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Abstract

We present analyses of an extraordinary new dataset that reveals the path taken by individual shoppers in an actual grocery

store, as provided by RFID (radio frequency identification) tags located on their shopping carts. The analysis is performed using a

multivariate clustering algorithm not yet seen in the marketing literature that is able to handle data sets with unique (and numerous)

spatial constraints. This allows us to take into account physical impediments (such as the location of aisles and other inaccessible

areas of the store) to ensure that we only report feasible centroid paths. We also recognize that time spent in the store plays an

important role, leading to different cluster configurations for short, medium, and long trips. The resulting three sets of clusters

identify a total of 14 bcanonical path typesQ that are typical of grocery store travel, and we carefully describe (and cross-validate)

each set of clusters. These results dispel certain myths about shopper travel behavior that common intuition perpetuates, including

behavior related to aisles, end-cap displays, and the bracetrack.Q We briefly relate these results to previous research (using much

more limited datasets) covering travel behavior in retail stores and other related settings.
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1. Introduction

Most marketers have a well-established schema

for shopper travel behavior within a supermarket—the

typical customer is assumed to travel up and down the

aisles of the store, stopping at various category loca-

tions, deliberating about her consideration set, choosing

the best (utility maximizing) option, and then continu-

ing in a similar manner until the path is complete.

Despite the common presumption of this scenario, little

research has been undertaken to understand actual

travel patterns within a supermarket. How do shoppers

really travel through the store? Do they go through

every aisle, or do they skip from one area to another
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in a more direct manner? Do they spend much of their

time moving around the outer ring of the store (a.k.a.

the bracetrackQ), or do they spend most of their time in

certain store sections? Do most shoppers follow a sin-

gle, dominant pattern, or are they rather heterogeneous?

A rich new data source, as illustrated in Fig. 1, now

allows us to examine these and other important behav-

ioral questions.

No, Fig. 1 does not represent the random scribblings

of a kindergartener. It is a subset of the PathTrackerR
data collected by Sorensen Associates, an in-store re-

search firm, for the purpose of understanding shopper

behavior in the supermarket. Specifically, Sorensen

Associates affixed RFID (radio frequency identification)

tags to the bottom of every grocery cart in an actual

supermarket in the western U.S. These tags emit a signal

every 5 seconds that is received by receptors installed at

various locations throughout the store. The arrival laten-
eting 22 (2005) 395–414



Fig. 1. PathTrackerR data from 20 random customers.
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cies of the signals at the receptor locations are used to

triangulate the position of the grocery cart. Thus, for

every shopping path, data are recorded regarding the

cart’s two-dimensional location coordinates, (xit, yit)

for shopper i at his tth observation (hereafter referred

to as bblinksQ), at 5-second intervals, which can be used

to determine each cart’s route through the entire store1.

While ideally, one might hope to obtain positioning

data directly from the shoppers themselves, this is not

currently available in an actual commercial setting.

Therefore, we use customers’ grocery carts as a proxy

for their shopping path, since we know the exact shop-

per location when the grocery cart is moving and a

good guess of the general vicinity of the shopper when

the grocery cart is stationary. Regardless, the method-

ology developed in this paper will continue to be

applicable as newer and better datasets become avail-

able. Finally, the time and location of the cart at the end

of each path offers information about the checkout

process; point-of-sale data can then be matched with

the cart movement records to provide a complete pic-

ture of each shopping path. See Sorensen (2003) for

more details about the PathTrackerR system.

The goal of this research is to undertake exploratory

analyses, useful for data summarization, inference, and

intuition about shopper travel path data. Specifically,

we want to identify typical in-store supermarket travel

behaviors that will help us understand how shoppers

move through a supermarket. Similar research ideas,
1 The dataset originally came with some biases in the calculated

locations due to electromagnetic variation in several areas of the store.

For example, metal cans cause the signal from the tag to travel faster

than in aisles with cardboard packages, so the location coordinates

were biased. After extensive testing and calibration by Sorensen

Associates, these biases have been corrected in the current dataset.
summarizing large sets of bbehavioralQ curves as in Fig.

1 have been explored using principal components anal-

ysis methods (Bradlow, 2002; Jones & Rice, 1992);

however, our goal here is not to explain the maximal

variation across customers with principal curves, but

instead to cluster respondents into btypesQ of shoppers
and describe the prototypical path of a general cluster.

Unfortunately, there are numerous challenges we face,

since the application of standard clustering routines is

not feasible due to the extremely large number of spatial

constraints imposed by the physical supermarket layout

(e.g. people can’t walk through store shelves). For this

reason, the contribution of this research is not limited to

the empirical findings of the in-store path data, but also

introduces to the marketing literature a multivariate

clustering algorithm that can be applied to other settings

with a large number of spatial constraints.

