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While there is a growing literature on investigating the Internet clickstream data collected for a single site,
such datasets are inherently incomplete because they generally do not capture shopping behavior across

multiple websites. A customer’s visit patterns at one or more other sites may provide relevant information
about the timing and frequency of his or her future visit patterns at the site of interest.
We develop a stochastic timing model of cross-site visit behavior to understand how to leverage information

from one site to help explain customer behavior at another. To this end, we incorporate two sources of association
in browsing patterns: one for the observable outcomes (i.e., arrival times) of two timing processes and the other
for the latent visit propensities across a set of competing sites. This proposed multivariate timing mixture model
can be viewed as a generalization of the univariate exponential-gamma model.
In our empirical analysis, we show that a failure to account for both sources of association not only leads to

poor fit and forecasts, but also generates systematically biased parameter estimates. We highlight the model’s
ability to make accurate statements about the future behavior of the “zero class” (i.e., previous nonvisitors to
a given site) using summary information (i.e., recency and frequency) from past visit patterns at a competing
site.
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1. Introduction
Virtually every commercial website monitors traffic
to its own site and captures data on its own visi-
tors. Given the observed behavior of these visitors,
it is possible to develop a solid understanding of
the customer base. This, in turn, can enable man-
agers to predict likely future behavioral patterns and
to determine customer response to future market-
ing efforts. As information technology continues to
advance rapidly, the amount and richness of this type
of clickstream data will continue to provide managers
with a valuable tool to conduct their customer rela-
tionship management (CRM) efforts.
However, while there is a growing literature on

investigating the Internet clickstream data collected
for a single site (Bucklin and Sismeiro 2003, Johnson
et al. 2003, Moe and Fader 2004a), such datasets are
inherently incomplete because they generally do not
capture shopping behavior across multiple websites.
A customer’s visit patterns at one or more other sites
may provide relevant information about the timing
and frequency of his or her future visit patterns at
the site of interest.

Consider a hypothetical example of visiting behav-
ior at two online retailers in a given product cat-
egory, for example, books. Figure 1 illustrates the
sequence of visits to site A and site B for a partic-
ular individual. Site A (e.g., Amazon.com) observes
the upper series of visits over time and may want
to predict when this customer will next visit the site
and how often she will visit during a future period.
Site B (e.g., arch-rival Barnesandnoble.com) may also
want to make the same type of forecasting statements
using the data it has available for this customer (lower
series).
Using the kinds of models discussed in the papers

cited above, managers could use each of these time
series by itself to make separate predictions about
future visit patterns at each site. But a key question
is whether (and how) these predictions could be
improved by taking into account the data from the
other site as well. In this case, a clear pattern emerges
from the combined data: Visits to site B are immedi-
ately followed by visits to site A. Thus, it is highly
likely that this customer will visit site A right after
the observation period ends (vertical dashed line)
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Figure 1 Example of Internet Browsing Behavior

Site B
?

Time

Site A
?

Time

because she visited site B right before the end. Infer-
ences based on the data from site A alone would
be quite different from those drawn from the inte-
grated database. We argue that there are a variety of
cross-site patterns beyond the one shown in this styl-
ized example, and that many of these patterns will be
borne out in actual clickstream datasets.
The objective of this research is to better under-

stand store visit patterns by developing a stochastic
model that explicitly captures the critical features of
cross-site timing behavior at the individual level. To
this end, we consider two different types of cross-site
dependence in store visit timing behavior: one for the
observable outcomes (i.e., arrival times) of two timing
processes and the other for the latent visit propen-
sities across a set of competing sites. Based on the
proposed approach, we can determine whether it is
possible to make better inferences about individual-
level browsing behavior at multiple sites using the
combined database instead of assuming that visit pat-
terns at different websites are independent of each
other.
The importance of this issue is quite evident

in the burgeoning practitioner literature on CRM.
Many firms tout their capabilities to offer complete
“360-degree” coverage of customer behavior, and
industry experts emphasize the importance of “house-
holding” (i.e., linking data from different sources
to individual customers) in their data warehousing
efforts (Swift 2001). While we focus on only one of
the many possible benefits that arise from this type of
data integration, the same modeling approach can be
applied to other related domains, such as combining
customer visit patterns across multiple channels (e.g.,
website, retail store) and combining activities across
different business units for a given multiservice firm
(e.g., banking, stock trading). The model presented
here is sufficiently general to capture and describe
these behaviors as well as it may work for cross-site
visiting patterns.
Beyond the specification of the model per se, these

different applications of data integration share sev-
eral critical managerial issues that our model can help
illuminate. Of particular interest is the desire to pre-
dict time-to-first-trial behavior at one site (or chan-
nel, etc.) given the pattern of past visits/usage at
another. Prior researchers (Morrison and Schmittlein
1981) have observed that the so-called “zero class”

(i.e., the set of previous nonvisitors/buyers) from one
period often accounts for more purchases in a sub-
sequent period than any other single class of past
customers. Our joint-timing model can successfully
leverage the visit pattern from one site to allow us
to make more informed statements about the num-
ber (and timing) of zero-class buyers who will make
their initial visits to the other site sometime in the
future.
The zero class merits explicit mention because it

is the primary focus of customer acquisition efforts
that have bedeviled online retailers in recent years.
According to industry sources, such as the well-
known Shop.org State of Online Retailing report (2003),
e-commerce merchants are becoming increasingly
concerned about their abilities to attract profitable
new customers in an efficient manner. Our research
provides a way to evaluate the “goodness” of cus-
tomers at the individual level by capturing browsing
patterns across online retailers.
Along these lines, we investigate relevant manage-

rial issues related to the zero class. Imagine a given
customer who has never visited a specific site (say,
site A) but did visit a different site (site B) at least
once in the past. How does his or her likelihood of
visiting site A depend on the pattern of past vis-
its to site B? Who would be a more valuable cus-
tomer from site A’s perspective—someone who has
visited site B fairly frequently (but not very recently)
or someone who has visited site B fairly recently (but
not very frequently)? Once again, it is easy to see
that this type of question may be equally important
for managers addressing issues about cross-channel
and cross-business unit behavioral patterns as well as
cross-site ones.
Finally, in addition to addressing these important

substantive issues, this research also offers several
novel methodological contributions. As noted earlier,
our multivariate timing model, a generalization of
the univariate exponential-gamma model, accounts
for two different types of correlation in browsing
patterns. We achieve this with closed-form solutions
that enable us to use standard maximum likelihood
parameter estimation techniques. The key to deriving
this highly flexible density function is the use of the
Sarmanov family of multivariate distributions (Kotz
et al. 2000, Lee 1996). To the best of our knowledge,
this is the first time this class of functions has been
deployed in marketing, and we foresee many future
applications for it across a wide variety of problem
settings.
The remainder of the paper is organized as follows.

Section 2 deals with the conceptual background that
motivates our modeling approach. Section 3 gives an
overview of the data and describes summary statistics
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as a way to begin to understand some of the associa-
tions in browsing patterns that exist across competing
websites. In §4, we present the model specification
and use a simulation study to demonstrate the poten-
tial problems caused by ignoring these associations.
In §5, we apply the proposed model to Internet click-
stream data for websites in two different categories
(books and music). Section 6 introduces conditional
expectations for the model and examines the zero-
class problem, that is, the likelihood and expectations
for future visits by previous nonvisitors. We dis-
cuss other managerial implications of this research
and conclude with directions for future research
in §7.

2. Conceptual Background
As discussed earlier, the vast majority of papers that
discuss online visit behavior are strictly focused on
the patterns that arise for a group of customers visit-
ing a single website. This is consistent with the lim-
ited viewpoints provided by simple data-collection
techniques, such as an examination of a site’s log
files. Padmanabhan et al. (2001) use the term site-
centric to describe such a dataset and contrast it with a
broader user-centric view that would also cover behav-
ior for the same users at one or more other sites.
Some researchers (e.g., Iyer and Pazgal 2003, Johnson
et al. 2004) have taken steps to explicitly consider cer-
tain multiple-site aspects of online browsing (e.g., the
number of different sites visited in a given month),
but these papers do not attempt to understand or pre-
dict specific arrivals at each site.
Padmanabhan et al. (2001) conduct a number of

analyses to demonstrate the significant biases that
arise when analysts adopt a site-centric perspective,
but they stop short of developing a new model
that can bridge the gap between these two different
views of customer behavior. We take on this chal-
lenge, starting with a model that assumes indepen-
dence in cross-site behavior, then introducing two
unique sources of association in browsing patterns:
one for the observable outcomes (i.e., arrival times) of
two timing processes and another for the unobserv-
able visit propensities (regardless of the timing of the
actual arrivals) across the set of competing sites. We
illustrate these concepts with an example.
Figure 2 shows why it is important to distinguish

between these two sources of association in cross-
site browsing behavior. First, consider the browsing
behavior of person 1 and person 2 only at site A.
They appear to be identical in terms of the timing
and frequency of visits at site A alone. If we only had
site-centric data, we would likely conclude that their
future behavior patterns at site A would be very sim-
ilar. However, once we combine each person’s brows-
ing information at site B with the visits at site A,

Figure 2 Associations Across Browsing Patterns
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we can begin to tell two very different stories about
their shopping habits. When person 1 visits site A, she
is likely to visit site B at nearly the same time. The
underlying preference for both sites may not be sim-
ilar, but she might be an avid comparison shopper,
who chooses to look across alternative sites to ensure
the best price or availability of an item. But the bot-
tom line is that the association in visit timing is high
for this customer.
In contrast, person 2 does not seem to have a high

level of coincidence for his visits, but he does have
a similar number of visits at both sites for the entire
period of observation. Therefore, the similarity in visit
rates may be high for him, but the coincidence of
visit timing is not. He may visit different sites on the
basis of his specific interests at each shopping occa-
sion (e.g., browsing cookbooks at site A but visiting
site B to find books for his children).
In general, misleading inferences may arise from

ignoring either of these two associations; for example,
suppose that a customer (like person 1 in Figure 2)
has a high level of coincidence of visits across two
sites. However, we do not take this tendency into
account. Her desire to comparison shop will drive up
the number of visits at one site to a level that exceeds
her true, underlying desire/propensity to visit that
site by itself. Thus, we might erroneously infer higher
visit rates than her actual propensity at one or both
sites. To the extent that some function of visit rates
can serve as a valid indicator of customer value (Moe
and Fader 2004a, b), we would then overestimate her
potential worth as a customer. We will examine sev-
eral biases like this one in the simulation study dis-
cussed in §4.
Therefore, to properly bridge the gap between the

site-centric and user-centric perspectives, it is imper-
ative that we allow for both sources of association.
Before developing a model specification that accom-
plishes this goal, we first describe the datasets we
will use for our empirical investigation. This will help
motivate/clarify some of the analytic components of
the model and will also provide us with some sim-
ple summary statistics to use as benchmarks to bet-
ter understand and appreciate some of the model’s
parameters.
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3. Data Overview
In this section, we describe the data used for this
research and propose several sets of summary statis-
tics derived from the combined database to investi-
gate possible associations in cross-site visit behavior.

