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Multinomial logit models, especially those calibrated on scanner data, often use explanatory 
variables that are nonlinear functions of the parameters to be estimated. A common example is 
the smoothing constant in an exponentially weighted brand loyalty variable. Such parameters 
cannot be estimated directly using commercially available logit packages. We provide a simple 
iterative method for estimating nonlinear parameters at the same time as the usual linear coefficients. 
The procedure uses standard multinomial logit software and, in experience to date, converges 
rapidly. We prove that, under suitable conditions, the resulting parameter values are maximum 
likelihood estimates and show how to calculate asymptotic standard errors from normal computer 
output. Three applications illustrate the method in practice. 
(Choice Models; Estimation and Other Statistical Techniques) 

1. Introduction 

Over the past decade, many researchers working with household-level scanner data 
have turned to the multinomial logit (MNL) model as a powerful framework for studying 
choice decisions involving multiple alternatives. In addition to tracking brand choice 
behavior (e.g., Guadagni and Little 1983), researchers have also used MNL to analyze 
a broad array of related psychological and behavioral phenomena, such as reference price 
and promotion effects (Lattin and Bucklin 1989, Kalwani et al. 1990, Gurumurthy and 
Little 1989), purchase event feedback (Srinivasan and Kibarian 1989), variety seeking 
behavior (Lattin 1987), promotion responsiveness (Ortmeyer, Lattin and Montgomery 
1991),and response to advertising (Tellis 1988 ). 

In almost every case, these models involve relatively complicated constructs designed 
to capture aspects such as preference heterogeneity, price expectations, or advertising 
exposure. Often such variables involve prior household behavior (either purchase behavior 
or exposure to marketing mix activity such as price or advertising) in functional forms 
that are nonlinear in one or more parameters. For example, in order to account for the 
differences in brand preferences across households, Guadagni and Little ( 1983) create a 
variable, called brand loyalty, which is an exponentially weighted average of the past 
purchase history of the household. Fader ( 1992), using the Dirichlet-multinomial model, 
suggests another way of capturing cross-sectional heterogeneity. Abe ( 1991) develops an 
advertising stock variable that consists of an exponentially smoothed sum of past house- 
hold exposures. 

372 

0732-2399/92/1104/0372$01.25 
Copyright O 1992, The Institute of Management Sciences/Operations Research Society of America 



373 ESTIMATING NONLINEAR PARAMETERS IN THE MULTINOMIAL MODEL 

These models share a common problem: because the parameters of some variables 
are embedded nonlinearly, they cannot easily be estimated along with the other logit 
coefficients. As a result, few studies have utilized rigorous techniques to estimate values 
for these parameters. In some cases, researchers have simply chosen "reasonable" values 
based on prior studies and/or intuition. The costs of such simplifications are twofold. 
First, it is usually impossible to assess a sensible standard error for a preset parameter or 
determine its covariance with estimates of other coefficients. Second, obstacles to model 
calibration impede the development of new, more elaborate constructs. Indeed, it seems 
likely that many researchers would develop and use richer MNL models if the estimation 
process were more straightforward. 

The purpose of this paper is to introduce a computationally efficient, iterative procedure 
that allows nonlinear parameters to be estimated using standard linear-in-parameters 
MNL software as a subroutine. We prove that, under appropriate conditions, the algorithm 
generates maximum likelihood estimates for the nonlinear parameters and we illustrate 
it in three practical applications. These provide examples of the procedure's convergence 
properties and show that inadequate estimation of a nonlinear parameter can affect other 
model coefficients. We also report on the experiences of others who have used this method. 

The applicability and potential benefits of the technique will depend on the particular 
application. The basic requirements are ( 1) that the nonlinear functions of parameters 
to be estimated have derivatives that can be calculated reasonably efficiently for each 
data point, ( 2 )  that the functions be smooth in the nonlinear parameters near their 
maximum likelihood values, and ( 3 )  that the starting values for the parameters be suf- 
ficiently close to the global maximum of the likelihood function as to lie in a concave 
region containing the maximum. Since nonlinear functions cover many possibilities, one 
would assume that sometimes the requirements would not be met, but we have encoun- 
tered very few difficulties across a considerable variety of applications. 

2. Nonlinear Estimation Algorithm 

The usual multinomial logit (MNL)model assumes that a linear combination of the 
attributes is linked to choice probabilities as follows: 

p,h(t)= the probability that household h chooses brand j on purchase occasion t ,  

v,h(t)= C Orx,h,(t) 
= the deterministic component of utility of brand j to household h at purchase 

occasion t, 
x:,(t) = rth explanatory variable for brand j and household h on purchase occasion t ,  r 

-- 1 , .  . . ,R, 
Or = coefficient to be estimated. 

