
MARKETING SCIENCE 

Vol 12, No 3. Summer 1993 


Prrnrcd 1n L S 1 

ACCOUNTING FOR HETEROGENEITY AND 

NONSTATIONARITY IN A CROSS-SECTIONAL 


MODEL OF CONSUMER PURCHASE BEHAVIOR 


PETER S. FADER A N D  JAMES M. LATTIN 


University of Pennsj~lvania 

Stanford University 


When calibrating a brand choice model cross-sectionally, a measure of brand loyalty is often 
introduced into the utility function to account for differences in utility across households and 
over time. One of the most widely used measures of brand loyalty, proposed by Guadagni and 
Little ( 1983). is an exponential smoothing model of past choice behavior by the household. In 
this study. we argue that the exponential smoothing model of brand loyalty cannot properly 
distinguish between sources of variation in utility due to heterogeneity (across households) and 
sources of variation due to nonstationarity (within household over time). We introduce a new 
measure of brand loyalty, derived from a nonstationary Dirichlet-multinomial choice model. in 
which heterogeneity and nonstationarity are handled distinctly. 
(Choice Models; Brand Loyalty; Heterogeneity; Nonstationarity) 

1. Introduction 

Many researchers have examined brand choice behavior using multinomial logit models 
calibrated on scanner panel data. These cross-sectional models generally allow for brand 
utilities that potentially differ across households and over time. Researchers have used 
both fixed effects (e.g., Jones and Landwehr 1988) and random effects (e.g., Chintagunta 
et al. 199 1 ) specifications to capture the cross-sectional variation. While these methods 
are useful in explaining the differences in brand preferences across households, they do 
not allow for any changes in consumer tastes over time. 

A popular approach that captures both types of variation is the exponential smoothing 
model of brand loyalty proposed by Guadagni and Little ( 1983). This measure tracks 
changes in household tastes over time using a weighted average of past choice behavior 
in which recent choice is weighted more heavily. Thus, this loyalty variable captures "not 
only much of the cross-sectional heterogeneity but also a good part of the purchase-to- 
purchase dynamics" (Guadagni and Little 1983, p. 2 16). Unfortunately, while this mea- 
sure embodies both sources of variation, it is unable to separate out these two effects. 
One cannot tell whether recent choice behavior improves the fit of the choice model 
because it increases the precision of the household-level loyalty estimates or because it 
tracks the changes in utility over time. As shown by Massy et al. ( 1970), ignoring cross- 
sectional heterogeneity may give the appearance of nonstationarity in preference when 
in fact none exists. This confusion is a problem when testing theories related to factors 
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affecting the household that change over time (see Neslin and Shoemaker 1989 and 
Ortmeyer et al. 199 1 ). 

To address this concern, we present a new measure of brand loyalty to sort out het- 
erogeneity and nonstationarity in cross-sectional choice models. We derive our measure 
from a nonstationary Dirichlet-multinomial model of brand choice behavior, similar to 
the beta-binomial-geometric model proposed by Sabavala and Morrison ( 198 1 ) . Our 
approach recognizes that the observed choice behavior of the household enables us to 
do two things: (1)  update our priors regarding the probabilities governing the choice 
behavior of any particular household, and (2 )  track changes in these probabilities over 
time. Even when the probabilities governing household choice behavior do not change 
over time, we can still use the observed choice behavior to update our priors. With the 
exponential smoothing model ofbrand loyalty, the only way to accomplish ( 1 ) is to force 
the occurrence of (2 ) .  Our approach provides for a single measure of brand loyalty in 
which ( 1) and (2 )  are handled distinctly. 

The paper is organized as follows. In fj 2, we review the use of the exponential smoothing 
model and in tj 3 we derive our measure of brand loyalty. In tj 4, we use simulation to 
demonstrate the limitations of the exponential smoothing model of brand loyalty; using 
the same simulation data, we then demonstrate the advantages of the proposed loyalty 
measure. In tj 5 ,  we compare and contrast the results of our approach to existing models 
using actual scanner panel data on refrigerated ready-to-drink orange juice. 