3.1. Data Description
We use Internet clickstream data collected by Media
Metrix, Inc., which is now part of comScore Net-
works. At the time of our dataset, Media Metrix
maintained a panel of approximately 20,000 panelists
whose Internet behavior was recorded over time.
These panelists had agreed to install special unob-
trusive software on their computers that monitored
their browsing activities. The collected data contain
information regarding what sites individuals visit and
when they visit. The data also include the precise day
and time when panelists viewed a specific URL.
We are interested in the dates that each individual

visits a given site. To consolidate the data, we aggre-
gate panelist store visits at a given site to the daily
level.1 Any session in which the individual views a
URL with the online store’s domain name is consid-
ered a visit to that store. If a given individual visits
a site multiple times in a single calendar day, that is
coded as one visit on the day when the session began.
For our purposes, we use data pertaining to two

major online retailers in each of two product cate-
gories: books (Amazon.com and Barnesandnoble.com)
and music (CDNOW.com and Musicboulevard.com).
The data span a period of eight months from October
1997 to May 1998. The total number of panelists who
made at least one visit to either site in books andmusic
was 4,955 and 2,422, respectively; the total number of
visits at book and music sites was 12,640 and 5,387,
respectively. We exclude people with no visits to both
sites in each product category. The number of visits
made by unique visitors at site A, site B, and both sites
are detailed in Table 1, which shows that 24% (1,193
of 4,955 panelists) and 17% (422 of 2,422 panelists)
of customers visited both sites in books and music,
respectively.
The two online booksellers are quite different in

terms of the number of unique visitors and vis-
its from one another (i.e., Amazon.com dominates
Barnesandnoble.com), but the two online stores in
music are fairly similar to each other. These different

1 The data aggregation to the daily level may be questioned, but
there are several solid justifications for this choice: (1) In the data
used in this research, there are very few cases of multiple sessions
at one site in a given day (less than 4% of all sessions at each
of our focal sites); (2) methods for defining a session using Inter-
net clickstream data are still somewhat controversial; and (3) other
researchers (e.g., Moe and Fader 2004a, b) have successfully used
data at the daily level.

Table 1 Data Description for Books and Music

Books Music

Site A Amazon.com CDNOW.com
Site B Barnesandnoble.com Musicboulevard.com

Visitors Visits Visitors Visits

Site A only 2,681 5�143 927 1,625
Site B only 1,081 1�547 1�073 1,559
Both sites 1,193 5�950 422 2,203

Total 4,955 12�640 2�422 5,387

degrees of competitive parity will offer some interest-
ing contrasts in our empirical analyses.
We further break down the number of visits at

each site made by each individual in Tables 2 and 3
for books and music, respectively. As shown in these
tables, the number of individuals who visited only
one site accounts for a majority of panelists in both
product categories: 76% (3,762 of 4,955 panelists) in
books and 83% (2,000 of 2,422 panelists) in music.
Since these customers did not visit both sites, they are
a main source for online retailers in acquiring new
customers.2 These large groups are of particular inter-
est in this research, and we will focus on them in §6.

3.2. Summary Statistics
We propose several different summary statistics to
examine potential associations across sites. How-
ever, this is not an exhaustive set to infer possible
dependence in the cross-site visiting process. While
aggregate measures of summary statistics cannot dis-
entangle underlying individual-level behavioral pat-
terns in browsing data and are less valuable in the
presence of sparse data, they may help detect the
possible nature of associations before undertaking a
model-based approach.

3.2.1. Coincidence of Visits. In this analysis, we
concentrate on the customers who visited both sites
to consider the degree of coincidence of visits. In
Tables 4 and 5, we vary the length of time between
visits to the two sites in books and music, respectively.
Table 4 can be read as follows: 364 panelists made

1106 same-day visits at both sites in books, which
accounts for 18.59% of the total number of visits made
by these 1193 customers and 8.75% of the total visits
across the complete panel. In sum, nearly one-third
of the visits that span both websites take place within
the same week in books, and a similar (but slightly

2 These presumed “zero-class” customers may have visited both
sites at some point before our data period began, but we operate
under the conservative assumption that our observed data reflect
their tenure at each site. This corresponds with the course of action
that practitioners would tend to use with similarly left-censored
data.
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Table 2 Number of Visits for Books

No. of visits to Barnesandnoble.com

0 1 2 3 4+ Total

No. of visits 0 — 812 178 47 44 1�081
to Amazon.com 1 1�693 352 96 31 34 2�206

2 500 166 62 26 27 781
3 210 80 34 10 15 349
4+ 278 102 59 39 60 538

Total 2�681 1�512 429 153 180 4�955

lower) fraction characterizes the nature of coincidence
in music (see Table 5). Figure 3 shows how these
percentages of coincidental visits grow over a period
of 30 days. It is interesting to see that the pattern of
coincidental visits in books is very similar to that of
music, despite the different competitive environments
pointed out earlier.
Not only does this figure provide us with a useful

initial understanding of the timing of two-site visit
patterns, but it also will be the basis for a later val-
idation test. Our model’s ability to recover this time
pattern will be a good way to showcase its capabili-
ties and limitations.

3.2.2. Visit Rates. Unlike the above summary
statistics based on the subset of customers who visited
both sites, we now consider the entire set of customers
in each category to look for possible patterns in the
overall propensities to visit each site. We calculate the
visit rate at each site as the number of visits divided
by the observed time horizon for each individual (i.e.,
time since first observed visit to either site). To assess
possible associations in visit propensities, we calcu-
late the correlation between visit rates at both sites in
each product category.
For the two booksellers this simple correlation is

0.0673, and for the two music retailers it is −0.0356.
These minimal correlations seem to suggest that there
are no linked propensities in each category (in fact,
the latter correlation indicates the presence of some
site-specific inertia among music customers). But the
proper way to estimate the visit rates for each site is to
use a well-specified timing model that can capture the
latent visit tendency for each person. Furthermore, by

Table 3 Number of Visits for Music

No. of visits to Musicboulevard.com

0 1 2 3 4+ Total

No. of visits 0 — 818 163 44 48 1�073
to CDNOW.com 1 668 158 45 12 21 904

2 131 49 16 8 13 217
3 60 13 10 2 5 90
4+ 68 25 15 8 22 138
Total 927 1�063 249 74 109 2�422

Table 4 Coincidence of Visits for Books

Period No. of people No. of visits % at both sites % of all visits

Same day 364 1,106 18.59 8�75
2 days 414 1,321 22.20 10�45
3 days 451 1,460 24.54 11�55
4 days 491 1,581 26.57 12�51
5 days 529 1,704 28.64 13�48
6 days 556 1,808 30.39 14�30
Same week 583 1,909 32.08 15�10

Total 1�193 5,950

building an explicit bivariate model, we will estimate
a correlation parameter that specifically allows these
rates to be linked.

4. Model Development
We build a model of timing behavior for databases
combined across multiple websites. As a starting
benchmark, we describe a simple bivariate model that
assumes complete independence in cross-site visit
timing behavior. We then address several issues that
arise in developing a multivariate model; to accom-
modate them we introduce the Sarmanov family of
multivariate distributions. This remarkable method-
ology provides some very desirable properties that
assist in the specification, estimation, and interpreta-
tion of a multivariate model. We discuss how both
forms of possible association (coincidence and linked
propensities) are brought into the proposed model.
We conclude the section with the results of a sim-
ulation that illustrates the possible biases caused by
ignoring these forms of dependence in visit behavior
across sites.

4.1. A Simple Bivariate Model
We start with a commonly used model that assumes
complete independence in browsing patterns across
sites. This section reviews the standard exponential-
gamma mixture model, which has been applied
extensively in the marketing literature because of
its parsimony and performance. Each individual’s
intervisit times are assumed to be exponentially dis-
tributed, governed by �iA for site A and �iB for site B.

Table 5 Coincidence of Visits for Music

Period No. of people No. of visits % at both sites % of all visits

Same day 126 370 16.80 6�87
2 days 145 456 20.70 8�46
3 days 160 509 23.10 9�45
4 days 171 555 25.19 10�30
5 days 181 591 26.83 10�97
6 days 190 617 28.01 11�45
Same week 203 658 29.87 12�21

Total 422 2�203
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Figure 3 Coincidence of Visits
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Naturally, some individuals have high visit rates,
while others visit infrequently. This heterogeneity in
visit rates is assumed to follow gamma distributions
with parameters (rA, �A) for site A and (rB, �B) for
site B. As stated, each site has completely different
(independent) parameter sets. These distributions are
given by the following densities:

fs	t
i
sj
� �is = �ise

−�is 	tisj−tisj−1  and

gs	�
i
s� rs��s =

�is
rs−1�rss e−�s�

i
s

� 	rs
for s =A�B�

where �is is individual i’s latent rate of visit at site s,
tisj is the day when the jth repeat visit occurred at site
s, and ti0 is the day of her initial visit at either site. For
a single visit at site s for individual i, this leads to the
following exponential-gamma mixture model:

fs	t
i
sj
� rs��s =

∫ �

0
fs	t

i
sj
� �is× gs	�is� rs��s d�is

= rs
�s

(
�s

�s + tisj − tisj−1

)rs+1
�

For individual i’s single visit event at each site, there-
fore, a simple bivariate model ignoring any associa-
tion in browsing patterns is the product of the two
univariate exponential-gamma models:

f 	tiAj �t
i
Bj
�rA��A�rB��B = fA	t

i
Aj
�rA��A×fB	tiBj �rB��B

= rA
�A

(
�A

�A+tiAj −tiAj−1

)rA+1

· rB
�B

(
�B

�B+tiBj −tiBj−1

)rB+1
�

(1)

A popular approach to obtain the likelihood
function at site s for individual i is to specify
the individual-level likelihood function at site s,

conditional on that person’s latent visit rate at that
site. The likelihood at site s for individual i is the
product of sJi exponential terms, where sJi is the num-
ber of repeat visits at site s made by the ith individual,
times an additional term to account for the right cen-
soring that occurs between that customer’s last arrival
at site s and the end of the observed calibration period
(at time T ):

�Lis��
i
s� = �ise

−�is 	tis1−ti0 ·�ise−�
i
s 	t

i
s2
−tis1  · · ·�ise−�

i
s 	t

i
sJi

−tisJi−1 

· e−�is 	T−tisJi � (2)

To get the likelihood for the observed data (i.e., the
unconditional distribution) at site s for individual i,
we then integrate Equation (2) across all possible val-
ues of �is using the gamma mixing distribution:

�Lis�rs��s� =
∫ �

0
�Lis��

i
s�×gs	�is�rs��sd�is

= �	rs+sJi 
�	rs

(
�s

�s+T −ti0

)rs
(

1
�s+T −ti0

)sJi

�

(3)

where gs	�is� rs��s denotes the gamma distribution.
Multiplication of the unconditional likelihoods at
each site yields the simple bivariate model assuming
complete independence in browsing patterns across
websites, which can then be multiplied across the N
individuals to get the overall likelihood:

LIAB =
N∏
i=1

�	rA+AJi


�	rA

(
�A

�A+ T − ti0

)rA
(

1
�A+ T − ti0

)AJi

︸ ︷︷ ︸
Unconditional likelihood at site A

· �	rB +BJi 
�	rB

(
�B

�B + T − ti0

)rB
(

1
�B + T − ti0

)BJi

︸ ︷︷ ︸
Unconditional likelihood at site B

�

(4)

As shown in Equation (4), the independent model
requires only the information on the observed cali-
bration period (T − ti0) and the frequency of repeat
visits at each site (AJi

and BJi ) at the individual level.
It implies that these three elements represent suffi-
cient information to estimate all four parameters of
the independent model.
In other words, the independent bivariate model

ignores most of the information of visit timing at
each site. As long as the data required to estimate
the model (i.e., T − ti0�AJi

, and BJi ) are the same,
this model will yield exactly the same parameter val-
ues regardless of the timing of the actual arrivals. This
result is highly counterintuitive and suggests some
doubt about the theoretical basis (and empirical per-
formance) of the independent model. Indeed, the
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correlated bivariate model does not share these sim-
plistic data requirements. We now turn to our consid-
eration of a more rigorous bivariate model that will
use all of the timing data available from both sites
while allowing for formal associations in the timing
patterns across the two sites.

