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Many data sets, from different and seemingly unrelated marketing domains, all involve paths—records of
consumers’ movements in a spatial configuration. Path data contain valuable information for marketing

researchers because they describe how consumers interact with their environment and make dynamic choices.
As data collection technologies improve and researchers continue to ask deeper questions about consumers’
motivations and behaviors, path data sets will become more common and will play a more central role in
marketing research.

To guide future research in this area, we review the previous literature, propose a formal definition of a path
(in a marketing context), and derive a unifying framework that allows us to classify different kinds of paths. We
identify and discuss two primary dimensions (characteristics of the spatial configuration and the agent) as well
as six underlying subdimensions. Based on this framework, we cover a range of important operational issues
that should be taken into account as researchers begin to build formal models of path-related phenomena. We
close with a brief look into the future of path-based models, and a call for researchers to address some of these
emerging issues.
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1. Introduction
Consider the following domains of data collection and
active research in marketing:
(1) Grocery shopping: A grocery store installs radio-

frequency identification (RFID) tags underneath shop-
ping carts to track consumers’ in-store movements.
(2) Eye tracking: Researchers ask subjects to view

print advertisements and capture their eye move-
ments using infrared corneal reflection technology.
(3) Web browsing: Consumers’ Web browsing pat-

terns are tracked by recording the sequence of Web
pages visited in each session.
(4) Information acceleration (Urban et al. 1997): Re-

searchers immerse subjects in a multimedia environ-
ment (often with an underlying experimental design)
to understand how they collect information and make
decisions about a radically new product or service.
At first thought, these domains may not seem to

have much in common: they involve different set-
tings and describe different kinds of behaviors. For
instance, while grocery shopping and eye tracking

involve actual physical movements, Web browsing
and information acceleration (IA) occur only in
virtual environments. In addition, consumers’ under-
lying goals will generally be quite different in each of
these areas; in some cases, the consumer’s aim may
be to purchase products, while in other cases the main
goal is to gather information. Despite these surface
differences, a cursory look at Figure 1 suggests that
all of these domains share a common theme: they all
involve the collection and analysis of different kinds
of path data.
Path data (which will be defined formally in §2)

create a record of a person’s movement in a spatial
configuration. They show how a consumer interacts
with his environment to achieve his goal(s). In this
paper, we argue that there is a need for a closer focus
on, and integration of, path-related research in mar-
keting for three reasons. First, the study of paths,
in conjunction with other data sources (e.g., surveys,
transaction data), may lead to a deeper understanding
of consumer behavior; e.g., consumers’ paths may be
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Figure 1 Four Examples of Path Data
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informative about their decision processes and goal
orientations. For instance, Montgomery et al. (2004)
demonstrated that by taking into account a con-
sumer’s page-to-page browsing path, online purchase
behavior can be predicted more accurately (i.e., paths
help predict choices). Second, understanding the
paths that consumers follow is, in some cases, the pri-
mary dependent variable of interest by itself (Bradlow
et al. 2005). For example, understanding store traf-
fic patterns may help retailers optimize store lay-
out (Vrechopoulos et al. 2004); similarly, studying eye
movements may lead to insights on how consumers
shift their visual attention and thus inform advertis-
ers on how to design ads to maximize their impact
(Fox et al. 1998). Finally, as we demonstrate in §3,
path data are emerging in many areas of marketing.
As data collection technologies continue to improve,
we will likely see an explosive growth in path-related
research. Thus, it is important to understand the
underlying dimensions and associated modeling chal-
lenges for path data, and to take full advantage of
these new data opportunities.
Although marketing researchers have (implicitly)

collected and studied path data, the path aspect of the
data is usually underexploited, and the commonalities

across domains are rarely recognized and appre-
ciated. What is missing, we believe, is a general
framework that organizes and unifies path-related
marketing contexts. Such a framework will serve
three important research purposes. First, it allows us
to categorize different path data to understand the
similarities and differences among them; this will be
helpful for the researcher who is looking for analo-
gous models and managerial settings. Second, with
a unified framework, modelers can identify a set of
common issues in the analysis and modeling of paths,
so that researchers can tackle problems that arise
across different areas simultaneously. Third, a for-
mal framework will help researchers borrow the tools
developed in other disciplines (e.g., models of animal
or pedestrian movement) to analyze marketing paths.
The central goal of our paper is to provide such a

framework. In the next section, we define the kinds of
paths that make up the focus of this paper and pro-
vide a formal definition of a path that is grounded in
real analysis (Rudin 1976) and graph theory (Bollobas
1979). We then describe our general framework in
detail, focusing on two key components: the nature
of the spatial configuration and the characteristics of
the agent who follows the path of interest. In §3, we
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review the different types of path data that arise in
four active areas of marketing research: retail/service
environments, advertising studies, e-commerce, and
experimental research. We also briefly review the lit-
erature outside of marketing to help describe the
broader context and framework that we develop.
Based on our framework and literature review, we
identify modeling issues that will commonly arise
for researchers who are attempting to understand
or predict path behavior. We conclude by offering
some observations and recommendations for future
research.

2. A Framework for Path Data
In this paper, we focus on paths that arise in a mar-
keting context.
Definition. A path is a conscious (Blackmore 2003)

agent’smovement inaphysical or simulated (Kalawsky
1993) environment that is observable.1

A path can be denoted by a three-tuple P =
�S�A�XA�t��. S denotes an observable, physical or
simulated (e.g., Web, IA) environment; it represents
a spatial configuration that contains all possible
locations that can be realized.2 The existence of an
observable,3 physical/simulated environment is an
important feature of path data that differentiates them
from other sequence data (e.g., brand choice data)
where an explicit spatial environment is not avail-
able. S may be continuous, i.e., a fixed subset of �r

that contains an r-dimensional rectangle of positive
volume (Banerjee et al. 2004), or it can be discrete,
in which case it would be defined by a mathemat-
ical graph.4 We discuss this differentiation in detail
in §2.1.2.
The second component of the three-tuple, A,

denotes a conscious agent who is making the move-
ments. Because this is our focus, other path-related
research areas such as robot paths (e.g., Thrun et al.
2005) or hurricane paths (e.g., Bril 1995) are not con-
sidered in this paper. While both of the above areas
contain many useful insights, we believe that our