2. Brand Loyalty: Exponential Smoothing 

Following the precedent established by Guadagni and Little ( 1983), most recent re- 
search into conditional brand choice behavior uses a multinomial logit model (MNL) 
with the following structure: 

MNLl,,(i) = the probability that household h chooses brand i on purchase occa-
sion t , 

vhr(i )  = a, + -y LOYhl( i )  + ZmPmxml( = the utility to household h of purchasing i) 
brand i on occasion t ,  

LOYh,(i) = household h's loyalty to brand i on occasion t ,  based on purchases before 
time t ,  

xm,(i)= the level of marketing mix variable m for brand i on occasion t ,  and 
a, , -y, Pm= model parameters, assumed to be constant over time and across households. 
The exponentially smoothed loyalty measure (hereafter called SMOOTH) takes the 

following form: 

SMOOTHhl(i) = A SMOOTH~,-I( i )  + ( 1 - A)yhl-l ( i )  where ( 2 )  

yhl(i)= 1 if household h purchased brand i on occasion t and 0 otherwise, and 
X = smoothing parameter, assumed to be constant over time and across households. 
The exponential smoothing model can be derived as a weighted average of past pur- 

chases under certain assumptions regarding the steady-state nature of the measure (see 
Srinivasan and Kesavan 1976). 

Most researchers use each household's early purchase history from to "start up" the 
brand loyalty measure; Guadagni and Little ( 1983), for example, set aside the first 25 
weeks of their study as an initialization period. On the first purchase occasion for each 
household, in the absence of any information on prior purchase behavior, we set 
SMOOTHhI( i )equal to 1 I n  for all brands i, where n is the total number of brands in 
the analysis. To calculate SMOOTH, one also needs to know the value of the smoothing 
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parameter A; maximum likelihood estimates of this parameter can be obtained through 
a Taylor series expansion of SMOOTH (see Fader et al. 1992). In most applications, X 
falls into the range between 0.70 and 0.90. 

2.1. Pitfalls 

The SMOOTH measure is not without its limitations in cross-sectional models of 
consumer choice. One problem is the assumption that SMOOTH is in "steady state." 
Despite having as much as one year of data for initializing the measure, in many appli- 
cations this enables us to see only one or two purchases by light users. For those households 
with short choice histories, our priors will play a relatively more important role in de- 
termining choice probabilities than for households with long choice histories. 

Problems of interpretation may also arise. A value of X less than one is not conclusive 
evidence of nonstationarity. This is because SMOOTH is based on past choice behavior; 
i.e., a relatively small sample of choice outcomes from a probabilistic process. By updating 
SMOOTH after each choice made by the household, we increase the amount of sample 
information used to calculate the measure and thereby decrease its error variance. Only 
when X < 1 is the exponential smoothing model able to utilize the entire purchase history 
of the household in SMOOTH, which gives the appearance of nonstationarity. 

One consequence of using SMOOTH when choice behavior is truly stationary is that 
the optimal value of the smoothing parameter X will depend upon the average length of 
the choice history of the household. If the choice history is very short (e.g., two or three 
purchases), then X will be considerably less than one. Otherwise, if X is too close to one, 
the weight on the most recent choices will be negligible compared to the weight on the 
values used to initialize SMOOTH. If the choice history is very long, then X will approach 
1; otherwise, the weights on the observations from the early choice history will quickly 
go to zero and be lost. This result suggests that in choice models using SMOOTH, the 
estimate of the smoothing parameter will not be independent of the amount of data used 
to calibrate the model. When choice behavior is in fact stationary, there will be a direct 
relationship between the length of the study (initialization period and calibration period) 
and the magnitude of X. 

3. Brand Loyalty: Nonstationary Dirichlet-Multinomial 

We now propose a new measure of brand loyalty, which we derive from a stochastic 
model of choice behavior in the absence of marketing mix effects.' We assume Dirichlet 
heterogeneity for multinomial choice probabilities across households and use a Bernoulli 
distribution to describe the likelihood of a shift in choice probabilities between purchase 
occasions for a given household. We refer to this model as a nonstationary Dirichlet- 
multinomial (NSDM); when the Bernoulli probability of a change in choice probabilities 
is zero, the model becomes a stationary Dirichlet-multinomial model (SDM). We derive 
the expected brand choice probabilities given the observed choice behavior of the house- 
hold. These posterior probabilities form the basis of our proposed measure of brand 
loyalty. 