4.2. Issues in Developing a Multivariate Model
The most common way to introduce dependence is to
begin with two independent univariate distributions
and combine them using a third multiplicative term
that ties together the two random variables of interest.
For instance, Farlie (1960) proposed a general form of
bivariate distribution functions:

F 	tA� tB= FA	tA× FB	tB× �1+��A	tA�B	tB��
where the function F 	tA� tB is the joint cumulative
distribution, the functions FA	tA and FB	tB are the
marginal cumulative distributions, and � is a param-
eter measuring association. It suffices if we choose
for �A	tA and �B	tB functions that are bounded and
have bounded first derivatives with respect to their
arguments.
Given this setup, the function F 	tA� tB of the Farlie-

Gumbel-Morgenstern (FGM) family, which has been
studied extensively in bivariate model building (e.g.,
Johnson and Kotz 1975, 1977), is given by

F 	tA� tB = FA	tA× FB	tB
· �1+��1− FA	tA��1− FB	tB��� ��� ≤ 1�

(5)

If the densities f 	· corresponding to F 	· exist, then
Equation (5) implies

f 	tA� tB =
�2F 	tA� tB

�tA�tB

= fA	tA× fB	tB
· �1+��1− 2FA	tA��1− 2FB	tB���

Chintagunta and Haldar (1998) appear to be the
first to use the FGM approach in marketing as a
model of purchase timing in related categories (e.g.,
pasta and pasta sauce). While FGM offers a reason-
ably straightforward way to introduce dependence,
this approach is very limited from an inferential
standpoint. In particular, FGM does not generally
yield marginal distributions that match the functional
forms of the designated univariate densities.
In other words, when one random variable is

isolated by integrating over all possible values of
the other random variable, it is highly desirable
to get resulting marginal densities that are identi-
cal to the univariate densities of interest: fA	tA =∫ �
−� f 	tA� tB dtB and fB	tB =

∫ �
−� f 	tA� tB dtA. In the

case of the bivariate exponential distribution, the
FGM family is fine in this regard—it yields the stan-
dard exponential as its marginal densities. However,
for most other density functions, for example, the
gamma distribution, this property does not hold for
FGM. So while it is possible to formulate a bivariate
gamma distribution using FGM, the resulting distri-
bution would not be easy to interpret or manipulate.
In the next section, we introduce a relatively

unknown family of multivariate distributions that
overcomes this critical shortcoming and offers some
other useful properties as well.

4.3. The Sarmanov Family of
Bivariate Distributions

The model formulation described in this research is
based on the Sarmanov family of bivariate distribu-
tions (Kotz et al. 2000, Lee 1996). Sarmanov (1966)
first described a highly versatile family of bivariate
densities, but his work went largely unnoticed until
Lee (1996) introduced it to the mainstream statistics
literature.
The fundamental idea in constructing the Sarmanov

family of bivariate distributions is very similar to that
of other bivariate distributions, such as FGM. The
main difference lies in how dependence is brought
into the bivariate distribution. The Sarmanov family
of bivariate densities is highly flexible and includes
many of the FGM distributions as special cases.
Assume that fA	tA and fB	tB are univariate prob-

ability density functions. Let  A	tA and  B	tB be
bounded nonconstant mixing functions such that∫ �
−� s	tsfs	ts dts = 0 for s = A�B. The function
f 	tA� tB of the Sarmanov family of bivariate distribu-
tions is defined by

f 	tA� tB= fA	tA× fB	tB× �1+ ! A	tA B	tB�� (6)

This is a bivariate joint density with specified
marginals fA	tA and fB	tB, provided ! is a real num-
ber that satisfies the condition 1 + ! A	tA B	tB ≥ 0
for all tA and tB. ! is interpreted as an unnormalized
correlation (i.e., covariance), and the correlation coef-
ficient "! of tA and tB, if it exists, is given by

"! =Corr�tA� tB�=
!#A#B
$A$B

�

where #s =
∫ �
−� ts s	tsfs	ts dts , $

2
s = ∫ �

−�	ts − %s
2 ·

fs	ts dts , and %s =
∫ �
−� tsfs	ts dts for s =A�B. The cor-

relation coefficient "! of tA and tB is bounded by

�"! � ≤ �! �
√
E� 2

A	tA�E� 
2
B	tB��

Lee (1996) discusses methods to find the mix-
ing functions  s	ts for distributions of the multi-
variate natural exponential families. Assume that
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fs	ts is defined on �0�� for s = A�B. Let Ls	k =∫ �
0 e

−kts fs	ts dts denote the Laplace transform of fs	ts.
Define  s	ts= e−ts −Ls	1 for ts ≥ 0. Then the function
f 	tA� tB defined in Equation (6) is a bivariate density
with designated marginals fs	ts for s =A�B. We later
derive the Sarmanov family of bivariate exponential
and gamma densities on the basis of this method
(see Lee 1996 for other general methods to find
 s	ts).
It is of interest to investigate the properties of the

Sarmanov family of multivariate distributions. In con-
trast to FGM and other bivariate families, marginals
of this class of distributions are guaranteed to take on
the desired univariate densities. The Sarmanov fam-
ily is the only class of multivariate distributions that
offers this highly desirable property.
A secondary benefit of the Sarmonov family is

that the range of its correlation coefficients is gener-
ally wider than that of FGM distributions. The range
shown above can still be fairly restrictive in many
cases; it does not generally allow for the full spectrum
of 	−1�1, but at least the Sarmonov family offers
more flexibility without any loss in parsimony or ana-
lytical convenience.
In the next section we develop a bivariate timing

mixture model, which is the first use of the Sarmanov
family in such a context. This is a very practical appli-
cation that takes great advantage of the Sarmanov
properties in order to address the issues discussed
throughout the paper. We will use the Sarmonov
approach in two different ways simultaneously to
capture two sources of association: one for the sim-
ilarity in arrival times of two timing processes (via
a Sarmanov bivariate exponential distribution) and
another for the similarity in latent visit propensities
across a pair of competing sites (via a Sarmanov
bivariate gamma distribution).

4.4. The Proposed Model
Similar to a standard timing mixture model such as
the aforementioned exponential-gamma, the proposed
model has two main components: an individual-level
timing process and a cross-individual heterogeneity
distribution, each of which is constructed using the
Sarmanov approach.

4.4.1. Timing Process. We begin by developing
the correlated bivariate exponential distribution for
cross-site visit-timing processes, with a univariate
exponential timing model marginally at each site.
Assume that individual i’s latent visit rates are �iA

and �iB for site A and site B, respectively. The Laplace
transform of fs	tisj � �

i
s has the form

Lfs 	k��
i
s=

�is
k+�is

for s = A�B. Let  s	tisj − tisj−1��
i
s = e

−	tisj−tisj−1  − Lfs 	1
denote the required Sarmonov mixing functions.
Using  s	tisj − tisj−1��is= e

−	tisj−tisj−1 −�is/	1+�is, we can
construct a bivariate exponential density:

f 	tiAj � t
i
Bj
� �iA��

i
B� )

= fA	tiAj ��iA× fB	tiBj ��iB
· {1+ ) A	tiAj − tiAj−1��iA B	tiBj − tiBj−1��iB}� (7)

This is a bivariate exponential density with exponen-
tial marginals fA	tiAj ��

i
A and fB	t

i
Bj
��iB. The correla-

tion coefficient, ") , which captures the dependence in
coincidence of visits (i.e., similarity in visit times), is
given by

") = )
�iA

	1+�iA2
�iB

	1+�iB2
� (8)

where ) is a real number on the range

−1
max�LfA	1L

f
B	1� 	1−LfA	1	1−LfB	1�

≤ ) ≤ 1

max�LfA	1	1−LfB	1� 	1−LfA	1L
f
B	1�

�

Although this bivariate exponential model is a clear
generalization of the univariate exponential timing
model, there are certain familiar properties of the uni-
variate exponential timing model that are not gen-
eralized in the multivariate case. These include the
notion of a constant hazard rate as well as the exact
interplay between the (univariate) exponential tim-
ing model and the Poisson counting model. Unlike
the constant hazard rate in the univariate exponen-
tial timing model, the hazard rate of the bivariate
exponential timing distribution is not constant in the
presence of dependence, because the hazard rate at
a given site (say, site A) is a function of intervisit
times at the other site as well as past arrival times
at site A. Therefore, it is necessary to account for the
elapsed time since the last visit at each site in con-
structing the correlated timing process across web-
sites. Appendix A describes the discussion of hazard
functions for this model.
In addition, while translating the univariate expo-

nential timing model into the Poisson counting model
is straightforward, it is not analytically feasible to
derive an equivalent counting model from the tim-
ing model in the bivariate context. Thus, simulations
are required to generate the counts from the bivari-
ate timing model. Alternatively, one could develop a
Sarmanov version of the Poisson counting model, but
it would not lend itself to a closed-form interarrival
timing process.
Finally, it may be tempting to draw inferences

directly from Equation (8), but it is not easy to do so in



Park and Fader: Modeling Browsing Behavior at Multiple Websites
288 Marketing Science 23(3), pp. 280–303, © 2004 INFORMS

a meaningful manner. First of all, in the next section,
we bring in heterogeneity in the rate parameters,
which will make it much harder to visualize �iA
and �iB. Second, and more important, for mathemat-
ical convenience we will assume homogeneity in ") .
Therefore, in the mixture model we actually estimate,
there is not a perfect one-to-one mapping between the
rate parameters and the correlation term.3

4.4.2. Heterogeneity Distribution. To capture het-
erogeneous latent visit propensities at two sites across
the population, we employ the Sarmanov approach
once again, but this time using the gamma distribu-
tion in order to obtain a bivariate gamma distribu-
tion with gamma marginals. The Laplace transform of
gs	�

i
s has the form Lgs 	k� rs��s= 	�s/	k+�srs for s =

A�B. Let *s	�is� rs��s= e−�is −Lgs 	1 define the mixing
functions. Using *s	�

i
s� rs��s = e−�is − 	�s/	1+�srs ,

we can construct a bivariate gamma density:

g	�iA��
i
B� rA��A� rB��B�+

= gA	�iA� rA��A× gB	�iB� rB��B
· �1++*A	�iA� rA��A×*B	�iB� rB��B�� (9)

This is a bivariate gamma density with gamma
marginals gA	�iA� rA��A and gB	�

i
B� rB��B. The cor-

relation coefficient, "+, which captures the depen-
dence in underlying visit propensities (i.e., similarity
in latent visit rates), is given by

"+ =+
√
rA

1+�A

(
�A

1+�A

)rA √
rB

1+�B

(
�B

1+�B

)rB

� (10)

where + is a real number bounded by

−1
max�LgA	1L

g
B	1� 	1−LgA	1	1−LgB	1�

≤+≤ 1
max�LgA	1	1−LgB	1� 	1−LgA	1L

g
B	1�

�

A very useful property of a bivariate distribution
developed using the Sarmanov method is that it can
be expressed as a linear combination of products of
the univariate densities. For instance, the Sarmanov
bivariate gamma distribution with gamma marginals
can be expressed as follows:

g	�iA��
i
B� rA��A� rB��B�+

3 We examined a variety of finite mixture models as alternatives to
our parametric specification. One major advantage of this approach
is that it allows for heterogeneity in the arrival correlations; that
is, customers can have differing degrees of coincidence. But these
finite mixture models perform far worse than the proposed model
without offering any gains in parsimony or managerial diagnostics.

= gA	�iA� rA��A× gB	�iB� rB��B++LgA	1LgB	1

·




gA	�
i
A� rA��A+ 1× gB	�iB� rB��B + 1

− gA	�iA� rA��A+ 1× gB	�iB� rB��B
− gA	�iA� rA��A× gB	�iB� rB��B + 1

+ gA	�iA� rA��A× gB	�iB� rB��B


 �

Although this expression appears to be much more
complex than Equation (9), this decomposition facil-
itates the integration of the exponential with the
gamma distribution and greatly reduces the com-
plexity of the posterior distribution that emerges as
a result. We address this integration to derive the
unconditional timing model next.