1 Throughout this paper, we focus on an individual-level analysis
of paths. Hence, macro level modeling of paths, e.g., fluid dynamic
models (Henderson1974) or cellular automatadescriptions (Chopard
et al. 1996) are not considered.
2 Note that our definition of path is on the underlying process, not
on its measurement. The particular measurement of a path is subject
to measurement error and is limited by the sampling frequency.
3 Paths that occur in latent space, e.g., a consumer’s change of life-
cycle state in a hidden Markov model (Du and Kamakura 2006),
are not considered.
4 A graph is a mathematic object that consists of nodes and edges.
Nodes correspond roughly to different locations; the existence of
an edge between two nodes indicates that it is possible to move
from one node to the other in one step. For details, refer to Bollobas
(1979).

focus on conscious agents is reasonable given that our
goal is to analyze paths made by consumers in vari-
ous marketing contexts.
Once S and A are specified, XA denotes the move-

ment of the agent. Specifically, XA�t� represents the
position of the agent A at time t within the spatial
configuration. For P to be considered a path, XA�t�
must vary continuously over time with respect to the
spatial configuration. If S is continuous, the continuity
of XA�t� can be defined as the conventional definition
of continuity in mathematical analysis (Rudin 1976),
given by

lim
�t→0

XA�t + �t� = XA�t�� (1)

On the other hand, if S is discrete (a graph), XA�t�
must vary in a way that is consistent with the struc-
ture of the graph; i.e., subsequent moves must be
between nodes connected by an edge.5 This impor-
tant definitional element marks the key difference
between path data and other kinds of space-time data.
More specifically, spatio-temporal data sets, such as
the product diffusion data in Bell and Song (2007),
do not belong to path data under our definition. In
product diffusion data, the data are not continuous:
two successive adopters can come from very distant
locations.6 Thus, although those data also have both
spatial and temporal elements, they do not conform
to the continuity restriction and are thus not consid-
ered to be path data.
In the following discussion, we outline the two key

components of a path model (the spatial configura-
tion S and the role of the agent A) and discuss the
specific subdimensions on which data considerations
(and thus model specifications) may differ.

2.1. Spatial Configuration �S�
Spatial configuration defines the space in which
movements are made and specifies the set of allow-
able movements given an agent’s current location.
We characterize a spatial configuration along three
separate subdimensions: (1) physical/nonphysical,
(2) continuous/discrete, and (3) the presence/degree
of constraints. Figure 2 illustrates spatial configura-
tions in six different settings.

2.1.1. Physical/Nonphysical. A spatial configura-
tion may or may not correspond to an actual physi-
cal space. As examples of physical spaces, in a model
of bird movement, the space is the three-dimensional

5 In graph theory literature, this defines a walk. We call it a path
because it is more consistent with the terminology used in this
exposition and in the marketing literature.
6 One could argue that if there is a fixed and known social struc-
ture that connects different consumers, then the continuity restric-
tion may be met. In that case, however, the data correspond to the
movement of multiple agents, instead of an individual agent, which
is the focus of this paper.
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Figure 2 Space and Allowable Movements
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sky; for eye-tracking data, it is the two-dimensional
physical image that the subject is viewing. Pedestrian
movements also use a space that is generally lim-
ited to two dimensions; likewise for a grocery shop-
per, although the space of movements also includes
a number of fixed impediments (aisles, display cases,
etc.), which we will discuss shortly.
Some marketing path data, however, do not take

place in a physical environment, but instead in
a computer-simulated environment (Kalawsky 1993,
Hoffman and Novak 1996); examples include Web
browsing and IA sessions. In these cases, we often
need to generalize the notion of space to incorpo-
rate nonphysical spatial configurations. This requires
a careful mathematical depiction. For instance,
Montgomery et al. (2004) built a discrete spatial con-
figuration for Web browsing: a graph consisting of
eight nodes, with each node representing one of the
eight online Web categories, as shown in the top right
panel of Figure 2. Using this representation, each cat-
egory can be viewed as a location on a (hypothetical)
map defined by Web pages, and therefore each con-
sumer’s Web browsing sequence can be treated as a
path on this map. This convenient representation is
frequently used to model the structure of the World
Wide Web (Broder et al. 2000, Eirinaki et al. 2005).
Similarly, we can construct a graph, as shown on the

bottom left panel of Figure 2, to represent the spa-
tial configuration of data collected from an IA ses-
sion. Each location on the graph represents a source of
information available to the consumer. Thus, the con-
sumer’s sequence of information viewing can be seen
as a path on this graph. To the best of our knowledge,
this characterization has never been used to analyze
and describe IA data.

2.1.2. Continuous/Discrete. A spatial configura-
tion can be either continuous or discrete. In models of
birds and pedestrians, the spatial configurations are
naturally continuous. In contrast, the spatial config-
urations for Web browsing data or IA are inherently
discrete because, as above, the space is constructed as
a finite-node graph.
In some applications, however, the modeler can

decide whether a continuous or a discrete representa-
tion is more suitable. For example, the space for eye
tracking data can be modeled as continuous if we use
the entire advertisement as the space, and model the
movement of the visual focus between two pairs of
(x�y) coordinates (see Figure 3, top left panel). Alter-
natively, it can be modeled as discrete if we character-
ize the space as the different elements (e.g., picture,
brand logo, text) in the advertisement, and model the
transition of a consumer’s visual focus among them
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Figure 3 Discrete vs. Continuous Specification of Eye Tracking and Grocery Shopping
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(Pieters and Wedel 2004), as depicted in the bottom
left panel of Figure 3. Similarly, we can define the
space of grocery shopping as continuous by defining
it in terms of (x�y) coordinates in the store, or we can
define it as discrete by modeling shopper’s movement
between zones or departments (see top and bottom
right panels, Figure 3). This discretization, approximat-
ing a continuous object by a mesh of discrete points,
is similar to the use of the finite element method in
engineering (Zienkiewicz et al. 2005) and is related to
aggregation issues or (wombling) in spatial statistics
(Banerjee et al. 2004).
On the one hand, discretization may reduce the

complexity of the data and thus facilitate computa-
tion; on the other hand, it is often not clear what level
of aggregation is most suitable for a specific prob-
lem. We return to this issue and discuss the relative
advantages of a discrete versus continuous spatial
specification in more detail later when we outline
model-building issues for marketing researchers.