3.1 . The NSDM Model 

We begin by stating the assumptions underlying the NSDM model. First, we assume 
Dirichlet heterogeneity in choice behavior across households. Thus, for a given household, 
our priors about the multinomial probabilities governing choice from among n brands 
are described by a Dirichlet distribution with parameters 72, . . . ,7,), i.e., a distri- 
bution function with pdf 

' In 5 5, where we test the measure using actual purchase panel data, we modify the choice model to accom- 
modate the effects of point-of-purchase marketing mix variables such as price and promotion. 
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where Z , p ,  = 1. The use of the Dirichlet to capture cross-sectional heterogeneity in choice 
behavior for frequently purchased packaged goods is well established (e.g., Ehrenberg 
1988, Fader 1993). 

Second, we assume that the nonstationarity in choice behavior of a given household 
is described by a renewal process. The probability that the choice probabilities for a given 
household are renewed between choice occasions (where renewal constitutes a new draw 
from the original Dirichlet distribution, independent of previous choice behavior) is 
Bernoulli with probability ( 1 - A),  and that the renewal rate is the same across households. 
Thus, for any household the number of choice occasions since the last renewal is geo-
metrically distributed with pdf 

G(x) = (1 - X)Xx where x = 0, 1, 2, 3, . and 0 1 X s l .  (4 )  

There are many sudden, unforeseen occurrences (even in relatively mature product 
categories) that might cause the kind of abrupt change in household choice probabilities 
suggested by this renewal process. Examples include the entry or exit of a brand, a price 
war or some unusual promotional activity (e.g., a new advertising campaign). These 
major changes are the most important to capture; more gradual changes in underlying 
preference may be so slight that a stationary Dirichlet model will hold reasonably well 
over a long period of time (Ehrenberg 1988, p. 12). 

In behavioral terms, our model stands in sharp contrast to SMOOTH, which implicitly 
assumes a more gradual change in consumer choice probabilities. However, as we shall 
show, both models lead to measures that allow for the gradual updating of brand loyalty 
as a function of past choice behavior. Through simulation and empirical testing, we hope 
to establish which of the two is a better representation based on fit and predictive ability. 

The two assumptions above yield the NSDM model, which is a multivariate extension 
of the beta-binomial-geometric model used by Sabavala and Monison ( 1981) to describe 
the frequency distribution of exposures to a particular media vehicle (such as TV or 
magazine^).^ Our goal is to use the NSDM model and the observed past choice history 

of the household through time t to derive the posterior choice probabilities. These pos-
teriors represent our best estimates of the probabilities governing the choice behavior of 
the household on occasion t + 1. We denote the purchase history of household h through 
time thy yh = ( ~ h l , ~ h 2 , .. . ,yhl), whereyh~= (yhl(l),yh1(2),. . . ,yh~(n ) )isavector 
of (0, 1 ) variables indicating which brand was purchased on the household's first purchase 
occasion. 

We begin by finding the expected probabilities conditional on the number of choice 
occasions since the last renewal. For example, if the number of choice occasions 
since the last renewal is x, then we know that the choice behavior on occasions 
t ,  t - 1, . . t - x + 1 was governed by the same set of multinomial choice probabil-
ities. Combining our priors with the x multinomial choice outcomes indicated by 
yht, yhl-l, . . . , yhl-x+lyields the posterior distribution. Because the Dirichlet and the 
multinomial form a conjugate pair, the posterior distribution is also Dirichlet with pa-
rameters 

Vanhonacker and Winer ( 1990) also develop a Dirichlet-multinomial geometric model of choice behavior. 
However, instead of using the Dirichlet to characterize heterogeneity across consumers (in fact, their model is 
calibrated at the individual level), they derive the Dirichlet as the optimal decision distribution assuming rational 
random behavior. 
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where c is a subscript of choice occasions from t - x + 1 to t .  Thus, for household h 
with choice history yh, the expected probability of choosing brand i on occasion t + 1 
given x choice occasions since the last renewal is be given by 

where c subscripts choice occasions t - x + I to t .  
We cannot tell exactly when a renewal of brand choice probabilities takes place. How- 

ever, we can use the geometric distribution to calculate E(p; I yh), the expected choice 
probabilities for occasion t + 1 unconditional on the length of time since the last renewal: 

where x indexes the number of choice occasions since the last renewal (and ranges from 
0 to t - 1). Note that in the second term on the right-hand side of the equation, A'  = 1 
- Z,G(x). For example, when n = 2 and t = 2, E(pl I yh) is written as 

The expression in (7)  reveals that when choice behavior is nonstationary, we weight 
the most recent choice information most heavily in determining E(p, I yh). The more 
nonstationary the process (i.e., the greater the likelihood of a renewal between choice 
occasions), the more rapidly we discount the information from the early choice history 
of the household. When choice behavior is purely stationary, the information from each 
of the past choice occasions is equally weighted in determining E(p, I yh). 