4.4.3. The Complete Model. We derive a multi-
variate timing mixture model with closed-form ana-
lytic expressions. To get the unconditional distri-
bution, we need to integrate Equation (7), the
conditional timing process, across all possible values
of �iA and �iB using Equation (9), the bivariate gamma
density.4 As an illustrative example, the unconditional
distribution for a single visit at each site made by
individual i is as follows:

f 	tiAj �t
i
Bj


=
∫ �

0

∫ �

0
f 	tiAj �t

i
Bj
��iA��

i
B�")

·g	�iA��iB�rA��A�rB��B�+d�iAd�iB
=fA	tiAj �rA��A×fB	tiBj �rB��B

·



1+")h1Aj 	tiAj �rA��A×h1Bj 	tiBj �rB��B
++h2Aj 	tiAj �rA��A×h2Bj 	tiBj �rB��B
+")+h3Aj 	tiAj �rA��A×h3Bj 	tiBj �rB��B


� (11)

where

h1sj 	t
i
sj
�rs��s=

{
e
−	tisj−tisj−1 

(
2+ �

O
s

rs
+ rOs
�Os

)
−

(
1+ rOs

�Os

)}
�

h2sj 	t
i
sj
�rs��s=

{(
�Os

1+�Os

)rOs

−
(

�s
1+�s

)rs
}
�

4 To derive the unconditional distribution with closed-form expres-
sions, it is necessary to use ") , not ) , in the bivariate exponential
distribution. However, we can use either + or "+ for the bivariate
gamma density in deriving the closed-form expression. For the sake
of convenience, we use +, but translating the resulting parameter
estimates to obtain "+ is straightforward.
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h3sj 	t
i
sj
�rs��s

=
{(

�Os
1+�Os

)rOs
[
e
−	tisj−tisj−1 

(
2+ 1+�Os

rs
+ rOs
1+�Os

)

−
(
1+ rOs

1+�Os

)]
−

(
�s

1+�s

)rs

·
[
e
−	tisj−tisj−1 

(
2+ �

O
s

rs
+ rOs
�Os

)
−

(
1+ rOs

�Os

)]}
�

and rOs = rs + 1 and �Os = �s + tisj − tisj−1 for s =A�B.
4.4.4. Constructing the Likelihood Function.

While the “housekeeping” for this expression requires
some care, the actual mathematics are quite simple
and the computational demands are negligible. Even
when examining multiple purchases across many pan-
elists, the amount of computation required to evalu-
ate the complete likelihood function (see Appendix B)
is on a par with that of the independent model dis-
cussed earlier. As seen in the relationship between
Equation (11) and Equation (1), the likelihood function
of the complete model (Equation (24) in Appendix B)
collapses down to Equation (4) when both forms of
cross-site dependence are ignored.
We leave the detailed discussion of the complete

likelihood function to Appendix B, but here we briefly
describe the steps required to construct it.
As noted earlier, the usual “memoryless” charac-

teristic of an exponential model no longer applies
in the bivariate case. Therefore, we must categorize
each observation by the site currently visited and
previously visited. (In this sense, the model closely
resembles a Markov process, with the added benefit
of capturing the time between transitions.) There are
three possible current observations: (1) visit to site A,
(2) visit to site B, and (3) no visit at either site because
of right censoring (end of model calibration period).
Likewise, there are three possible past observations:
(1) visit to site A, (2) visit to site B, and (3) no visit at
either site because of left censoring (start of model cal-
ibration period). Hence, there are nine different types
of visits that we need to account for.
Each of these nine cases will generate a different

probability expression that reflects the basic structure
of Equation (11) but captures the unique timing ele-
ments required for that particular case. Appendix B
derives the specific form for each of these nine expres-
sions, starting at the individual level, bringing in
the bivariate gamma mixing distribution, and finally
yielding the likelihood function for the complete
model (with nine distinct terms) in Equation (24).
A natural question to ask at this point is whether/

how this bivariate model can be extended to allow for
visit patterns at three or more sites. Such an extension
is surprisingly simple, once the analyst is comfortable
with this idea of constructing a separate likelihood

expression for each of the nine cases. For example, a
trivariate model would replace this 3× 3 setup with
a 4 × 4 grid to capture all the possible transition
patterns among three sites, and the specification for
each of these 16 cases would still be consistent with
Equation (11). More details about the derivation and
operational aspects of the general multivariate model
can be obtained in a technical appendix that is avail-
able from the authors.

4.5. Simulations
At the heart of this model lie two different types of
cross-site associations: one that captures coincidence
in the observed arrival times at each site and one that
captures similarities (or dissimilarities) in the under-
lying rates that govern the visiting patterns at each
site. A failure to account for either or both forms of
association may lead to a misrepresentation of the
true nature of browsing behavior within and across
the two sites. To illustrate this point more clearly, we
present results from simulations in which the true
browsing processes across two sites are preset using
different interdependent structures. The main pur-
pose of these simulations is to demonstrate the nature
and magnitude of the potential problems (i.e., biases)
caused by ignoring one or both of the associations in
browsing patterns.
We created different simulated datasets based on

all six parameters: (1) two gamma parameters at each
site: (rA, �A) for site A and (rB, �B) for site B; (2) the
association in cross-site timing behavior across web-
sites, ") ; and (3) the association in latent visit rates
across the population, "+.
The first step is to generate an individual’s latent

visit rates at both sites. We draw individual i’s
latent visit propensity at one site (say, site B) from
the marginal gamma density, gB 	�iB; rB� �B of the
Sarmanov bivariate gamma distribution, and then
generate her underlying visit rate at the other site from
the conditional gamma density, gA	�iA � �iB� rA��A�"+.
The next step is to simulate intervisit times at both

sites for the entire period of simulation. To do so, we
draw an intervisit time based on the joint exponential
timing model and probabilistically determine which
site the individual would visit. This process of draw-
ing intervisit times is repeated until the sum of inter-
visit times goes beyond the length of the simulation
period.
For the gamma parameters (rA��A� rB��B), we use

the average visit rate for each site (rA/�A and rB/�B)
and the coefficient of variation (1/

√
rA and 1/

√
rB)

instead of using the gamma parameters directly.
Given a set of the gamma parameters, we select three
levels (i.e., minimum value, 0, and maximum value)
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Table 6 Simulation Design

Profile rA/�A 1/
√
rA rB/�B 1/

√
rB �	 �


1 0.50 0.50 0.50 0.50 Minimum Minimum
2 0.50 1.00 1.00 1.50 0.00 0.00
3 0.50 1.50 1.50 1.00 Maximum Maximum
4 1.00 0.50 1.00 1.00 0.00 Maximum
5 1.00 1.00 1.50 0.50 Maximum Minimum
6 1.00 1.50 0.50 1.50 Minimum 0.00
7 1.50 0.50 1.50 1.50 0.00 Minimum
8 1.50 1.00 0.50 1.00 Maximum 0.00
9 1.50 1.50 1.00 0.50 Minimum Maximum
10 0.50 0.50 1.50 1.00 Minimum 0.00
11 0.50 1.00 0.50 0.50 0.00 Maximum
12 0.50 1.50 1.00 1.50 Maximum Minimum
13 1.00 0.50 0.50 1.50 Maximum Maximum
14 1.00 1.00 1.00 1.00 Minimum Minimum
15 1.00 1.50 1.50 0.50 0.00 0.00
16 1.50 0.50 1.00 0.50 Maximum 0.00
17 1.50 1.00 1.50 1.50 Minimum Maximum
18 1.50 1.50 0.50 1.00 0.00 Minimum

for ") and "+.5 We use a fractional factorial design con-
sisting of 18 profiles, which are described in Table 6.
We simulate 30 different datasets for each of the 18
profiles and then estimate the independent model,
Equation (4), to determine the effects of ignoring the
correlations.
For our error measure we use the relative differ-

ence between the estimated mean visit rate and the
true underlying mean rate (i.e., (Estimated−Actual)/
Actual). If this difference tends to be small, we have
evidence that the independent model is robust to
misspecifications involving one or both correlation
terms. We use this relative error measure as a depen-
dent variable in an ordinary least-squares regression,
using the design matrix (i.e., Table 6) as explanatory
variables in order to learn how the various model
parameters may lead to possible biases. We use effects
coding for the design matix and run a single regres-
sion across all 540 simulated conditions (18 profiles×
30 simulations per profile). Standard regression diag-
nostics did not reveal any problems with this method-
ological approach.
The results of this regression reveal the importance

of accounting for coincidence in cross-site visit pat-
terns. The top panel in Figure 4 illustrates that errors
in our ability to capture the mean are directly related

5 Given a set of the gamma parameters, we can directly set bounds
for "+, since this correlation is a function of the gamma parameters,
as described in Equation (10). On the other hand, ") is a function of
latent visit propensities, �iA and �iB . We therefore need to integrate
Equation (8) across all possible values of �iA and �iB to set the range
of ") :

−1
max

{(
1+ rA/�A

)(
1+ rB/�B

)
�
(
1+�A/rA

)(
1+�B/rB

)}
≤ ") ≤

1
max

{(
1+ rA/�A

)(
1+�B/rB

)
�
(
1+�A/rA

)(
1+ rB/�B

)} �

Figure 4 Simulation Results of Interdependent Browsing Patterns
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to the value of the correlation term for coincident
visit timing, ") . As discussed in §2, this result makes
intuitive sense: A behavioral tendency towards coinci-
dence will lead to an exaggerated estimate of the visit
rate at one or both sites. This effect is highly signif-
icant (F2�527 = 197�22, p < 0�0001). On the other hand,
if this correlation term were negative (e.g., if visits to
one site slowed down arrivals at the other site), then
we would see a negative bias or an understatement
of the true visit tendencies.
In sharp contrast to the effects for coincidence, the

bottom panel in Figure 4 shows that there is a much
smaller bias when the correlation in the underlying
visit propensities, "+, is ignored. This effect is still sig-
nificant from a purely statistical perspective (F2�527 =
7�35, p < 0�01), but it is not associated with a clear
bias, as in the upper panel. Basically, ignoring any
correlation in visit propensities (positive or negative)
leads to a slight downward bias in the estimated aver-
age visit rate.
The difference in the magnitude of these bias esti-

mates seems to suggest that a failure to account
for coincidence in visits is more critical than accom-
modating correlation in latent visit propensities. Of
course, the presence (or absence) of bias in these esti-
mated means is only one indication of the overall
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Table 7 Overview of Models

Models Correlated timing Correlated rates No. of parameters

Model 1 — — 4
Model 2

√
— 5

Model 3 —
√

5
Model 4

√ √
6

importance of accounting for (or ignoring) these cor-
relations. A more telling diagnostic is to examine dif-
ferences in model fit that arise from various nested
models estimated on actual visit data. This is what we
address in the next section.

5. Empirical Applications
To conduct our empirical analyses, we first created
a systematic sample of the Media Matrix clickstream
data based on the number of visits to site A (Amazon.
com in books and CDNOW.com in music) and the
number of visits to site B (Barnesandnoble.com in
books and Musicboulevard.com in music). Specifi-
cally, we sorted the data based on the number of
visits at site A and the number of visits at site B
as the primary and secondary dimensions; then we
selected every tenth individual for books and every
fifth panelist for the music category. This resulted in
samples of 493 and 482 individuals for books and
music, respectively.
The models we examine in our empirical anal-

ysis vary on two dimensions: whether the model
allows for correlation in visit timing (coincidence) and
whether the model allows for correlation in the latent
visit propensities. Hence, there are four different mod-
els (see Table 7), ranging from the independent model,
Equation (1), to the complete model that accounts for
both associations, Equation (11). For instance, model 2
in Table 7 uses a Sarmanov bivariate exponential tim-
ing model with two independent univariate gamma
mixing distributions to derive a five-parameter multi-
variate timing mixture model.6

In addition, we estimate a model based on the
FGM bivariate exponential distribution, which, like
the Sarmanov model, yields the standard exponen-
tial as its marginal densities. In order to capture het-
erogeneous latent visit propensities at two sites, we
employ two independent gamma densities. The result-
ing model is directly comparable to our model 2.7

6 We examined other specifications for the independent model,
for example, the expo-power distribution (Saha and Hilton 1997,
Seetharaman and Chintagunta 2003). This model fits worse than
any of the exponential-gamma models. One reason for this result
is that the expo-power model—despite the fact that it has three
parameters—does not easily allow for unobserved heterogeneity
across the population.
7 To build the complete likelihood function for the FGM spec-
ification, we follow the same procedure used to derive the

All models were estimated using standard con-
strained optimization code in the MATLAB program-
ming language. Each model required less than one
minute to run on a standard desktop computer.
No irregularities or estimation problems (e.g., local
optima or sensitivity to starting conditions) were
observed. Despite the complexity required to derive
the likelihood function, these models are very well
behaved and efficient when it comes to parameter
estimation.