Although this new method represents a useful step

forward in our ability to analyze multivariate data, we

wish to emphasize our exploratory objectives: we

want to use this procedure to help us identify predom-

inant patterns that will catalyze future research. Given

the newness of this area, we are not yet at the stage

of being able to create (or test) formal theories

of shopping behavior. In other words, in this paper

we will raise more questions than provide answers,

and we hope to motivate readers to pursue these re-

search issues with complementary (and more conclu-

sive) research methods.

The remainder of the paper is laid out as follows.

First, we describe the data in more detail and explain

various obstacles in undertaking exploratory analyses

on this data (such as the numerous spatial constraints).

Next, we detail the new-to-marketing clustering algo-

rithm used to overcome these obstacles. We then pres-

ent the results of the algorithm and the canonical

shopper path profiles that emerge. The results are

then displayed in relation to a set of variables that

describe the travel areas of each path. We demonstrate

that our methods enable us to cluster shopper paths

along important dimensions that would be missed

using simpler methods, lending support to the value

of our techniques. We next perform a cross-validation

of our results to assess the reliability of the findings.

Finally, we conclude with a discussion section which

summarizes the potential impact of the current findings

and relates the current work to past and future research.

2. Overcoming data obstacles

The travel portion of our data consists of a bright-
raggedQ array of location coordinates, where every row
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is a shopping path, and every pair of columns is what

we term a bblinkQ, or a coordinate point (x, y) in the

store. In total, we have 27,000 shoppers’ paths ranging

in length from 25 blinks for a 2-min path, to 1500

blinks for a 2-h path. The mean path consists of 205

blinks (just over 16 min), and the median has 166 blinks

(just over 13 min)2. The path is considered complete

(and hence stops being tracked for our purposes) when

the cart gets pushed through the checkout line and onto

the other side of the checkout counter.

While for some datasets, performing exploratory

data analyses may be straightforward, there are a num-

ber of significant challenges presented by this type of

shopping path data. A proper analysis of such data must

overcome the following obstacles:

(1) Memory limitations (size of data)

(2) Ragged array path comparisons (differing lengths

of paths)

(3) Spatial constraints (aisle layout and other

physical obstructions in the store).

We next describe our solutions to these issues.

2.1. Size of the dataset

With over 27,000 paths, and as many as 1500 pairs

of coordinates (blinks) per path, memory limitations for

implementing a clustering algorithm posed significant

problems. To make the analysis feasible, we drew a

systematic sample of 9000 paths, drawing every 3rd

path from a random starting point. Some of these paths

were deleted due to data problems (the transponder

stopped working for longer than a minute), leaving us

with 8751 paths. With an additional three-way split of

the 8751 paths by total time in the store, which we

explain later, this was sufficiently small to avoid com-

putational problems but large enough to maintain the

rich nature of the research question.

2.2. Ragged array path comparisons

The fundamental kernel of a cluster analysis is the

ability to make distance comparisons among the units.
2 When Sorensen Associates initially assembled the dataset, they

observed a number of very long paths — up to 6 h in duration. These

paths did not seem to coincide with actual shopping behavior; for

instance many appeared to be abandoned carts that stayed in one place

for a long time before a store employee moved them away. Based

upon our discussions with Sorensen Associates, we excluded all paths

lasting over 2 h.
The ragged-array nature of our in-store data (i.e. per-

sons vary in their path times, or number of blinks)

makes these distance calculations (computing a pair-

wise path distance) difficult. How can a path of 150

blinks be compared, in a reasonable fashion, to a path

of 1200 blinks? To facilitate comparisons among paths

of varying lengths, each path was recoded as a path of

100 percentile locations. The first blink represents the

starting point; the second blink represents the store

location 1% of the way through the path (measured in

distance); the third blink is the location 2% of the way

through, etc.3

2.3. Spatial constraints

With each path standardized as a 100-blink (per-

centile) path, they can be easily aligned for pairwise

distance computation; however, the numerous store

spatial constraints make the application of standard

numerical clustering techniques still non-trivial. For

example, although simple k-means clustering algo-

rithms could be applied to the bivariate blink data,

which would be equivalent to minimizing the pairwise

squared distances at each percentile point within each

cluster, it would almost certainly lead to infeasible

cluster centroids that violate the store’s spatial con-

straints by crossing through aisles and going to inac-

cessible areas of the store. That is, the average of

multiple paths within a cluster, computed as a point-

wise average coordinate-by-coordinate (as in k-means

algorithms) will not be a feasible store path, and hence

not a useful summary of store travel behavior for a

given cluster. For this reason, we applied a new-to-

marketing clustering algorithm, called k-medoids clus-

tering (Kaufmann and Rousseeuw, 1990), described

next, that is able to handle the multitude of spatial

constraints.

3. Clustering algorithm

k-medoids clustering was developed primarily to

make k-means clustering more robust to outliers. An

additional advantage of k-medoids clustering is that its

solution conforms to any spatial constraints that exist in

the data. In particular, whereas typical k-means cluster-

ing begins with a random clustering of all observations,
3 In the 100-blink paths, the first and last blinks match the first and

last blinks of the actual paths. So, technically, the second blink

represents the path 1/99th of the way through the path; the third

blink is the location 2/99th’s of the way through, etc. We simplified

the explanation above for clarity.



ig. 2. Illustration of our modified k-means clustering algorithm

ubject to spatial constraints.