In applications to household scanner data, the x,h,(t)generally include brand-specific 
intercept terms and marketing mix variables such as price and different types of pro- 
motions, and sometimes exposure to television advertising. In addition, variables may 
be added to capture other sources of variation across households and over time. 

We first consider the case of a MNL model with any number of variables, of which 
one, x,h,(t),is nonlinearly dependent on a single parameter a. Because a is imbedded 
within x,h,(t), it cannot be estimated directly as an ordinary logit coefficient. For expo- 
sitional clarity, we suppress the subscripts rn, h and j ,  and make a explicit. The notation 
for ~ : ~ ( t )becomes x( t ,  a ) .  


First expand x( t ,  a )  in a Taylor series around a starting value ao: 
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If x ( t ,  a )  is smooth (e.g., its derivatives with respect to a are bounded) in an interval 
containing both ao and the maximum likelihood estimate (MLE) value of a, then the 
second and higher-order terms in ( 2 )will approach 0 as a. approaches its MLE value. 
Letting x l ( t ,  a )  = dx( t ,  a )  / da, we have as a current approximation for x(t ,  a ) ,  

which becomes exact upon convergence of ao to a. 
Letting ,6 be the coefficient for x ( t ,  a )  in the MNL, the contribution of x ( t ,  a )  to 

utility is approximately 

From ( 4 ) ,we see that we can better represent the contribution of @x(t ,a ) to utility 
by including x l ( t ,  ao)  as well as x ( t ,  ao) among the variables in the MNL estimation. 
Denoting the resulting estimates by P' and P,  we end up with a contribution to utility of 

Comparing (4) and ( 5 ) , we see that 0' = p(a - ao),or 

Thus, we can use P' to obtain a new, better estimate of a. Substituting this for ao,we 
iterate until ( a- ao)becomes as small as desired; i.e., until P' -0. Usually this requires 
only a few iterations. 

Although each iteration makes use of the Taylor series approximation for x ( t ,  a ) ,  by 
iteratively running the MNL linear estimation routine, these approximations converge 
to the exact value of the function. Thus we have our Nonlinear Estimation Algorithm 
(NEA): 

( 1) Choose a starting value of a, say ao. 
( 2 ) Calculate x ( t ,  a )  and x l ( t ,  a )  at a. for all observations t .  
( 3 ) Include x ( t ,  ao)  and x l ( t ,  ao) along with all the other variables in the logit model, 

and estimate coefficients in the usual manner. 
( 4 ) Update a. using equation (6): a0 + (ao+ P1/P). 
( 5 )  Return to step ( 2 )and iterate until ao converges, i.e., until the coefficient of x' is 

indistinguishable from 0. Denote the final estimates by &, 6,and 6'. 
( 6 )  Calculate the standard error of & from S E ( & )= S E ( @ ) / ~ .  
Extension to multiple nonlinear parameters is straightforward. Suppose that one of 

the independent variables involves a J-dimensional vector of imbedded parameters: 
~ ( t ,  = ( a , ,  a2 ,  . . . , aJ) .The development now uses the linear terms of a ) ,where a 
a multivariate Taylor series. The iterative estimation procedure still applies. The partial 
derivatives of x ( t ,  a )  with respect to the a, are evaluated at some starting vector ao 
= ( a l o ,  a 2 ~ ,  . . . , a J O )All of the derivative variables are included in the logit model. 
The analog of ( 6 )is 

a;- - q o  + P j I P ,  ( 7  

where pj represents the logit coefficient for the jth derivative variable, and ,6 is the logit 
coefficient for x ( t ,  a ) .  The update in step ( 4 )becomes ( a , ~-ajo+ Pj/P).If there are 
several variables containing nonlinear parameters, each variable and its parameters are 
treated in the same way as a .  

Although the introduction of multiple nonlinear parameters requires nothing new 
theoretically or conceptually, the number of iterations needed for convergence tends to 
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increase. In a case where a model with a single a might only require 2-3 runs of the 
linear estimation program, our experience has shown that a set of 6 9 ' s  takes about 5-
7 iterations. 

3. Satisfying Maximum Likelihood Conditions 

We now show that the algorithm NEA, under conditions to be described, leads to 
maximum likelihood estimates for parameters that enter nonlinearly into variables of 
the MNL utility function. We restrict ourselves to nonlinear functions whose derivatives 
with respect to the nonlinear parameters have an upper and lower bound over the domain 
of interest for the parameters. This is not a serious limitation for practical applications. 
Because the range of possible functions is large, it is difficult to believe that the algorithm 
can be proven always to converge to a global maximum. We shall show instead that 
convergence, if it occurs, is at least to a local maximum. In practice, whenever we have 
investigated the matter, the maximum has turned out to be global. 