5.1. Model Results
Tables 8 and 9 show the parameter estimates for
books and music, respectively. It comes as no surprise
that the complete model (model 4) provides the best
fit while the independent model (model 1) is worst in
both categories. Of more interest is the relative per-
formance of the two intermediate models, which each
capture only one of the correlation terms. In both cat-
egories, model 2, which accounts only for the cor-
relation in coincidence of visit timing, is superior to
model 3, which assumes independent timing but cor-
related rates. This is consistent with the simulation
result showing that accounting for coincidence in vis-
its is more critical to better understanding customer
browsing behavior across sites than accommodating
the association in latent visit propensities.
Comparing the two model specifications under

model 2, we find that the gamma mixing parameters
are quite similar across the two models. Note, how-
ever, that the correlation parameter for the FGM hits
its upper bound in the book category. It is worth
emphasizing that this did not occur for any of the
Sarmanov models we examined for either of our
datasets. Moreover, model fit, as judged by LL or
BIC, also strongly favors the Sarmanov specification.
Therefore, we are left with a benchmark model that is
dominated, both empirically and conceptually, by its
Sarmanov counterpart.
Looking at the magnitudes of the correlation terms

(and the improvements in the likelihood values as
we move from model 1 toward model 4), it appears
that the overall degree of dependence is moderately
higher in music than in books. Perhaps this reflects
the greater degree of competitive parity mentioned
earlier. In both categories, however, these correlation
terms (and likelihood gaps) are highly significant,
offering strong support for the necessity of accommo-
dating cross-site correlations.

5.2. Model Validation
Although we have shown that the proposed model
performs well on a relative basis compared with var-
ious benchmark models, we have yet to show that

proposed model, but using the FGM bivariate exponential instead
of the Sarmanov one. That is, we repeat all the steps discussed in
Appendix B using FGM instead of Sarmanov.
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Table 8 Model Results for Books

Model 2

Model 1 FGM Sarmanov Model 3 Model 4

Amazon.com rA 0�4401 0�4743 0�4712 0�4372 0�4803
�A 0�2266 0�2369 0�2641 0�2161 0�2531

Barnesandnoble.com rB 0�2746 0�2795 0�2899 0�3118 0�3321
�B 0�3103 0�2919 0�2527 0�3023 0�2576

Correlation �	 — 0�2500 0�1918 — 0�1944
�
 — — — 0�2066 0�2192

LL −4�260 −4�237 −4�221 −4�247 −4�208
BIC 8,545 8,506 8,473 8,524 8,452

it performs sufficiently well on an absolute basis.
An in-sample model validation of summary statistics
helps demonstrate whether the proposed model prop-
erly captures the key behavioral aspects of browsing
behavior across multiple sites.
Our objective here is to see how well the model

results match the summary statistics discussed in §3.
First, we examine the observed patterns of coinci-
dence over time, discussed earlier and shown in
Figure 3. Using the parameters from the proposed
models, we simulate a new dataset and compare its
coincidence patterns with the actual data. To provide
some contrast, we perform this analysis for both the
complete model and the independent one.
Figure 5 shows the comparisons. In general, the

proposed model performs fairly well, especially over
the longer timespans (and it dominates the indepen-
dent model). Yet the model clearly underestimates the
amount of coincident visits that occur within a short
period of time. This gap is particularly acute for same-
day coincidence.
A natural model extension to address this issue

would be to introduce the concept of “hard-core com-
parison shoppers,” that is, customers who automati-
cally go to one site the same day that they visit the
other site. We could assume that there exists a fraction
of p customers who visit websites in the manner of
the proposed model, and the remaining 	1− p who
visit both websites within the same day. If we were
to allow for this “spike” in same-day shopping, we

Table 9 Model Results for Music

Model 2

Model 1 FGM Sarmanov Model 3 Model 4

CDNOW.com rA 0�2097 0�2141 0�2305 0�2382 0�2887
�A 0�1658 0�1636 0�1899 0�1670 0�2086

Musicboulevard.com rA 0�2478 0�2477 0�2693 0�2824 0�2890
�B 0�2416 0�2287 0�2219 0�2407 0�2088

Correlation �	 — 0�2130 0�2477 — 0�2435
�
 — — — 0�3041 0�2991

LL −3�067 −3�063 −3�034 −3�051 −3�021
BIC 6,158 6,157 6,099 6,133 6,080

conjecture that the curve for the complete model in
Figure 5 would track the actual data far better than
the one shown.
We do not pursue this extension here for several

reasons: (1) This “spike” at zero begins to overcus-
tomize the model in a way that may harm its gen-
eralizability and appropriateness for other domains
(such as cross-channel visit patterns); (2) there are
some questions about whether p should be specified
as individual specific (i.e., applying to all visits for a
given person) or visit specific among customers who
visited sites multiple times; and (3) if we choose the
latter option, we would need to consider the possi-
bility of making p heterogeneous across the popula-
tion, which would further complicate the model. In
summary, this is a promising area for future research,
but for now we simply accept the gaps seen in
Figure 5 as a well-understood (and not especially crit-
ical) limitation of our model.
Finally, we investigate whether the simulated visit

rates based on the proposed model reflect a similar
degree of cross-site correlation as we see for the actual
data. Using the same type of simulation process as
described earlier in this section, we calculate the cor-
relation between simulated visit rates in each product
category. The null hypothesis is that the correlation
between actual visit rates is equal to that between the
simulated visit rates in a given product category. On
the basis of t-test statistics, we cannot reject the null
hypothesis in books and music at the 5% significance
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Figure 5 Model Validation: Coincidence of Visits
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level. Thus, we are capturing the observed correla-
tion pattern quite well. From a diagnostic standpoint,
however, these correlations are not very meaningful;
the parameters shown in Tables 8 and 9 are far better
indicators of the true interrelationships between each
pair of sites.

6. The Zero Class: Cross-Site
Customer Acquisition

One of the principal motivations in building our
cross-site browsing model is the ability to better
understand—and potentially target—customers in the
zero class. This group is the set of panelists who
have been active in the product category at some pre-
vious point in the observation period but have not
visited the site of interest during that time. As shown
in Tables 2 and 3, the zero class accounts for the
vast majority of panelists in our datasets: 76% for
books and 83% for music. This is a natural focus of
customer-acquisition efforts for online retailers, who
have struggled with high costs (and meager outcomes)
in performing this vital task. Unlike prior research
that has dealt with the zero-class problem based
solely on the data within a given source (Ehrenberg
1964, Morrison 1969, Morrison and Schmittlein 1981),

our research sheds new light on the issue by demon-
strating how integrated databases can help improve
understanding of new customer arrivals across sites.
We approach the zero-class problem in three ways.

First is an aggregate analysis across a split sample: We
predict the overall number of “period 1” zero-class
members for a given site who will visit the site
in “period 2.” Second, we derive and illustrate two
different conditional expectation formulas to predict
future visiting behavior at the individual level—one
is for reach (i.e., the likelihood of visiting the previ-
ously nonvisited site at least once in a future period),
and one is for frequency (i.e., the expected number of
visits in the future period). Both of these conditional
expectation formulas can help the marketing man-
ager properly target valuable customers. Finally, we
use these conditional expectations to validate the pro-
posed model’s performance in predicting the acquisi-
tion of new customers.
For all of the analyses conducted in this part of

the paper, we use a longitudinal holdout sample.
We re-estimate the relevant models (proposed and
independent specifications) using only the first four
months of data (period 1) for model calibration, and
we save the second four months (period 2) for use as a
holdout sample. We employ the simulation procedure
described earlier to forecast the number of period 1
zero-class visitors at a specific site who visit the site
in period 2.

6.1. Aggregate Analysis for the Zero Class
In this section, we examine the holdout forecast at
the aggregate level. This is a relatively simple test
and does not provide any specific information about
which potential customers to target. But it is a use-
ful way to further validate the proposed model and
it highlights some of the biases and competitive
elements that have been mentioned throughout the
paper. See Figure 6 for a comparison of how well the
proposed model and independent model perform in
predicting the total number of period 2 buyers who
were members of the zero class in period 1.
For all four sites, there is a significant improve-

ment in forecasting by accounting for both associa-
tions in browsing patterns. The proposed model is
clearly better at predicting the number of new buyers
than the independent model. For each model, we test
the null hypothesis—that its percentage of new buy-
ers is equal to that of the actual data. For the pro-
posed model, this null hypothesis cannot be rejected
(at the 5% significance level) at each site in both prod-
uct categories. For the independent model, however,
the null hypothesis can be rejected at the 5% signif-
icance level at each site in both product categories,
except for Amazon.com.
Beyond these formal tests, several interesting diag-

nostics emerge. In every case, the independent model
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Figure 6 Actual Versus Predicted Percentage of the Zero Class in
Period 1
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overpredicts the number of previous nonvisitors. This
result can be directly linked to the outcome of our ear-
lier simulations, in which we observed that the fail-
ure to account for correlations in coincidence will lead
to overestimates of the arrival rates. Thus, managers
who rely on independent (site-centric) models may
be painting an overly rosy picture of their abilities to
naturally attract new customers.
In general, it is beneficial for all sites to use inte-

grated visit-timing information, but the extent of
these benefits is not the same across all sites. A fur-
ther investigation of Figure 6 sheds light on which
sites may benefit more by combining customer infor-
mation across online retailers. For instance, in the
books category, who benefits more from the combined
database, Amazon.com or Barnesandnoble.com? This
figure provides a clear answer: Barnesandnoble.com
gains much more than Amazon.com (i.e., its fore-
cast of customer acquisition is greatly improved)
in moving from the independent model to the cor-
related one. It is logical that Amazon.com should
realize less benefit compared to Barnesandnoble.com
because the gigantic online bookseller already has
enough information for customers who have browsed
in the product category. In other words, Barnesand-
noble.com learns a lot more from tapping into the
Amazon.com customer histories than the other way
around.

In contrast, the bottom panel of the figure shows
a much greater degree of parity among the online
music retailers. This result is quite plausible because,
as shown in Table 1, these firms are fairly similar in
terms of the size of their customer bases.

6.2. Conditional Expectations
We now approach the zero-class problem at the
individual level by examining the following two
questions: For a given individual who never visited a
specific website (say, site A), but visited the other site
(say, site B) in period 1, what is the expected likeli-
hood for her to visit site A at least once in period 2?
And, more specifically, what is her expected visit rate
at site A in period 2? Without loss of generality, we
focus on predicting a customer’s future behavior at
site A. We derive two analytical expressions of con-
ditional expectation at site A in period 2, according
to both the independent and the proposed model.
These conditional expectations of future behavioral
patterns can then be combined to make better infer-
ences and predictions about the customer’s visiting
behavior across sites.
We will address these questions by considering

whether this consumer was a recent or frequent vis-
itor at site B in period 1. We examine whether,
from site A’s perspective, recent visitors at site B are
more valuable than frequent visitors. Therefore, this
research provides a way to evaluate the “goodness” of
consumers at the individual level by capturing these
cross-site browsing patterns.
More formally, there are three elements—the ob-

served calibration period (T − ti0) and the frequency
of repeat visits at each site (AJi

and BJi )—that repre-
sent sufficient information for the independent model
from the ith customer’s visiting pattern. The pro-
posed model requires two additional elements: the
time of the last visit at each site (Aj and Bj in
Appendix B) from the integrated database. We will
calculate conditional expectations at site A in period
2 by varying the number of visits at site B (BJi ) and
the time of last visit at site B (Bj ) in period 1.
We first show the conditional expectation formu-

las for the independent model, and in Appendix C
we derive the equivalent expressions for the proposed
model. Using the well-known expressions discussed
in papers such as Morrison and Schmittlein (1981),
the expected rate of visits at site A in period 2 is

EIA	�
i
A � Information =

∫ �

0
�iA · g	�iA � Information d�iA

= rA+AJi

�A+ T − ti0
� (12)
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and the expected likelihood of no visit to site A in
period 2 is

