Bayesian Inference for the Negative Binomial
Distribution via Polynomial Expansions
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To date, Bayesian inferences for the negative binomial distribution (NBD) have relied
on computationally intensive numerical methods (e.g., Markov chain Monte Carlo) as it is
thought that the posterior densities of interest are not amenable to closed-form integration.
In this article, we present a “closed-form™ solution to the Bayesian inference problem for
the NBD that can be written as a sum of polynomial terms. The key insight is to approximate
the ratio of two gamma functions using a polynomial expansion, which then allows for the
use of a conjugate prior. Given this approximation, we arrive at closed-form expressions
for the moments of both the marginal posterior densities and the predictive distribution by
integrating the terms of the polynomial expansion in turn (now feasible due to conjugacy).
We demonstrate via a large-scale simulation that this approach is very accurate and that the
corresponding gains in computing time are quite substantial. Furthermore, even in cases
where the computing gains are more modest our approach provides a method for obtaining
starting values for other algorithms, and a method for data exploration.

Key Words: Beta-prime distribution; Empirical Bayes methods; Pearson Type VI distri-
bution.

1. INTRODUCTION

For the past 80 years, numerous researchers have modeled count data assuming the
individual-level count. X, is distributed Poisson(\,) and the rate parameter A; is distributed
gammal(r, o). In other words, the marginal distribution of .X; follows a negative binomial
distribution (NBD):
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The first application of this characterization of the NBD was presented by Greenwood
and Yule (1920) to model accident statistics. [t has subsequently been used to model phenom-
ena as diverse as the purchasing of consumer packaged goods (Ehrenberg 1959), salesperson
productivity (Carroll, Lee, and Rao 1986), and library circulation (Burrell 1990),

The standard inference approach has been to estimate » and o using maximum like-
lihood from the marginal distribution of X; given in (1.1). This so-called empirical Bayes
method then bases inferences on the estimated marginal distribution p(a; /£, 4). A common
application is to make predictions of future counts. Y7, conditional on past behavior; for ex-
ample, E(Y;|x;. f,.4) = (7 + 2;) /(& + 1). These traditional analyses treat - and o as fixed
and known at 7 and ¢&. A key shortcoming of this approach is that it ignores the variability
{estimation uncertainty) of 7 and & as estimates of » and «. Furthermore, it does not allow
the incorporation of any prior information in the analysis. such as insights that may have
been derived from previous studies or from subjective information.

A natural solution to these problems is to adopt a Bayesian approach in which prior
distributions are specified for the NBD model parameters » and «. In recent years, several
researchers have used Bayesian inference for the NBD (e.g.. Deely and Smith 1998; Klug-
man 1992; Schliiter, Deely, and Nicholson 1997). However, none of these have obtained
closed-form inferences, as we do here. To demonstrate these past shortcomings, and our
approach, we set up the general problem formulation as follows.

Let the vectorx = (&, ....: v,y ) represent the observed (count) data for n subjects mea-
sured across a time period of unit length. Assuming iy, ... .. v, are generated iid NBD(r, av).
we have

i o) = F Fr= m;) 4 : ] #q
p(x|r o) = E [ D{m)z;! (,, 4 1) (“ - I) ]
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Specifying a prior p(r. ev). it follows that the f:th marginal posterior moment of 7 given

=1

data x is given by
E(r*|lx) = / rEp(r|x) dr

= // rRplr, a|x) dodr.  and then from Bayes’ rule

[ *p(x|r, a)p(r, @) decdr

[ p(x|r.a)p(r.a) dadr (L1.3)
Similarly, the ith marginal posterior moment of « is given by
E(o*x) = / a*plalx) da
= //-uj“p(r. a|x) dr do
H afp(x|r, a)p(r. o) drda (1.4)
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(An equivalent expression can be written for £(Y,*|x). the kth moment of the predictive
distribution.) Performing the requisite integrations allows the analyst to make the inferences
of interest; that is, to obtain parameter estimates, predictions, and so on, from the appropriate
marginal posterior distributions.