The development builds on the fact that we are actually solving a series of familiar 
linear-in-parameters problems. The conditions required for the linear-in-parameters log 
likelihood function to have a unique global maximum (and therefore be guaranteed to 
produce maximum likelihood estimates) are described by McFadden ( 1974). The matrix 
of second derivatives of the log likelihood function must be nonsingular and negative 
definite. He shows under fairly weak conditions that, for the MNL, if a maximum exists, 
it will be unique and the global maximum. 

Our argument procedes as follows (formal proofs appear in the appendix). First, we 
show that the first-order conditions for a maximum in the nonlinear problem are satisfied 
when NEA has converged (Theorem 1). In doing so we assume that the coefficient of 
the variable containing the nonlinear parameter has an estimated value that is nonzero 
(i.e., p̂  # 0) .  In other words, the variable must have some influence on utility. If the 
coefficient were actually zero, the algorithm could not validly converge and, in fact, if 
its estimate is near zero, convergence may be problematic. At convergence, the derivative 
terms'in the Taylor series disappear (i.e., @'= 0), showing that, although we use the 
Taylor series to set up the algorithm, the final result is exact. 

Next we investigate the second-order conditions to determine whether or not the first- 
order conditions yield a maximum. We find that, at convergence, the Hessian of the 
nonlinear problem is negative definite (Lemma 1,  Lemma 2, and Theorem 2), which 
implies that the estimates from NEA provide at least a local maximum. 

Finally, formulas are developed for the standard errors of the estimated nonlinear 
parameters. Asymptotically, the variance-covariance matrix of the model parameter es- 
timates is equal to the inverse of the Hessian for the nonlinear problem. Lemma 2 shows 
that we can obtain the inverse of the Hessian for the nonlinear problem directly from 
the inverse of the Hessian for the final linear problem. The resulting expression for the 
standard error appears in step ( 6 )  of NEA. 

4. Applications 

We now illustrate the implementation and performance of the proposed estimation 
technique with three quite different applications. The first finds the smoothing constant 
in a traditional exponentially smoothed loyalty variable. The second is a multivariate 
application: determining the parameters in a Dirichlet-multinomial model. Finally, we 
estimate a forgetting constant for an advertising response model. 

The first two examples use scanner data on refrigerated orange juice provided by 
Information Resources, Inc. The database includes 3,079 scanned purchases made by 
200 randomly chosen households in Marion, IN during the years 1983-84. We include 
the six most-purchased products over this period, accounting for 80% of all orange juice 
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purchases for our sample households. The six products are all in 64 ounce packages and 
include four national brands (Citrus Hill, Minute Maid, Tropicana Regular, and Tro- 
picana Premium), one regional brand and one private label. The 1,490 purchases made 
in 1983 are used as an initialization period for the exponentially smoothed loyalty measure, 
while the remaining 1,589 purchases are used for model calibration. 

4.1. Example 1:Exponentlal Smoothing Constant 

The exponentially smoothed brand loyalty term may be expressed in the following 
form: 

L O Y ~ ( ~ )  - 1 )  + (1 - - I),  where (8)= X L O Y , ~ ( ~  X ) ~ f ( t  

LOY,h(t) = loyalty of household h to brand j on purchase t, 
y,h(t) = 1 if household h buys brand j on purchase occasion t, 0 otherwise, 

X = smoothing parameter, 0 I X I1. 

This loyalty measure, introduced by Guadagni and Little ( 1983), accounts for differ- 
ences in tastes across households and also tracks changes in tastes over time. Cross- 
validation studies with hold-out samples of households confirm the explanatory power 
of the variable. Many researchers have subsequently used this loyalty measure or some 
variant of it. Other ways of representing cross-sectional heterogeneity and purchase event 
feedback have been developed in what continues to be an active area of research: c.f., 
Chintagunta, Jain, and Vilcassim ( 1991 ); Lattin ( 1990); and Srinivasan and Kibarian 
( 1989). Several of these alternative measures also involve nonlinear parameters and 
could therefore benefit from the proposed estimation method. 

In their original application, Guadagni and Little ( 1983) used a faiily complex iterative 
scheme to get approximate values for A. They began with an arbitrarily chosen value of 
h = 0.75 to calculate coefficients for the full model. They next added dummy variables 
to capture the carryover effects for each of the ten most recent purchases by each house- 
hold. Finally, they fit an exponential decay curve to these dummy variable coefficients 
to derive estimates of XB = 0.875 for brand loyalty and As = 0.812 for package size 
loyalty. 