EIA	e
−�iA	T ∗−T  � Information

=
∫ �

0
e−�

i
A	T

∗−T  · g	�iA � Information d�iA

=
(
�A+ T − ti0
�A+ T ∗ − ti0

)rA+AJi
� (13)

where �iA is individual i’s latent visit rate at site A,
(rA��A) is a set of gamma parameters estimated in
the independent model, T is the end of the observed
calibration period, and T ∗ is the end of the future
prediction period. To derive the expected probability
of (at least) a visit to site A in period 2, we natu-
rally subtract Equation (13) from the total probabil-
ity, 1. Both conditional expressions of the independent
model are well known. No conditional expectation
of the independent model includes any information
from site B in period 1, for instance, BJi or Bj , and
therefore is constant, regardless of the ith individual’s
visiting pattern at site B in period 1.
We discuss each conditional expectation of the pro-

posed model in Appendix C. The method of deriving
the conditional expectations for the proposed model
is the same as for the independent model, except that
the correlated bivariate distribution must be used.
Each conditional expectation of the proposed model
has the same basic form as in the independent model,
but it is multiplied by a term that accounts for asso-
ciations in the coincidence of visits and in latent visit
rates. Unlike the constant conditional expectations of
the independent model, the conditional expectations
for the proposed model vary depending upon the
information of the visit frequency and visit timing at
site B in period 1. As noted earlier when discussing
the likelihood function, each conditional expectation
of the proposed model collapses down to that of the
independent model if both types of cross-site depen-
dence are set equal to zero.
In the following analysis, we use the parameter

estimates for the book category estimated over the
first four months. We rescale the calibration period
from 	ti0�T  to 	0�1 for convenience. For the indepen-
dent model, the expected rate of visits at site A (i.e.,
Amazon.com) in period 2 is a constant value (0.326)
for every combination of the visit frequency and the
time of the last visit at site B in period 1. As shown
in the top panel of Figure 7, however, the conditional
expectation for the proposed model varies depending
upon the information on individual-level browsing
behavior at site B in period 1.
The top panel of the figure shows some expected

patterns—as well as some interesting interactions—
between the recency and frequency of past visits at
site B and the likely number of future visits to site A.

Figure 7 Conditional Expectations
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The most valuable customers for site A to target,
not surprisingly, are those who have visited site B
very recently and frequently. Beyond this extreme
point, we observe that for a frequent visitor to site B,
recency is largely unimportant; the conditional expec-
tations for the number of future visits to site A remain
roughly constant with changes in recency. An equiv-
alent story can be told for a very recent visitor: A
customer who visited site B very recently has virtu-
ally the same expected future visit rate (at site A),
regardless of the number of past visits he made to
site B.
For past visitors who are not high on one of these

dimensions, there are clear tradeoffs between recency
and frequency that site A should take into account.
For instance, among consumers who visited site B a
long time ago, there exists a dramatic difference in



Park and Fader: Modeling Browsing Behavior at Multiple Websites
296 Marketing Science 23(3), pp. 280–303, © 2004 INFORMS

the expected rate of future (site A) visits by infre-
quent visitors than by frequent visitors. Customers
with relatively high frequency but poor recency may
have been heavy users of site B who defected for some
reason.
In the lower panel of Figure 7, we see markedly dif-

ferent patterns for the probability of making at least
one visit to site A based on past behavior at site B.
Recency is far more important than frequency, which
seems to be largely irrelevant in predicting whether
a past site B customer will eventually visit site A.
The recency effects are quite large: The probability
of visiting site A is more than 50% higher for recent
site B visitors compared to those who have not been
there for a long time. This figure contrasts sharply
with the constant visit probability of 0.216 that is
associated with the independent model (reflecting,
once again, the overestimate that arises due to model
misspecification).
Taken together, both of these conditional expecta-

tions can be of great help for the marketing man-
ager at site A in better targeting potential customers.
They also hint at some tradeoffs that managers need
to make between the desired reach versus frequency
of their targeting efforts.

6.3. Empirical Validation of Conditional
Expectations

In this section, we perform a final set of model vali-
dations to test the accuracy of the conditional expec-
tations derived and discussed in the previous section.
The goal is quite simple, but also very important: Do
the period 2 conditional expectations for the members
of the period 1 zero class at site A (Amazon.com) fall
in line with their actual behavior? This is the strictest
validation test of all, since it reflects individual-level
variability in a holdout setting (as opposed to the
aggregate, in-sample nature of tests, such as the one
shown in Figure 5).
Table 10 shows the average number of actual

period 2 visits for the members of the period 1 zero
class and compares them to the estimated averages
derived from the independent and proposed models.
In each of the four cases, the estimated mean from the
proposed model is closer to the actual figure than the
corresponding estimate from the independent model.

Table 10 Conditional Expectations

Actual Independent Proposed
visits model model

Amazon.com 0.4717 0.4913 0.4626
Barnesandnoble.com 0.2609 0.3093 0.2802
CDNOW.com 0.3137 0.3451 0.2951
Musicboulevard.com 0.1875 0.2521 0.2039

Perhaps more noticeable (and interesting) is the
bias associated with the independent model. As men-
tioned numerous times throughout the paper, we
expect that the independent model will consistently
inflate the estimated visit rates at each site, lead-
ing to the excessively high values shown in the
table. Using the Wilcoxon signed rank test, we note
that all four of the paired differences between the
actual numbers and estimates from the independent
model are statistically significant (in each case, the
test yields p < 0�001). These results add to a mounting
pile of evidence that this bias is genuine and quite
meaningful.
In sharp contrast, the proposed model shows no

evidence of any bias (two of the four estimates are
above the actual mean, and two are below). More
importantly, the sizes of these deviations are quite
small. For three of the sites the Wilcoxon test yields
p > 0�2. In the case of Amazon.com, however, the
test suggests the existence of a significant difference
	p < 0�01, but the actual size of this deviation is quite
small (it is a fraction of the size of the biases arising
from the independent model).
It is interesting to point out that the Amazon.com

bias is actually an underestimate. In other words, pre-
vious nonvisitors are coming to the site in greater
numbers than the model would predict. This obser-
vation could provide Amazon.com with useful diag-
nostics about dynamics that may be taking place at
that site. Nevertheless, the fact the our static model
can capture individual-level forecasts so well across
the full set of sites is a very encouraging sign about
its validity and managerial usefulness.
In the next section we identify several model exten-

sions that might be able to address this issue, as well
as other possible areas of improvement for the pro-
posed model.

7. Conclusions and Future Research
This research focuses on combining Internet click-
stream data from multiple online retailers. We provide
a general framework for leveraging information (and
explaining customer behavior) for browsing, which
can also be applied to other settings, such as cross-
channel and cross-business unit activities. To achieve
this goal, we proposed two different sources of asso-
ciation in cross-site browsing patterns and examined
them using a multivariate timing mixture model with
closed-form analytic expressions. The Sarmanov fam-
ily of multivariate distributions, new to the field of
marketing, proved to be an invaluable asset, help-
ing to overcome analytic hurdles faced by other
researchers who have examined other types of mul-
tivariate shopping patterns (e.g., Chintagunta and
Haldar 1998).
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Using Internet clickstream data collected by Media
Metrix, we demonstrated that this general (yet parsi-
monious) model offers significantly superior perfor-
mance compared to the naïve independent model.
A careful simulation showed that a failure to account
for the two sources of association pattern not only
leads to poor fits and forecasts, but also generates sys-
tematically biased parameter estimates. Chief among
these simulation findings is the importance of allow-
ing for coincidence in cross-site visit arrivals. A clear
bias emerged in the form of overstated arrival rates
if a positive arrival timing correlation is ignored (and
vice versa for a negative correlation).
Even outside of the simulation study, the con-

sequences of these biased estimates were evident
throughout our empirical analysis, as we saw the
independent model predicting excessively high visit
rates.
Beyond the general improvement in model capabil-

ities, this research sheds new light on the important
topic of cross-site customer acquisition. We showed
how the zero class (i.e., previous nonvisitors) for one
site can be better understood by using an integrated
database of past behavior across online retailers. In
particular, we derived two analytical expressions for
the conditional expectations at a given site in period 2
by considering whether a consumer was a recent or
frequent visitor at the other site in period 1. These
conditional expectations could be of great help for
marketing managers in better targeting consumers
with various marketing programs.

7.1. Data Availability
The concept of combining information across a set of
online retailers is extremely timely. Industry experts
are emphasizing the need for strategies built upon
formal data integration (see, e.g., Forrester Research,
Inc. 2002), and virtually all leading data vendors
(including comScore Networks and Nielsen NetRat-
ings) now offer services that allow clients to obtain
data from multiple firms that compete within a par-
ticular industry. While most of these services primar-
ily utilize aggregate data, these research vendors are
willing to sell customized slices of disaggregate data
to interested clients. As this market becomes increas-
ingly competitive (and as clients become increasingly
sophisticated and demanding), the “submarket” for
session-level data is likely to become quite large.
We also see a number of industry-specific initiatives

that feature the use of cross-site data. These include
firms such as Autometrics for the auto industry and
BigChampagne for digital music services. Perhaps the
most visible example is an industry coalition named
FAST (Future of Advertising Stakeholders) that is
attempting to set industry standards for the measure-
ment of online media audiences. A major focus of

this effort is to push firms toward user-centric mea-
surement. One of the explicit objectives of FAST is to
explain cross-site reach and frequency patterns, which
is one of the main applications highlighted earlier.
Finally, in addition to all of these research-oriented

initiatives, there are also a number of commercial ven-
tures that actively use cross-site browsing behavior to
target particular customers based on their sequence
of visits across two or more sites. Probably the best
known among these firms is the Gator Corporation,
which has emerged into a successful enterprise with
an impressive array of clients.
The bottom line here is that cross-site browsing data

are available from a wide variety of sources, and there
is clear commercial interest in expanding the scope of
these activities as well as the analytic rigor associated
with it.

7.2. Limitations and Future Research
Since this research is among the first attempts to
investigate customer browsing behavior across online
retailers using Internet clickstream data, we have
kept the model as simple as possible to highlight
the key phenomena that we have identified. Natu-
rally, there are several limitations in the proposed
model that should be acknowledged and perhaps
addressed in future research. For instance, we implic-
itly assume that an individual is aware of both sites
after his or her initial visit to either site in a given
product category. Therefore, the observed period for
the model estimation 	T − ti0 is the same for both
websites.
In addition, the proposed model does not consider

the impact of marketing mix variables on visit-timing
behavior within or across sites. This is a limitation of
the Media Metrix data that is becoming less problem-
atic with improvements in clickstream data-collection
technology. As suitable explanatory variables become
available, the model presented here can be easily
extended to bring in the methods laid out by Gupta
(1991), who carefully demonstrated the correct way
of bringing time-varying covariates into a multiple-
event timing model.
The addition of covariates can open up other types

of multivariate benchmark models for comparison,
such as vector ARMA models (Montgomery and Moe
2002). Not only is it worthwhile to compare the empir-
ical performance of different classes of models, but it
will be interesting to see if the same types of biases
and managerial diagnostics continue to emerge.
As noted briefly earlier, the proposed model can

also be extended to accommodate browsing behavior
across more than two sites. The Sarmanov approach
is by no means limited to the bivariate setting, and
the necessary extensions to broader competitive con-
texts need not be overly burdensome. From a practical
standpoint, the jump from two to three (or more) sites
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is far less daunting than the initial step from the uni-
variate case to the bivariate setting. We discuss some
of these issues in a technical appendix available from
the authors and encourage other researchers to follow
up on them.
Another area for future research is allowing for

nonstationarity in the multivariate timing mixture
model. Moe and Fader (2004a) demonstrate the preva-
lence of nonstationarity in site-visit behavior and
develop an extended exponential-gamma model to
deal with it. Some of this seemingly nonstationary
behavior may arise due to cross-site effects that are
ignored in a site-centric model. (Our model’s gen-
erally strong performance in holdout settings is far
better than that of the static benchmark models
employed by Moe and Fader.) To the extent that we
detect any nonstationarity, it might be interesting to
see if “evolving” behavior occurs evenly across sites,
or if there is a compensatory pattern (i.e., speeding
up visits at one site while slowing down visits at
another).
Finally, it will be useful to consider applications

beyond Internet browsing behavior alone. The model
can be used for online or offline purchase behavior,
as well as some of the other CRM issues mentioned
at the outset of the paper, such as the use of multiple
channels or “touchpoints” by the customers of a par-
ticular firm. For these behavioral issues and others,
we hope that researchers will begin to adopt broader
views of customer shopping patterns to keep our
model-building activities on a par with—or poten-
tially ahead of—the data-collection capabilities that
make such models possible.

