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ABSTRACT

While numerous researchers have proposed di�erent models to forecast
trial sales for new products, there is little systematic understanding about
which of these models works best, and under what circumstances these
®ndings change. In this paper, we provide a comprehensive investigation of
eight leading published models and three di�erent parameter estimation
methods. Across 19 di�erent datasets encompassing a variety of consumer
packaged goods, we observe several systematic patterns that link di�erences
in model speci®cation and estimation to forecasting accuracy. Major ®nd-
ings include the following observations: (1) when dealing with consumer
packaged goods, simple models that allow for relatively limited ¯exibility
(e.g. no S-shaped curves) in the calibration period provide signi®cantly
better forecasts than more complex speci®cations; (2) models that explicitly
accommodate heterogeneity in purchasing rates across consumers tend to
o�er better forecasts than those that do not; and (3) maximum likelihood
estimation appears to o�er more accurate and stable forecasts than non-
linear least squares. We elaborate on these and other ®ndings, and o�er
suggested directions for future research in this area. # 1998 John Wiley
& Sons, Ltd.
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Almost every textbook discussion of the new product development process includes a call to
conduct some form of market test before actually launching the new product. Such an exercise
serves several objectives, including the desire to produce an accurate forecast of the new product's
sales performance over time. These forecasts can help lead to a ®nal go/no-go decision and can
also assist in the marketing and production planning activities associated with the product
launch. In the case of consumer packaged goods, conducting a market test historically saw the
company's sales force selling the product into retail distribution in one or more markets for one
to two years, after which a decision of whether or not to go national with the new product was
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made. Given the problems associated with such traditional (`sell-in') test markets (e.g. cost, time
required, competitor sabotage), academics and marketing research practitioners have developed
a number of pre-test and test market models and methodologies, all designed to provide the
marketing manager with the desired information in a more timely and cost-e�ective manner.1 In
the case of a test market model, the primary idea is to place the new product in some form of test
market and after, say, six months, generate a one- to two-year sales forecast.

The sales volume of a new product in any consumer packaged goods category can be decom-
posed into trial and repeat components. The idea behind a test market forecasting model is to
develop mathematical representations of these components of sales, and calibrate them using
panel and/or survey data. These individual models can then be used to forecast trial and repeat
sales, from which an overall forecast of the new product's sales can be generated.

Since 1960, a number of academics and practitioners have proposed various models for the
trial and repeat components of a new product's sales. Typically, the developers of a model will
provide forecasts for one or two new products, but they rarely compare the performance of their
proposed model with that of other existing models. Although there have been several non-
empirical comparisons of test market models (e.g. Narasimhan and Sen, 1983), there has been
only one empirical comparison of competing models, that of Mahajan, Muller, and Sharma
(1984), which examined the awareness components of ®ve models.2 Motivated by Mahajan and
Wind's (1988) call for an `M-competition' (Makridakis et al., 1982) for new product sales fore-
casting models, we undertake a study of the relative performance of a set of models of the trial
component of new product sales.

Aside from being a logical `next-step' given the work of Mahajan et al., we focus on trial for
four key reasons. First, the accurate forecasting of trial sales is a necessary condition for reliable
estimates of the new product's overall sales, as estimates of repeat sales are conditional upon esti-
mates of trial. Even with a perfect estimate of repeat buying rates, over- or underpredicting trial
sales will have a corresponding impact on the total sales estimate and can lead to inappropriate
go/no-go management decisions. It is therefore clearly important to identify the `best' trial model
(or set of models). Second, product trial is an extremely important diagnostic measure to gauge
the short-term status of a new product in the marketplace, as well as an indicator of its long-term
success. While low trial rates can often be corrected through appropriate marketing actions, the
failure to anticipate them (i.e. waiting for the actual results to occur rather than predicting them
using models along the lines of those presented in this paper) could signify lost sales oppor-
tunities. Third, identi®cation of the `best' model(s) results in a benchmark against which future
developers of new product forecasting models can compare the performance of their new trial
submodels. Finally, by undertaking studies of the relative performance of the various submodels
of the trial and repeat components of a new product's sales, there is scope to create `hybrid'
models of total sales which forecast with increased accuracy by combining the best submodels for
each component; clearly, this study of trial models is central to such an e�ort.

The objective of a trial forecasting model is to forecast P(t), the new product's penetration
(or cumulative trial) up to some point in time, t. (This is typically measured as the percentage of
the panel that has tried the new product by time t, or `triers per 100 households'.) The data
usually used to calibrate these models is simply a time series giving the cumulative numbers

1 See Clancy, Shulman, andWolf (1994) and Urban (1993) for recent reviews of pre-test market models and practices, and
Narasimhan and Sen (1983) for a review of test market models.
2 Contrast this to the di�usion/growth modelling literature, in which there have been several studies examining the relative
performance of various models (e.g. Meade, 1984; Rao, 1985).
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of triers by the end of each time period (e.g. week); no competitive or marketing mix data are
used. The simplest and best-known trial model, that originally proposed by Fourt and Woodlock
(1960), is based on very simple underlying assumptions of buyer behaviour. While recently
developed models may be based on more realistic assumptions, an unanswered question is
whether they are correspondingly more accurate in their forecasting performance.

The paper proceeds as follows. First we review the set of trial models whose relative forecasting
performance is the focus of our study. We then describe the data used in this study, and the
methods used to calibrate the models and determine their relative performance. The forecasting
performance of these models is then examined and conclusions are drawn as to which are the
more accurate model speci®cations. We ®nish with a discussion of a number of issues that arise
from our study, and identify several areas worthy of follow-on research.

MODEL REVIEW

The primary criterion used to select the models included in this study is that they have been pro-
posed as models of the trial process for new consumer packaged goods products. Two secondary
criteria are used to determine the ®nal set of models examined in this comparative study. The ®rst
concerns the source of data used for model calibration. As previously alluded to, test market
models can be characterized in terms of whether they utilize panel and/or survey data
(Narasimhan and Sen, 1983). The `decision-process' models (Wilson and Pringle, 1982) that
require some survey dataÐfor example, SPRINTER (Urban, 1970), TRACKER (Blattberg and
Golanty, 1978), and NEWS (Pringle, Wilson, and Brody, 1982)Ðare the exception, rather than
the rule. As they have di�erent data requirements, they are deemed to be beyond the scope of this
study.