Few researchers (an exception is Kannan and Wright 199 1) have gone to this much 
trouble to determine values for exponential smoothing constants. While some have em- 
ployed grid searches (e.g., Gurumurthy and Little 1989), most researchers simply choose 
a convenient value of X (usually between 0.7 and 0.9) and make no attempt to refine it. 
Examples include Lattin ( 1987), Gupta ( 1988), Kalwani et al. ( 1990), Ortmeyer, Lattin 
and Montgomery ( 1991), and Papatla and Krishnamurthi ( 1992). 

In contrast to these ad hoc approaches, we now show how to obtain exact maximum 
likelihood estimates for h using the algorithm described above. 

Model specification. We first find DLOY?(t), the first derivative of LOy,h(t) with 
respect to A. Equation (8 )  can be re-expressed as 

I- 1 

L o y f ( t )  = (1 - A) 2 X"f(t - s - 1). (9)  
5 = 0  

Differentiating with respect to X and collecting terms yields 

D L O Y ~ ( ~ )  1) + L O Y ~ ( ~1) - - (10)= XDLOY;(~- - yf(t  1).  

Equation ( 10) is similar to (8) .  Given X and initial conditions, both D L O Y ~ ( ~ )  and 
LOYf(t) are easily computed recursively from the data and, in fact, can be done at the 
same time. 

For initial conditions, since we lack information prior to each household's first purchase 
occasion, we have assumed equal loyalties: for each brand we set LoYf(1)  equal to 
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1/J ,  where J i s  the number of brands. It follows that DLOY:( 1) = 0. For all subsequent 
purchase occasions, equations (8 )  and ( 10) apply. This initialization differs slightly from 
Guadagni and Little ( 1983), who set L O Y ~ ( ~ )  = X for the brand actually chosen on the 
first purchase occasion and ( 1 - X)/(J  - 1 ) for all others. 

The full MNL model in our example includes LOY, its derivative, DLOY, and variables 
for regular (depromoted) price, short-term price cuts, and a 0-1 variable for any feature 
activity. The linear coefficients are estimated by maximum likelihood using a standard 
FORTRAN Newton-Raphson algorithm for MNL adapted from Ben Akiva ( 1973). 

Results. Table 1 demonstrates the efficacy of the iterative procedure for estimating X 
in this example. The first model (iteration 0 )  illustrates the typical usage in the literature 
of a brand loyalty with a fixed smoothing constant (here h = 0.75) and no updating. 
The fit is good and the coefficients significant. 

In iteration 1, we start over using our procedure with X o  = 0.75, now including the 
DLOY term to allow updating. Equation (6 )  gives an increase in X o  of 0.2213.72, or 
0.059. Although this is less than 10% of Xo, the model shows a substantial improvement 
in fit ( x 2= 10.70, p < 0.001 ) over the base case. The logit coefficients change relatively 
little, with the exception of the coefficient for LOY. 

Over the next few iterations, the log likelihood and estimated value of X continue to 
show small positive increases. By the fifth iteration, both have converged within three 
decimal places of their ultimate values, and model coefficients remain virtually unchanged. 
The results are quite typical of what the authors have observed across a variety of 
data sets. 

Robustness of convergence. The rapid convergence in this case might, of course, be 
due to a good initial choice of Xo. To examine this issue, we have rerun the model with 
beginning values of X o  ranging from 0.05 to 0.95 in increments of 0.1. In the worst case 
(Ao = 0.05 ), the procedure requires six iterations to reach an estimate of X within 0.00 1 

TABLE 1 

Estimation Results for Brand Loyalty Smoothing Constanf 

Iteration: 

0 I 2 3 4 

Initial smoothing constant (A,) 
Logit coefficients:' 

Brand loyalty (LOY) 
Brand loyalty derivative (DLOY) 

(std. error for DLOY) 
Regular price 
Price cut 
Feature 

Brand-specific constants: 
Citrus Hill 
Minute Maid 
Tropicana Premium 
Tropicana Regular 
Regional brand 
Private label brandb 

Updated smoothing constant (A) 
(std. error for A) 

-

-

Log likelihood 1 4 4 6 . 3 4  -

"With the exception of the coefficients for DLOY, all coefficients are significant at p = 0.10. 
Brand-specific constant for private label brand constrained to 0.00. 

http:0.2213.72
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of the final value; in the best (Ao = 0.85) only two. Although this convergence is very 
good and typifies our usual experience, there have occasionally been cases which have 
required trial-and-error search for a suitable starting value of Xo. 

Global optimality. To assess the global optimality of our results, we have performed 
a grid search. Without using the Taylor series technique, we let X vary from 0 to 1 with 
increments of 0.0 1 and graph the resulting log likelihoods. The results, shown in Figure 
1, clearly show the presence of a single peak near 0.83. We then narrowed the range from 
0.75 to 0.90 and conducted another grid search using increments of 0.001. These results 
are also graphed in Figure 1. 