Acknowledgments
The authors would like to thank comScore Media Metrix
for access to their data, Eric J. Johnson for assembling and
sharing this particular dataset, and the reviewers for an
unusually constructive set of comments and suggestions.
This paper stems from the first author’s dissertation work,
and he extends special thanks to his dissertation commit-
tee (Eric Bradlow, Steve Hoch, Abba Krieger, and Jagmohan
Raju) for their helpful feedback and encouragement.

Appendix A. Hazard Functions
When working with the proposed multivariate timing
model, it is important to note that the hazard functions are
no longer constant because the hazard rate at a given site
is a function of intervisit times at its competing site as well
as at its own site. It is therefore necessary to account for the
elapsed time since the last visit at each site in constructing
the correlated timing process across sites.
For expositional clarity in this appendix alone, we define

time as the intervisit time between successive visits to each
site, as opposed to the actual calendar time that we use
elsewhere in the paper. Suppose that these intervisit times
follow an (independent univariate) exponential distribu-
tion at each site. We denote by ts the random variable

associated with the intervisit times at site s and fs	ts =
�se

−�s ts for s = A�B the univariate exponential densities.
Let f IAB	tA� tB be the bivariate exponential distribution with
the independence assumption, which is the product of
two univariate exponential densities; that is, f IAB	tA� tB =
fA	tA× fB	tB. The hazard function for site A, hIA	tA� tB, is
given by

hIA	tA� tB =
∫ �
tB
f IAB	tA�xB dxB∫ �

tA

∫ �
tB
f IAB	xA�xB dxB dxA

= �A� (14)

Likewise, the hazard function for site B, hIB	tA� tB, is �B . This
represents the typical memoryless property of the exponen-
tial timing process.
Now consider the hazard functions of the Sarmanov

bivariate exponential distribution, f DAB	tA� tB, which
accounts for the dependence in visit timing across sites.
The hazard function for site A, hDA	tA� tB, is given by:

hDA	tA�tB =
∫ �
tB
f DAB	tA�xBdxB∫ �

tA

∫ �
tB
f DAB	xA�xBdxBdxA

= �A×
[(

1+")
	1+�A2
�A

	1+�B
(
e−tA− �A

1+�A

)

·	e−tB−1
)/

	1+")	1+�A	1+�B

·	e−tA−1	e−tB−1
]
� (15)

The hazard function for site B, hDB 	tA� tB, can be derived
in a similar manner. The hazard function at each site is no
longer constant in the presence of correlation. When this
correlation is ignored (or equal to zero), these hazard func-
tions collapse into those of the separate univariate densities.
The hazard function derived above addresses the follow-

ing question: “Given the fact that no arrivals have occurred
at either website over a period of time tA and tB since
the last arrival at each site, what is the probability that
an arrival will be realized at site A in the next instant?”
(Of course we recognize that the hazard function cannot be
interpreted as a probability, but the main point here should
be clear.)
But in some managerial settings, there may be interest in

the conditional hazard function, that is, “Given that the last
arrival occurred at site B, what is the probability that an
arrival will be realized at site A in the next instant?” This
hazard function8 is given by

hDA�B	tA � tB

= f DA�B	tA � tB∫ �
tA
f DA�B	xA � tBdxA

=�A×
[(

1+")
	1+�A2
�A

	1+�B2
�B

(
e−tA− �A

1+�A

)

·
(
e−tB− �B

1+�B

))/(
1+")	1+�A

· 	1+�B
2

�B
	e−tA−1

(
e−tB− �B

1+�B

))]
� (16)

8 We would like to thank an anonymous reviewer for pointing out
(and deriving) this conditional hazard function.



Park and Fader: Modeling Browsing Behavior at Multiple Websites
Marketing Science 23(3), pp. 280–303, © 2004 INFORMS 299

Once again, in the absence of any correlation in the cross-
site timing behavior, this expression collapses into �A by
itself.

Appendix B. Likelihood Function of
the Complete Model

We construct the overall likelihood function of the complete
model for parameter estimation purposes. To do so, we first
define the notation, which illustrates the data required to
estimate the models. We next discuss two main components
in the proposed multivariate timing mixture model: timing
process and heterogeneity distribution. Finally, we derive
the unconditional distribution to build the overall likeli-
hood function of the complete model.

B.1. Notation
For individual i, let tij , j = 1�2� � � � � Ji, be the random time
of repeat visits at either site, where ti0 is the day of her
initial visit at either site and T is the end of the observed
calibration period. Ji is the total number of repeat visits at
either site individual i makes. Note that it is necessary to
take a superposition on the visit times combined across sites
in order to draw the information of browsing patterns in
constructing the multivariate timing model.9

Let Ij , j = 1�2� � � � � Ji, be the random indicator, where
Ij = 1, if the jth repeat visit occurs at site A for individ-
ual i and 0 otherwise. Finally, define Aj = �k3 Ik = 1� Ik+1 =
Ik+2 = · · · = Ij = 0, for k ≤ j�. That is, Aj is the random
indicator of the last visit at site A before (or on) the
jth repeat visit made by individual i. In a similar way,
Bj = �k3 Ik = 0� Ik+1 = Ik+2 = · · · = Ij = 1, for k≤ j�. These ran-
dom indicators of past visit patterns denote elapsed time
since the last visit at each site.
The independent model only requires the information of

tij and Ij from the combined browsing data, which is equiv-
alent to the information of the observed calibration period
(i.e., T − ti0) and the total frequency of repeat visits at each
site (i.e., AJi

and BJi ). Thus, the independent model does
not require the visit timing information. To fit the corre-
lated bivariate timing process, we need to extract Aj and Bj
as well as tij and Ij from the integrated database. Thus, the
proposed approach uses more detailed information across
sites.

B.2. Timing Process
We categorize visits by the current visit and the last visit
pattern at each site. Three kinds of current visits are: visit
to site A, visit to site B, and no visit at either site because of
right censoring. To accommodate the notion of nonconstant
hazard rates in the bivariate exponential timing process, it

9 Note that in order to make the model development as clear
as possible, this notation (and the concept of superposition as a
whole) was not used earlier in the paper. These technical issues
are required for model estimation, but do not affect the underlying
logic of the model’s derivation.

is necessary to consider past visit history using Aj and Bj .
Hence, there are nine different types of visit:

The jth repeat visit
Previous
visit Visit site A Visit site B No visit

No visit V i
·A V i

·B Si·N
Visit site A V i

AA V i
AB SiAN

Visit site B V i
BA V i

BB SiBN

The first row in the table describes different types of the
first repeat visit at site A (V i

·A, site B (V i
·B, and no realized

visit at either site (Si·N ) made by individual i. The second
and last rows construct the timing process conditional on
the previous visit history. The second row assumes that the
ith individual made the (j − 1)th repeat visit at site A. It
implies that tij−1 − tiBj is an elapsed time where no arrival
has been realized at site B. In a similar vein, the (j − 1)th
repeat visit at site B implies that tij−1− tiAj is an elapsed time
where no arrival has been realized at site A. Each cell can
be read as it stands. For instance, the cell SiAN can be read
as follows: Given the 	j − 1th repeat visit at site A, that is,
conditional on tij−1−tiBj , no arrival has been realized because
of right censoring. The conditional joint timing densities of
each cell (the first main component in the timing mixture
model) are discussed next.
Let us derive the (conditional) joint timing density of the

first repeat visit at site A and site B and of no visit at either
site for individual i, that is, V i

·A, V
i
·B , and S

i
·N , respectively.

Let fs	tij ��
i
s = �ise

−�is 	tij−tij−1, Ss	tij − tij−1��
i
s = e

−�is 	tij−tij−1,

 s	t
i
j − tij−1��

i
s = e

−	tij−tij−1 − �is/	1+�is, and  ̄	tij − tij−1 =
e
−	tij−tij−1 − 1 for s = A�B. If the first repeat visit made by
individual i occurs at site A, the conditional distribution of
V i
·A is given by

f 	ti1	I1=1��
i
A��

i
B�")

=
∫ �

ti1

f 	ti1�x
i
2��

i
A��

i
B�")dx

i
2=fA	ti1��iA×SB	ti1−ti0��iB

·
{
1+")

	1+�iA2
�iA

	1+�iB A	ti1−ti0��iA ̄	ti1−ti0
}
� (17)

This joint density can be understood in a simple and intu-
itive way. Observing the first repeat visit at site A, which
means that no arrival has occurred at site B by ti1, leads
to an exponential density for site A 	fA	t

i
1��

i
A and a

survivor function for site B (SB	ti1 − ti0��
i
B) with a com-

bined expression of dependence in the coincidence of vis-
its. In a similar way, if the first repeat visit is realized at
site B for individual i, the conditional distribution of V i

·B is
given by

f 	ti1	I1=0��
i
A��

i
B�")

=
∫ �

ti1

f 	xi1�t
i
1��

i
A��

i
B�")dx

i
1=SA	ti1−ti0��iA×fB	ti1��iB

·
{
1+")	1+�iA

	1+�iB2
�iB

 ̄	ti1−ti0 B	ti1−ti0��iB
}
� (18)
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This expression may be interpreted as the opposite of
Equation (17), that is, a survivor function for site A (SA	ti1−
ti0��

i
A) and an exponential distribution for site B (fB	ti1��

i
B)

with a combined expression to capture dependence in visit
timing between the two sites. Finally, when neither site is
visited by individual i during the entire observed period
after the initial visit at either site, the conditional distribu-
tion of Si·N can be written as follows:

S	T −ti0��iA��iB�")
=

∫ �

T

∫ �

T
f 	xi1�x

i
2��

i
A��

i
B�")dx

i
1dx

i
2

=SA	T −ti0��iA×SB	T −ti0��iB
·{1+")	1+�iA	1+�iB ̄	T −ti02}� (19)

Now no exponential density can be observed because no
arrival has occurred at either site, that is, a survivor function
for each site with a combined correlated expression.
From the second repeat visit made by individual i, it is

necessary to condition the information of the past visit pat-
terns to consider nonconstant hazard rates in the bivariate
exponential timing process. Derivations of the bivariate tim-
ing process of the second row in the table, that is, V i

AA, V
i
AB ,

and SiAN , are very similar to the joint timing density of the
first row, except that it is required to condition the (j − 1)th
repeat visit realized at site A in deriving f 	tij	Ij=1 � tij−1 − tiBj ;
�iA��

i
B�"), f 	t

i
j	Ij=0 � tij−1− tiBj ��iA��iB�"), and S	T − tiJi � tiJi −

tiBJi
� �iA��

i
B�"). Finally, in constructing the bivariate timing

process of the last row in the table, that is, V i
BA, V

i
BB , and

SiBN , it is required to condition the (j − 1)th repeat visit at
site B in deriving f 	tij	Ij=1 � tij−1 − tiAj ��

i
A��

i
B�"), f 	t

i
j	Ij=0 �

tij−1 − tiAj ��iA��iB�"), and S	T − tiJi � tiJi − tiAJi � �
i
A��

i
B�").

