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Who’s got the coupon? Estimating Consumer Preferences

and Coupon Usage from Aggregate Information

Abstract

Most researchers in the Marketing literature have typically relied on disaggregate data
(e.g., consumer panel) to estimate the behavioral and managerial implications of coupon pro-
motions. In this article, we propose the use of individual-level Bayesian methods for the study
of this problem when only aggregate data on consumer choices (market share) and coupon
usage (number of distributed coupons and/or number of redeemed coupons) are available.
The methodology is based on augmenting the aggregate data with unobserved (simulated)
sequences of choices and coupon usage consistent with the aggregate data. Different mar-
keting scenarios, which differ in terms of their assumptions about consumer behavior and
information availability, are analyzed.

Initially, we consider a situation where the researcher observes aggregate market shares,
marketing activity, number of distributed coupons redeemed and the number of coupon
redemptions for each brand in each period. In addition, we assume that each consumer may
have a coupon for at most one brand in each period and coupons are only valid for one
period. Then, we generalize the estimation procedure to handle more realistic situations.
These generalizations include: i) each customer may simultaneously hold coupons for more
than one brand, ii) the researcher observes the number of redeemed coupons in each period,
but not the total number of consumers that received a coupon, and iii) a coupon that is not
redeemed in one period can potentially be redeemed in future periods.

The proposed methods are illustrated using both simulated data and a real data set for
which an extensive set of posterior predictive checks are used to validate the aggregate-level
estimation. In addition, we also relate our empirical results to some of the findings in the
literature about the coordination of coupon promotions and pricing and we show how our
methodology can be used to answer relevant managerial questions, normally reserved for
panel data.

Key Words: Coupon Promotions, Discrete Choice Models, Random Coefficients,

Data Augmentation, Markov Chain Monte Carlo.



1 Introduction

Consumer packaged goods (CPG) manufacturers invest billions of dollars every year in

coupon promotions. According to the Promotion Marketing Association, CPG manufac-

turers spent $7 billion in coupons and issued 258 billion coupons in 2003, from which only

3.6 billion coupons were redeemed (i.e, an average redemption rate of 1.5%). Determin-

ing the impact of coupon promotions has intrigued academics and practitioners alike for

decades. One important input into this process is a clearer understanding of the preferences

and characteristics of who redeems coupons and who does not.

When individual-level data specifying the choices and coupon usage of each panelist in

each period are available, it becomes easier to study these issues. This is the case in most

of the recent studies in the Marketing literature where primary data have been collected

using surveys or field experiments (e.g., Krishna and Shoemaker 1992; Bawa, Srinivasan and

Srivastava 1997).

In addition, the use of disaggregate data has also been very common among researchers

using secondary data (i.e., consumer panel data) to estimate the behavioral and managerial

implications of coupon promotions (e.g., Ward and Davis 1978; Narasimhan 1984; Bawa

and Shoemaker 1987; Neslin 1990; Chiang 1995; Leone and Srinivasan 1996; Erdem, Keane

and Sun 1999; Bell and Chiang 2001), or to make these inferences from the estimation of

price sensitivities (Rossi, McCulloch and Allenby 1996). However, when this is not “directly

possible” because only aggregate information is available, such as market shares and number

of redeemed coupons, researchers have typically used simplified approaches. For example,

some researchers have used demand models that are not explicitly linked to individual-level

assumptions of utility maximization (e.g., Nevo and Wolfram 2002), while other researchers

have only focused on coupon redemption without explicitly modelling brand choice (e.g.,

Reibstein and Traver 1982; Lenk 1992), have used reduced-form models to study the efficiency

of coupon promotions (e.g., Anderson and Song 2004), or have estimated the impact of

coupons by treating them as price reductions (e.g., Besanko, Dubé and Gupta 2003).

1



Recent advances in the Bayesian analysis of aggregate data initially proposed by Chen

and Yang (2004) and then extended by Musalem, Bradlow and Raju (2004), have pro-

vided new tools for the estimation of demand models that are formulated as the aggregation

of individual-level choice models. Using a generalization of these Bayesian techniques, we

present in this paper a new methodology that is based on augmenting the observed aggregate

data (market shares, number of redeemed coupons) with unobserved (simulated) sequences

of choices and coupon usage. This methodology allows us to estimate the distribution of

preferences among consumers and, consequently, the impact of coupons on the sales of each

brand using only aggregate data with methods normally reserved for consumer panel coupon

data sets.