2.1.3. Presence/Degree of Constraints. Con-
straints may be present in a spatial configuration
where they serve as restrictions on the set of allowable
movements that an agent, A, may take. In a phys-
ical setting, constraints are usually characterized by
physical impediments. For example, aisles and walls
in a grocery store restrict the possible direction of
movement for grocery shoppers. Constraints may be
less severe in other settings. For instance, in a model
of pedestrian movement, the only constraints that a

pedestrian faces is that he or she cannot walk into
physical objects. Other than that, an allowable move-
ment is any location within the circle with the per-
son’s current location as the center and a radius equal
to vmax�t, where vmax is the person’s maximum walk-
ing speed (Helbing et al. 1997). Likewise, physical con-
straints are generally absent in eye tracking studies.
Note that in physical spatial configurations there is a

natural relationship between the degree of constraints
and whether the space should be treated as continuous
or discrete. In general, it is more appropriate to model
space as discrete when movements are highly con-
strained. That is, movements are viewed as a sequence
of choices among a finite set of alternatives, rather
than a choice among infinitely many directions. As an
example, in the pedestrian model, because of the lack
of constraints, it may be more appropriate to model
movements as occurring continuously in space; in con-
trast, for grocery shopping, it may be more appropri-
ate to model the paths as transitions between different
store zones (Hui et al. 2007).
Constraints may also exist in nonphysical settings.

If we represent a nonphysical setting as a graph, the
presence of constraints between two points implies
the absence of edges between the respective nodes
that represent them. For instance, in Montgomery
et al. (2004), at each step the user is located at the
node that represents his current category, and he is
allowed to move to any node that is connected. As
can be seen on the top right panel of Figure 2, the
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product node and the order node are not directly con-
nected. This implies the existence of a constraint—a
person cannot directly reach the confirm order node
from the product node in one step because he has to
go through the shopping cart node in between. In IA
sessions, constraints are largely absent and the agent
is relatively free to move to any location. Note, how-
ever, that sessions are often set up in such a way that
not all possible movements are available in one step.

2.2. The Agent �A�
Having defined a spatial configuration, researchers
need to characterize the conscious agent who is mak-
ing the movements. For most path models, the def-
inition of an agent is usually straightforward. For
example, the agent for a grocery shopping trip is the
shopper; for a Web browsing model, the agent is the
user surfing the Internet. Sometimes the agent is a
well-defined group, e.g., a family traveling in a car.
Complications can arise if a multiunit agent takes
turns, e.g., a parent who lets a child push the grocery
cart, or if the data collection process loses track of spe-
cific entities (which can conceivably occur with birds,
for instance). One of the clear advantages of experi-
mental settings (such as IA and eye tracking) is the
high degree of control that the researcher maintains
in this regard.
Beyond these definitional aspects, there are three

key subdimensions that should be considered for
each agent: (1) social interaction, (2) goal-directedness,
and (3) forward-looking tendencies, all active research
topics in marketing today.

2.2.1. Social Interaction. When the agent co-
occupies the same spatial configuration with other
agents, social effects may be present. That is, an agent
may be affected by the other agents’ actions when
deciding his next movement. For instance, although
each bird in a flock is autonomous, it tends to match
the velocity of its nearby flockmates to avoid colli-
sion, while staying close to the center of the flock
(Reynolds 1987). Similarly, researchers found that
pedestrians have strong tendencies to preserve inter-
personal spaces to avoid running into each other
(Helbing et al. 1997).
Social interaction between shoppers is especially

relevant in the physical retail environment. For
instance, researchers found that grocery shoppers
typically avoid walking into crowded areas (Harrell
et al. 1980) and have demonstrated that even the
“mere social presence” of others will affect shop-
ping behavior (Argo et al. 2005). In particular, con-
sumers may reduce their shopping time (Harrell et al.
1980) or even refrain from purchasing a product
if they feel that their personal space is “invaded”
(Underhill 2000). On the other hand, consumers may
exhibit a certain herding behavior by moving toward

areas where other shoppers are heading, presum-
ably because shoppers may infer the attractiveness
of a store location based on other shoppers’ actions
(e.g., Banerjee 1992). For instance, Becker (1991)
documented that when given the choice between two
almost identical restaurants, people usually choose
the one with a longer line despite the longer wait.
This leads to an interesting dynamic: while retail-
ers should carefully design their store to avoid over-
crowding conditions, they may also want to make
sure that certain areas do not receive too little traffic.
Thus, social interactions between shoppers may be an
important issue to be considered when designing a
retail environment.
In some cases, however, social effects may be

insignificant. Web browsing, participation in an IA
session, and reading an advertisement during an eye
tracking study are all individual activities that, by
design, involve little interaction among agents. Thus,
Montgomery et al. (2004) did not choose to consider
social effects in their model of Web browsing data.
Similarly, researchers can ignore any social effects
when modeling path data from eye tracking and IA
sessions. At the same time, however, one may wonder
whether movements in both of these cases would be
influenced by social norms (of others), and/or expec-
tations by the participant as to what he or she is sup-
posed to look at (social cues).
Information acceleration commonly attempts to

bring in social cues through personal testimonials,
which can influence the subsequent paths chosen by
the subject. This is an intriguing aspect of technology,
particularly when these testimonials (and the charac-
teristics of the person(s) delivering them) are manip-
ulated experimentally. But while the cues may affect
subjects’ movement, there is no provision for direct
social influence in current applications of IA. This
may be possible, however, by including statements
such as “80% of previous users clicked on area Y after
visiting this page.” Participants may become more
inclined to view area Y after viewing this suggestive
statement.

2.2.2. Goal-Directedness. An agent may be goal-
directed (Lee and Ariely 2006) and begin the path
process with specific goal(s) in mind (e.g., to buy gro-
ceries for dinner, to find a textbook on Amazon.com),
or at the other extreme, his trip can be a purely hedo-
nic browsing experience. Agents with varying degrees
of goal-directedness may exhibit very different paths.
For instance, in her study of online shoppers, Moe
(2003) identified four types of Internet browsers with
different goals, directed buying, search and delibera-
tion, knowledge building, and hedonic browsing, and
found that distinct types of shoppers exhibit very dif-
ferent page-to-page browsing patterns (paths). This
distinction can be extended to other areas that involve
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paths. For example, a grocery shopper with a list
probably follows a different movement pattern than
someone who is primarily window shopping. Like-
wise, a person reading a magazine to find product
information may exhibit a different eye-movement
pattern than someone who is leisurely reading an arti-
cle. In online settings, Web users also exhibit differ-
ent degrees of goal-directed behavior. For instance,
Montgomery et al. (2004) allowed each subject to be
in either a browsing or a deliberative latent state.
In each state, the subject exhibited different search
behavior. Thus, to accurately specify a model of
movements, researchers must carefully define what
goal-directedness means in each context and capture
differences across agents on this dimension. This is an
example of heterogeneity among agents, an issue we
will return to in §4.
Note, however, that path data alone do not always

give reliable indications of the mood, goals, and
intentions of the agents. Thus, whenever possible,
we recommend that other methods (e.g., surveys) be
used in conjunction with path data to capture that
information.