B.3. Heterogeneity Distribution
We previously discussed the standard approach to obtain
the likelihood function for a given individual. The first
step is to specify the individual-level likelihood function
for each site, conditional on that person’s latent visit rate
at that site. We then multiply all sJi exponential terms,
times an additional term to account for the right cen-
soring. Once this conditional likelihood function is con-
structed, we then integrate across all possible values of �is
using the gamma mixing distribution to get the uncondi-
tional distribution for each site. Finally, the multiplication
of unconditional likelihood for each site yields the simple
bivariate model, which can be multiplied across N individ-
uals to get the overall likelihood for parameter estimation
purposes.
An alternative path that leads to the same result is to

perform the gamma integration separately for each of the
Ji bivariate exponential terms, times an additional term to
account for the right censoring, and then multiply them
together at the end. This involves the use of Bayes theo-
rem to update our guess about each individual’s value of
�iA and �iB as each arrival occurs. Specifically, if someone’s
first repeat visit occurs at site A at time ti1, then

g	�iA2
��iB2 � visit site A at ti1

= gamma	rA+ 1��A+ ti1 − ti0� rB��B + ti1 − ti0�+�

While scale parameters in the gamma distribution (i.e., �s
for s = A�B) are always updated (i.e., �s + ti1 − ti0) at each
site, a shape parameter (i.e., rs for s = A�B) in the gamma
density is only updated as long as a visit is realized at a
specific site (i.e., rs+1). If a visit has not occurred at a given
site, the shape parameter remains the same. The bivariate
gamma distribution governing latent visit rates for subse-
quent arrivals is as follows:

g	�iAj+1��
i
Bj+1 � arrival at tij 

= gamma
(
rA+

j∑
k=1
Ik��A+ tij − ti0� rB + j

−
j∑

k=1
Ik��B + tij − ti0�+

)

let= gamma 	rOA ��
O
A� r

O
B ��

O
B �+� (20)

This updating procedure is used to get the unconditional
distribution by integrating the conditional distribution of
the bivariate timing process across all possible values of the
latent visit rates.

B.4. Unconditional Distribution
We next derive the unconditional distribution of the bivari-
ate timing process. To get the unconditional distribution of
each type of visit, we integrate each conditional distribution
of the bivariate timing process across all possible values of
�iA and �iB using the bivariate gamma mixing distribution,
which updates each individual’s value of �iA and �iB as each
arrival is realized. If the first repeat visit occurs at site A,
the unconditional distribution of V i

·A is given by

f 	ti1	I1=1 =
∫ �

0

∫ �

0
	17× g	�iA��iB� rA��A� rB��B�+d�iA d�iB

= rA
�A

(
�A
�NA

)rNA (
�B
�NB

)rB

·



1+")h1AB	ti1� rNA ��NA� rB��NB 
++h2AB	ti1� rNA ��NA� rB��NB 
+")+h3AB	ti1� rNA ��NA� rB��NB 


 � (21)

where

h1AB=
{
e−	t

i
1−ti0

(
2+ �NA

rA
+ rNA
�NA

)
−

(
1+ rNA

�NA

)}
×

{
1+ rB

�NB

}
�e−	t

i
1−ti0−1��

h2AB=
{(

�NA
1+�NA

)rNA −
(

�A
1+�A

)rA
}
×

{(
�NB

1+�NB

)rB

−
(

�B
1+�B

)rB
}
�

h3AB=�e−	t
i
1−ti0−1�

{(
�NA

1+�NA

)rNA
[
e−	t

i
1−ti0

(
2+ 1+�NA

rA
+ rNA
1+�NA

)

−
(
1+ rNA

1+�NA

)]
−

(
�A

1+�A

)rA

·
[
e−	t

i
1−ti0

(
2+ �NA

rA
+ rNA
�NA

)
−

(
1+ rNA

�NA

)]}

·
{[(

�NB
1+�NB

)rB
(
1+ rB

1+�NB

)
−

(
�B

1+�B

)rB
(
1+ rB

�NB

)]}
�

and rNs = rs + 1 and �Ns = �s + ti1 − ti0 for s =A�B. If the first
repeat visit is realized at site B, the unconditional distribu-
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tion of V i
·B is given by

f 	ti1	I1=0 =
∫ �

0

∫ �

0
	18× g	�iA��iB� rA��A� rB��B�+d�iA d�iB

=
(
�A
�NA

)rA rB
�B

(
�B
�NB

)rNB

·



1+")h1AB	ti1� rA��NA� rNB ��NB 
++h2AB	ti1� rA��NA� rNB ��NB 
+")+h3AB	ti1� rA��NA� rNB ��NB 


 � (22)

where

h1AB =
{
1+ rA

�NA

}
�e−	t

i
1−ti0−1�

·
{
e−	t

i
1−ti0

(
2+ �

N
B

rB
+ rNB
�NB

)
−

(
1+ rNB

�NB

)}
�

h2AB =
{(

�NA
1+�NA

)rA

−
(

�A
1+�A

)rA
}

·
{(

�NB
1+�NB

)rNB

−
(

�B
1+�B

)rB
}
�

h3AB =
{[(

�NA
1+�NA

)rA
(
1+ rA

1+�NA

)
−

(
�A

1+�A

)rA
(
1+ rA

�NA

)]}

·�e−	ti1−ti0−1�
{(

�NB
1+�NB

)rNB
[
e−	t

i
1−ti0

(
2+ 1+�NB

rB
+ rNB
1+�NB

)

−
(
1+ rNB

1+�NB

)]
−

(
�B

1+�B

)rB

·
[
e−	t

i
1−ti0

(
2+ �

N
B

rB
+ rNB
�NB

)
−

(
1+ rNB

�NB

)]}
�

and rNs = rs + 1 and �Ns = �s + ti1 − ti0 for s = A�B. If no
arrival occurs during the entire observed calibration period,
the unconditional distribution of Si·N is given by

S	T −ti0 =
∫ �

0

∫ �

0
	19×g	�iA��iB�rA��A�rB��B�+d�iAd�iB

=
(
�A
�NA

)rA( �B
�NB

)rB

·



1+")h1AB	ti1�rA��NA�rB��NB 
++h2AB	ti1�rA��NA�rB��NB 
+")+h3AB	ti1�rA��NA�rB��NB 


� (23)

where

h1AB =
{(

1+ rA
�NA

)
	e−	T−t

i
0−1

}
×

{(
1+ rB

�NB

)
	e−	T−t

i
0−1

}
�

h2AB =
{(

�NA
1+�NA

)rA
−

(
�A

1+�A

)rA}

·
{(

�NB
1+�NB

)rB
−

(
�B

1+�B

)rB}
�

h3AB = 	e−	T−t
i
0−1

{(
�NA

1+�NA

)rA(
1+ rA

1+�NA

)

−
(

�A
1+�A

)rA(
1+ rA

�NA

)}

·	e−	T−ti0−1
{(

�NB
1+�NB

)rB(
1+ rB

1+�NB

)

−
(

�B
1+�B

)rB(
1+ rB

�NB

)}
�

and �Ns = �s + T − ti0 for s = A�B. Similarly, derivations
of the other unconditional distributions, f 	tij	Ij=1 � tij−1 − tiBj ,
f 	tij	Ij=0 � tij−1 − tiBj , S	T − tiJi � tiJi − tiBJi

, f 	tij	Ij=1 � tij−1 − tiAj ,
f 	tij	Ij=0 � tij−1 − tiAj , and S	T − tiJi � tiJi − tiAJi

 are
straightforward.

B.5. Likelihood Function of the Proposed Model
On the basis of nine different unconditional distributions
derived in the previous section, we can construct the overall
likelihood function of the multivariate timing mixture
model proposed in this research:

LDAB=
N∏
i=1

Ji∏
j=1




[
f 	ti1	I1=1�rA��A�rB��B�")�"+

]	V i·Ai1
[
f 	ti1	I1=0�rA��A�rB��B�")�"+

]	V i·Bi1
[
S	T −ti0�rA��A�rB��B�")�"+

]	Si·N i
[
f 	tij	Ij=1 � tij−1−tiBj �rA��A�rB��B�")�"+

]	V iAAij
[
f 	tij	Ij=0 � tij−1−tiBj �rA��A�rB��B�")�"+

]	V iABij
[
S	T −tiJi � tiJi−1−tiBJi �rA��A�rB��B�")�"+

]	SiAN i
[
f 	tij	Ij=1 � tij−1−tiAj �rA��A�rB��B�")�"+

]	V iBAij
[
f 	tij	Ij=0 � tij−1−tiAj �rA��A�rB��B�")�"+

]	V iBBij
[
S	T −tiJi � tiJi−1−tiAJi �rA��A�rB��B�")�"+

]	SiBN i




� (24)

where the superscripted indicator variable, for example,
	V i

·A
i
1, is 1 if the jth repeat visit matches to the correspond-

ing type of visit for individual i and 0 otherwise. The like-
lihood of the complete model collapses down to that of the
simple bivariate model, once two types of cross-site depen-
dences are completely ignored.

Appendix C. Conditional Expectations
Without loss of generality, we derive two expressions for
the conditional expectation at site A in period 2 in the pro-
posed model: the expected rate of visits at site A in period 2
and the expected likelihood of at least a visit to site A in
period 2. Since we consider customers who never visited
site A but visited site B in period 1, note that the last visit
was realized at site B in period 1. While three elements
(T −ti0, AJi

, and BJi ) represent sufficient information from the
ith customer’s visiting pattern for the independent model,
the proposed model requires two additional elements of the
time of the last visit at each site (Aj and Bj ) from the com-
bined database.

C.1. Expected Rate of Visits at Site A in Period 2
Given the information of the ith customer browsing pattern
at sites A and B in period 1, in the proposed model, the
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expected rate of visits at site A in period 2 is

EDA	�
i
A � Information

=
∫ �

0
�iA · g	�iA � Information d�iA

=
(

rA+AJi

�A+ T − ti0

)(
1+")hN1AB ++hN2AB +")+hN3AB
1+")hD1

AB ++hD2
AB +")+hD3

AB

)
� (25)

where

h
D1
AB =

{(
1+ rOA

�NA

)
	e

−	T−tiJi −1
}
×
{(

1+ rOB
�NB

)
	e

−	T−tiAJi
−1

}
�

h
D2
AB =

{(
�NA

1+�NA

)rOA
−

(
�OA

1+�OA

)rOA }

·
{(

�NB
1+�NB

)rOB
−

(
�OB

1+�OB

)rOB }
�

h
D3
AB = 	e

−	T−tiJi −1
{(

�NA
1+�NA

)rOA (
1+ rOA

1+�NA

)

−
(

�OA
1+�OA

)rOA (
1+ rOA

�NA

)}

·	e−	T−t
i
AJi

−1
{(

�NB
1+�NB

)rOB (
1+ rOB

1+�NB

)

−
(

�OB
1+�OB

)rOB (
1+ rOB

�NB

)}
�

h
N1
AB =

{(
1+ rNA

�NA

)
	e

−	T−tiJi −1
}

·
{(

1+ rOB
�NB

)
	e

−	T−tiAJi
−1

)}
�

h
N2
AB =

{(
�NA

1+�NA

)rNA
−

(
�OA

1+�OA

)rOA }

·
{(

�NB
1+�NB

)rOB
−

(
�OB

1+�OB

)rOB }
�

h
N3
AB = 	e

−	T−tiJi −1
{(

�NA
1+�NA

)rNA (
1+ rNA

1+�NA

)

−
(

�OA
1+�OA

)rOA (
1+ rNA

�NA

)}

·	e−	T−t
i
AJi

−1
{(

�NB
1+�NB

)rOB (
1+ rOB

1+�NB

)

−
(

�OB
1+�OB

)rOB (
1+ rOB

�NB

)}
�

and rNs = rOs + 1 and �Ns = �Os + T − tiJi for s =A�B.

C.2. Expected Likelihood of at Least One Visit to
Site A in Period 2

Given the information of the ith customer browsing pattern
at sites A and B in period 1, in the proposed model, the

expected likelihood of no visit to site A in period 2 is

EDA	e
−�iA	T ∗−T  � Information

=
∫ �

0
e−�

i
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∗−T  · g	�iA � Information d�iA

=
(
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·
(
1+")hN1AB ++hN2AB +")+hN3AB
1+")hD1

AB ++hD2
AB +")+hD3

AB

)
� (26)
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�Ns = �Os + T − tiJi and �N
∗

s = �Os + T ∗ − tiJi for s = A�B, and
T ∗ is the end of the future prediction period.
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