The second of the two additional criteria concerns the inclusion of marketing decision variables
in the model. Only two researchersÐNakanishi (1973) and Eskin (1974)Ðhave developed panel
data-based models that explicitly incorporate such variables, and these are limited in the choice
of variables considered (e.g. Eskin considers only advertising). Therefore, in order to facilitate the
comparison process, we focus on those models that do not include marketing decision variables.
If we wished to comprehensively examine the e�ects of marketing decision variables, we would
have to develop new models by extending the various speci®cations examined below (cf. the
literature on incorporating price and advertising in the Bass model). This, however, is not the
purpose of our paper. By excluding decision variables, we are identifying benchmark models
against which more complete, but yet to be developed, models can be compared when evaluating
the impact of adding covariates. Moreover, while covariate information is available from the
panel data source used in this study, not all panel data sources are as rich (in both the USA and
the rest of the world). If we were to focus on models with covariate e�ects, we would be greatly
limiting the relevance of the study as the results would be of little use to researchers using many
other panel data sources.

On the basis of the above criteria, eight trial models were identi®ed. These models can be
characterized in terms of whether they are derived from a set of behavioural assumptions or are
simply ¯exible functional forms designed to `best ®t the data'. The ®rst group of models can be
further characterized in terms of: (1) the underlying assumptions made about the probability
distribution used to describe a panellist's buying behaviour, (2) whether or not heterogeneity in
panellist buying rates is modelled, and (3) whether or not the existence of a group of panellists
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classi®ed as `never triers' is explicitly acknowledged. As most of the selected models can be
conveniently described in terms of their underlying behavioural assumptions, our default is to
refer to each model in terms of these assumptions, rather than use the developers' names.

Exponential with `Never Triers'
The best-known model of trial sales is that proposed by Fourt and Woodlock (1960). In examin-
ing numerous cumulative trial curves, they noted that (1) successive increments in cumulative
trial declined, and (2) the cumulative curve approached a penetration limit of less than 100% of
the households in the panel. They proposed that incremental trial be modelled as rx(17 r)i71,
where x� the ceiling of cumulative trial (i.e. the penetration limit), r� the rate of penetration of
the untapped potential, and i is the number of (equally spaced) time periods since the launch of
the new product. This simple model captures the two observed properties.

A continuous-time analogue of this model can be derived from the following two assumptions:

(1) A randomly chosen panellist's time to trial (assuming the new product is launched at time
t� 0) is distributed according to the exponential distribution; i.e. f(t)� y exp(ÿyt). This is
equivalent to saying that a panellist's instantaneous rate of trial, given that he has not yet
done so by time t (i.e. f(t)/[17F(t)]), is a constant, y.

(2) y is distributed across the population with the following discrete mixing distribution:
g(y)� l, with probability p; g(y)� 0, with probability 17 p. This captures the fact that
some people will simply not be in the market for the new product, i.e. `never triers'. For
example, one would typically expect that diapers will not be purchased by panellists who do
not have children (or grandchildren) under 4 years old.

Taken together, these two assumptions result in the following model for the cumulative trial
curve:

P�t� � p�1 ÿ e
ÿlt� �1�

where P(t) is the new product's penetration (i.e. cumulative trial) at time t. This basic model,
whether in its original discrete formulation or in the above continuous-time formulation, has
served as the starting point for many new product forecasting modeling e�orts (e.g. Eskin, 1973;
Eskin and Malec, 1976; Par®tt and Collins, 1968).

Exponential with `Never Triers' 1 `Stretch' Factor
Fourt and Woodlock (1960) found that predictions based on the standard exponential with
`never triers' model tend to be too low for later time periods (i.e. the empirical trial curve does not
¯atten o� as quickly as the model predicts). This phenomenon was attributed to heterogeneity in
consumer buying rates: heavy category buyers are likely to be the earlier triers and the model
picks up the `levelling out' of their purchases, ignoring the lighter buyers who have yet to try the
product (but eventually will).

The proposed solution to this problem was to include a linear `stretch' factor which allowed the
cumulative trial ceiling to be a linear function of time, rather than a ®xed quantity. This results in
the following model for the cumulative trial curve:

P�t� � p�1 ÿ e
ÿlt� � dt �2�
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Fourt and Woodlock (1960), as well as several later researchers (e.g. Eskin, 1973; Kalwani and
Silk, 1980), report that d tends to be a very small positive number, but still plays a signi®cant role
in ensuring that the model ®ts reasonably well.

Exponential-Gamma
An alternative approach to capturing the e�ect of heterogeneity in consumer buying rates was
suggested by Anscombe (1961) and used again by Kalwani and Silk (1980). In particular,
Anscombe proposed that this heterogeneity be captured directly in the model. Rather than
assuming that the purchasing rate parameter is distributed according to a simple discrete distri-
bution, we can assume that it is distributed according to a gamma mixing distribution; i.e.

g�y j r; a� � aryrÿ1eÿay

G�r�
where r and a are, respectively, the shape and scale parameters, and E[y]� r/a. This results in the
following model for the cumulative trial curve:

P�t� � 1 ÿ a
a � t

� �r

�3�

Compared to the use of a `stretch' factor, the explicit modelling of consumer heterogeneity via
a gamma distribution would appear to be a more ¯exible solution, as well as being more parsi-
monious than the latter Fourt±Woodlock speci®cation. Given the fact that the inter-arrival times
for Poisson events are exponentially distributed, this model can be viewed as the waiting time
analogue of the familiar NBD model (Ehrenberg, 1959; Morrison and Schmittlein, 1988).