4 At times the observed path appears to clip the corner of an

infeasible area or appears to go through an aisle shelf. Since path

locations are recorded at 5-second intervals, a shopper that rounds a

corner during that time will appear to have traveled through the

shelving. Since we know that these apparent discrepancies are arti-

facts of the nature of the data, we need not be concerned. Any other

method to create a fictitious bclosest feasible pathQ would run into

worse problems trying to quantify the precise amount of shelf-cross-

ing that is bfeasibleQ.
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k-medoids clustering begins with a random selection of

observations (four observations are selected for a four-

cluster solution, two for a two-cluster solution, etc., to

serve as cluster bcentersQ); in our case, we use a random

selection of shopper paths to serve as the initial centers.

These observations (paths) are called medoids. Each of

the remaining observations (paths) is then assigned to

the medoid that has the minimum (Euclidean) distance

from it. The next step follows the usual k-means pro-

cedure in that the cluster centroid (cluster mean of each

variable) is then computed. In our case, as discussed,

this simple pointwise mean will yield a centroid path

that is almost surely infeasible. So at this point, the

k-medoids algorithm diverges from the k-means proce-

dure by calculating the observed path (by definition a

feasible path) within that cluster that is closest to the

simple k-means centroid, yielding a new set of

medoids. While these medoids may not necessarily be

the closest feasible paths to the k-means centroid, they

require little computation and lead to canonical paths

that are actually observed in the data, a significant

advantage when wanting to describe btypicalQ behavior
among a set of shoppers. Also note that many in-store

data sets are likely to have a very large number of

shopper paths, making the store densely covered by

actual paths. Thus, the difference between the theore-

tically closest feasible path to the simple k-means so-

lution and the observed k-medoid path may be

inconsequential. A detailed description of our algorithm

is provided in the Appendix.

We make an interesting but justifiable choice in using

Euclidean distance instead of travel distance to measure

the distance between paths (percentile locations). For

example, paths Q and T may be in aisles 2 and 3

respectively at percentile 40. Their Euclidean distance

would only be some 10 ft, while the distance as mea-

sured by the required travel to arrive at the other

location might be 30 ft. The justification for Euclidean

distance is two-fold. First, studies on the difference

between Euclidean and travel distance find correlations

between the two measures as high as .99 and no lower

than .90 (Apparicio, Shearmur, Brochu, & Dussault,

2003). In addition, the behaviors of interest in this

application, such as the amount and pattern of aisle

travel, do not depend on detailed differentiation of the

travel distance between two aisles. In addition to justi-

fication on these grounds, Euclidean distance is much

easier to apply and unambiguous, whereas the travel

distance between two points depends on the specific

route taken.

A graphical illustration, in Fig. 2, explicates the k-

medoids procedure. Four actual standardized paths are
F

s

shown in the figure—three are represented with thin

lines, the other with a bold line and dots at each blink.

The other bold line, with circles denoting each blink, is

the 100-blink pointwise mean of those paths (i.e. the

naı̈ve k-means cluster centroid). Note that it crosses

through aisle shelving and travels through an inacces-

sible area of the store. Among the observed paths, the

bold path with dots at each blink has the smallest sum

of squared distance from the infeasible cluster mean, so

it becomes the medoid for the given iteration.4

The algorithm we described has several desirable

properties: (1) it clusters shoppers according to similar-

ity of travel behavior, and (2) yields a feasible path (one

that is actually observed) as a summary of the travel

behavior manifested in each cluster. Thus, for K clus-

ters, we end up with K canonical paths (medoids) pro-

viding a summary of the travel behavior in that store for

each group of shoppers. This allows for a visual inspec-

tion of store travel behavior without the information

overload shown in Fig. 1. To show that these methods

provide valuable information beyond what other possi-

ble techniques could provide, we present an alternative



Fig. 3. Store subdivided into zones.
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summary technique to which we can compare our

results.

4. Profiling shopping paths by zones visited

Unlike standard cluster profiling, where the means

of a set of variables can be computed for a cluster, our

problem is more challenging in that we need to profile

bivariate store paths. We accomplish this by taking each

store path and summarizing it by the amount of the path

spent in each of several strategically important bzonesQ.
We constructed the zones based upon discussions with

Sorensen Associates (see Sorensen, 2003) and our own

understanding of in-store shopping behavior. These

zones are pictured in Fig. 3.
Fig. 4. Percentage travel in each zone as
The Racetrack, the main thoroughfare on the outside

edge of the aisles, is so named because travel in this

section tends on average to be faster than travel in other

zones. This is likely due to the higher amount of travel

(but not necessarily shopping) that occurs here versus

other areas. The Aisles are important because most peo-

ple make the implicit assumption that the majority of

shopping occurs there. The Produce section is of obvious

importance to any grocery store, both in the minds of the

consumer and in the financial statement of the store. The

Convenience Store (C-Store in the figure) gets its name

from the nature of the items in that section, many of

which could be considered quick-stop items. The Check-

out area is a necessary part of any shopping path. The

Extremity consists of the shelving on the outside of the

racetrack. In most stores, this includes, for example, the

dairy section (often towards the end of the racetrack).