2.2.3. Forward-Looking Behavior. A goal-directed
agent can be forward-looking (e.g., Song and
Chintagunta 2003, Sun et al. 2003). That is, along
his path, an agent may plan ahead for subsequent
actions. Researchers have considered various degrees
of planning-ahead behavior in many path settings.
For instance, Hui et al. (2008) studied how a gro-
cery shopper plans ahead the order in which he gath-
ers products on his shopping list. At a more macro
level, researchers in the trip chaining literature stud-
ied how consumers plan ahead to chain together dif-
ferent errands in different locations (e.g., Adler and
Ben-Akiva 1979).
Forward-looking behaviors are manifested not only

in retail settings, but also in situations that involve
information search. A Web user may have a specific
search plan/query in mind when trying to satisfy
information needs (Robertson 1977). For example, a
person seeking to purchase a digital camera may first
plan to collect information on the types of cameras
available, then on specific features (e.g., resolution,
battery life), then decide on the exact model, and
finally conduct a price search on that model. Even
in a nonpurchase setting such as IA, a person may
plan ahead on how he wants to evaluate the prod-
ucts/services of interest. For instance, he may plan
to first pay attention to the objective features of the
products, before taking into account the more subjec-
tive information such as product reviews and word-
of-mouth (WOM) information.
While the extent of plan-ahead behavior is an

important characteristic of the agent, different agents

may exhibit different degrees of forward-looking ten-
dencies. To realistically capture consumer behavior,
path modelers need to specify and incorporate differ-
ent degrees of forward-looking behavior. To that end,
researchers can exploit the close connection between
plan-ahead behavior and many classical network opti-
mization problems in operations research, as briefly
outlined in the following example taken from Hui
et al. (2008).
Consider a grocery shopper who carries a shop-

ping list. Assuming that he wants to take the short-
est path that allows him to gather his purchases, we
can say that the shopper is solving a traveling sales-
man problem (TSP) (Lawler 1985). Because the TSP
is a complex combinatoric problem, this specification
clearly assumes too much knowledge and computa-
tional ability on the part of the consumer. As a result,
a model that assumes consumers follow the path sug-
gested by the optimal solution of the corresponding
TSP will be a poor fit to the actual data.
To develop a more realistic descriptive model,

researchers may consider two different relaxations
that correspond to two different extant research areas
in operations research. First, if we assume that a shop-
per obtains information about the product placements
as he moves around, the problem will be isomor-
phic to a variant of the TSP known as the online
TSP (e.g., Ausiello et al. 2001), where information
about the environment is released based on a cer-
tain schedule. Second, if we reduce the computa-
tional capabilities on the part of the consumer, we
may capture planning behavior by a greedy algorithm
(i.e., he moves towards the location that carries the
item on his shopping list that is not yet purchased
and is closest to his current location), or more gener-
ally by a greedy algorithm with a certain number of
look-ahead steps (Cormen et al. 2001). These exten-
sions allow researchers to borrow methods from the
operations research literature to incorporate different
degrees/aspects of forward-looking behavior when
building models of paths.

3. Literature Review
Based on the framework developed in §2, we provide
a literature review for path data that arise in four dif-
ferent areas in marketing: retail/service environments
(§3.1), advertising studies (§3.2), e-commerce (§3.3),
and experimental research (§3.4). We also briefly out-
line some path-related areas that are outside of mar-
keting in §3.5.

3.1. Paths in Retail/Service Environments
Marketing researchers have tracked consumers’ move-
ments in various retail settings, including grocery
stores (Heller 1988), shopping malls (Underhill 2004),
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and museums (e.g., http://www.crowddynamics.
com). The earliest study is Farley and Ring (1966),
who physically followed grocery shoppers and
documented their movement patterns. Since then,
advances in data collection technology have pro-
vided researchers with an increasingly sophisticated
set of tools to track consumers’ movements. Hid-
den cameras and motion sensors are used to mon-
itor traffic flow (Gogoi 2005), and even capture
consumers’ eye movements and facial expressions
(Pereira 2005). Researchers have also built computer-
simulated grocery stores to study people’s shopping
patterns (Burke 1996, Vrechopoulos et al. 2004). More
recently, RFID technology has been used to moni-
tor in-store traffic (Hui et al. 2007, Sorensen 2003).
Other promising tracking technologies include the
use of global positioning systems and portable shop-
ping devices. Interested readers are encouraged to see
Burke (2005) for a comprehensive overview of these
new technologies.
To date, researchers have performed various

exploratory analyses on shopping paths Heller (1988),
measured the flow of shoppers to each department
of a grocery store, tabulated the pattern of browsing
and purchasing at each product aisle Underhill (2004),
qualitatively documented how shoppers interacted
with the store environment, and made recommenda-
tions to improve shopping convenience. Otnes and
McGrath (2001) tracked the shopping paths of male
shoppers to test hypotheses about gender-specific
shopping behavior. Based on RFID tracking technol-
ogy, Sorensen (2003) developed a shopper-tracking
system known as PathTracker®; his firm has collected
and analyzed over 200,000 shopping paths. Larson
et al. (2005) later performed a K-medoids clustering
algorithm on a sample of these path data and identi-
fied a total of 14 different patterns (clusters).
The above research focused on analyzing paths that

occur within a certain environment, such as a grocery
store or a shopping mall. By contrast, researchers in
trip chaining (e.g., Thill and Thomas 1987) studied
the paths that people take to perform a set of errands
in different geographical locations. Researchers have
studied how people select the order of visiting
those different destinations, and how they choose the
mode of transportation in each trip segment (Adler
and Ben-Akiva 1979). For example, Dellaert et al.
(1998) investigated how consumers sequence shop-
ping trips that involve three separate destinations
(grocery, drugstore, and clothing store). See Thill and
Thomas (1987) for an overview of research on trip-
chaining behavior.