Exponential-Gamma with `Never Triers'
While the exponential-gamma model is attractive in that it allows for general types of consumer
heterogeneity, it does not explicitly allow for the fact that some people will never try the new
product.3 A natural re®nement, therefore, is to utilize both the gamma distribution (to capture
heterogeneity among the eventual triers) as well as the p parameter (to screen out the never triers).
The resulting model for the cumulative trial curve is as follows:4

P�t� � p 1 ÿ a
a � t

� �r� �
�4�

Weibull-Gamma with `Never Triers'
STEAM, an acronym for STochastic Evolutionary Adoption Model, is a stochastic depth-of-
repeat model developed by Massy (see Massy, 1968, 1969; Massy, Montgomery, and Morrison,
1970). Compared to most other new product forecasting models, it has an extremely complex

3 Implicitly, the gamma mixing distribution can accommodate some of these `never triers' since it can be highly right-
skewed (i.e. for a large proportion of the panelists, y is very close to zero, implying that their likelihood of trying the new
product is very low). A problem with such an approach is that it hinders the interpretation of the mixing distribution's
moments (e.g. mean and variance).
4 This model was examined by Kalwani and Silk (1980) in their study of the structure of repeat buying, and was found to
provide a ®t superior to the exponential-gamma model. Following Eskin's (1973) practice of applying the same model to
trial and all repeat levels, it is natural for us to examine the performance of this model in the context of trial.
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structure. However, it is an integrated model, thereby alleviating the need to combine the results
of separate models (e.g. trial, ®rst repeat, additional repeat) when generating a sales forecast for
the new product.

At the heart of the STEAM model is a relaxation of the exponential assumption that a
panellist's instantaneous rate of trial, given that he has not yet done so by time t, is a constant.
Rather, it is a function of time (i.e. interpurchase times are assumed to follow a form of the
Weibull distribution). Heterogeneity in base purchase rates is captured via a gammamixing distri-
bution, giving us a form of compound Weibull distribution. The STEAM model for trial sales is
developed from this distribution by making several additional assumptions (e.g. the gamma
mixing distribution is only applied to those panellists who will eventually try the new product),
resulting in the following model for the cumulative trial curve:

P�t� � p 1 ÿ ac
�t � 1�c � ac ÿ 1

� �r� �
�5�

where c is the shape parameter of the Weibull distribution. When c� 1, this reduces to the
exponential-gamma with the `never triers' model.

Lognormal±Lognormal
The models reviewed so far have assumed that a panellist's purchase rate follows an exponential
distribution (or one of its generalizations). An alternative view is taken by Lawrence (1979, 1982,
1985), who postulates that interpurchase times at the individual panellist level are lognormally
distributed. By assuming that the mean interpurchase times across the panellists are also distri-
buted lognormal, the following model of the cumulative trial curve can be derived by a straight-
forward application of renewal theory:5

P�t� � t

em�s2=2
�1 ÿ L�t j m; s2�� � L�t jm � s2; s2� �6�

where L(t j m, s2) is the lognormal distribution function with mean m and variance s2 (i.e. ln(t) is
normally distributed with mean m and variance s2).

`Double-Exponential'
According to Greene (1974, p. 419), `every new-brand test-marketer knows that cumulative trial
usually follows an S-curve'. He then proposes the following model for the cumulative trial curve:

P�t� � p

b ÿ a
�b�1 ÿ e

ÿat� ÿ a�1 ÿ e
ÿbt�� �7�

Unlike the previous models, which can all be derived from simple assumptions about the buying
behaviour of panellists, this formulation is simply the result of a curve-®tting exercise.6 It is worth

5 The derivations reported in Lawrence (1982, 1985) express the cumulative trial curve in terms of three lognormal
distribution parametersÐthe variance of the interpurchase time lognormal distribution, and the mean and variance of
the lognormal mixing distribution. The form of the model presented here is that outlined in Lawrence (1979), where m
equals the mean of the lognormal mixing distribution less the variance of the mixing distribution and half the variance of
the panellist-level interpurchase time lognormal distribution, and s2 is the sum of the variances of the two lognormal
distributions.
6 While Greene uses the term `double-exponential' to describe this model, we should not confuse it with the family of
double exponential (Laplace and extreme value) probability distributions (see Johnson, Kotz, and Balakrishnan, 1994).
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noting that Greene's insistence that cumulative trial curves are S-shaped is contrary to the view
implicitly held by many other developers of new product forecasting models.

The Bass Model
Within the marketing literature, the best-known di�usion model is that developed by Bass (1969).
The central premise of this model is that the probability of adopting (or, in this context, trying)
the product at time t, given that adoption (trial) has not yet occurred, equals a � b� cumulative
proportion of adopters (triers) at time t. This, combined with the added assumption that only a
proportion p of the population will ever adopt (try) the new product, results in the following
model for the cumulative adoption (trial) curve:

P�t� � p
1 ÿ eÿ�a�b�t

1 � �b=a� eÿ�a�b�t
� �

�8�

(Note that this collapses to the exponential with the `never triers' model when b� 0.)
While this model has been used countless times to forecast the sales of durables, it has been

used very rarely in the context of consumer packaged goods. As the literature includes at least one
example (Burger, 1968), the model meets the primary criterion for consideration in this study.7

Other Models
Table I summarizes the characteristics of the above set of models and demonstrates the broad
coverage of the main classes of model in the literature. As previously noted, the primary criterion
used to select the models included in this study is that they have been proposed as models of the
trial process for new consumer packaged goods products. With one exception, we have therefore
disregarded the various `di�usion' models widely examined in the marketing literature. (See
Mahajan, Muller, and Bass, 1990, and Parker, 1994 for reviews of the di�usion modelling litera-
ture.) As noted by Parker (1994, p. 356), a basic component of di�usion models is `a growth rate
component which can characterize interpersonal in¯uence among members of the target market'.
The theoretical rationale for using such models in our context (trial sales of consumer packaged
goods) is weak, as most frequently purchased packaged goods are low-involvement products for
which there is usually little risk and low uncertainty associated with trying the new product
(Gatignon and Robertson, 1985) and for which we would expect to see minimal `word-of-mouth'
e�ects. (When did the reader last tell a friend about that new brand of toilet tissue he just
purchased?) The opposite is typically the case for the types of products to which di�usion models
are applied (e.g. durables).