To highlight the challenges associated with a Bayesian analysis of the NBD, we sub-
stitute (1.2) into (1.3), which yields

”’A [HL| %} (,,.“_,)m (Tl_—t)zu " plr.a) dodr
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Itis easy tospecify a prior for o such that we can integrate o out of the above expression:

such a distribution is well understood and appears in many places including some of the
earlier mentioned Bayesian NBD references. To date, however, no researcher has been able

to specify a prior for » such that there exists a closed-form solution to the above expression,
and likewise for (1.4). [A closed-form solution trivially exists for the degenerate case of
a point-mass prior for 7. e.g., Klugman (1992).] Therefore, researchers have resorted to
computationally intensive numerical methods (e.g.. Markov chain Monte Carlo) in order to
make the inferences of interest.

In this article. we present a closed-form solution to the Bayesian inference problem for
the NBD. We do this by specifying a prior for the model parameters r and or which, after using
a polynomial expansion to approximate the ratio of two gamma functions (details provided
in Sections 2.1 and 2.2), leads to a closed-form solution for the relevant marginal posterior
moments. The remainder of this article is organized as follows. Section 2 develops closed-
form expressions for the moments of the marginal posterior densities for both + and a. In
Section 3, we present a simulation study that demonstrates the accuracy of our approach and
the substantial savings in computing time associated with its use. Specifically, we compare
computing time for our approach with that from various MCMC runs for a Bayesian NBD
model. Section 4 shows the corresponding moments (using the same method as in Section
2) for the evaluation of the moments of the predictive distribution. In particular, we derive
closed-form expressions for the conditional mean and variance. We conclude (Section 5)
with a few brief summary comments.

2. MOMENTS OF THE MARGINAL POSTERIOR DENSITIES

x) and E(a*|x). We
start by assuming independent priors for » and o with the following marginals:
1. Marginal prior for «: Consider a prior of the form

dy=1 y Gt
- a I -
plev|dr, d2) x (“ g l) (n -+ l) -

When ¢y = | and §; = —I1, we have an improper uniform prior on «. Specifying the
proportionality constant as 1/5(d;. d2). we have a beta-prime prior on o (Johnson, Kotz,

Our goal is to come up with closed-form expressions for £{r*
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and Balakrishnan (JKB) 1995, p. 248):

| ” di—1 1 d2-+1
AT L L bnd 2.
plaldiid) = Fomos (n+1) (u+1) o220 2D

which is equivalent to assuming o/ (v 4+ 1) ~ beta(d;, ds). The mean and variance of the
beta-prime distribution are

d)
()‘2 -1
O1(d) b2 — 1)
(65 — 1)2(8; — 2)°
If prior information is available for o (from past data or otherwise), then values of ¢, and
0> can be determined by moment matching to arrive at an informative prior.

Ela) =

ar( )

2. Mavrginal prior for r: Consider a prior of the form

(T = ll )u.

(r= )

When a = b = 0, we have an improper uniform prior on r. Specifying the proportionality
constant as [I'(h)(z; — z2)"=*~]/[T(b—a — 1)T'(a + 1)], we have a Pearson Type VI prior
on v (JKB, p. 344):

p(rla, b, 21, 22) x

( a r(b){:l — ;?-J.'a—n—l .
p(rla, b, z1.20) = L h Ly = — . 2.2
polabisamy b w Wk = Tiearn 2
whereb > a > —landr > 2 z». Note that the beta-prime density (2.1) is a Pearson
Type VI density witha = §; — 1, b = d; + 02, z; = 0and z; = —1. The mean and variance
of this distribution are
- 21—z )(a+1
Birl = ik (z1—2)(a+1)
hb—a—2

(21 —22)° {(I*P‘])(bf 1)
(b—a—22b—-a—3)"

(Note: there are errors in JKB for these equations which are corrected here). The four
parameters z), 23, @, and  can be expressed in terms of the first four moments of r to arrive
at an informative prior. The rationale for this choice of marginal prior will be discussed in
Section 2.1.

var(r)

2.1  MOMENTS OF THE MARGINAL POSTERIOR OF 7

To derive an expression for the Ath moment of the posterior density of r, we first
substitute (2.1) into (1.5) and perform the integration over cv. As can be seen by the forms
in (1.5) and (2.1), the term (=% )"" from the NBD combines readily with (-2 )"' ! from
the beta-prime prior for cv (llkewne for the n+| terms). This then yields

P n Plr+axy) {nr+&) s R g
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where Cy = Y0 @ + 8>+ L.