3.2. Paths in Advertising Studies
In advertising studies, infrared (or near-infrared)
corneal reflection technology is often used to trace

a subject’s eye movements (Duchovski 2002). During
the study, an infrared beam, invisible to the eye, is
reflected off the cornea, and its angle of reflection is
continuously monitored. Because the visual focus of
the eye at any moment can then be calculated, the
technique is often referred to as eye tracking.
In psychology, eye tracking has been widely used

to study reading and information processing patterns
(Rayner 1998). Marketing researchers have applied
eye-tracking methodologies to capture consumers’
eye movements when they view print advertisements
(e.g., Janiszewski 1993; Krugman et al. 1994; Pieters
et al. 1996, 1999, 2002; Rayner et al. 2001; Rosbergen
et al. 1997). For instance, Pieters and Wedel (2004)
followed consumers’ visual focus and used that as a
proxy for the amount of attention paid to the differ-
ent elements (brand, pictorial, and text) of an adver-
tisement. They then studied how different sizes of
each element enhance or reduce overall visual atten-
tion. Fox et al. (1998) studied the effectiveness of
different alcohol and cigarette warning messages by
tracking the amount of time consumers’ focus (visu-
ally) on the messages and offered practical manage-
rial insights to improve the effectiveness of health
warnings.
Marketing researchers have also tracked con-

sumers’ visual movements when they are reading
yellow page advertising (Lohse 1997), searching the
Web for information (Goldberg et al. 2002), and while
making brand choice decisions (Chandon et al. 2001,
Pieters and Warlop 1999). Other researchers have used
eye tracking techniques to study the effect of flash
banners (Day et al. 2006), to assess the influence of
page layout on visual search patterns (Janiszewski
1998), and even to infer the acceptability of brand
extensions (Stewart et al. 2004).

3.3. Paths in E-Commerce
In e-commerce, marketing researchers collect Web
browsing (or clickstream) data, which contain
detailed click-to-click page-viewing information for
each consumer (Bucklin et al. 2002). Montgomery
et al. (2004) used Web browsing data, together with
a dynamic multinomial probit model that captures
page-to-page transitions, to predict purchase conver-
sion. They reported that their model performed better
than traditional models that failed to take full advan-
tage of the richness of the path data. Likewise, Moe
et al. (2002) and Sismeiro and Bucklin (2004) predicted
consumers’ online purchasing behavior more accu-
rately by using browsing characteristics as covariates.
The potential applications of Web browsing data

analysis extend beyond the prediction of purchase
behavior. Researchers also study Web surfing pat-
terns to understand information search behavior and
to classify Web browsing strategies. For instance, Chi
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et al. (2001) developed the idea of an “information
scent” to infer a user’s information needs given his
pattern of surfing. Moe (2003) defined and tabulated
14 different summary statistics of each page-to-page
viewing session and used them to classify a visit as
buying, browsing, searching or information-building.
Similarly, Catledge and Pitkow (1995) recorded user
behavior to understand navigational strategies and
made suggestions on Web design to enhance usability.
Other marketing applications and research opportu-
nities are outlined in Bucklin et al. (2002).
Several advances in Web browsing data analysis

have also been made in computer science, and could
be applied in marketing in the future. For instance,
researchers have developed new data-mining meth-
ods to uncover common path traversal patterns to
predict a browser’s next choice of Web page given
his viewing history (Li et al. 2004). Other researchers
clustered Web users based on shared interests inferred
from their sequence of Web page visits and hyperlink
selections (Shahabi et al. 1997), and subsequently pro-
filed consumers based on navigation patterns (e.g.,
Banerjee and Ghosh 2000, 2001). Computer scientists
have patterns from Web browsing data to customize
Web page content (Mobasher et al. 2001) and to gen-
erate product recommendations using collaborative
filtering (e.g., Kim et al. 2004). These and several
other applications are discussed in Theusinger and
Huber (2000).

3.4. Paths in Experimental Research
Path data arise naturally in experimental settings such
as IA (Urban et al. 1997) and Mouselab (Payne et al.
1988). IA belongs to a broad class of multimedia-
based testing techniques (Hoffman and Novak 1996)
and is often used to predict the success or failure
of a new product before it is fully developed. Dur-
ing an IA session, consumers are first accelerated
into a future context that conditions them to under-
stand the environment surrounding the new product
being tested (e.g., a world with a severe gas short-
age). They are then instructed to gather information
to decide whether/when to purchase the new prod-
uct (e.g., an electric automobile). They learn about
the new product by viewing, in any order and fre-
quency they choose, a set of simulated product infor-
mation, such as product attributes, product photos,
virtual showroom visits, videos, advertising, newspa-
per articles, and (simulated) consumer reviews. The
path of information viewing and time durations are
recorded by the researcher to study consumers’ infor-
mation acquisition and processing patterns (Hauser
et al. 1993). Very often an experimental design manip-
ulates the kinds of information seen by different con-
sumers (e.g., some see positive WOM testimonials,
while others see negative ones), and researchers can

observe the impact on consumers’ subsequent infor-
mation collection (and product purchase) decisions.
Another example that involves path data is Mouse-

lab (e.g., Payne et al. 1988, Sen and Johnson 1997),
an early and innovative computer system used by
psychologists and marketers to study the process of
how a person acquires information and makes deci-
sions. With the Mouselab software, researchers can
trace a subject’s information acquisition movement
by recording the movement of the mouse as a sub-
ject answers a series of questions. The resulting data
reflect the path of the mouse pointer over time. Other
related examples include the use of virtual reality sys-
tems that allow users to interactively explore simu-
lated environments, usually to learn about a product
(e.g., Volkswagen cars, Sprint telephones) (Lurie and
Mason 2007).
Although a system such as Mouselab can gener-

ate very interesting path data, we have never seen
it used in such a manner. Past researchers have
tended to rely on more traditional analyses, e.g., two-
sample t-tests and aggregate summary statistics. Well-
specified models built on the entire Mouselab path
data may offer additional insights about observed
behavior and the cognitive underlying processes.