Given that we do not anticipate seeing `word-of-mouth' e�ects for consumer packaged goods
products, what could explain an observed S-shaped cumulative trial curve? Jones and Mason
(1990) demonstrate that it might be changes (i.e. growth) in retail distribution in the ®rst few
weeks after product launch. As test market models are frequently applied in a controlled distri-
bution environment, there is even less reason to expect to see S-shaped cumulative trial curves. In
those cases where distribution is not controlled, the S-shape should be captured via the appro-
priate speci®cation of a distribution e�ect, not via a ¯exible functional form where the extra

7 The model has also been utilized in a consumer packaged goods setting for descriptive, rather than forecasting,
purposes by Parker and Gatignon (1994).
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Table I. Summary of model characteristics

Model Equation Structural model Heterogeneity `Never triers'

1 P(t)� p(17 e7lt) Exponential None ✓

2 P(t)� p(17 e7lt) � dt Exponential Heuristic
correction term

✓

3 P�t� � 1 ÿ a
a � t

� �r

Exponential Gamma

4 P�t� � p 1 ÿ a
a � t

� �r� �
Exponential Gamma ✓

5 P�t� � p 1 ÿ ac
�t � 1�c � ac ÿ 1

� �r� �
Weibull Gamma ✓

6 P�t� � t

em�s2=2
�1 ÿ L�t j m; s2�� � L�t j m � s2; s2� Lognormal Lognormal

7 P�t� � p

b ÿ a
�b�1 ÿ eÿat� ÿ a�1 ÿ eÿbt�� None None ✓

8 P�t� � p
1 ÿ eÿ�a�b�t

1 � �b=a� eÿ�a�b�t
� �

Custom None ✓

parameter is given a behavioural interpretation unrelated to the true causes that a�ect its
estimated value.

We have included four models that allow for an S-shaped cumulative trial curve. These include
the Bass and `Double-Exponential' models, as already discussed, but can also include the
Weibull-gamma with `never triers' and lognormal±lognormal models. These last two models do
not always generate an S-shape but can do so via the combination of a non-constant hazard rate
at the household level and a skewed heterogeneity distribution. Other possible S-curve models
would be the various logistic models reviewed in Massy, Montgomery, and Morrison (1970,
Chapter 8); these models are not considered as they have not been explicitly used as trial fore-
casting models in a consumer packaged goods setting. Another class of models not examined in
this study, for the same reason, are those based on linear learning assumptions (Massy, Mont-
gomery, and Morrison, 1970, Chapter 8). Finally, as we are focusing on models developed for
new product forecasting, we have not included any models of buying behaviour for established
products that can also be applied to new products (e.g. Aaker, 1971; Herniter, 1971).

EMPIRICAL ANALYSIS

The data used to estimate trial models of the type included in this study are derived from con-
sumer panels. At the time these models were developed, panel data was typically collected via self-
completed diaries. With the adoption of the Universal Product Code (UPC) and associated laser
scanners, diaries have been replaced by some form of electronic data collection, be it in the store
(where panellists present a special ID card to the cashier at the checkout) or in the home (where
panellists scan the items purchased using a hand-held barcode scanner).
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The speci®c data used in this study are from market tests conducted using Information
Resources, Inc.'s BehaviorScan service. BehaviorScan is an electronic test marketing system with
panels operating in eight markets, geographically dispersed across the USA; six of these are
targetable TV markets (Pitts®eld, MA, Marion, IN, Eau Claire, WI, Midland, TX, Grand
Junction, CO, and Cedar Rapids, IA), the other two are non-targetable TV markets (Visalia, CA
and Rome, GA). One characteristic of this service is that distribution is controlled; i.e. the new
product receives 100% distribution in the market. (See Curry, 1993 for further details of the
BehaviorScan service.)

We have 19 datasets, each associated with a new product test (lasting one year) conducted in
one of the targetable TV markets between 1989 and 1996. Each of the six markets is represented
at least once in our database, and the tested products are from the following categories: shelf-
stable (ready-to-drink) juices, cookies, salty snacks, and salad dressings. (Further details cannot
be provided for reasons of con®dentiality.) It should be noted that some new products were
simultaneously tested in two markets; in such cases, we treat each market as a separate observa-
tion (i.e. fewer than 19 unique new products were tested).

Each product-market dataset contains 52 weekly observations, each observation being the
cumulative number of panellists who have tried the new product by the end of the week in
question. These are converted to penetration numbers simply by dividing by the number of
households in the panel.

Traditional industry practice sees forecasts being made once the product has been in the test
market for six months. We therefore use the ®rst 26 weeks of data to calibrate each trial model,
and the remaining 26 weeks of data are used for evaluating the model's forecasting performance.
It is clear that getting an earlier read of the new product's performance is of great interest to both
the research companies and their clients, and the desire to use a 13-week test period is often
discussed. We therefore consider a second calibration period condition in which the ®rst 13 weeks
of data are used for model calibration and the remaining 39 weeks of data for evaluating fore-
casting performance.

Model Calibration
A number of the original developers of the models included in this study provided little or no
detail as to how they calibrated the models for their empirical analyses. Following the lead of
Mahajan, Mason, and Srinivasan (1986), we will examine the impact of di�erent estimation
methodsÐmaximum likelihood (MLE) and two variants of non-linear least squares (NLS)Ðon
the predictive validity of the eight models included in this review. The only exception is the
exponential with the `never triers' � `stretch' factor model, which, due to the inclusion of the
stretch factor (d) parameter, is not amenable to MLE. In total, therefore, we have a set of
23 di�erent model� estimation method combinations.

Let:

Y(t) � the new product's actual penetration by the end of week t
y(t) � Y(t)7Y(t7 1)

� the new product's incremental trial in week t
p(t) � P(t)7P(t7 1)

� the model-based estimate of incremental trial in week t
N � the number of households in the panel
T � the number of weeks in the calibration period.
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Maximum likelihood estimates of each model's parameters are obtained by maximizing the
following general likelihood equation; the exact equation is derived by substituting in the speci®c
expressions for P(t) and p(t):

L � �1 ÿ P�T��N�1ÿY�T��
YT
t�1

p�t�Ny�t�

In the di�usion and growth modelling literature, researchers tend to take one of two
approaches in using non-linear least squares to estimate a model's parameters. Srinivasan and
Mason (1986) obtain parameter estimates by minimizing the sum-of-squares on an incremental
(i.e. week-by-week) basis:

XT
t�1
�y�t� ÿ p�t��2

while Meade (1984) obtains parameter estimates by minimizing the sum-of-squares based on the
number of cumulative triers through time t:

XT
t�1
�Y�t� ÿ P�t��2

We will use both approaches, calling them NLS-Incremental and NLS-Cumulative, respectively.

Measurement of Forecasting Performance
Using the parameters estimated on the ®rst 13 (or 26) weeks of data, each model is used to
forecast cumulative trial for each of the remaining 39 (or 26) weeks. In summarizing a model's
ability to forecast cumulative trial, we are ®rst interested in week-by-week accuracy, as repeat
sales forecasts derived from models of the repeat component of sales are typically computed on a
week-by-week basis, conditional on cumulative trial. Failing to appropriately track cumulative
trial would ripple though to the eventual total (i.e. trial � repeat) sales forecast. Another
summary measure frequently used in market tests is cumulative trial by the end of the ®rst year.
We are therefore also interested in the models' ability to forecast cumulative trial at week 52.