For each path, we record the percentage of the path

that occurred in each of these six mutually exclusive and

exhaustive paths areas. Percentage of the path was

recorded as opposed to number of blinks as it allowed

us to normalize out path length from path pattern. Fig. 4

displays via boxplots the distribution of each zone per-

centage variable across our sample of 8751 paths. The

Convenience Store for the most part is not highly visited,

but there are several outliers, indicating specialized be-

havior in this area. The existence of several outliers in

every zone suggests that several shoppers are only shop-

ping very select areas of the store in one shopping path.

A logical method to proceed based on these mutu-

ally exclusive variable profiles would be to use them in
distributed across the population.



Table 1

Racetrack Aisles Produce C-Store Checkout Extremity

Path A .2024 .3333 .0060 .1667 .2083 .0774

Path B .2030 .3008 .0075 .1504 .2707 .0602
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a straightforward k-means clustering algorithm. Perhaps

this would allow one to find interesting patterns in the

zone usage. While that might indeed lead to some

interesting findings, it would come at a great loss of

information. Consider the two following profiles, which

are based on actual paths (Table 1). Under each store

section is displayed the percentage of travel in that zone

for the given path.

From the profiling variables, it appears that the two

paths are nearly identical, aside from a slightly higher

proportion of travel in the Checkout zone for Path B.

However, their shopping paths actually show very dif-

ferent travel patterns (See Fig. 5).

One way to resolve this discrepancy would be to

create more zones with less area. For example, if we

made each aisle its own zone, the profiles of these two

paths would no longer look the same. But the problem

would still persist if, for instance, two paths traveled

the same aisles in a different pattern, one going along

the top of the aisles, the other going along the bottom.

Even if the store were divided into hundreds of zones,

two very different paths could have similar statistical

profiles if they traveled in opposite directions. Zone

divisions, no matter how well devised, will lead to a

loss of information on two major accounts—order of

the visits and precise locations visited. Our method, on

the other hand, keeps both of these dimensions intact,

while losing only time information in the standardiza-

tion of the path lengths. This information can still be

incorporated into our analysis by means we describe in

the next section.

5. Clustering results by time

The time dimension of shopping has been notably

absent from most of the previous discussion. While we

make all paths comparable to each other by creating

standardized bpercentile pathsQ, we expect to see vastly

different behaviors in a 5-min versus a 30-min path.

Consistent with this supposition, running k-medoids

clustering indiscriminately on all paths leads to cluster

solutions dominated mostly by path length. In fact,

running hierarchical k-medoids clustering leads to

high-order groupings of mostly uniform path length.5
5 Available upon request.
For ease of exposition and description of the results

of the algorithm, we chose to split the set of 8571

paths into three equally sized groups and run our k-

medoids clustering on these groups. The resulting

splits yield a blowQ group of 2917 paths with travel

times ranging from 2 to 10 min, a bmiddleQ group of

2916 paths ranging from 10 to 17 min, and a bhighQ
group of 2918 paths lasting from 17 min to nearly 2 h.

This is akin to a hierarchical clustering where the

three highest-order major groupings are based solely

on time.

The splits by time also have an intuitive appeal in

that a longer bstock-upQ path is likely to be quite

different from an intermediate bfill-inQ path. Similarly,

paths under 10 min don’t leave time for the shopper to

buy more than a few items. Obviously, shoppers from

this group are looking to grab a few important items

and leave. By splitting the analysis this way, we now

incorporate the time dimension of the shopping path

that we had previously lost.

We now undertake a separate analysis and discuss

the results for each of these three groups.

5.1. Low group

To find the boptimalQ number of clusters using our

k-medoids procedure, we need to balance adequate fit

(low within-cluster sum of squares) and parsimony. A

number of techniques exist to help choose the

boptimalQ number of clusters. We employ here two

different methods. A traditional approach is to find the

cluster solution for various numbers of clusters and

plot the within-cluster error by cluster number. This

resulting bscree plotQ should have an belbowQ at the

correct number of clusters (Sugar, 1998). In addition

to this more traditional method, we computed the KL

statistic for each cluster solution (Krzanowsky & Lai,

1985). This statistic utilizes the error improvement

from the cluster solution with k versus k +1 clusters

to find the best solution. Specifically, it requires that

we compute

DIFF kð Þ ¼ k � 1ð Þ2=pWk�1 � k2=pWk

where k is the number of clusters, p is the number of

variables used (200 for our application—both x and y

coordinates for 100 locations), and Wk is a measure of

within-cluster error for k clusters. The KL statistic is

KL kð Þ ¼ jDIFF kð Þ= DIFF k þ 1ð Þ½ �j:

The cluster solution with the highest KL statistic is

the recommended solution. Note that KL(k) is not

defined for k =1. The dual application of such different



Fig. 5. Path A and path B.
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techniques provides greater evidence for our choice of

the number of clusters. As with k-means clustering

techniques, our algorithm produces a local solution,

so we ran the algorithm from 20 different (random)

starting points for each number of clusters to ensure a

suitable solution. The corresponding scree plot and

display of the KL statistic by cluster number for the

low time group are shown below in Fig. 6.