3.5. Paths Outside of Marketing
Many researchers outside of marketing have collected
and analyzed path data. Researchers have studied
the movement of animals (e.g., Polovina et al. 2000,
Preisler et al. 2004), insects (e.g., Crist et al. 1992,
Jeanson et al. 2003), and pedestrians (e.g., Helbing
and Molnar 1995, Teknomo et al. 2000). Reynolds
(1987) modeled the motion of a flock of birds using
simple behavioral assumptions. He assumed that each
bird moves according to three simple rules: (1) it
attempts to move closer to the other birds in its neigh-
borhood; (2) it matches the velocity of its flockmates;
(3) it avoids collision with other birds. Using com-
puter simulations, Reynolds (1987) replicated realistic
flock motions.
Similarly, Helbing and Molnar (1995) proposed a

model based on an analogy between people’s move-
ment and the principles of Newtonian mechanics.
They defined and modeled latent social forces that
can be exerted on an individual. In their model, social
forces that act on a person may include the attrac-
tive force exerted by one’s destination, the repellent
force from other pedestrians to avoid collision, and
the attractive forces caused by the inherent comfort
of the ground. The aggregation of these forces in turn
governs the direction of a pedestrian’s movement.
While some of these concepts may not apply directly

to many consumer settings, they provide thought-
provoking metaphors that help to derive our frame-
work and offer new ways to think about patterns of
shopping, information search, and e-commerce.
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4. Issues in Building Models of
Path Behavior

In this section, we discuss some modeling issues/
choices that researchers will frequently face when
developing path models. We outline these issues in
parallel with the structure of our framework by first
discussing issues for the spatial configuration, the
agent, and finally, the paths.

4.1. Modeling the Spatial Configuration
Modeling a spatial configuration as a discretized grid,
as compared to a continuous space, can lead to several
advantages. First, discretization simplifies the space
that may originally contain an infinite number of loca-
tions and thus reduces computational complexity (see
the two examples in Figure 3). When the sample size
is large (e.g., Sorensen 2003 collected 200,000 grocery
shopping paths; Larson et al. 2005 analyzed a sample
of 27,000 paths), this reduction in complexity may be
crucial to enable implementation. Second, because a
consumer faces a finite number of alternatives at each
step, a discrete spatial configuration ties well with dis-
crete choice models (e.g., Guadagni and Little 1983)
used widely in marketing. By contrast, with a con-
tinuous space, researchers will need to develop/use
a different class of choice models that can handle an
infinite number of alternatives. Third, if the discretiza-
tion is carefully made based on substantive insights,
such models will allow for easier interpretation. For
instance, if a grocery store is discretized based on the
locations of product categories, managers can read-
ily interpret and understand the output by relating
them to category-to-category transitions. On the other
hand, a continuous model will probably not be as
directly linked to substantive insights or managerial
actions.
While discretization leads to many advantages in

computation, model building, and interpretation, it
does have some limitations. First, the process of dis-
cretization requires one to recode the original con-
tinuous (x�y) data into a discretized form. This data
preparation step may be very time consuming if the
data set is large or the spatial environment is complex.
Second, discretization requires careful construction
of a graph, based on substantive insights, to repre-
sent the underlying spatial configuration. In problems
where little domain knowledge exists, researchers
may find it difficult to construct a reasonable repre-
sentation. A related concern is that the conclusions
derived from the path model may vary based on
the chosen method of discretization. Thus, we rec-
ommend that researchers experiment with different
discretization schemes to see how sensitive model
conclusions are to different specifications. Finally, the
process of discretization reduces the resolution of
the data. Because we are approximating continuous

data using a discrete grid, variations in the original
data at a level finer than the grid will be lost. Thus,
researchers may also want to experiment with differ-
ent levels of granularity in the discretization to deter-
mine the optimal resolution.

4.2. Modeling the Agent
To model the characteristics of the agent, two partic-
ularly important research issues need to be consid-
ered. First, researchers need to specify the role and
the nature of the heterogeneity among agents. Sec-
ond, because an agent’s behavior may change over
the course of his path, adaptive/nonstationary behav-
iors should also be taken into account.

4.2.1. Role(s) of Heterogeneity. Researchers need
to specify the dimension(s) on which consumers are
considered to be heterogeneous to calibrate their
path models. This requires careful thought because
consumers can be heterogeneous in many different
aspects, including all of the dimensions we have dis-
cussed, i.e., social interactions, goals (if any), and
forward-looking tendencies.
For instance, consumers may exhibit different

responses to social interaction; researchers have doc-
umented that even given the same in-store shop-
per density, people may have different perceptions
of how crowded the area is. Perceived crowding is
influenced by individual characteristics and situa-
tional factors (Harrell and Hutt 1976). In addition,
consumers may respond differently to crowding situ-
ations: while some may shorten the time they spend
choosing between products, others may become more
goal-directed and spend less effort in exploration.
Likewise, consumers may enter the spatial config-

uration with different goals. In a grocery store, for
example, each consumer may come in with a differ-
ent set of product categories that he wants to pur-
chase; some shoppers, who may be hedonic browsers
or window-shoppers, may not have a clear set of pur-
chase goals. Researchers may consider capturing goal
and social-interaction heterogeneity by specifying a
set of individual-level parameters that describe such
behavior and linking them via a Hierarchical Bayes
framework (Rossi et al. 2006), or by segmenting con-
sumers into different classes, based on their social
behavior and goal-directedness, using a latent class
model (Kamakura and Russell 1989).
Accounting for heterogeneity in consumers’

forward-looking behavior requires even greater
thought because of the difficulty in representing
forward-looking behavior as a parameter. As dis-
cussed in §2.2.3, researchers may exploit the close
connection between planning behavior and many
classical network optimization problems (Cormen
et al. 2001). This connection may allow researchers to
experiment with a wide array of model specifications
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based on different assumptions about consumers’
knowledge of the environment (e.g., Moorman et al.
2004), their degree of rationality, and the optimization
algorithm they are presumed to follow. Researchers
can then test these model specifications with field
data from a panel of consumers with different levels
of knowledge about the spatial environment. For
instance, based on an analogy with the TSP, Hui et al.
(2008) analyzed the efficiencies of grocery shoppers
to infer the number of look-ahead steps, similar to
Camerer and Ho (1999) in their study of behavior in
experimental economics games.
4.2.2. Adaptive/Nonstationarity Behavior. Re-

searchers also need to take into account the fact that
a path process may not necessarily be stationary.
That is, as consumers progress in a trip, they may
exhibit some degree of adaptive/nonstationary
behavior. First, some changes may occur naturally as
part of the path process. For example, a Web user
may naturally switch from an initial browsing state,
when he is casually surfing the Web for general infor-
mation, to a deliberation state, when he decides that
he wants to purchase certain products (Montgomery
et al. 2004). Similarly, Bates (1989) hypothesized a
new model of information search called “berrypick-
ing,” which assumed that users obtain information
“a bit at a time,” and that their information needs
evolve over time based on previous search results. In
both cases, the consumers’ goals have changed over
time and must be carefully modeled.
Second, some changes may accumulate gradually