The appropriate error measures will be computed for each of the 874 model� estimation
method� calibration period� dataset combinations. These will then be analysed to identify the
relative performance of the eight models, and the impact of the three estimation methods and two
calibration period lengths. The issue of what error measure(s) a researcher should use to identify
the most accurate forecasting method has received much attention in the forecasting literature.
A commonly used measure is Mean Absolute Percentage Error (MAPE). While there are
theoretical advantages associated with the use of alternative measuresÐsee Armstrong and
Collopy (1992), Fildes (1992), and related commentaryÐMAPE has the advantages of being
easily understood by managers and being very appropriate in planning and budgeting situations
(Makridakis, 1993). We will therefore compute MAPE over the forecast period for each of the
model� estimation method� calibration period� dataset combinations. Week 52 forecasting
accuracy will be evaluated by computing the Absolute Percentage Error for that week alone
(hereafter APE 52).
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RESULTS

To help set the stage for the forecasting results that follow, we ®rst examine the relative
performance of each model and estimation method within the two calibration periods (13 and
26 weeks). Table II contains the summary results. (Note that the numbers in the left-hand column
of Table II have nothing to do with the relative performances of the models; they merely re¯ect
the ordering of the models as presented in the second section.) The models all ®t quite well in
calibration, and, in general, there are no critical di�erences across the model� estimation
method� calibration period combinations. We brie¯y summarize the few noteworthy di�erences
that do emerge from the table:

(1) As judged by the R2 criterion, the two models lacking a p parameter (to allow for ultimate
penetrations less than 100%)Ðnamely, exponential-gamma (model 3) and lognormal±
lognormal (model 6)Ðboth ®t noticeably worse than the other six speci®cations. This
observation holds true not only for the overall means (®nal column of Table II), but for each
of the di�erent estimation method� calibration period combinations as well.

(2) Regardless of the calibration interval, NLS-Cum o�ers slightly better ®ts than MLE, which,
in turn, ®ts slightly better than NLS-Inc. The better ®ts provided by NLS-Cum come as no
surprise, since such an optimization process is essentially equivalent to maximizing the R2

for a given model.
(3) The model� estimation method combinations using 13 weeks of calibration data tend to

produce slightly higher R2s than those using 26 weeks. Most likely, these di�erences re¯ect
some degree of over®tting for the models run with shorter calibration periods.

Beyond these main e�ects, there are no apparent interactions occurring for the various
combinations of models, estimation methods, and calibration periods. The more important issue,
of course, is whether the presence of any of these calibration period e�ects are associated with
any meaningful (or at least statistically signi®cant) di�erences in the forecasts. We will now
address this essential question.

Table II. Average calibration period R-squared

Model

Calibration period� 13 weeks Calibration period� 26 weeks
Overall
meanbMLE NLS-Cum NLS-Inc Meana MLE NLS-Cum NLS-Inc Mean

1. Exp. w/NT 0.968 0.967 0.958 0.964 0.960 0.965 0.958 0.961 0.963
2. Exp. w/NT � `stretch' Ð 0.968 0.959 0.963 Ð 0.971 0.960 0.965 0.964
3. Exp.-Gamma 0.950 0.956 0.944 0.950 0.946 0.954 0.937 0.946 0.948
4. Exp.-gamma w/NT 0.968 0.967 0.958 0.964 0.963 0.967 0.958 0.963 0.964
5. Weib.-gamma w/NT 0.982 0.983 0.973 0.979 0.971 0.974 0.964 0.970 0.975
6. Lognormal±lognormal 0.937 0.945 0.931 0.938 0.924 0.938 0.914 0.925 0.932
7. `Double-exponential' 0.974 0.979 0.977 0.977 0.961 0.967 0.956 0.961 0.969
8. Bass 0.970 0.979 0.968 0.972 0.960 0.966 0.925 0.950 0.961

Meanc 0.964 0.968 0.959 0.955 0.963 0.946

aModel average across estimation method.
bModel average across estimation method and calibration period.
c Estimation method average across model.
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MAPE Results
The summary data for our MAPE analyses can be found in Table III. A number of important
patterns emerge from this performance measure. We ®rst discuss the MAPE results associated
with each of the eight model speci®cations, and then broaden our focus to examine issues
involving the calibration periods and estimation methods as well.

Our principal result can be seen in the rightmost column of Table III. The MAPE numbers
here re¯ect a strong pattern favouring simpler models over more complex ones. Speci®cally, the
top four model speci®cations all o�er better forecasts on average (i.e. lower MAPEs) than the
lower four models. The qualitative di�erences across these two foursomes is quite striking: the
top four models are purely concave; under no circumstances can any of them allow for any
`S-shaped' behaviour. In contrast, the lower four models all allow for some degree of convexity. It
is evident from these results that more ¯exibility in a model speci®cation is not necessarily a good
thing, and, in fact, it can be downright harmful to a model's forecasting capabilities. Overall,
these di�erences in mean MAPE are highly signi®cant (F7,866� 7.385, p5 0.001), yet the
di�erences among the top four models are not at all signi®cant (F3,866� 0.234, p� 0.834). Thus
the simple, concave models are, in aggregate, very similar to each other (in terms of forecasting
performance), but substantially more accurate than the four complex structural models. This is
perhaps the most important ®nding of this entire study.

Beyond these overall main e�ects for the eight models, a number of deeper insights emerge
when we examine the model-by-model results under the various estimation methods and calibra-
tion periods. For instance, when we look closely at the model results associated with the 13-week
calibration period, we see the same overall pattern emerging (i.e. simpler models generally fore-
casting better than complex ones), but there is a notable exception. The second model, expon-
ential with the `never triers' � `stretch' factor, falls far behind the other three simple models, and
in fact is surpassed by two of the complex models. (Nevertheless, the di�erences among the other
three simple models continue to be insigni®cant: F2,429� 0.371, p� 0.690.)