The task now facing us is to substitute (2.2) into (2.3) and perform the integrations over
r. The problem here is that r appears in two ratios of gamma functions in each integral—a
form that is not analytically tractable. To get past this hurdle, we will first express each ratio
of gamma functions as a polynomial in r, thus making it easy to integrate over the prior
on r by integrating the product of the polynomials term by term. The first ratio of gamma
functions involving T'(r + x;)/T'(r) can be expressed exactly as a polynomial in r. The
second ratio I'(nr + 8, )/ (nr + & + €'y — 1) is approximated by a polynomial in r. As
we describe, by including a sufficiently large number of terms, this approximation can be
made as close as necessary.

Consider the first ratio of gamma functions. Letting »* = max(x, ... .. r,, ) and n; the
number of observations (e.g., people) with count &; = j. we have

HM . (F(r+l))“'(ru-+2))“' (M'_J)
I'ir) B I'(r) I(r) . T

i=|
= ™ [re+ D))" e+ ) et =]
= riF+ D) at = 1), (2.4)

where s; = n; =m0 00 TR
We expand the second ratio of gamma functions as follows:
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where iy = nr + 0y -+ ;. Taking the first m terms of the infinite series (1 - {—I =} ;’I— 4 o o,
and then the first 11 terms of the corresponding product of these polynomials, we obtain the

key approximation:

F("”' + Jl ) 22 11—y ( Lrl UZ Um )

= = = 1 ==, =l e S
Lt =8 -+ Chy= 1) N Yy N u ym

where the polynomial coefficients U/, ... U, can be calculated by recursive polynomial
multiplication. (Note: computing the {7’s is simply done by multiplying each of the poly-
nomial terms involving y in turn and collecting terms. The four lines of code in Fortran to
do this are available from the authors upon request. In addition, standard software packages
such as Mathematica will perform this calculation directly.) Letting K = (6, + ') /n. we
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have
T(nr +4y) e o [ U,
Tor 48 +0 =1 © o+ 5] ————
. 1 | =0 LH(T + K 1 J}

where Uy = 1. [This generalizes to m terms the one-term approximation for the ratio of
two gamma functions given in Johnson, Kotz, and Kemp (1992, equation 1.33) as well as
the two-term expansion given in Abramowitz and Stegun (1972, equation 6.1.47).]

Now, if weletzj, 25 € {—x*,.... —1,0} and assume a. b integer. then for

s - == — . i :q:‘—l
'f'f_{l Sl and -u’ﬁ:{ ) atboraiss

0 otherwise (0 otherwise

(2.2) and (2.4) combine to give us

. [‘(?' i -rli)’ i o SiFviatw b
H TPU) = I [’"

i=1
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where hy = 5 + vy 4+ wyb and s, = 0. (While the restriction of a,b to integers

is somewhat restrictive, it still leaves a very flexible class of priors for r.) Letting h =
Iy iy + oo e 1, we can write this product as a polynomial in i

T

I'ir + @ : )
H 1i) = Iy [n., +agr 4o+ tt,l,_l'h] =D Z ;i (2.6)
1=l =)

where the polynomial coefficients can be computed for given /i, . . ., fi+ 4y using the same
algorithm used to compute the [/’s in (2.5). (Note that ay = ay = -+ = ap—; = 0, as

there are no terms less than /i;.)
Substituting (2.5) and (2.6) into (2.3), we get

ok h 1= Tl .

J‘] (Z; 0@ )( r+ Ky) & =0 [““_H”” i
h -yl
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which follows naturally (from the normalizing constant) from the definition of the Pearson
Type VI density in (2.2). That is, the Pearson Type VI density is a conjugate family for the
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NBD after employing the approximation to I'(nr + 4, ) /T (nr+ 8, + C'y — 1) given in (2.5).
Thus, closed-form posterior inferences are now feasible for 1.

In order for the integral in (2.8) to be the normalizing constant of the Pearson Type VI.
and hence defined, we must have ', — j+[-2 > ()Vj [. The maximum value that j can take
onis hi-+k ((2.6) is of order hi, and we are computing E (7" |x): thus ik terms at most) while
the minimum value that [ can take on is 0. Therefore, QJ 1s definedV j when 'y —h — &k > 2.
Nowh =37 h=Y"Msita-b=" " Yoo Ry a= b=, w e —b
Recall C'y = 3. @; + 0> + 1. Therefore C'y — h — k>2sd>a-b+k+ 1. Ifwe
are simply interested in the mean of the marginal posterior of © (& = 1). the approximation
presented in (2.7) holds, provided the parameters of the marginal prior distributions for r
and o satisfy the condition 41 > a — b+ 2 (which is not very restrictive).