Our proposed measure of loyalty is based on E(p, I yh). In order to put it into the 
context of the cross-sectional multinomial logit model, we set 

where NSDMh,(i) is our measure of loyalty to brand i by household h at time t .  In the 
absence of marketing mix effects, if we set uhr(i) = NSDMh,(i) and substitute into Equation 
(1 ), the logit choice probability MNLh,(i) is exactly the expected choice probability, 
E ( P ~1 yh). 

In order to calculate NSDMh,(i) for each brand i,  we need information on the ordered 
purchase history of household h through purchase occasion t - 1. This is exactly the 
same information necessary to calculate SMOOTHh,(i), which is easily available from 
the scanner panel dataset. 

3.2. NSDM vs. SMOOTH 

Our measure NSDM differs from the exponential smoothing model SMOOTH in two 
respects. First, our approach involves a different characterization of the nonstationarity 
in brand choice behavior. SMOOTH is based on a linear-learning model, in which the 
choice probabilities of the household move in deterministic fashion in the direction of 
the choice made on the latest purchase occasion. In contrast, NSDM is based on a renewal 
model, in which the new choice probabilities are completely independent of past values. 
This specification enables us to make inferences about the nonstationarity of brand choice 
behavior that are not confounded by heterogeneity. 

A second point of difference between NSDM and SMOOTH is our explicit treatment 
of cross-sectional heterogeneity using the Dirichlet distribution. The Dirichlet parameters 
( T I ,  72, . . . ,7,) reflect our priors about the probabilities governing the choice behavior 
of each household. Thus, NSDM takes into account the difference in frequency of choice 
across households in a way that SMOOTH cannot. For a light user, the cumulative 
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impact of the short prior purchase history is relatively small; however, the impact of each 
additional choice observation in updating NSDM (in the absence of a long purchase 
history) is relatively large. For a heavy user, we are likely to get more extreme values of 
NSDM, especially when the household favors one or two brands over the alternatives. 

The Dirichlet parameters also provide evidence about the level of heterogeneity in the 
market. The summary statistic 4 = ), used by numerous researchers (e.g., 1/( 1 + I ; ,T~ 

Jeuland et al. 1980; Sabavala and Morrison 1977 ), is a well-accepted measure of heter- 
ogeneity. A value of 4 approaching zero indicates complete homogeneity, while a value 
of 4 approaching one signifies extremely high heterogeneity across households. 

4. Simulation 

Using simulated data, we now compare the performance of the two loyalty measures 
SMOOTH and NSDM. We create a "world" in which there are no marketing mix effects 
and in which choice behavior is perfectly stationary. We then calibrate two cross-sectional 
choice models: one based on SMOOTH and the other based on NSDM. For the SMOOTH 
model, we show that the estimated value of the parameter X is substantially less than 1.0 
and that the bias in X is directly related to the amount of data used to measure brand 
loyalty. For the NSDM model, we show that the estimate of X has no substantial bias, 
that its magnitude is not related to the amount of data used in the measure, and that the 
fit of the model improves significantly. 

4.1. Data 

In order to make the simulation realistic, we derive its parameters from actual purchase 
data. The scanner data (provided by Information Resources, Inc.) describe consumer 
purchase behavior of refrigerated orange juice in Marion, Indiana, over a two-and-a-half 
year period (January 1983 to June 1985 ). We selected a random sample of 200 households 
from among all households who purchased at least one of the following six leading brands 
(in the 64 oz. size) during 1984: Citrus Hill, Minute Maid, Tropicana Regular, Tropicana 
Premium, a regional brand and a private label brand. During the first two years of the 
sample period, our sample households made a total of 3079 purchase^.^ 

For each household, we calculate the choice share of each brand over the first two 
years of data. Treating these household-level choice shares as multinomial probabilities, 
we use random numbers to simulate purely stationary purchase behavior by the household: 
one simulated choice for each actual purchase made by the household during the two 
years. In this way, we insure that the simulation embodies an empirically-grounded dis- 
tribution of brand preferences and purchase frequencies across households. For each of 
the two models (SMOOTH and NSDM), we use the second year of simulated data (i.e., 
the choices corresponding to the purchase occasions in weeks 53 to 104) to calibrate the 
model parameters. To test our conjectures regarding the relationship between the amount 
of data and the bias in the estimate of A, we vary the length of the initialization period 
used to "start up" SMOOTH and NSDM. We use four different lengths: zero weeks, 13 
weeks, 26 weeks, and 52 weeks. Our hypothesis suggests that for SMOOTH, the estimated 
value of X should get closer to one as the initialization period increases in length; for 
NSDM, the estimated value of X should be close to one in all cases. 