In sharp contrast, this same model (exponential with the `never triers' � `stretch' factor) is the
clear winner for the 26-week calibration period. To add to this surprising result, the exponential
with the `never triers' model without the `stretch' factor (model 1), which was the overall winner
for 13 weeks, drops to ®fth place when the longer calibration period is used. Clearly, this `stretch'

Table III. Average forecast period MAPE

Model

Calibration period� 13 weeks Calibration period� 26 weeks
Overall
meanbMLE NLS-Cum NLS-Inc Meana MLE NLS-Cum NLS-Inc Mean

1. Exp. w/NT 18.31 15.58 15.31 16.40 8.81 12.15 9.57 10.17 13.29
2. Exp. w/NT � `stretch' Ð 22.22 20.75 21.49 Ð 6.76 6.17 6.47 13.98
3. Exp.-gamma 17.91 17.08 20.71 18.56 5.89 9.80 12.42 9.37 13.97
4. Exp.-gamma w/NT 21.38 15.63 16.26 17.76 7.29 8.89 7.12 7.77 12.76
5. Weib.-gamma w/NT 19.32 19.87 21.51 20.23 7.41 8.96 11.65 9.34 14.78
6. Lognormal±lognormal 26.96 26.89 34.38 29.41 9.75 13.55 21.41 14.90 22.16
7. `Double-exponential' 21.42 21.21 20.48 21.04 9.02 13.03 14.55 12.20 16.62
8. Bass 18.50 22.40 25.69 22.20 8.26 13.37 22.51 14.71 18.45

Meanc 20.54 20.11 21.88 8.06 10.81 13.17

a±c As Table II.
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factor becomes critically important in longer datasets. Recall that Fourt and Woodlock (1960)
introduced this parameter to accommodate unobserved heterogeneity to enhance the perform-
ance of the simple exponential model. Our results suggest that this stretch factor does its job
extremely well, but only when the data period is su�ciently long so as to make heterogeneity an
important consideration.

Despite these ¯ip-¯ops for the exponential model with and without the `stretch' factor, the two
exponential-gamma speci®cations (models 3 and 4) are quite steady and accurate across the two
calibration periods. This robustness is a very encouraging sign, suggesting that these models may
be broadly applicable across a relatively wide variety of datasets.

Among the complex models, the lognormal±lognormal (model 6) is consistently the worst
performer, and by a wide margin. (Recall that it was also the single worst performer in terms of
calibration period R2.) The Bass model (model 8) is next-worst, with the `Double-Exponential'
(model 7) just ahead of it. The Weibull-gamma with `never triers' (model 5) is clearly the best of
the four complex models. Ironically, it ®nishes in fourth place within each of the two calibration
periods, yet in ®fth place overall (due to the wild swings of models 1 and 2).

MAPE by Estimation Method
The bottom row of Table III shows the mean MAPE for each of the three estimation methods,
broken out by calibration period. If we aggregate these two groupings together, we get the
following trio of mean MAPE values: 14.302 for MLE, 15.461 for NLS-Cum, and 17.529 for
NLS-Inc. The di�erence across these means is highly signi®cant (F2,871� 4.766, p� 0.009), but
this is driven largely by the fact that NLS-Inc is clearly the worst estimation method (overall as
well as in each of the two calibration periods). In contrast, MLE and NLS-Cum are somewhat
harder to distinguish from one another. Overall, the di�erence between MLE and NLS-Cum
is insigni®cant (F1,871� 1.180, p� 0.278) when aggregated across the calibration periods. While
this insigni®cant di�erence between MLE and NLS-Cum holds within the 13-week period
(F1,434� 0.068, p� 0.794), the di�erence for 26 weeks is quite signi®cant (F1,434� 7.051,
p� 0.008). In other words, NLS-Cum appears to hold a slight (but insigni®cant) edge for short
calibration periods, but the forecasts associated with MLE become stronger and stronger as the
calibration period lengthens.

Finally, there appear to be a few interesting model� estimation method interactions worth
noting. First of all, the simple exponential-gamma (model 3) seems to work very well with MLE.
For both calibration periods, this is the best model associated with MLE. Similarly, the Bass
model does unusually well with this estimation methodÐdespite its poor performance overallÐ
when compared to the MLE forecasts for the three other complex models (cf. Mahajan, Mason,
and Srinivasan, 1986). In contrast, the other estimation methods do not appear to o�er similarly
consistent results for the various models. The best model� estimation method combinations
di�er by calibration period, and therefore do not suggest a high degree of reliability or external
validity.

We summarize all these MAPE results as follows. Simple models clearly outforecast the more
complex speci®cations, despite the fact that the latter models can allow for `S-shaped' sales
patterns. Overall, the four simple models appear to o�er similar forecasting capabilities, but there
are some notable di�erences based on the length of the calibration period and the estimation
method used. We observed that the two exponential-gamma models are generally the most stable,
and the overall best combination appears to be the simpler of the two exponential-gamma models
(i.e. model 3, with no `never triers' component), which produces especially good forecasts when
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estimated using MLE. This particular combination produced forecasts with average MAPEs
under 18% using 13 weeks of calibration data, and just below 6% on average for the 26-week
calibration period.

APE 52 Results
The second forecasting performance measure of interest is APE 52, which captures the accuracy
of the models' forecasts in week 52. The summary data for these analyses are shown in Table IV.
For the most part, these numbers closely echo the MAPE results just discussed. Rather than
review these patterns in detail, we can summarize the highlights as follows:

(1) The simpler speci®cations (models 1±4) generally provide more accurate week 52 estimates
than the more complex models. The two exponential-gamma models are the best overall.

(2) When we contrast the results across the two calibration periods, we continue to see the same
major swings for models 1 and 2 (the exponential with the `never triers' models).

(3) NLS-Cum forecasts slightly better for shorter calibration periods, but MLE is the winner for
longer datasets. NLS-Inc continues to lag far behind.

(4) The exponential-gamma model estimated using MLE over 26 weeks is still the single best
model� estimation method combination.