2.2 MOMENTS OF THE MARGINAL POSTERIOR OF o1

Turning our attention to «v. the moments of its marginal posterior can be computed in
a similar manner. Substituting (1.2) and (2.1) into (1.4) and simplifying, we get

g T C(r+zy) Tinr+d,+k) . :
E(q-f-'lx) = L J [Hffl r(r) J Mlnr+8,+C) - ”p(r i (2.9)
/ ke 1 . " {2y ['(r+d . ' -
[T=i{Ci=1=1) | [Hi:l [f‘(m ]] [.t_”TL;_"sﬁ:il]_l][J('r‘)(.’.I'
Applying the same logic used to derive (2.5), we have
T(nr + d) + k) B "I'_I"' |
T(-m' + ﬁ.l -+ (:j! — 1) o i - (51 + C‘| = j
) L . . ‘[-'F-‘
S {u(r—i—hl)}lw ‘ : =5 (2.10)

1o [n(r+K))]

where VF = |, and we have a separate set of polynomial coefficients, V}*.... V% for each
of the & moments of the posterior of . These can again be computed using the previously
mentioned recursive algorithm.

Substituting (2.6) and (2.10) into (2.9), we get

n* / (Z’;“”:r ) (r+ K )T 3T, —‘—r dr
E(o*|lx) = ; s ¢ [n(r+K)]
) ] ' h m
l_l[_l((lﬁ,'—l) I (Z.J'U‘t-’?d) (r+ Ki)'=a =0 [n( ri—.‘n)] o
1 h ]
_ nk e B ;”.iﬁj -
Hf (G =1=1) Z, 0@
where
i . T rk
R? - / (i + K )H';"_( ! 141’[ i
- : =0 [w(‘r + 1K )]
L . . _ )
(Ci+l—j—k=2) TG+1) v
= 2, . e . ,(.“,,.,2.,, -+, (2.12)
ey +i—k-1) ]\I\Jr‘ J 2 4l

=0
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which again follows from the normalizing constant of the Pearson Type VI density in (2.2).
Thus, closed-form posterior inferences are obtained for o In order for (2.12) to be defined,
we must have C) +1 — j — k — 2 > 0V 7, [, which leads to the same condition as before
(dr >a—b+k+1).

3. A SIMULATION STUDY

To assess the accuracy and computational feasibility of our approach. we performed
a large-scale simulation study using three main factors: » (3 levels), o (3 levels), and 1,
the number of polynomial expansion terms (5 levels) for the ratio of two gamma functions
given in (2.5) and (2.10). We selected these as simulation factors as we wanted to know: (a)
whether the quality of the estimates varied with the true (latent) values of  and ¢, and (b)
whether the number of terms used in the approximating expansion played a significant role
in determining accuracy. A fully crossed design was implemented yielding 45 simulation
conditions.

For each condition, a given simulation consisted of N = 500 observations from a
negative binomial distribution with the given» and . Two hundred replicates were generated
for each of the 45 conditions; that is, 200 datasets of size 500. The results reported for each
condition are the average over these replicates.

To select simulation values for + and «., we used a reparameterization of the NBD
values of » and «v in terms of p = corr(X;.Y;) = 1/(av + 1), the correlation between two
negative binomial draws in nonoverlapping periods of equal length for a given individual,
and Py = P(X; = 0) = [a/(a+ 1)]" = (1 — p)". the fraction of 0 values. (p also equals
the square of the correlation between the observed count (X;) and the individual’s latent
rate (A;).) This reparameterization is convenient as both p and I}, are bounded between 0
and 1, allowing us to select a grid along the unit square. In addition, p and I%) are common
and intuitive quantities which can be selected by a researcher based on historical figures or
expert judgment.