Besides confirming the optimality of the point of convergence for the technique, this 
analysis offers additional insight. The width of the plateau around the optimum point is 
surprisingly narrow. We compared the log likelihoods in Figure 1 to the optimal value 
from Table 1 ( - 1437.61) using a x 2 test with 1 d.f. ( to account for the added derivative 
term). Only those values of X in the range (0.781, 0.871 ) pass this test at the 95% level 
of significance. This stands in contrast to the reports by some researchers, for example, 
Gupta ( 1988), who tried smoothing constants of 0.7,0.8, and 0.9 and found that results 
were insensitive to these changes. The tightness of the range in Figure 1 is an important 
argument for considering an accurate estimation technique. 

Effects on other model coeficients. Although the primary purpose of our method is 
simply to obtain the right answer (i.e., put the nonlinear parameters on the same max-
imum likelihood footing as the linear ones), it is worth noting that this technique has 
further value. In almost all cases the value of X will have some effect on the other coef-
ficients and in special cases the effect can be quite substantial. 

First we note in Table 1 that six of the nine estimated coefficients show increases in 
absolute value as the iterations converge. This is a predictable consequence of explaining 
more variance with the multinomial logit and is obviously desirable. 

Next, any variable that is partially collinear with LOY will tend to be sensitive to A. 
We illustrate such a situation with a lagged promotional purchase dummy variable, 
LAGPROM. Guadagni and Little ( 1983) included such a variable in their model. Table 
2 shows estimation results for a pair of MNL models that include LAGPROM with X 
fixed at 0.7 and 0.9. The coefficients of LAGPROM are significant (at p < 0.10) in both 
cases but have different signs! The actual MLE value of X (for the model including 
LAGPROM) is 0.829, at which point the coefficient for LAGPROM is nonsignificant 
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(-0.040 with t-statistic 0.33). Thus, if collinearity is present, arbitrarily presetting the 
nonlinear parameters is particularly dangerous. 

4.2. Example 2: Dirichlet-Multinomial Model 

The Dirichlet-multinomial (DM) model is a well-accepted method of accounting for 
cross-sectional heterogeneity in repeat-purchase situations, especially when explanatory 
(marketing mix) variables are unavailable. We assume that our priors about the prob- 
abilities governing the choice behavior of any household are described by a Dirichlet 
distribution, the multivariate analog of the Beta distribution. Using the observed choice 
behavior of the household before time t (i.e., the outcomes of a multinomial choice 
process), we can update our priors to obtain a posterior estimate of the probability of 
choosing brand i,  given by 

where nf ( t  - 1 ) is the number of choices of brand j made by household h through time 
t - 1. 

The brand-specific parameters, a , ,  a*, . . . ,a ~ ,capture the relative popularity of each 
brand, and can also be used to assess the overall level of preference heterogeneity in the 
market. For further background and applications of the DM model, see Goodhardt, 
Ehrenberg and Chatfield ( 1984). 

Model specijcation. Fader ( 1992) shows that the DM model can be calibrated within 
the MNL framework by including the following single variable in the logit utility function 
with coefficient constrained to 1.O: 

DM:(~) = In (a, + n 3 t  - 1)) .  

Assuming no marketing mix effects, substituting ( 12) into the basic MNL model in ( 1 ) 
yields exactly the expected purchase probability in ( 1 1 ) . 

TABLE 2 

Estimation Results with Lagged Promotional Purchase Variable 

Logit coefficients:" 
Brand loyalty (LOY) 
Regular price 
Price cut 
Feature 
Lagged promotional purchase (LAGPROM) 

(t-statistic for LAGPROM) 
Brand-specific constants: 

Citrus Hill 
Minute Maid 
Tropicana Premium 
Tropicana Regular 
Regional brand 
Private label brandb 

Log likelihood 

" All coefficients are significant at p = 0.10. 
Brand-specific constant for private label brand constrained to 0.00. 



380 PETER S. FADER, JAMES M. LATTIN A N D  JOHN D .  C. LITTLE 

Estimation is only required for the J Dirichlet parameters (a,%). The multivariate 
version of our nonlinear estimation algorithm will find them. First calculate the partial 
derivative of DM:(t) with respect to each of the a's: 

Each of these derivatives is evaluated at a vector of starting values a0 (market shares are 
often a good choice) and the following logit model is estimated: 

The updated DM parameter estimates are calculated according to equation ( 7 ) ,  and the 
logit model in ( 14) is iteratively estimated until convergence. 