In essence, none of the MAPE results are contradicted or markedly ampli®ed by the APE 52
statistics. This consistency across Tables III and IV is a very encouraging sign: it suggests that the
choice of week 52 as a focal point is not a critically important one. Presumably, we could perform
a similar APE analysis for a di�erent forecasting horizon (within reason) and expect roughly
equivalent results to emerge. To pursue this point a little further, we can examine the di�erences
between the rightmost columns of Tables III and IV as an indication of the degree of degradation
that occurs for each model as we shift our focus from the mean of each forecast period (MAPE)
towards the endpoint (APE 52). In general, these di�erences are modest, yet they vary system-
atically across the eight models. The models with the worst forecasting performances (models 6,
7, and 8) su�er from the most degradation, while exponential-gamma (model 3) has by far the
smallest di�erence between its overall means for MAPE and APE 52. This seems to indicate that
model 3 might hold up best if we were to further extend the forecasting horizon. While a formal

Table IV. Average week 52 APE

Model

Calibration period� 13 weeks Calibration period� 26 weeks
Overall
meanbMLE NLS-Cum NLS-Inc Meana MLE NLS-Cum NLS-Inc Mean

1. Exp. w/NT 28.53 24.26 24.04 25.61 15.00 17.67 15.12 15.93 20.77
2. Exp. w/NT � `stretch' Ð 38.19 35.23 36.71 Ð 8.76 10.06 9.41 23.06
3. Exp.-gamma 25.88 22.60 28.56 25.68 8.59 11.60 15.44 11.88 18.78
4. Exp.-gamma w/NT 34.38 24.23 24.42 27.68 12.58 11.68 10.61 11.63 19.65
5. Weib.-gamma w/NT 28.59 28.55 30.08 29.07 12.04 11.70 16.13 13.29 21.18
6. Lognormal±lognormal 42.19 39.24 51.98 44.47 15.60 17.26 29.54 20.80 32.63
7. `Double-exponential' 32.31 32.59 31.93 32.25 23.40 19.03 21.59 21.34 26.79
8. Bass 28.70 33.35 35.75 32.60 14.43 19.53 34.11 22.69 27.64

Meanc 31.50 30.38 32.75 14.52 14.65 19.08

a±c As Table II.
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version of such an analysis might be an interesting endeavour, it is outside the scope of this paper
(and these datasets). Nevertheless, we encourage future researchers to pursue this direction of
analysis more carefully.

Impact of the Penetration Limit (p) on Forecasts
Missing from the preceding analysis of APE 52 is any insight as to whether the models exhibit
any tendency to over- or underpredict. A recent examination of the properties of macro-level
di�usion models by Van den Bulte and Lilien (1997) highlights the tendency of such models to
underestimate market size. In the context of the models examined in this paper, this would
suggest that the models that have a penetration limit term (i.e. explicitly consider `never triers')
will exhibit a bias to underpredict.

In order to explore this idea, we look at the six models that include a penetration limit term to
see whether there is any tendency to over- or underpredict, and relate this to whether or not the
actual penetration by week 52 is greater or less than the estimated penetration limit; the
associated cross-tab is presented in Table V. We observe a clear tendency to underpredict week 52
penetration, with this occurring in 80% of the cases examined. This is obviously linked to the
under-estimation of p; in 86% of these underprediction cases, the estimated penetration limit was
less than the actual penetration at week 52.8 Thus, our data seem to re¯ect the same bias
identi®ed by Van den Bulte and Lilien, although in a di�erent context (i.e. models and datasets)
from that used by them. As suggested by Van den Bulte and Lilien, researchers must exercise
caution in estimating and interpreting these penetration limit parameters.

A logical follow-on question is whether the models containing no penetration limit term (i.e.
models 3 and 6) exhibit any tendency to over- or underpredict. Across all estimation method�
calibration period� dataset combinations, the exponential-gamma and lognormal±lognormal
models overpredict 74% and 91% of the time, respectively.

This analysis shows that the models do exhibit a tendency to over- or underpredict, and this
can be linked to the explicit consideration of `never triers' in the model formulation. In order to
overcome the problem of underestimating p, Van den Bulte and Lilien suggest that researchers

Table V. The impact of estimated penetration limit on week 52 forecast

Underprediction at week 52
[P(52)5Y(52)]?

No Yes

Estimated penetration No 17% 11% 28%
limit less than actual
week 52 penetration
[pÃ5Y(52)]? Yes 3% 69% 72%

20% 80%

8On the surface, it would not seem possible to overpredict at week 52 when the estimated penetration limit is less than
actual penetration at week 52. The 3% of cases where this does occur are all for the exponential with `never
triers' � `stretch' factor model (i.e. model 2); a positive d term enables the forecast to be greater than the estimated
penetration limit.
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should use externally obtained estimates of the penetration limit. While this may be feasible for
some classes of durables, it is not immediately clear how this would have done in the context
examined in this paper as it would require an exogenous estimate of the size of the `never triers'
group. Clearly this is an issue that warrants further attention.

DISCUSSION AND CONCLUSIONS

One of the primary purposes of this study has been to address the question `which trial model(s)
provide the best forecasts?' While we are prepared to answer this question, the more important
contributions from this paper arise from the deeper question, `when and why do these models
perform best?' We choose to focus on these fundamental issues ®rst. Several general principles
have emerged from our analysis that supersede the relative performance of any one particular
model speci®cation. We summarize these principles as follows:

(1) When dealing with consumer packed goods, simpler models o�er better forecasts than more
complex ones. In particular, the family of models associated with an underlying exponential
timing process are considerably better than all alternatives, including those models that
allow for S-shaped cumulative sales curves.

(2) Models that explicitly accommodate heterogeneity in purchasing rates across consumers
tend to o�er better forecasts than those that do not do so.

(3) The presence or absence of an explicit `never triers' parameter (i.e. a penetration limit) does
not appear to have any systematic impact on the overall degree of forecast accuracy. At the
same time, however, models that include such a component exhibit a strong tendency to
under-forecast actual trial sales, while models without this parameter are very likely to
overforecast actual trial sales.

(4) In choosing among the two most common estimation procedures, maximum likelihood is
signi®cantly better than week-by-week (incremental) NLS. A less common third alternative,
cumulative NLS, appears to be similar to MLE overall, but tails o� with longer calibration
periods.

(5) Not surprisingly, the length of the calibration period has a major impact on the quality of a
model's forecast. More subtle is the fact that certain models (e.g. the exponential with `never
triers' speci®cations) are highly sensitive to the amount of calibration data available for
model estimation.

(6) A model's ®t within the calibration period is largely unrelated to its forecasting prowess.
(One notable exception is the lognormal±lognormal model, which is extremely poor in both
domains.) Likewise, di�erences across the three estimation methods within the calibration
period show no relationship with forecasting capabilities.