We selected the 3 x 3 grid corresponding to 0.25, 0.50, 0.75 for each of p and [ leading
to the values of r and ov given in columns 3 and 4 of Table 1. For 12, the number of polynomial

Table 1. Mean Absolute Estimation Error for (E(r1x), E(|x)) with X; ~ NBD(r, a). The simulation
conditions are derived from p = corr(X;. Y;) = 1/(a +1), P = P(X; =0) = (1 — )", and
m = number of terms used in the approximation of the ratio of two gamma functions.

m
Py o T o EX) 1 2 10 50 300 Mean

0.25 0.25 4.82 3.00 1.61 (27.62, 17.54) (22.24, 14.05) (7.05,4.51) (0.98, 0.62) (0.05, 0.07) (11.59, 7.36)
0.25 050 2.00 1.00 2.00 (33.73,17.31) (27.57, 14.18) (11.05,5.78) (1.68.0.93) (0.10,0.06) (14.81, 7.66)
0.25 0.75 1.00 0.33 3.00 (33.04,11.91) (27.39,9.94) (13.20, 5.03) (3.77, 1.57) (0.12, 0.08) (15.49, 5.71)
0.50 0.25 2.41 3.00 0.83 (6.04,7.78) (4.80,6.24) (1.08,1.33) (0.71, 0.87) (0.00.0.04) (2.53, 3.26)
0.50 0.50 1.00 1.00 1.00 (6.41,7.11) (533, 590) (2.15 2.49) (0.31,0.31) (0.05, 0.06) (2.85, 3.18)
0.50 0.75 0.50 0.33 1.50 (4.51,3.97) (4.16,3.56) (2.44,225) (0.70,0.70) (0.01, 0.04) (2.36, 2.10)
075 0.25 1.00 3.00 0.33 (0.88,298) (0.72,226) (0.27, 0.57) (0.32, 0.99) (0.03, 0.00) (0.44,1.37)
075 0.50 0.42 1.00 042 (1.053.22) (0.87,2.73) (0.37, 1.05) (0.15, 0.35) (0.01, 0.02) (0.48, 1.48)
0.75 0.75 0.21 0.33 0.60 (0.75,220) (0.71,2.05) (0.42, 1.23) (0.11, 0.27) (0.00,0.01) (0.40,1.15)

Mean (12.67,8.22) (10.42,6.77) (4.22,2.69) (0.97,0.73) (0.05, 0.05)
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expansion terms used, we selected five values: 1, 2, 10, 50, and 300. Experimentation with
our approach indicated that these values would demonstrate the increased accuracy of the
estimates as m increases. Computing time using an HP-UX 9000 server, and code written in
Fortran, for generating 200 datasets of size 500 and estimating the corresponding moments
using our approach was 2, 3, 7,45, and 800 seconds, respectively, form = 1.2, 10,50, 300.
This clearly suggests very practical computing time for a given single dataset, especially
when compared to the numerical methods (e.g., MCMC) traditionally used in the Bayesian
setting. A comparison of computing times is given below.

To complete the simulation specification, we needed to select values of the hyperpa-
rameters (i, b, 21, z2). the Pearson Type VI parameters for the prior on r, and (d;. d). the
beta-prime parameters for the prior on . These values were then inserted into Equations
(2.7) and (2.11), along with the 500 negative binomial draws, to obtain estimates E(r|x)
and E{«|x) for each simulation.

We ran each of the 45 simulation conditions under three choices of these hyperparam-

eters, all having z; = 0 and 2z, = —1 indicating a beta-prime prior on 7:
prior on r prior on cx
i) improper uniform weakly informative with mean 1
(a=0.b=10) @y =2, :=3)
ii)  weakly informative with mean 1 weakly informative with mean 1
(a=1.b=35) (0 =2,8, =3)
i) weakly informative with mean | improper uniform
(a=1,b=135) (& =1,6=-1

We note that the condition with two uniform priors does not satisfy the constraint
81 = a — b+ 2, described earlier, and thus could not be explored. As our results indicated
no significant differences across the three choices of the hyperpriors (determined by a
repeated measures ANOVA), the results reported below are the average across the three
sets. As with any Bayesian analysis, though, this is due, in part, to the large sample size
selected (IV = 500) in comparison to the small amount of information in the priors.