over the path. For instance, a grocery shopper may
become more fatigued the longer she spends in the
store. Thus, we may observe that as time progresses,
the shopper may want to spend less time exploring
the store and instead use a more directed approach to
pick up only those products that she needs. Indeed,
Sorensen (2003) documented that shoppers tend to
speed up the more time they spent in the store.
Finally, some changes may also be driven by social

influence, as consumers adapt their behavior based
on what other consumers do, e.g., to avoid crowding
or to preserve interpersonal space (Underhill 2000).
These different types and sources of nonstationarity

are important because they may necessitate different
modeling methodologies. For sudden changes that
involve a discontinuous change of state, approaches
such as hidden Markov models (Rabiner 1989), or
more generally state-space models (Kim and Nelson
1999), where consumer behavior is modeled condi-
tional on their hidden states (which may evolve over
time through some stochastic processes), may be more
appropriate. If the changes are gradual, however, it
may be more appropriate to incorporate the contin-
uous change as a parameter in the model and allow
for a trend component on that parameter to capture
its smooth time-varying nature.

4.3. Analysis and Modeling of Paths
We now discuss some issues that arise in the analysis
and modeling of paths. First, we describe some statis-
tical issues involved in exploratory analyses of paths.
Second, we discuss the deterministic/stochastic
nature of movements. Finally, we explore the chal-
lenges in building models that integrate data collected
from paths and other behaviors (e.g., purchases).

4.3.1. Statistical Issues for Exploratory Analyses.
Before developing a formal model of paths, it is help-
ful for a researcher to graphically display the data
and perform exploratory analyses (Wainer 2004). Per-
forming exploratory analyses on paths, however, is
nontrivial and can pose major challenges for mar-
keting modelers and statisticians. By nature, path
data are multivariate and therefore relatively compli-
cated: each record in a path data set is a multivari-
ate sequence that represents the consumer’s position
over time. In addition, path data are fundamentally
different from traditional multivariate data because,
as discussed in our definition of paths, there is a con-
tinuous relationship between each position over time.
Commonly used multivariate techniques (e.g., clus-
ter analysis, factor analysis) that ignore this temporal
relationship may not be suitable. Instead, statisticians
and modelers need to consider a number of key sta-
tistical issues, such as the following:
(1) How should we display and compare paths that

are different in sampling intervals? For example, some
paths may contain record movements in 5-second
intervals, while others in 15-second intervals. How
should we store and format these kinds of data?
(2) How should we compare paths of different

durations? For instance, a shopper who spends two
hours at a grocery store will have a much longer path
than a shopper who spends five minutes. How do we
create a metric/topology of paths to calculate the dis-
tance between these paths?
(3) How can we summarize the sources of variation

among paths, taking into account constraints within
the spatial configuration (e.g., walls, aisles)?
Larson et al. (2005) approached this problem using a
K-medoid clustering technique applied to grocery cart
movement data. It would be interesting if, in addition
to obtaining a clustering solution, researchers could
describe path data using ideas from principal com-
ponents analysis (PCA) to break each path into some
combination of lower-level components. For instance,
Bradlow (2002) described an approach to apply PCA
to repeated measures data sets to explore their key
features. With some modifications, researchers might
similarly extend PCA methods to extract key infor-
mation from path data.
More generally, functional data analysis (Ramsay

and Silverman 2005) seems to provide another appro-
priate set of tools to address these issues. In functional
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data analysis, the underlying data are functions them-
selves; path data are functions of time, with the
function value at each time point being the agent’s
location. Although many sophisticated exploratory
techniques have been developed in functional data
analysis, they cannot be directly applied to path data.
This is mainly because existing methodology typically
assumes that the underlying space is unrestricted,
while path data often contain spatial constraints.
Identifying a proper method to handle these con-
straints is a crucial issue for those who wish to apply
functional data analysis techniques to path data.
Another major challenge in exploring path data

is how one should take into account other ancillary
information available for each path. For example, a
data set of grocery shopping paths not only includes
the shopping path information but also typically will
be linked to purchases. Because the data come in two
different forms, a path (functional data) and a record
of purchases (multivariate data), existing exploratory
techniques (e.g., clustering) would be ill-suited to
describe the relationship. One promising direction is
the use of a mixed-PCA algorithm developed in func-
tional data analysis. This may allow researchers to
analyze data sets containing both functional and mul-
tivariate data (Ramsay and Silverman 2005).

4.3.2. Deterministic vs. Stochastic. The law of
motion for a given model, i.e., the exact mechanism
with which movements are determined given all the
characteristics of the agents and the spatial config-
uration, can be deterministic or stochastic. In areas
outside of marketing, researchers commonly use a
deterministic specification to model the movement
of birds and pedestrians. Given an initial configu-
ration of birds and their migration target, the path
of the flock is generally assumed to be completely
determined (Reynolds 1987). In the social force model
for pedestrians, a potential surface is calculated from
the vector summation of all social forces acting on a
pedestrian, which reflects the attractiveness of each
location (Helbing et al. 1997). Given this potential sur-
face, the pedestrian is assumed to move in the direc-
tion with the largest increase in ground attraction,
much like how particles move in a force field.
In marketing, by contrast, a stochastic framework

is often used to model movements. For instance,
Montgomery et al. (2004)’s Web browsing model spec-
ifies that the utility of a category is a linear func-
tion of covariates and a vector-autoregressive (VAR)
structure, plus a (multivariate) normally distributed
error term. These types of components are commonly
used in random utility models used in econometrics;
it allows for the nondeterministic nature of click-to-
click level Web browsing patterns, even after account-
ing for all observed and unobserved covariates. Like-
wise, models of eye tracking scanpaths often assume

that the path of visual movement is stochastic, and
is usually modeled (if the space is discretized) using
multivariate logit-type choice models (Pieters and
Wedel 2004).
The fusion between deterministic and stochastic

formulations leads to many intriguing opportunities
for modeling. While a stochastic formulation is more
flexible and consistent with random utility models in
marketing, we believe that the introduction of some
deterministic components within a general stochastic
formulation may allow for a richer and more struc-
tural model of movement. For instance, researchers
have documented that pedestrians tend to make right
turns (Bitgood and Dukes 2006) and tend to speed
up as they progress in a shopping trip (Sorensen
2003). To incorporate these and other general behav-
ioral tendencies, we suggest that they can be modeled
as deterministic components in a path model, while
finer-level decisions can be modeled using stochas-
tic terms.