Though we observe no obvious belbowQ in the scree

plot, there is an observable kink at 2 clusters. This

choice is further justified by the KL statistic, which is

highest at k =2. Findings for alternative cluster solu-

tions are available upon request. We present the result-

ing cluster centroids in Fig. 7 below. The N associated

with each centroid shows the number of paths assigned

to that cluster.
Fig. 6. Scree plot and KL statisti
For those under 10 min, there exist two distinguish-

ing patterns. The store is laid out in such a way that

most shoppers choose the bdefaultQ start path along the

racetrack to the right of the infeasible zone (i.e., office/

storage area between the aisles and the produce). Over

half of the low group paths, whether or not they actu-

ally shop in the produce area, follow this default path.

However, a significant portion of short paths (cluster 2)

breaks the default pattern. This is likely due to time

pressures—shoppers making shorter paths want to fin-

ish their few tasks as quickly as possible, and thus are

less likely to follow the default traffic flow. We will see

from the results of the longer groups that shoppers not

faced with such self-imposed time constraints are more

likely to follow the default path up the right-hand side

of the store.
c by cluster for low group.



Fig. 7. Low group medoids.

Fig. 8. Differences in profiles between clusters for low group.
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It is informative to examine how the results from our

k-medoids clustering compares with the store-zone pro-

filing technique described earlier. Profiling, with its

described weaknesses in information loss, still provides

summary information that sheds valuable light on a

certain type of shopping path. This is especially true

when comparing bcanonicalQ paths that emerge from

the cluster analysis. The displayed medoids show the

central travel tendency of each cluster, but a profile

summary of the entire cluster provides further intuition

as to the important clustering dimensions. The distribu-

tion of paths within each of the two low time clusters is

represented in Fig. 8.

The clusters are visibly different on every dimension

except perhaps Aisle and Extremity. The biggest differ-

entiator appears to be the use of the default path, along

which both Racetrack and Produce lie. No differences

are observed in the total path length across these two

clusters.

5.2. Medium group

Since we expect more divergence in behavior with

longer paths, we also expect to find more bcanonical
path typesQ. In other words, a cluster solution with more

than two clusters will likely be appropriate for the

medium length paths. Again, an observable kink at 4

clusters confirms the choice of four clusters as recom-

mended by the KL statistic, seen below in Fig. 9.

Fig. 10 presents the four resultant cluster medoids.

Several interesting patterns emerge. Note that shop-

pers in this intermediate group appear to be less time

constrained, as evidenced by a higher propensity to

follow the default start path along the right-hand side

of the store. All four paths at first glance appear to be

more homogeneous than the two cluster medoids
Fig. 9. Scree plot and KL statistic b
from the low group, as they all follow a similar

start path and continue around the racetrack for

some time. Upon further examination, however, we

notice significant variation across the four groups.

Clusters 1 and 3 are much more dominated by race-

track travel—cluster 1 because it follows the race-

track farther; cluster 3 because it spends more time in

the smaller area of the racetrack that it covers. Clus-

ters 2 and 4 follow the racetrack, but appear to be

using the racetrack to travel to their next shopping

destination, not to shop there. Finally, cluster 4

spends a long time in the checkout area. This could

be due to a slow cashier, socializing, or actual shop-

ping in that area. With the current data we are unable

to answer that question, but it raises an issue that the

retailer might want to examine. At first glance, clus-

ters 2 and 3 appear to be extremely similar. Further

inspection reveals the importance of the time dimen-

sion in classifying trips. Though the dominant pattern

is similar, cluster 2 moves more quickly through the

produce and into the second aisle. Thus, though they

both go into aisle two, they do so at different times.

In cluster 2, for instance, percentile 20 is in aisle 2

while the 20th percentile of cluster 3 is still in the

produce area, a large difference.

Again, the zone profiling variables are notably differ-

ent across clusters, as seen by the boxplots in Fig. 11. As

observed from the medoids, clusters 1 and 3 display

more racetrack travel, while cluster 2 is dominated by

aisle travel. Clusters 2 and 4 exhibit almost no produce

travel, consistent with the speed with which the medoid

path went through that area. Indeed, cluster 4 as a whole

spends more time in the checkout area. Note that only

one of the four clusters displayed more aisle travel than

racetrack travel. This may be evidence that the current

store layout does a good job of accommodating medium
y cluster for medium group.



Fig. 10. Medium group medoids.
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paths, which are likely for refilling key food items after a

few days of depletion. Shoppers appear to be able to fill

most of their basket by traveling the main thoroughfare

and making quick excursions into the aisles.