4.2. Simulation Results 

We ran this simulation 50 times. For each run, we performed eight model calibrations: 
each of the two models (SMOOTH and NSDM) for each of the four different initialization 
periods. Figure 1 shows the average model fit (indicated by the log likelihood value) 

'We hold out the last six months of data (during which time the panelists made 666 purchases) for the 
purposes of model validation in 5 5 of the paper. 
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InitializationWeeks 

r'-----------------------

i NSDM Smooth ii i --*---
FIGURE 1. Simulation Results: Average Fit (Log Likelihood) Across Models and Across Initialization Periods. 

across all 50 runs of the simulation for each of the eight cases. Two noteworthy patterns 
are evident. First, regardless of the underlying model, an increase in the length of the 
initialization period leads to better model f i k 4  This is consistent with our expectations: 
the more data available to establish the brand loyalty measure, the lower its error variance. 
Second, holding the length of the initialization period constant, NSDM shows a significant 
improvement in fit (p <0.00 1 ) over SMOOTH for each of the four different initialization 
periods. 

Figure 2 shows the average estimate of the smoothing parameter X for the models 
SMOOTH and NSDM for each of the four initialization periods. We note three things. 
First, for the SMOOTH model, the average estimated value of X is substantially and 
significantly less than 1.0 in all cases. Second, for the same model, the average estimated 
value of X increases significantly with each increase in the length of the initialization 
period. Thus, as conjectured, the bias in X does seem to depend upon the amount of 
data used to establish the measure SMOOTH. Third, for the NSDM model, the average 
estimate of the smoothing parameter X is in all cases very close to one. The fact that the 
NSDM smoothing parameter is seemingly independent of the length of the data period 
makes the model an attractive option for use across datasets of different sizes and different 
product categories. 

For each model, the differences in fit as the initialization period increases in length are all significant at p 
< 0.001. 
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FIGURE2. Simulation Results: Average Smoothing Parameter Estimate Across Models and Across Initial- 
ization Periods. 

5. Application: Refrigerated Orange Juice 

The simulation results suggest that there are circumstances-when choice behavior is 
stationary and marketing mix effects are absent-in which the proposed measure out- 
performs the exponential smoothing model of brand loyalty in a cross-sectional model 
of brand choice behavior. It remains for us to show, however, that the superior perfor- 
mance of the proposed model holds up in a "real-world" choice situation: one where 
household choice behavior may not be stationary and in which there are pronounced 
marketing mix effects. We now test the proposed approach using the actual IRI scanner 
panel data on refrigerated ready-to-drink orange juice. 

5.1. Models 

As in the simulation, we compare the performance of the exponential smoothing 
model of brand loyalty (SMOOTH) with the proposed nonstationary Dirichlet-multi- 
nomial model (NSDM). The complete specification of the utility function for the model 
based on SMOOTH is repeated below: 
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where the measure SMOOTH is as defined in Equation (2) .  Similarly, we modify the 
utility function of the NSDM model to take into account marketing mix effects as follows: 

where the measure NSDM is as defined in Equation (8) .  We include the brand-specific 
constants to account for the effects of possible omitted variables (such as product quality 
and media advertising). Including these intercept terms means that NSDM will require 
(n - 1) parameters more than SMOOTH, where n is the number of available brands. 

In an actual purchase setting, price and promotion directly influence household choice 
behavior. Although we have assumed in our derivation that yh, reflects only the underlying 
brand choice probabilities, the observed choice behavior of each household in fact reflects 
not only household tastes but also the impact of time-varying marketing mix variables. 
Thus, NSDM no longer serves as a stand-alone choice model, but as a loyalty variable 
within a multinomial logit model. Nonetheless, we feel that the derivation in 4 3 provides 
a strong intuitive rationale for the measure NSDM and that all of the parameter inter- 
pretations discussed earlier still apply. Whether or not the proposed approach performs 
well in an actual choice setting should be resolved empirically. 