Results. Estimation results are shown in Table 3. By the sixth iterative run of the 
MNL model, all of the relevant statistics are accurate to three significant digits. More 
remarkable is the quality of the model after only one iteration. Although the a,'s seem 
far from convergence, the model fit is not significantly different from its optimal value. 
Nevertheless, it is generally worthwhile to perform 2-3 more iterations to ensure that 
the q ' s  are within 5% of their final values. 

The DM parameter estimates stand up quite well to the types of tests performed in 
the previous example. To examine the robustness of the estimation procedure, we have 
tried starting values ranging from 0.00 1 to as high as 10.0 for each brand, and in all cases 
the a's quickly converged to their correct maximum likelihood estimates. 

Many other interesting MNL models with nonlinear parameters grow out of this ex- 
ample. The pure DM model shown here does not contain any marketing mix variables 
in the logit formulation. However, nothing prevents the model-builder from introducing 
them. If price and promotion variables are added, then DM: can be treated as a loyalty 
variable in place of the exponentially smoothed measure. Fader ( 1991) motivates such 
a model and compares it to the two models (pure DM and smoothed loyalty) shown 
here. Hardie, Johnson and Fader ( 1991) use this hybrid DM-MNL combination to op- 
erationalize a new model by Tversky and Kahneman ( 1991) featuring loss aversion and 
reference-dependent choice. Fader and Lattin ( 1992) go further in employing a stand- 
alone stochastic choice model as a loyalty measure within the MNL model, using a 
multivariate extension of the beta-binomial-geometric model (Sabavala and Morrison 
1981). Each of these models relies upon the estimation procedure outlined here. 

TABLE 3 
Estimation Results for Dirichlet-Multinornial Model 

Iteration: 

Brand 0' I 2 3 4 5 6 

Citrus Hill 0.288 0.432 0.489 0.501 0.505 0.506 0.506 
Minute Maid 0.236 0.356 0.397 0.404 0.407 0.407 0.408 
Regional brand 0.151 0.263 0.3 15 0.322 0.324 0.324 0.324 
Tropicana Regular 0.146 0.271 0.339 0.350 0.352 0.353 0.353 
Private label 0.137 0.309 0.475 0.556 0.579 0.583 0.584 
Tropicana Premium 0.042 0.068 0.080 0.082 0.083 0.083 0.083 

Log likelihood -1751.58 -1716.83 -1715.34 -1714.68 -1714.58 1714.57 1714.57 

'Initial estimates are market shares. 
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4.3. Example 3: An Advertising Response Model 

Scanner panel datasets that include TV advertising exposures at the household level 
offer excellent opportunities for modeling market response to advertising. However, many 
hypothesized advertising phenomena, such as response thresholds, diminishing returns, 
forgetting, and copy wear-out, are likely to require functions in which the parameters 
enter nonlinearly. As an example, Abe ( 1991) assesses consumer response to advertising 
by constructing a cumulative measure of exposure that he calls "advertising stock." This 
is included as a variable in a logit choice model. He calibrates the MNL using a scanner 
panel database for cranbeny drinks. The advertising data consist of instants ( to the 
minute) at which a panel household had a TV set turned on and a product commercial 
was shown. His model supposes that such an advertising exposure has its greatest impact 
on consumer utility immediately and then has a declining influence in a forgetting process 
represented by an exponential decay. The stock of past advertising that affects a customer's 
consumer's utility is taken to be the sum of partially retained past exposures. 

Thus, if to is the time of the last purchase occasion and { t,) the instants of advertising 
exposure since to,the advertising stock of household h for product j at time t is expressed 
as 

Time can be measured, for example, in days. If a sudden burst of advertising creates 
multiple exposures in a household, adstock will rise quickly but, in the absence of further 
exposures, will decay towards zero. 

The adstock parameter (y ) captures the retention rate of advertising. One may use it 
to determine the "half-life" for an ad exposure, i.e., the time until a consumer retains 
only half the impact from the original exposure. Estimates for y tend to be near or above 
0.9 when time is measured in days. For example, a y of 0.9 would imply a half-life of 
6.6 days for a single exposure. The coefficient of adstock, in conjunction with y,determines 
the effectiveness of advertising in influencing consumer utility and therefore brand choice. 
A calibrated logit model that includes advertising offers the possibility of building ad- 
vertising planning models based on micro level response phenomena. 

Notice that, although advertising stock represents an exponential smoothing of past 
exposures, it has a more complicated analytic form than a Guadagni-Little loyalty variable 
because it is based on absolute time rather than number of purchase occasions. In addition, 
there are many more advertising exposures than purchases. The variable therefore presents 
a new challenge for the estimation technology. 