5.3. High group

As the most variable group in path length, we also

expect to see a high degree of variability in the ob-

served shopping patterns. The kink at 8 clusters is the

most obvious in the scree plot, and this observation is

again confirmed by the KL statistic (Fig. 12).

Fig. 13 presents the medoids for the eight clusters.

As expected, we see a high degree of variability in path

type. Cluster 3 is the most unique path. The Conve-

nience Store, with its quick stop items, also has a small

Chinese food takeout counter, which likely kept many

of this cluster’s shoppers in the store for over 17 min.

Medoid 4 is also interesting: despite the absence of any

self-imposed time constraint (as surmised by its length),
these paths choose to break the default start path to go

directly to the desired items in the aisles. Another path

dominated by aisle travel is path 5, which spends most

of its time in a different set of aisles from those traveled

by cluster 4. In no cluster do we see aisle travel that

spreads across all twelve aisles. It appears that an

important dimension that distinguishes aisle-traveling

clusters is the choice of particular aisles in which to

shop. Therefore, the commonly assumed travel pattern

of complete aisle-by-aisle shopping is not supported by

this analysis. The dominant travel pattern, if it includes

any aisle travel at all, includes only select aisles.

As with the medium length paths, one of the most

important distinguishing dimensions is not whether the

path travels along the racetrack, for the vast majority

do—it is their use of the racetrack, whether it be for

shopping or travel. Cluster 1 seems to balance both,

using the racetrack to travel to the important aisle

purchases, but also spends extra moments there, likely

for shopping purposes. Cluster 5, though it covers a
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great deal of the racetrack, spends very little time there,

moving on it only to arrive at more important destina-

tions, specifically products located in select aisles and

in the extremity. Cluster 2, though it does not appear to

utilize the whole of the racetrack, spends a great deal of

time in the racetrack sections it does travel, taking
Fig. 12. Scree plot f
several major pauses on it. The sixth cluster exemplifies

some of the same pattern seen in cluster 1; that is,

shopping along the racetrack while taking quick excur-

sions into the aisles for specific products (that is, en-

tering and exiting the aisle from the same side). Though

full-aisle traverses (entering one side of the aisle and
or high group.



Fig. 13. High group medoids.
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traveling all the way through it) are seen in several of

the medoids, quick aisle excursions are far more com-

mon, attesting to the importance of good end-cap mer-

chandising, since racetrack-with-excursions paths, as
seen in clusters 1 and 6, will spend much of their

time near these end-of-aisle displays.

Another bdefault shopping patternQ – forward prog-

ress shopping – is broken by clusters 7 and 8. These
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medoids, 7 and 8, display significant backtracking,

shopping in aisles that were previously passed, whereas

the other medoids tend to flow in a single direction

towards the checkout, making necessary stops along the

way. This can be viewed as evidence that most shop-

pers are looking to make their shopping path efficient,

picking up the necessary products in an orderly, logical

manner. There are many possible reasons why medoid

paths 7 and 8 do not follow this logical flow. Perhaps

they do not put forth the mental energy to organize their

path, or they forget important purchases until later;

perhaps product choices are themselves stochastic, in-

fluenced by store atmosphere. A better understanding

of the shopping process could lead to important discov-

eries for retailing.

Again, we present the variation of the zone profiling

variables across clusters in Fig. 14. As expected, cluster

3 is high on percent Convenience Store. Cluster 2,

somewhat surprisingly, shows the highest racetrack

travel, whereas the medoids seem to indicate a higher

racetrack level from cluster 1 or cluster 6. The large

clump of blinks at the top right of medoid 2 indicates
Fig. 14. Differences in profiles ac
that many of the paths in cluster 2 spend a long portion

of their trip at the right of the store, thus inflating their

racetrack score. This is further evidenced by the fact

that cluster 2 has the highest produce travel. As men-

tioned, the profiling variables by themselves can be

misleading, as the high racetrack statistics in cluster 2

may lead us to believe that members of that cluster tend

to travel more of the racetrack. The results of the k-

medoids analysis inform us that in reality, clusters 1 and

6 travel more of the racetrack. Clusters 4, 5 and 8, not

surprisingly, are high on aisle travel, as is cluster 1, with

its several excursions. The backwards pattern of clus-

ters 7 and 8 are not at all evident from these boxplot

displays, again supporting the value of the k-medoid

clustering method as opposed to a clustering algorithm

based on summaries.

6. Cross-validation

The results of clustering algorithms can sometimes

be unstable, so we display the results of a cross-vali-

dation performed on an additional third of the data. This
ross clusters for high group.
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cross-validation allows us to assess the stability of the

results in the sense of whether a given store layout will

consistently lead to same overarching patterns dis-

played in our particular sample.

6.1. Low group

Fig. 15 presents the scree plot and KL statistic by

cluster for the low group in the cross-validation sam-

ple. The choice of the two-cluster solution is again

justified.