Given the number and variety of datasets used here, we have reason to believe that these
principles are generalizable to many other consumer packaged goods settings. But we acknow-
ledge that our ability to make such generalizations does not necessarily carry over to industrial
products, consumer durables, and other types of product categories. As noted earlier, we expect
that the ability to accommodate S-shaped sales patterns can be very useful in some of these other
contexts. Nevertheless, the universe of consumer packaged goods is a large and varied one, and,
as mentioned in the introduction, there is an important role for accurate, reliable trial forecasts.
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Looking across this collective set of principles, we can see why the exponential-gamma models
(with or without the `never triers' component) deserve to be crowned as the overall champions
of this forecasting challenge. These models e�ectively combine simplicity with ¯exibility (for
consumer heterogeneity) and appear to be highly robust across calibration periods and estimation
methods. It is unfortunate that these models have received relatively little attention from
practitioners and academics alike. We hope that this paper might motivate greater use of this class
of models, especially in conjunction with some of the extensions discussed below.

The Role of Covariates
While academics and practitioners are certainly interested in forecast accuracy and the other
issues discussed in this paper, they are also vitally concerned about the role that covariates, such
as marketing decision variables, might have on a model's forecasting capability. After all, an
important aspect of a new product's introduction is its marketing plan, which can greatly a�ect
its ®rst-year sales. (This is especially true for ®rms that use real or simulated test markets to help
®ne-tune the eventual full-scale marketing plan.) While we share this interest in exploring the
impact of marketing decision variables, we must reiterate our earlier observation that remarkably
few published trial models have incorporated such e�ects, and these have received little attention
(e.g. Nakanishi, 1973). Thus, the inclusion of covariates requires the development of new models,
which is clearly outside the scope of this paper. By excluding covariates, we have identi®ed
benchmark models against which more complete models can be compared when evaluating the
impact of adding covariates. Moreover, the `best' models identi®ed in this paper could be ideal
base models to which covariate e�ects can be added. A useful analogy here may be the so-called
`Generalized Bass Model' (Bass, Krishnan and Jain, 1994), which uses a well-founded approach
for including covariate e�ects and demonstrates the robustness of the basic model speci®cation to
the omission of covariates. In light of the evidence from Bass et al., as well as other similar studies
(e.g. Morrison and Schmittlein, 1988), we have no reason to believe that any of our general
conclusions about the models, estimation methods, etc. would change if covariates were included.
Nevertheless, we leave this as a worthwhile empirical issue to be addressed more carefully in the
future.

Repeat Purchase Models
Despite the importance of modelling trial, per se, in understanding and forecasting new product
sales, it is essential that we acknowledge and brie¯y discuss the repeat purchase component as
well. A natural extension of this paper would be to conduct a similar `M-competition' among
repeat purchase models, or perhaps among combined trial-repeat models. The thought of such an
analytical exercise raises additional questions. For instance, some managers may favour a fully
integrated trial-repeat model (such as STEAM), while others may prefer a more `modular'
combination of di�erent, potentially unrelated, trial and repeat components. Is one of these
approaches better at forecasting than the other? Some di�cult tradeo�s must be made between
the ¯exibility of a modular system versus the statistical bene®ts that might arise if consumers'
true, underlying, trial and repeat tendencies are tightly linked and not easily made separable.

Given the number of di�erent model speci®cations identi®ed in this paper, as well as the
additional variety of repeat models available in the literature (i.e. those associated with the trial
models presented in this paper), it is clear that a complete analysis and comparison of new
product sales models would be a sizeable task. While our coverage of trial only covers a subset of
the issues at stake, our organizing framework (Table I) can help guide the classi®cation of sales
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models and suggest the key characteristics to examine in a complete empirical analysis. As
suggested in the previous section, we believe that many or all of our principal ®ndings would
continue to hold true, but it will be very interesting to see how the relative importance of factors
such as heterogeneity, estimation method, and the presence or absence of a `never triers' para-
meter change as we move from trial to repeat purchasing.

Future Outlook
Viewed from a broad perspective, the world of new product trial models has changed very little
over the past 20±30 years. Perhaps this lack of attention is due to a belief on the part of academic
modellers and practitioners that the various models in the literature are all fairly robust and that
there is little di�erence between them in terms of performance. Our research has shown that any
such belief is clearly wrongÐthe choice of model doesmatter. Academics should view the above-
mentioned set of unresolved issues as good motivations for future research, and practitioners
should begin to see the bene®ts of choosing models and methods more carefully (as well as the
opportunity costs of not doing so).

A number of recent developments make the execution and implementation of these forecasting
models even more feasible and attractive than ever before. First and foremost are computational
reasons. All the model estimations performed in this paper were done using the standard `Solver'
utility that is built into Microsoft ExcelÐthe authors used no `academic' or custom software
whatsoever. Second, each of these models require only seconds to run within Excel. (In fairness,
however, the process of running and checking all 874 models for this paper was rather time-
consuming.) Thus, today's managers have more computational power at their disposal than any
academic had at the time that these models were ®rst developed.

A related issue has been the growing desire to create and use databases across numerous new
product launches. As the concept of `data mining' continues to spread in popularity, managers
are beginning to be more systematic in their approach to new product introduction decisions.
This results in better record keeping, more uniformity across launches, and more motivation to
track results. In our view, the key to success in this area is to build databases of model parameters
and forecasts, rather than emphasizing raw data, per se. As Urban and Katz (1983) demonstrated
for the ASSESSOR model, there are valuable bene®ts to be gained in the form of cumulative
learning across multiple new product launches and their associated trial/repeat models.

Finally, recent years have also seen signi®cant improvements in panel data collection tech-
niques, which provide further motivation to develop new and richer forecasting models. The old
handwritten purchasing diaries were eclipsed by electronic laser scanners a generation ago, but
newer developments make data collection easier and more representative than ever before. One
prominent example is the notion of a multi-outlet purchasing panel, which provides household-
level data for purchases from convenience stores, pharmacies, mass merchandisers, and ware-
house clubs, in addition to supermarkets. As manufacturers rely more and more on staggered
new product rollouts across di�erent store types and geographic areas (Crawford, 1997), it is all
the more essential to be able to develop and implement reliable forecasting procedures to allow
for mid-stream adjustments to the marketing/production plans, as well as other corrective actions.
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