2.0 times as likely to access mobile content when

the U.S. team is playing and 1.7 times as likely to watch
television. Notably (and perhaps surprising to non–U.S.
soccer fans), we find very weak (but positive) effects when
a top team (Spain, Brazil, or the Netherlands) is playing,
suggesting that the American audience we observe is more
interested in the U.S. team than these top-rated soccer
teams. For the variable that measures the aforementioned
culturally significant teams, we find a weak positive effect
for ESPN.com but not the other platforms.
Finally, we should note that we are able to achieve good

fit with a relatively simple set of covariates describing how
many games are being played and who is playing. Note that
there are no covariates that describe the arc of the tourna-
ment (e.g., no dummies for the group stage vs. the knockout
stage, the final game). Although we remain far from a com-
plete theory of what makes a game attractive to watch on a
particular platform, we note that we are able to capture the
aggregate viewership (see Figure 2) with a relatively parsi-
monious set of covariates.
Forecasting Alternative Media Plans
In this subsection, we present forecasts for two alterna-

tive media plans10 that ESPN could have used instead of the

Table 6
ESTIMATED MODEL PARAMETERS: 
TOURNAMENT COVARIATES (bK)

2.5th 97.5th
Parameters Mean Percentile Percentile
Weekend
ESPN.com –.475 –.712 –.250
ESPN3.com –.396 –.628 –.163
ESPN Mobile .035 –.294 .328
Television .852 .639 1.082

Number of Games 
ESPN.com 1.370 .842 1.980
ESPN3.com –.231 –.842 .472
ESPN Mobile .317 –.388 1.012
Television .286 –.190 .705

Number of Teams That Must “Win or Go Home”
ESPN.com .174 –.304 .707
ESPN3.com .095 –.495 .667
ESPN Mobile –.145 –.817 .566
Television .081 –.270 .492

U.S. Team Playing
ESPN.com .338 –.098 .821
ESPN3.com .328 –.081 .741
ESPN Mobile .699 .213 1.186
Television .523 .227 .935

Canada, Australia, or Mexico Playing
ESPN.com .350 –.054 .726
ESPN3.com .028 –.502 .444
ESPN Mobile .075 –.425 .583
Television .037 –.309 .415

Top Team Playing
ESPN.com .211 –.118 .557
ESPN3.com .134 –.314 .563
ESPN Mobile .073 –.375 .549
Television .207 –.116 .544
Notes: When the posterior interval does not contain zero, the posterior

mean appears in boldface.

9We thank an anonymous reviewer for the suggestion to include this
variable and report the null finding.

10We note that these plans are illustrative only and do not represent
media plans that ESPN has been or might be considering.



large-scale “ESPN XP” program, which provided coverage
for every game on all four platforms. We constructed the
forecasts in the same way we computed the posterior pre-
dictions used in model assessment. We generated 100 poste-
rior predictive data sets using 100 sets of parameters ran-
domly sampled from the posterior draws obtained from the
MCMC sampler. These predictions were based on an alter-
native set of covariate values describing an alternative
media plan (for more detail, see the Web Appendix at www.
marketingpower.com/jmr_webappendix).
First, relating to the key business question of whether it

is valuable to invest in coverage on the mobile platform, we
created a scenario in which mobile coverage for the tourna-
ment was withdrawn entirely, leaving the coverage on the
other platforms as it was. Figure 6 shows the predicted
cumulative reach for the mobile channel (dotted line),
which is somewhat lower than the actual reach when there
was full mobile coverage (solid line). Consequently, mobile
coverage of soccer does affect the mobile channel; however,
when we observe reach across all the channels, we find no
predicted drop in cumulative reach at the end of the tourna-
ment for all channels combined (49.7% forecast vs. 49.7%
actual). This suggests that, at least in 2010, providing
mobile coverage did not have a substantial impact on the
total number of people who watched the tournament, most
likely because overall mobile viewership was extremely
low and thus did not contribute a great deal to the overall
reach. Those who would have watched mobile were it avail-
able were also watching on other platforms. So, despite the
finding that the mobile platform does not seem to be canni-
balizing the other platforms (as evidenced by the estimates

of the correlations between platforms) and is providing
some incremental reach on some days, it does not seem to
be providing a great deal of incremental cumulative reach
over the course of the entire tournament.
Our second forecast represents a compromise scenario, in

which ESPN provides mobile coverage only on days when
the popular U.S. team is playing. Figure 7 plots the pre-
dicted cumulative reach for mobile had there only been cov-
erage on those four days that the U.S. team played. We find
that predictive cumulative reach is not substantially affected
when mobile coverage is reduced; when comparing the pre-
diction (dotted line) with the actual cumulative reach (solid
line), we observe that the predicted reach is only slightly
lower when the mobile coverage is reduced (and well within
the band of prediction error). In total, we predict that 11.0%
of the 2,000 users would have watched the mobile platform
at all during the tournament compared with the 11.9% we
observed in the actual data in which there was mobile cov-
erage for all games in the tournament. (In contrast, when we
forecast what would have happened had television coverage
been reduced just to the days when the United States was
playing, we find that reach for television is predicted to be
substantially reduced.) This suggests that this compromise
plan could have allowed ESPN to achieve the same reach
for the mobile platform at a potentially lower cost by pro-
viding ESPN Mobile platform coverage only on days with
the most interesting tournament content.
The forecasts presented here represent a small fraction of

the types of forecasts that such a model can perform. Other
forecasts that might be of interest include forecasting view-
ership for different outcomes of the tournament (e.g., “What
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Notes: We draw the forecast for cumulative reach and compare it with
the actual statistic (computed directly from the sample), drawn with a solid
line. To show the forecast uncertainty, we also draw the prediction for each
of 100 random draws from the posterior with gray lines.
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Figure 6
CUMULATIVE REACH FOR THE MOBILE PLATFORM HAD