Several scenarios are analyzed, which differ in terms of the assumptions about consumer

behavior and information availability. In the simplest case, we consider a situation where

the researcher observes the market share, marketing activity, number of coupons redeemed

and number of consumers holding a coupon for each brand in each period. In addition, we

assume that each consumer may have a coupon for at most one brand in each period and

that coupons are only valid for one period. This might be reasonable when manufacturers

do not promote their brands very often using coupons and when the duration of these

coupon promotions is relatively short. We note, however, that in many practical contexts

these conditions may not be appropriate and, consequently, we generalize this estimation

procedure in order to handle more realistic situations. These generalizations include:

1. Multiple coupons: a customer may simultaneously hold coupons for more than one

brand.

2. Number of coupons distributed is unknown: the researcher knows the number of re-

deemed coupons in each period, but not the total number of consumers that received

a coupon.

3. Non-expiring coupons: a coupon that is not redeemed in one period can potentially be
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redeemed (with some probability) in the next period.

The proposed methods allow us to answer important managerial questions such as deter-

mining the penetration of coupons (i.e., the fraction of consumers that have used a coupon

at least once), the number of heavy users of coupons (i.e., the fraction of consumers that

have used at least M coupons) and the expected number of users that would switch from

one brand to another if they received a coupon; again all of this from aggregate data. For

each of these quantities of interest we can not only compute a point estimate, but also esti-

mate its entire posterior distribution using Markov Chain Monte Carlo (MCMC) simulation,

our computational approach utilized here. This is an important advantage of the proposed

method in comparison to reduced-form approaches as understanding the variability in these

quantities can also play a role in decision making. In addition, our methodology allows us

to simulate the effects of policy experiments, such as reducing the number of coupons that

are distributed, or reallocating the number of coupons distributed by a manufacturer across

several brands.

In summary, the main contribution of this research is the development of a new method-

ology to measure the impact of coupon promotions on consumer choice using only aggregate

data. Using this methodology we are able to account for heterogeneity in consumer prefer-

ences and it is possible to answer relevant managerial questions and analyze the consequences

of different couponing strategies.

The rest of this paper is organized as follows. In Section 2 we describe and analyze a

simple case that illustrates the basic ideas of the proposed methodology and introduces the

needed notation. In Section 3 we generalize the estimation procedure by allowing consumers

to simultaneously hold coupons for more than one brand and assuming that the researcher

has data on the number of redeemed coupons, but not about the total number of consumers

that received a coupon. In Section 4 we consider coupons that may be valid for more than

one period. In Section 5 we analyze a real data set of purchases for which we estimate

consumer preferences with and without knowledge of the individual purchases and coupon
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usage. In Section 6 we relate our empirical results to some of the findings in the literature

about the coordination of coupon promotions and pricing and we also show how these results

can be used to analyze important managerial questions. Finally, in Section 7 we conclude

this article discussing interesting avenues for future research.

2 The Basic Model

Assume N consumers make purchase decisions in each of T periods choosing among J brands

in the market. In each period t, N c
jt ≤ N consumers receive one coupon for brand j and

N r
jt ≤ N c

jt of them redeem their coupons. We specify the following assumptions regarding

information availability and the distribution, consideration and redemption of coupons:

(A1) Single Coupon. Each consumer may have a coupon for at most one brand in each

period.

(A2) Available Information: Distributed Coupons and Redeemed Coupons. The

researcher observes aggregate data regarding the total number of distributed coupons

and the total number of coupon redemptions for each brand in each period.

(A3) Immediate Expiration. Coupons are only valid for one period.

(A4) Coupon Distribution. Each consumer has the same probability of being among the

N c
jt consumers that received a coupon.

(A5) Coupon Redemption. If a consumer has a coupon for brand j and chooses to buy

brand j in a given period, then she redeems her coupon in that period.