We also assess the performance of a special case of NSDM in which the nonstationarity 
parameter X is constrained to 1. This model, which we denote SDM (for stationary 
Dirichlet-multinomial), captures only the heterogeneity in choice behavior across house- 
holds. The form for the utility function is exactly the same as for NSDM except that the 
brand loyalty measure simplifies to: 

where c subscripts the choice occasions from 1 to t - 1. By comparing the performance 
of SDM with NSDM, we can assess the incremental benefit of tracking nonstationarity. 

We compare NSDM with two other models designed to account for cross-sectional 
heterogeneity in choice behavior. The first is a multinomial logit model which uses as 
its measure of brand loyalty the "share of previous purchase" variable proposed by Krish- 
namurthi and Raj ( 1988): 

SHARE differs from SDM in two respects. First, it lacks the brand-specific parameters 
7, ;second, because SHARE can take on a value of zero, it cannot employ the log trans- 
formation used in SDM. 

We also examine the semiparametric random-effects model proposed by Chintagunta 
et al. ( 1991 ). Instead of using a loyalty-type measure to capture cross-sectional hetero- 
geneity, this model assumes that the fixed term (i.e., the brand-specific constant) in the 
utility function for each brand varies across households according to some underlying 
probability distribution. The semiparametric specification involves approximating each 
of these distributions using a finite number of support points, and then estimating the 
location and the probability mass associated with each support point. 

More formally, let f;( a , )  denote the probability density function describing the un- 
derlying distribution of a , .  In the semiparametric specification, one approximatesf; (a ;  ) 
with a finite number of support points, Ni.Chintagunta et al. ( 1991) find that three 
support points are sufficient to approximate the underlying distribution f;(a ,) .  Therefore, 
we also set N, = 3 for each brand i. Note that for the six brands in our orange juice data, 
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this relatively small number of support points results in a very large number of support 
point combinations (36  = 729). 

5.2. Data 

As described in § 4.1 above, our database consists of 200 panelists, 6 brands, and 3,079 
purchases. All 52 weeks from the year 1983 (a total of 1,490 purchases) are treated as 
the sole initialization period, all of the data from 1984 ( 1,589 purchases) are used for 
calibration purposes, and 666 purchases from the first six months of 1985 are reserved 
for a predictive validation. Besides the different loyalty measures, all of our models include 
variables for regular (depromoted) price, short-term price cuts, and a 0-1 variable indi- 
cating the presence of any newspaper feature a~ t iv i ty .~  

Each of the choice models (except the semiparametric random-effects model) is cal- 
ibrated as an ordinary multinomial logit model using an iterative Taylor series procedure 
(Fader et al. 1992). We calibrate the semiparametric model using the general purpose 
nonlinear optimization software GQOPT (Quandt and Goldfeld 1987). Because of the 
large number of support point combinations, this last procedure is nearly 1000 times 
more computationally intensive than the other four. 

5.3. 	 Results and Discussion 

We initialize the four measures SHARE, SMOOTH, SDM and NSDM using the data 
from the initialization period. We then estimate the parameters for all five models using 
the data from the calibration period. The parameter estimates and model fit statistics are 
presented in Table 1 (with additional information on the semiparametric model included 
in Table 2) .  In terms of model fit, the NSDM model (LL = -140 1, j = 0.430) comes 
out on top. Because the models are not nested, we use a test statistic from Ben-Akiva 
and Lerman ( 1985, p. 172) that transforms the difference in (non-nested) model fit to 
a normal random variable. In comparing the NSDM and SMOOTH models, the fit 
statistics from Table 1 yield a standard normal score of -8.69, indicating that the difference 
is clearly significant (p < 0.00 1). The difference between NSDM with SDM is even more 
significant, which clearly conveys the importance of accounting for nonstationarity in 
this particular dataset. 

We use the data from the holdout period to see whether the improvement in fit offered 
by the NSDM model holds up in a predictive test. Using the parameter estimates from 
Table 1 to predict purchase behavior in the holdout period, we find that NSDM ( L L  
= -602, p 2  = 0.389) once again outperforms all four competing models. 

Despite the limitations of SMOOTH illustrated in our simulation, its ability to fit and 
predict "real world" brand choice behavior is quite strong (and well established in the 
literature). The stationary models (SDM, SHARE and the semiparametric random-effects 
model) fall short in their ability to fit brand choice behavior apparently because they 
cannot account for nonstationarity. However, both SDM and the semiparametric model 
predict choice behavior in the holdout sample at least as well as SMOOTH. This suggests 
that the predictive performance of SMOOTH may be almost entirely due to its ability 
to account for the heterogeneity in household tastes. 