4.3.3. Degree of Integration for Multivariate
Observed Behaviors. A random-utility specification
for a path model may facilitate the fusion between
path models and other discrete choice models (e.g.,
purchase/brand choice). Such fusion has not been
a hallmark of modeling work in this area and
would be a significant contribution. In other domains,
however, marketers have built integrated models of
purchase incidence, brand choice, and purchase quan-
tity (Chintagunta 1993), as well as the “who, when,
where, and how much” characteristics of auctions
(Park and Bradlow 2005). The integration of move-
ment and choice data would be in the same spirit and
offers many intriguing research opportunities.
One key issue to consider in this promising direc-

tion is the degree of integration for the observed
behaviors. An integration of path and other behav-
iors only makes sense if they are strongly connected.
This may hold in some settings. For example, one
would assume that in a grocery store, a person will be
more likely to visit the product aisle that he intends
to buy from. Thus, the final market basket probably
has a strong relationship with the path that the shop-
per takes. In other settings, however, the connection
between one’s path and other behaviors may not be
evident. For instance, a person who spends a long
time looking for information about several books on
Amazon.com may not actually buy from the website,
but may be using it instead to gather information
about a particular author. In a model of online conver-
sion behavior, Moe and Fader (2004) found a consid-
erable number of these “hard-core non-buyers” in the
Web browsing data from this website. In such a case,
the connection between the path taken and purchases
can be weak.
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To study the degree of integration between paths
and other activities, researchers may consider fitting
two (nested) models: one that allows for the inte-
gration between the path and other activities (e.g.,
purchase), and the other that explicitly turns off this
linkage by restricting some of the parameter val-
ues. The relative fit of the nested models allows
researchers to understand whether a model that inte-
grates different behaviors is superior. With more
such exercises in the future, researchers will be able
to make some empirical generalizations about the
strength of the connection between different kinds of
activities and the consumer’s path to achieve them.

5. Conclusion and Future Research
Directions

The main objective of this paper is to motivate and
clarify research issues related to path data in mar-
keting. Understanding the interaction between a con-
sumer’s behavior and spatial environment allows us
to extract vital insights about how and why con-
sumers engage in certain behaviors. Using grocery
shopping, Web browsing, eye tracking, and IA as pri-
mary examples, we find that marketing researchers
have long been collecting and analyzing path data,
but that there has never been a general framework
linking them. We outline a number of different areas
where experimental and empirical researchers may
collect and analyze path data. We then synthesize
these different areas by highlighting the role of paths
in a unifying framework to guide future research in
this broad area.
We offer an integrative framework of path models

that pinpoints their various components and dimen-
sions. We identified the two key components of a
path model: the spatial configuration and the agent.
The spatial configuration can be classified along three
subdimensions: (1) physical/nonphysical, (2) continu-
ous/discrete, and (3) the degree of constraints. Agents
can be characterized based on (1) their degree of social
interaction, (2) their degree of goal-directedness, and
(3) their forward-looking tendencies. We then dis-
cuss an array of statistical and modeling issues that
researchers might face in constructing a path model.
While we do not claim to provide a complete list of
challenges and issues, we hope to offer some useful
guidance to future researchers faced with path-related
data sets.
As path data sets become more commonly avail-

able, we expect to see more research activities in this
new and promising area. These activities will not only
include descriptive models of movements and choices
(as highlighted in this paper), but also a richer vari-
ety of research issues. Below, we briefly describe three
possible areas that reflect the kinds of investigations
we hope to see in the near future.

(1) Hierarchies of paths: In this paper, we focused
on agents operating in a single spatial environ-
ment. More generally, one may consider a hierarchy
of paths. At a high level, a consumer decides the
sequence of websites to visit (e.g., Park and Fader
2004). Within each website, he may then navigate
among the Web pages with a specific click-to-click
pattern (e.g., Montgomery et al. 2004). Similar issues
arise in a shopping mall or even a large store (Arentze
et al. 2005, Brooks et al. 2004), where there may be
a hierarchy of paths in effect (i.e., deciding which
stores/departments to visit, then beginning a new
path within each one). Observations about the paths
within limited parts of the hierarchy would be highly
informative about the shopper’s behavior in other
parts of it.
(2) Inferences about partially-observed paths: As path

research matures, we may find that we do not need
all of the movement data to make accurate statements
about path-related behaviors. For instance, we may
need only a series of still images from key locations in
the environment to capture the relevant aspects of the
path, which could enable significant cost savings. To
assess this possibility, one can fit two models to the
data—one with only location data (e.g., which aisles a
shopper visits), and the other with the full path data
(i.e., the sequence of aisle visits). This would allow
researchers to assess the loss of information in throw-
ing away much of the movement data. Research firms
such as Sorensen Associates are actively investigating
such methods, and modeling techniques such as those
developed by Musalem et al. (2008, 2009) make this a
promising area of academic research.
(3) Convergence of different types of paths: Although

we have carefully compared and contrasted vari-
ous types of marketing paths throughout the paper,
we have treated each one as a separate entity,
without considering possible links among them. As
data collection technologies become more sophis-
ticated and economical, however, we envision a
possible convergence of different path domains;
i.e., researchers may simultaneously collect and
combine different data sources. Several current
sources of convergence include: (1) companies that
not only track typical page-to-page Web brows-
ing data, but also the movie of mouse move-
ments within each page to see how users interact
with a website (http://www.clicktale.com); (2) touch-
screen kiosks in retail stores (or even on the
store window—see http://wcbstv.com/technology/
local_story_219114456.html), which combine elements
of Web browsing and in-store path data; and (3) col-
lecting eye tracking data at the store shelf, which can
be combined with customer movement data. All of
these data sources (and countless other areas where
convergence of path data might occur) will create



Hui, Fader, and Bradlow: Path Data in Marketing: An Integrative Framework and Prospectus for Model Building
Marketing Science 28(2), pp. 320–335, © 2009 INFORMS 333

more exciting challenges and opportunities for mar-
keting researchers who wish to learn even more about
different aspects of consumer behavior.
We encourage other researchers to join us in the

study of paths to investigate these and other interest-
ing issues.
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