Fig. 16 displays the cluster medoids for this two

cluster solution. Similar to cluster 2 from our original

low group, cluster 1a cuts away from the default path to

go immediately into the second aisle. Also like the

original cluster 2, cluster 1a here makes a lengthy ex-
Fig. 16. Low grou
cursion into aisle 8. Cluster 2a here also displays the

same general pattern displayed by our original cluster 1.

The profiles of the two clusters provide further

evidence of the stability of the resultant cluster solution.

Comparison of these profiles with the original solution

shows a nearly identical pattern of differentiation in

travel behavior (Fig. 17).

6.2. Medium group

Consistent with our earlier results, the choice of four

clusters is the best for the medium group, as can be seen

from the same scree plot and KL statistics (Fig. 18).

Interestingly, each canonical path here (Fig. 19) cor-

responds to one of the canonical paths from our original

results. The cluster 1b medoid displays nearly identical
p medoids.
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behavior as the medoid for cluster 2 (Fig. 10) from our

earlier results. This includes heavy traveling in the same

aisle toward the left side of the store, and an excursion

into an earlier aisle. Similarly, cluster 2b here shows
Fig. 18. Scree plot and KL statistic
behavior strikingly close to the original medium group’s

cluster 1. They both take the racetrack around nearly the

whole store and travel down one of the last aisles. Cluster

3b displays very similar behavior to the original cluster
by cluster for medium group.



Fig. 19. Medium group medoids.
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4, though it is not immediately obvious. Here, the

medoid breaks the typical route to go directly into an

aisle, where it spends the majority of the path. The

original cluster 4 does not break the typical route, but

it does travel expeditiously into an aisle, where it spends
Fig. 20. Scree plot and KL statisti
most of its time. Cluster 4b below does not correspond as

cleanly to the first cluster 3, but the overall patterns

displayed in this set of paths correspond rather well to

the original results, giving evidence that the clustering

results are relatively stable.
c by cluster for high group.
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6.3. High group

With the high time group, the recommended number

of clusters again is eight (Fig. 20), just as with the

original data.

In summary, the correspondence between the paths

shown in Fig. 21 with those in Fig. 13 is quite high, yet

for brevity we omit the exact details. Suffice it to say

that many of the dominant patterns seen in these results

correspond to many of the same patterns from the

original set of results. Inspection of the profiling vari-

ables (not shown) also demonstrates a similar pattern of

spread across the eight clusters.

7. Discussion

Our main purpose in presenting these exploratory

analyses was to familiarize other researchers with the

existence of such data and stimulate ideas for future

use. As such, we leave to future researchers the

work of detailing the many potential managerial

implications of work using this type of data. How-

ever, even the exploratory work we have presented

here carries useful and actionable information for

store managers.

A simple examination of the canonical paths result-

ing from the k-medoids clustering helps dispel a num-

ber of myths that our personal schemas about super-

market travel perpetuate. Of particular note is the

extremely low occurrence of the pattern commonly

thought to dominate store travel—weaving up and

down all aisles. We note that most shoppers tend only

to travel select aisles, and rarely in the systematic up

and down pattern most tend to consider the dominant

travel pattern. Those trips that do display extensive aisle

travel tend to travel by short excursions into and out of

the aisle rather than traversing the entire length of it.

This simple observation has important implications for

the placement of key products, the use of end-cap dis-

plays, etc. Products placed at the center of aisles will

receive much less bface timeQ than those placed toward

the ends. Of related interest is a practitioner study that

found that placing familiar brands at the end of the

aisles served as a bwelcome matQ to those aisles, effec-

tively increasing its traffic (Sorensen, 2005). Granted,

the previous observations are specific to this particular

store, and cannot without caution be applied to all

grocery stores, but this template for identifying true

store utilization patterns can be equally useful for any

store layout. Informed decisions about store layout can

only be made through direct observation of the current

utilization of the store.
Once we observe that the aisles are utilized much less

than common folklore leads us to believe, we turn our

attention to the areas of the store that pick up this slack.

Whereas previous folklore perpetuated the myth that the

perimeter of the store was visited incidental to succes-

sive aisle traverses, we now know that it often serves as

the main thoroughfare, effectively a bhome baseQ from
which shoppers take quick trips into the aisles. The

relationship between the perimeter travel and aisle travel

has sparked substantial practitioner interest. The data

and techniques described in this paper form effective

first steps at understanding this complex relationship.

Shorter trips tend to stick predominantly to the perimeter

and convenience store areas. This simple observation

provides an important starting point for the targeting of

particular shopper segments.