Abe ( 1991 ) calibrates his model on an IRI scanner panel database consisting of pur- 
chases of 15 brand-sizes of cranbeny drinks by 194 households over 104 weeks. A total 
of 989 purchases were made in this period. An additional 371 purchases in a 52-week 
pre-period were used for initialization. The advertising exposures were measured in 52 
of the weeks with a total of 7,474 exposures recorded. In addition to the advertising stock 
variable, Abe's model includes an exponential smoothing model of brand loyalty, in- 
store display (coded as a 0, 1 dummy), newspaper features (coded as 0, 1,2, 3 based on 
the size of the ad), price per ounce, and a set of alternative specific constants. Both the 
loyalty and ad stock variables contain nonlinear parameters, which are simultaneously 
estimated. 

Table 4 shows the results. The method converges to give the nonlinear parameters 
with three decimal place accuracy in five iterations. As may be seen, the value of y is 
0.909, implying a rather rapid decay of individual exposures. However, the coefficient 
of adstock shows a significant (p < 0.10) overall effect of advertising. Abe ( 1991) goes 
on to build these micro results into a macro decision model. 
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TABLE 4 


Estimation Results,fbr Advertising Response Model 


Iteration: 

2 3 4 5 Final Model 

Advertising retention (y) 0.9500 
Loyalty smoothing constant (A) 0.8000 
Logit coefficients:" 

Adstock 0.100 
Adstock derivative -0.002 

(std. error for derivative) (0.003) 
Brandsize loyalty 5.318 
Brandsize loyalty derivative -0.100 

(std. error for derviative) (0.084) 
Price 0 . 9 8 0  
Display 1.067 
Feature 0.377 

(Brandsize-specific constants omitted) 
Log likelihood -1404.27 

" All coefficients in final model are significant at p < 0.10. 

5.  Discussion 

Two of this paper's authors introduced the nonlinear estimation procedure to analysts 
at Information Resources in 1987, who have used the technique hundreds of times since 
then for a variety of nonlinear parameters. Several product categories have been examined 
multiple times (i.e., with new datasets) and have shown strong consistency in their non- 
linear parameter estimates. When a particular product category is analyzed on a repeated 
basis, its prior parameter estimates are reused as starting values for the new model. These 
refined starting values almost never require more than 1 iteration before the derivative 
term's t-statistic goes below 2.0. 

Besides the brand loyalty measure discussed here, several other exponentially smoothed 
variables have been frequently helpful in scanner databases. Guadagni and Little ( 1983) 
included size loyalty (i.e., observed tendencies to choose a particular package size). Man- 
ufacturer loyalty is valuable in cases where one manufacturer has two or more different 
brands in the same category. In addition, some categories require one or more type 
loyalties, which cover a variety of other product attributes. A complete analysis of the 
toothpaste market, for example, might include type loyalty terms for product form (paste/ 
gel), package shape (tube/ pump), flavor (regular/mint/ other), and strength (regular/ 
tartar control). 

Parameter estimation for such MNL models would be quite difficult without the non- 
linear estimation procedure used here. The alternative techniques mentioned earlier would 
be extremely cumbersome and time-consuming. Even the most efficiently implemented 
grid search (using finer grids in successive stages of the search) would require hundreds 
of separate model calibrations. Alternatively, researchers could abandon the commercially 
available logit packages, and program their own likelihood functions using full-information 
maximum likelihood. This option has become more feasible lately with the availability 
of generalized, nonlinear optimization software (such as GAUSS or MATLAB) for per- 
sonal computers. What remains to be seen is how the convergence properties and the 
efficiency of full-information maximum likelihood compares to the iterative estimation 
procedure presented here. 

This paper has presented an easily implemented technique for estimating parameters 
that enter nonlinearly into the variables of multinomial logit utility functions. The pro- 
cedure has a wide range of applications, three of which were discussed here in depth. 
Various tests have showed the technique to converge quickly and accurately. Further, 
we have found that, under some conditions, the use of the technique not only improves 
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overall model fit but also affects the estimated coefficients for other variables. We expect 
that other researchers may wish to consider using this methodology, both in the traditional 
multinomial logit setting and in new modeling approaches.' 
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Appendix 

For clarity and simplicity, consider one nonlinear parameter a and assume it appears in the mth explanatory 
variable xI,(t, a )  whose linear coefficient is 0,. Extension to more nonlinear parameters is straightforward. Let 
x;,(t, a )  = dxI,/da with linear coefficient P',, and let L denote the log likelihood function, where 

Introducing notation that makes explicit the dependence on the observations t and the utilities { v J ( t ) ) ,let 

L ( t )  - L ( v , ( t ) ,. . . , u,(t)) -- C y,( t)  logp,(t) 
I 

so that L = C t  L ( t ) .  
We shall speak of the nonlinear problem as the task of finding values for 8'"' - ( P I ,.. . ,P R ,  a )  to maximize 

L and, correspondingly, of thefinal linear problem as finding values of 8"' = (o, ,  . . .,OR,0;) to maximize L 
in the last linear-in-parameters iteration of NEA. Parameter values at convergence will be indicated by a hat 
( ). When we discuss second-order conditions, we let H be the Hessian matrix of second partial derivatives of 
L with respect to the elements of 8, and H be H evaluated at 8. 