The coefficients for the marketing mix variables (feature, regular price, and price cut) 
are all significant, intuitively reasonable, and fairly similar across the five models. The 
key difference is in the estimated value of A. As in the simulation, the estimate of the 
nonstationarity parameter is substantially lower for SMOOTH (where we anticipate a 
downward bias) than for NSDM (where we anticipate no bias). In NSDM, the estimate 
of X = 0.93 suggests that, on average, a renewal occurs between choice occasions with 

Because the product must be refrigerated, there is virtually no display activity in the category. 
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TABLE l 

Fit Resulls and Eslitnaled Model Coeficienls: Refrigerated Orange Juice 

Nonstationary Models Stationary Models 

NSDM Smooth SDM Semiparametric SHARE 

Brand-specific constants: 
Regional 
Citrus Hill 
Tropicana Reg. 
Tropicana Prem. 
Minute Maid 
Private Label 
Loyalty 

Marketing mix coefficients: 
Feature 
Regular Price 
Price Cut 

Brand-loyalty coefficients: 
Regional 
Citrus Hill 
Tropicana Reg. 
Tropicana Prem. 
Minute Maid 
Private Label 

Nonstationary 
Calibration Period ( N  = 1589): 

Log Likelihood: 
Parameters: 
Fit statistic 

Prediction Period ( N  = 666): 
Log likelihood: 
Fit statistic 

" t-statistics in parentheses. 

Value of the parameter constrained in estimation. 

'reported t-test versus null hypothesis A = 1. 


See Table 2. 


TABLE 2 

Puratnc~ter Etil'tnuIc~.~ from Scvniparatnetric Model 

Second Support Third Support 
First Support Point Point Point 

Prob. Prob. Prob. Expected 
Brand Location Mass Location Mass Location Mass Value 

Regional 1.679 0.086 -1.406 0.613 -2.031 0.301 1 . 3 2 7  
Citrus Hill 2.332 0.232 0.298 0.313 -1.394a 0.455 0.000 
Tropicana Regular 0.753 0.229 -1.250 0.625 -21.541 0.146 3 . 7 5 5  
Tropicana Premium 2.435 0.1 18 -0.873 0.189 2 1 . 4 8 6  0.692 1 4 . 7 5 5  
Minute Maid 23.017 0.025 0.83 1 0.583 -1.552 0.392 0.452 
Private Label 4.310 0.106 0 . 3 4 3  0.347 5 . 6 8 8  0.548 -2.779 

" This parameter restricted so that the expected value of the distribution for Citrus Hill equals zero. 
Each row in this table describes the semiparametric probability distribution function for each brand. Each 

brand's pdf is characterized by three support points, and each support point has an associated probability mass. 
These probabilities can be interpreted as the proportion of households whose intrinsic preference for the brand 
is equal to the corresponding support point location. 

Consider the regional brand, for example. The support points and associated probability masses suggest that 
8.6% of the sample households have a brand-specific intercept of 1.679, 61.3% have a brand-specific intercept 
of -1.406. and the remaining 30.0% have an intercept of 2 . 0 3  1 for the regional brand. 

For further background on this model, see Chintagunta et al. (1991). 
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probability 0.07, or on average once every 14 purchases. To put this in perspective, the 
average panelist makes about 15 purchases over the initialization and calibration periods. 
Despite the fact that these renewal events occur rather infrequently, the highly significant 
difference between NSDM and SDM suggests that we still make great gains by capturing 
these occasional changes. 

As discussed by Guadagni and Little (1983, p. 214), the brand-specific constants in 
the logit model "serve to capture any uniqueness an alternative has that is not captured 
by other explanatory variables." To the extent that an omitted variable such as product 
quality is reflected in the average price of the brand, we might expect to see a high 
correlation between the brand-specific constants and average shelf price.6 In fact, the 
Spearman rank correlation between the estimates of ai and the average shelf price of 
each brand is the same (0.71 ) for the SMOOTH and NSDM models. The difference 
between the two models is that while the brand-specific constants from SMOOTH are 
highly correlated with the brand market shares (0.60), the brand-specific constants from 
NSDM are not ( -0.09 ). 