THERE BEEN NO MOBILE COVERAGE

Notes: We draw the forecast for cumulative reach and compare it with
the actual statistic (computed directly from the sample), drawn with a solid
line. To show the forecast uncertainty, we also draw the prediction for each
of 100 random draws from the posterior with gray lines.
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CUMULATIVE REACH FOR MOBILE HAD THERE BEEN MOBILE

COVERAGE ONLY FOR U.S. GAMES
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if the U.S. team made it to the finals?”); however, this
would require integration over the distribution of the set of
potential tournament outcomes. If ESPN also had some
influence over the tournament structure (which may be
more likely for U.S.-based tournaments than the World
Cup), researchers could use the model to predict media con-
sumption impact due to changes in the tournament schedule
(e.g., “What if all U.S. games were held on weekends
instead of weekdays?”). All these forecasts enable us to
assess the impact of media-planning decisions on the key
economically meaningful outcomes: multiplatform reach
and exposure.

DISCUSSION
As the number of media platforms proliferates, compli-

cating planning problems for media companies, it is also
important to appreciate the opportunities that the newer
digital platforms offer. The rich, granular data sets that
emerge from digital platforms provide media companies an
unprecedented opportunity to track and model the behavior
of individual users over time, without extraordinary data
collection efforts. Researchers can use the resulting data to
help better understand consumers and to improve business
practice by modeling the interplay between platforms, as
described here.
Unfortunately, the same is not true for traditional media

platforms, and companies that aim to understand the rela-
tionship between traditional and digital media consumption
have, until now, been forced to resort to expensive outside
data collection (i.e., multiplatform media panels). We propose
an alternative approach that combines readily available aggre-
gate data from the traditional platforms with the individual-
level data that digital platforms produce automatically.
Companies can use the model we developed to assess can-
nibalization among platforms and to forecast media reach
for alternative multiplatform media plans. Our data-fusion
approach presents a way forward for analysts who have
long been thwarted by differing levels of aggregation across
platforms.
We expect researchers to apply this modeling framework

more generally to other data structures that describe peo-
ple’s use of multiple platforms or channels over time. Data
sets with a mixed structure, such as the one we present here,
abound. For example, many multiplatform retailers collect
data on purchase incidence for individual customers within
their direct retail platforms but only have access to aggre-
gate purchase data (sales-by-day-by-product) for brick-and-
mortar stores. This is the same structure as the media data
we discuss, and other researchers could analyze them within
the same framework.
There are also several similar and related data structures

that scholars could address using the Bayesian approach we
describe here. For example, others might consider develop-
ing a similar approach that enables the fusion of digital
media data for different groups of users for situations in
which users cannot be tracked across platforms (However,
this may require stronger assumptions about the relation-
ships between platforms than we require here.) It may also
be possible to extend our approach beyond media consump-
tion tracking to advertising effectiveness measurement.
Many companies record direct marketing events for individ-
ual customers and purchase events for those same cus-

tomers but only have aggregate data on the number of mass
media advertising exposures for those same customers. This
structure is difficult to handle in individual-level advertis-
ing response models (e.g., Braun and Moe 2012). However,
as Musalem, Bradlow, and Raju (2008) show, aggregation
in the independent variables of a model can be handled
using the same data augmentation strategy we used here to
address aggregation in the dependent variables. Thus, com-
panies could use data augmentation to estimate simultane-
ously which users were exposed to mass advertising and the
effect of advertising on purchase. This application would be
highly relevant to several online retailers (e.g., eBay, Expe-
dia, eTrade, Overstock.com) that observe purchases for
individual account holders and also purchase a significant
quantity of television advertising.
Although the descriptive model we present here repre-

sents a practical tool for media companies to gauge and
monitor multiplatform media consumption, we acknowl-
edge that it does not provide a theoretical explanation for
why media users choose to consume content on each plat-
form. As data on media consumption become more widely
available, we encourage researchers to propose theories on
how users choose what to watch—that is, economic models
for how people choose a set of platforms from which to con-
sume content or behavioral models that describe how peo-
ple attend to media content over time. As such data become
more widely available, researchers will have more opportu-
nities to test these types of theories empirically.
We conclude with some lessons learned from this practi-

cal case study and, in particular, from our experience work-
ing with potentially rich but messy digital media data sets.
First, marketers should become much more connected with
the information systems/computer science community. The
ability to handle large databases and construct easily acces-
sible data sets is not in many marketing researchers’ skill
sets, but it will need to be going forward. Second, there are
many “wish list” items companies hope for, such as linking to
advertisement data, linking to click-throughs on ads, real-time
data, and more. Although these are nice ideas conceptually,
there are practical limitations to what data we can actually
obtain. Yet rather than “retreating,” our experience suggests
getting the best and most reliable data possible. In the rich
tradition of applied research, we urge scholars to model the
data “as it lies,” and not as they might dream it to be.
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