THEOREM1 .  l f  NEA converge.? and 6, # 0 ,  the resulting estimates 8'"' = ( b , ,  . . . , BR,  iu) satisfv thejrst-
order conditions (FOC) ,fi,r the nonlinear problem. 

PROOF. The first-order conditions for the p s  are 

2 = ) x 1 , ( t ) = 0  Vs. 
tJ 

To these we must add the condition for a :  

or, since we assume that 8, # 0,  

( F O C I )  

However, NEA has found values 8"' = ( B 1 ,. . . ,A, f,) with P^:, = 0 that satisfy the first-order conditions of 
the final linear problem. These include all of (FOC 1 ) and, in addition, a first-order condition for &,,namely, 

This is just (FOC 2 )  and so the parameter estimates satisfy all the first-order conditions (FOC 1 ,  2 )  of the 
nonlinear problem. 

LEMMA1 .  lJNEA converge.?,thenfi~rthe restiltingparameter estimates 8'") = (6,,. . . ,A, iu)qf the nonlinear 
problem, 

where x;, = d2xJ,/da2. 
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PROOF. Nowhere previously in the development have we introduced x" and we are sorry to do so now, but 
it turns up in the diagonal of H and we must be prepared to get rid of it. The proof will be by construction. 
Suppose we had introduced x" by adding another term in the Taylor's expansion for x ( f ,a ) .  Equation ( 4 )  
would have been: 

Px(t,a )  = Px(t, ao) + P(a - ao)xf(t,ao) + 4P(a - a ~ ) ~ x " ( t ,010) 

and ( 5 ) :  

In running the MNL estimation subroutine within NEA, we would have included x" as a variable with coefficient 
p k .  This gives the match-ups 

P' = P(a - aO) and (3" = f @(a- a0)' = f P'(a - ao). 

On convergence, we would have obtained a = ao, and 6' = 0 as before and, in addition, P" = 0. At each step 
along the way and at the end, the MNL program would have dutifully calculated Pk, even though its contribution 
to utility is ultimately zero. The MNL program would have calculated 0: in the final linear problem by enforcing 
a first-order condition: 

This is the desired result and proves the lemma. (For completeness, we note a nonproblem: Conceivably the 
inclusion of x" as a variable could make the set of explanatory variables linearly dependent, thereby causing 
NEA not to converge when it otherwise would. However, in such a case, x" can be expressed as a linear 
combination of the original variables. Substituting this for x" and applying the first-order conditions for the 
original variables establishes the lemma for this special case.) 

To  discuss second-order conditions, i.e., whether or not the solution to the first-order conditions yields a 
maximum, we must examine second derivatives. Let H"' be the Hessian for the final linear problem and 
H'"' be that for the nonlinear problem. Further, let H") and H'"' be their numerical values upon convergence 
of NEA. 

LEMMA2. H'"' can be obtainedjrom H"' by multiplying its last row and last column by B,,, 
PROOF. From the definition of a Hessian, the elements of H"' are 

Correspondingly, the elements of H'")  are 

= p~h; )+ , ,~+ ,+ A where 

A = ~ , , , x ;~ ( t ,a ) .  
0 

Examination of these relations shows that Lemma 2 holds if A = 0. However, Lemma 1 tells us that A = 0 
on convergence, i.e., when 8") = e0', 8'") = a'"), H") = H") and H'") = ~ ( " 1 .  
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THEOREM2. If NEA converges to a unique global maximum for the linear problem, then 0'") = (B,, . . . , 
BR,iY) yields a maximumfor the nonlinear problem. 

PROOF. Since 8") = (6 ,, . . .,A, flm) determines a unique global maximum, expansion of L about this point 
will give a negative definite quadratic form for A"'. But H'"' differs from H"' only by having its last row and 
column multiplied by Bm (i, 0. It is easily shown with linear algebra that H'") will then also be negative definite. 

From this it follows that 8'") is a maximum, at least locally. As we move away from this point, higher-order 
terms in the Taylor's expansion of L come into play and involve higher derivatives of x ( t ,  a).We cannot 
unequivocally assert that these will not create another higher maximum but our restriction that the derivatives 
be bounded above and below means that, for 8 ' " )  sufficiently close to 8'"', L(0'")) < ~ ( 8 ' " ) ) .  
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