While the dataset featured in this paper is quite

novel, we acknowledge that other researchers have

addressed the general topic of in-store shopping pat-

terns in the past. Every ten years or so, researchers seem

to brediscoverQ this topic, and have applied very differ-

ent methods to capture it. One of the earliest such

studies of shoppers was a paper by Farley and Ring

(1966) who built a stochastic model to study zone-to-

zone transitions within a store. Unfortunately, few

researchers, to our knowledge, extended or applied

their model. Coming from a psychological perspective,

Mackay and Olshavsky (1975) examined consumer

perceptions of store space, and Park, Iyer, and Smith

(1989) sought to understand the impact that store

knowledge and time constraints have on unplanned

buying, failure to make planned purchases, and other

purchase behaviors. Perhaps the most famous study, or

series of studies, on in-store shopping behavior is Why

We Buy (1999) by Paco Underhill. He uses anthropo-

logical methods to uncover a variety of behavioral

patterns observed while tracking shoppers in different

types of retail stores, but limits the depth of his research

findings to basic suggestions about ways to enhance

consumer convenience. Of all the facets of shopper

behavior explored in previous research, none has fo-

cused on the complete shopper path as we have, thus

making our research a useful step forward. A natural

avenue of investigation would be an effort to tie the

results and methods discussed in these earlier psycho-

logical and anthropological studies to the broader beha-

viors illustrated in the present study.

Another stream of related research deals not with the

grocery store but with spatial movements in general.

Some of the most directly related research in this line

has examined individual pedestrian movements in

museums and shopping malls (Batty, 2003). The chap-
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ter presents a number of useful models to describe

individual movements that will prove useful to further

research on shopper movements. The emphasis in that

work is on pedestrian flow, rather than profit from a

store. Earlier work in environmental psychology also

studied pedestrian traffic flow inside an architectural

space, with the hopes of improving architectural design

(Winkel & Sasanoff, 1966). Though this work has

obvious connections to the present work, its pure

focus on traffic flows makes its application to grocery

stores not entirely straightforward.

Other work in environmental psychology has an en-

tirely different potential application to the current field of

study. Anthropological studies about people’s impres-

sions of their surrounding neighborhood has postulated

that people look for order on their environment out of an

inherent need to organize it in their minds (Lynch &

Rivkin, 1959). The way in which shoppers organize a

store in their minds may have important implications for

their subsequent movements. The current work provides

a springboard from which this can be studied.

The exploratory analyses we have presented on this

new realm of shopper behavior research are only a first

step in understanding shopping behavior within the

store. The present research focuses only on travel pat-

terns without regard to purchase behavior or merchan-

dising tactics. A study of the linkage between travel and

purchase behavior seems a logical next step. Linking

specific travel patterns to individual purchase decisions

may lead to an improved understanding of consumer

motivations for purchasing certain items, and can shed

light on the complementarity and substitutability of

goods in ways that a more traditional bmarket basketQ
analysis cannot capture.

Further exploration of travel behavior, independent of

purchase, also seems another promising route for future

research. In this paper, we have presented some explor-

atory techniques useful for knowledge building and

intuition. A more formal model of travel behavior

would lead to an increased understanding of shopper

heterogeneity of travel and the underlying sources of

said heterogeneity. Specifically, one could model travel

as a series of bblink-to-blinkQ choices (with a careful

focus on state dependence, since choices made earlier

in the path probably have a great deal of influence on

later choices). This would allow a more precise study of

the key areas of the store—and perhaps merchandising

activities—that may influence travel in a particular di-

rection.

Before plunging deeply into such a complex model,

we felt it was important to first understand this rich new

dataset and the behavioral/computational issues it
points to. We hope that this exploratory analysis serves

as a useful catalyst for future research that will help us

better understand the actual shopping patterns – as

opposed to the widely accepted folklore – that take

place in different types of retail environments.
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Appendix A. k-means clustering algorithm to handle

store spatial constraints
Notation

nDk (n by k) matrix of distances between path n
and cluster centroid k.
ndk (n by k) matrix of distances between path n
and cluster mean k.
(CL1, CL2, . . .CLn) vector of cluster assignments; i.e. if
CL103=12, path 103 is assigned to cluster 12.
(C1, C2, . . .Ck) vector of cluster centroids (indexed to
actual paths); i.e. if C10=1034, the cluster

centroid for cluster 10 is path 1034.
kM100 (k by 100) matrix of cluster means (mean
position of cluster k at each of the 100 per-

centile locations).
Bit Blink t from path i.

Initialization

1. C =Random draw of k numbers from discrete uni-

form (1, n) without replacement

2. Calculate D

iDj=distance of path i from cluster centroid j=At

(dist(Bit�Cjt))
2

3. Calculate CL

CLi=cluster assignment for path i=minj (iDj)

4. Calculate M

jMt =meani (Bit); over all i such that CLi= j

5. Calculate d

idj =distance of path i from cluster mean

j=
P

t(dist(Bit� jMt))
2

6. Calculate C

Cj =mini (idj)

7. Calculate D

Optimization

For i =1 to n

1. Calculate CLi
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2. If new CLi p old CLi, then

2a. Calculate M (update cluster means for new and

old cluster)

2b. Calculate d

2c. Calculate C

2d. Calculate D

3. Go to Step 1

4. Continue until new CLi =old CLi for all i.

Note: Algorithm produces a local minimum. To find

global minimum, the algorithm should be run from

several starting points.
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