Unlike the brand-specific constants, the estimates of the parameters 7,in NSDM are 
reasonably independent of both the brand-specific constants and the average shelf prices 
(the rank correlations are -0.37 and -0.20, respectively). Apparently, these parameters 
are capturing a different phenomenon-which we believe to be more closely related to 
brand preferences-than the brand-specific constants. 

The parameters r i also reveal the level of heterogeneity in the market. Based on the 
estimates in Table 1, 4 = 0.46, indicating a fairly substantial amount of heterogeneity. 
In contrast, the level of heterogeneity implied by the SDM, in which the parameter X is 
constrained to 1, is much lower ( 4  = 0.23). We expect this finding to hold in general; 
that is, by explicitly accounting for nonstationarity in purchasing patterns, household 
brand loyalties will appear to be less similar cross-sectionally than they would in a model 
that assumes pure stationarity. 

6. Conclusion 

In this paper, we have developed a new loyalty measure, derived from a nonstationary 
Dirichlet-multinomial model of brand choice, that is able to separate nonstationarity 
from heterogeneity in consumer purchase behavior. One of the benefits of our proposed 
model is that it requires only a few more parameters than the traditional exponential 
smoothing model (Guadagni and Little 1983), but it can be estimated with the same 
data and same multinomial logit software (using the estimation procedure proposed by 
Fader et al., 1992). 

We demonstrated the potential value of the proposed approach using simulated and 
actual data. The logit model featuring the proposed measure of loyalty fit the actual data 
significantly better than existing models, including the logit model proposed by Guadagni 
and Little ( 1983); furthermore, this improvement in fit held up to predictive validation. 
The additional information provided by the estimates of the Dirichlet parameters ri is 
also potentially quite meaningful. These parameters not only reveal the level of hetero- 
geneity in the market, but also tell us something about brand loyalty in the absence of 
observed choice behavior. We believe that these advantages make the proposed measure 
worthy of consideration in future modeling efforts. 

The average shelf price for each brand is based upon the net price, combining regular (depromoted) price 
and any applicable short-term price cuts. Over the calibration period, these average prices are: Bestever $1.76, 
Citrus Hill $1.83, Tropicana Regular $1.75, Tropicana Premium $2.26, Minute Maid $1.98, and Maplehurst 
$1.33. 
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6.1. Future Research 

Having highlighted the role of nonstationarity in the multinomial logit model, it is 
worth discussing some further uses of the conceptual and methodological issues presented 
in this paper. One promising application would be to examine the long-run effects of 
promotions on household purchasing behavior. Numerous researchers and practitioners 
have debated the short-term effects of consumer promotions on brand profitability and 
consumer preferences (Blattberg and Neslin 1989), but few have tried to empirically test 
these consequences beyond a period of roughly one year. The technique developed here 
provides a natural first step in this modeling process. 

Of course, our measure is not without its limitations. The NSDM model captures 
nonstationarity as a process of repeated renewals from a stationary Dirichlet distribution. 
This implies that all individuals will have the same long-run choice probabilities.' Thus, 
while our model may do well in tracking choice behavior over the short run, it may not 
be appropriate for long-range forecasting (especially when the estimated probability of 
renewal is relatively high). 

There are also a number of possible extensions worth considering. We briefly discuss 
some of these potential directions: 

More general forms of nonstationarity. As researchers gain further insight into the 
nature of nonstationarity, we might want to consider more general models to describe 
changes in tastes and choice behavior. For example, it is possible that the same consumer 
exhibits different kinds of nonstationarity. Under some circumstances we might expect 
to see abrupt changes in brand preferences (as in NSDM ); in other cases we might expect 
to see more continuous, gradual changes (as in SMOOTH). 

Heterogeneity in nonstationarity. An explicit assumption of the NSDM model is that 
the nonstationarity exhibited by each consumer is described by exactly the same renewal 
process. A less restrictive model would allow the nonstationarity parameter X to vary 
across households. This might be done in one oftwo ways: either by using a semiparametric 
specification to approximate the underlying distribution of X, or by making X a function 
of household characteristics such as category usage frequency. While this extension is 
beyond the scope of the application presented here, it could aid the model's realism and 
performance in a very substantial yet parsimonious manner.8 
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'Note that the same thing is true of the exponential smoothing model, which is in effect a random walk with 
no absorbing state: forecasting over the long-run, individual choice probabilities will regress to the aggregate 
market shares. 
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