Reported in Table 1 are the mean at absolute estimation errors (MAEE) for the first
moments, avg(|E (s |x —r|)and avg(| E( rv\x ) —a|), for each of the 45 simulation conditions
and aggregated across various cells. Columns -5 convey the 3 x 3 grid for p and F, and the
corresponding values of r, cvand E(X;) = r/a, respectively. The results indicate a number
of interesting features. First, as expected, the estimation error decreases with an increasing
number of expansion terms 2. In fact, we observe a very poor fit for a small number of terms
and a good fit for the ym = 300 condition. Second, estimation error increases with £(X).
This suggests that when the sample average is large, many more terms in the expansion m
are necessary to provide adequate estimates. But even in the worst case (row 3), the 300-
term approximation is excellent and, if necessary, additional terms could be added with
very little difficulty or computational burden.

As a baseline for comparison, we assessed computing time for standard Bayesian ap-
proaches as follows. Using the free and readily available software program BUGS (Bayesian
inference using Gibbs sampling) we obtained simulates from three Markov chains (for
each dataset) each of length 5.000 from overdispersed starting values. Each chain was
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run for 5,000 iterations based on covergence diagnostics applied to the simulates. Each
dataset was of size 500 (as in our simulation design). The results reported here are the
average simulation time over 100 datasets of size 500 using various values of » and o
from the simulation design described above (times did not vary significantly by choice
of these parameters). Two different Bayesian models were fit to the data. The first had
X; ~ Poisson(A;), A; ~ gamma(r, «).r ~ gamma(0.1, 1.0), & ~ exponential{1). This
model was chosen identically to that given in the hierarchical Poisson example in the BUGS
documentation. The second model fit had the same model for X, and A; but instead assumed
a multivariate log-normal prior for » and o with mean 0 and diagonal variance-covariance
matrix with 100 along the diagonal (fairly disperse). All of these computations were run
on a DELL 933 MHZ PC with 256MB of RAM. As the clock-speed for this machine is
comparable to that of the HP-UX 9000 used for our approach, we believe a comparison of
these computing times to be reasonable.

The results of these simulations indicated that the average computing time for the BUGS
NBD model was 105 seconds whereas that for the multivariate log-normal NBD model was
231 seconds. Now while the comparison of our computing time, with say rn = 300 terms,
at 4 seconds to these two times is an order of magnitude faster, it may not be one of great
(or any) practical importance. However, with larger datasets the computing time of our
approach will provide even greater benefits. Additionally, we believe that our approach can
be used as a means to check MCMC output, as well as to provide starting values.

4. MOMENTS OF THE PREDICTIVE DISTRIBUTION

The approach developed above for evaluating the moments of the marginal posterior
densities can be applied to the evaluation of the moments of the predictive distribution
(BE(YF|x
practice, closed-form moments in this instance have great practical value. Let ¥; be the
count variable for individual i in a nonoverlapping time period, where the two periods
corresponding to X;. Y; are of equal length. In this section, we focus on evaluating the
mean and variance of the predictive distribution: £(Y;|x) and var(Y;|x). (The method
easily generalizes to higher moments.)

Given - and «v, the mean and variance of Y;. conditional on «,, are:

)). As prediction is among the most common applications of the NBD model in

(il = = &; r=o;
* and var(Yj|a;,r a) = : e =
a+ 1 a+1l (a4 1)

E(Yilx) = //

. i L7
var(Y;|x) // (’” _|_1| ((I\ - !l )3) plr.o|x) dev ey

= E(Y;|x) -+ // 1,r)r ovlx) devedr. (4.2)

B(YG oy, 7o) =

It follows that

])I a|x) devdr. 4.1)

and
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Central to evaluating (4.1) and (4.2) is the evaluation of the following integral:

| e p(x|r, a)p(r)p(a) decdr
// plr, a|x) dedr = J i) — (4.3)
(v )“ [ plx|r.a)p(r)p(a) do dr
Substituting (1.2) and (2.1) into (4.3) and simplifying, we get
// e H’ roolx) dodr
k I( x,) {H - J'f;':-i..r,):l _ -F(_nr—&-:'i;) : P(I) A
. < 1) Flnr+o,+C1+k—1)
:H(('|+1- Jn +.(1 I ,+3JJ @)
7 i (=i -8y .
[=1 / [Hizl o) ] Tariairc, —n Pl r)dr
Using the same logic as in (2.5). we have
(&
T(nr 4 &) B H
inr+d +Cy+k—1) a P nr - & +(| -7
O — ke m II‘A
~ [-n(r—l— [{;)}I G- % (4.5)
1=0 [”(" + KI)}
where II o = 1, and we have a separate set of polynomial coefficients, W/, ... W for

k= 1,2, computed using the previously mentioned recursive algorithm.
Substituting (2.6) and (4.5) into (4.4), we gel

// (r—i%\;p(r. a|x)da dr
JJ] (o
i Wi

: h
I—I;‘let(.] _’_(_2]_](_?-+;r,)_ (EJﬂ)nJ ) r a4 K)o LZI Dmd!

L N h T
" I (Z, L (7 )('4‘1\1)i G A umf"’
= My (Ci +1-2) Z 0[Sy + 7S] (4.6)
nt ZI: 0@ Q;
where
J . m ll,fl.
Sf = ] rd (4 Ky)' =Gk — —dr
=0 [-n{r + K )]

m

B Zl"((ﬁ,+k+l~j—2) LG+1)  wf
a MO+ E4+1—1) ]\'l("“:ﬁk%ff-"’z nl’

(4.7)
1=0

which again follows from the normalizing constant of the Pearson Type VI density in (2.2).

In order for (4.7) to be defined. we must have ('} + k& 41 — j —2 > 0V j.[. Thus. Hf‘
is defined v j when 'y — i — k > 2 < 0, > a — b+ 1. This is automatically satisfied
when we constrain the parameters of the prior distributions such that the approximation of
the moments of the marginal posterior distributions of + and v, (2.7) and (2.11), hold (i.e..
43 > a — b + 2). Thus no new constraints need to be applied.
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Substituting (4.6) into (4.1) and (4.2), we get the following expressions for the condi-
tional mean and variance:

" 'l . .
Ci—1 Z«"?:" G ['SJ!+] = -"ibj!]

E(Y;]x) ~ (4.8)
" E?:n ;i (2;
and
h 2 -
. aliey — 1) 2o —o5 |85,y = wpss
var(Yi|x) ~ E{¥i|x) + i . ) 225=0 Jh[ 1 J}' 4.9)
w £g=0 %) (l-)I

5. CONCLUSIONS

The negative binomial distribution is widely used to model count data. However, the
standard inference approach estimates the model parameters using maximum likelihood.
treating them fixed and known at # and @. In contrast, the Bayesian approach allows for
uncertainty in parameter estimates and the incorporation of prior information.

It had previously been thought that Bayesian inference for the NBD must make use
of numerical integration since expressions for the posterior densities of interest contain
a model parameter within a ratio of gamma functions. However, in this article we have
presented closed-form solutions to the Bayesian inference problem for the NBD. The key
insight is to approximate the ratio of two gamma functions using a polynomial expansion,
which then allows for the use of a conjugate prior. Given this approximation, we arrive at
closed-form expressions for the moments of both the marginal posterior densities and the
predictive distribution. In fact, the posterior densities themselves are a special case of the
results given. We demonstrate that this approach is very accurate and that the corresponding
gains in computing time are quite substantial.

The accuracy of our approach depends on the number of terms used in the approx-
imation to the ratio of the two gamma functions. Even for a large number (i.e., 300) of
terms, however, the computational time required to make the relevant inferences is mini-
mal. When compared to standard numerical methods (e.g., MCMC), the gains in computing
time are quite substantial. This is of great practical importance as it provides analysts with
the flexibility of the Bayesian approach to inference for the NBD without the excessive
computational burden traditionally associated with such an approach. Of course, as shown
in Section 3, for small to moderate sized datasets the computational gains could be quite
modest. However, the ability to generate starting values for other algorithms, and/or provide
fast diagnostic information is also of value and is readily available using our approach.

The approach developed in this article need not be limited to the NBD. We hope that this
work spurs on other researchers to search for closed-form solutions in other situations where
the application of Bayesian techniques has forced the analyst to resort to computationally
intensive methods. A natural starting point would be to examine other common distributions
such as the beta-binomial and the Pareto. Some researchers have attempted to implement
Bayesian approaches for these models—for example, Lee and Sabavala (1987) and Arnold
and Press (1989)—but in both cases they had to resort to numerical methods of some sort.
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