(A6) Coupon Consideration. The remaining coupons for non-purchased brands (non-

redeemed coupons) were considered by consumers in their purchase decisions, but just

not used.
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In addition to these assumptions about coupon usage, we assume (as is standard) that

consumers choose the product with the highest utility and the choice of consumer i in period

t (yit) satisfies:

yit = argmaxj Uijt(1)

= argmaxj Vijt + ǫijt

= argmaxj φ′
ixjt + ψicijt + ǫijt,

where Uijt is the utility of alternative j for consumer i in period t; Vijt is the deterministic

component of the utility of alternative j for consumer i in period t (i.e., Vijt = φ′
itXjt+ψicijt);

Xjt is a vector of attributes for brand j in period t, (e.g., including price, brand dummies

and other product characteristics); cijt is a latent indicator variable which is equal to 1 if

consumer i has a coupon for brand j in period t, and 0, otherwise; φi and ψi are utility

coefficients for consumer i, where the latter measures the utility trade off for consumer i of

using a coupon1; and, ǫijt is an individual-specific demand shock for the utility of alternative

j for consumer i in period t.

Assuming ǫijt is distributed according to the Extreme Value(0,1) distribution, the proba-

bility, pijt, that consumer i chooses brand j in period t is given by (Ben Akiva and Lerman,

1985):

(2) pijt(cit) ≡ P (yit = j | cit, φi, ψi, xt) =
eφ′

ixjt+ψicijt

J∑
k=1

eφ′

ixkt+ψicikt

,

1One possible extension of the model is to allow for different coupon coefficients for different brands (i.e.,
replace ψi by ψij). In addition, if coupons with different face values were issued for a given brand, and if
there is enough information for each of them, then one could also model the effect of different face values
on the utility function of each consumer. Similarly, one could also model the effect of different distribution
vehicles (e.g., on-pack versus in-pack) on consumer choice. These extensions can be easily incorporated
to the methods that are introduced in this paper, however, they increase the computational requirements
and, depending on how these extensions are modelled by the researcher, this may also reduce the degrees of
freedom for estimating the response of consumers to coupon promotions.
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which we specify explicitly as a function of cit in order to emphasize the dependence of this

probability (pijt) on the coupon indicator vector for consumer i in period t (cit). Whenever

this dependence is redundant, this choice probability will be simply denoted by pijt instead

of pijt(cit). For notational convenience, define zijt as a latent indicator variable equal to 1 if

consumer i chooses brand j in period t (i.e., if yit = j), and zero otherwise. In addition, let

Sjt denote the observed aggregate market share of brand j in period t. Furthermore, assume

that the researcher does not have access to individual-level data (i.e., zijt, cijt). Instead, the

researcher only has aggregate information about coupon usage and consumer choices (i.e.,

N c
jt, N r

jt and Sjt) from which inferences about consumer preferences (φ = {φi}, ψ = {ψi})

and coupon usage will be made.

According to these assumptions, the following restrictions must be satisfied by the unob-

served (to the researcher) individual behavior of consumers in order to be exactly consistent

with the observed aggregate data:

N∑

i=1

zijt = NSjt (Market Share),(3)

N∑

i=1

cijt = N c
jt (Coupon Distribution),(4)

N∑

i=1

cijtzijt = N r
jt (Coupon Redemption),(5)

J∑

j=1

cijt ≤ 1 (Maximum Number of Coupons),(6)

where these restrictions are related to the market share (equation 3), the total number

of distributed coupons (equation 4), the total number of redemptions (equation 5), and

the maximum number of coupons that a consumer may simultaneously hold (equation 6),

respectively, for any brand j in each period t.

Finally, we model the heterogeneity in consumer preferences by specifying that each

vector of coefficients θi ≡ (φi, ψi)
′ is independent and identically distributed according to
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a Multivariate Normal distribution with mean θ and variance-covariance matrix D, as is

common in empirical applications (e.g., Berry, Levinsohn and Pakes 1995).

2.1 Likelihood Function and Posterior Density

Using a data augmentation strategy (Tanner and Wong 1987), we treat the unobserved

individual data about choices (zijt) and coupon usage (cijt) as parameters (missing data,

Little and Rubin 1987), which will be simulated from their posterior distribution. In order

to formulate the posterior distribution, we specify the likelihood of the augmented data for

this demand model:

(7) Laug =

(
N∏

i=1

J∏

j=1

T∏

t=1

pijt(cijt)
zijt

)
I{(Z,C)∈Ω},

where:

(8) Ω =

{
(Z,C) :

N∑

i=1

zijt = NSjt,

N∑

i=1

cijt = N c
jt,

N∑

i=1

cijtzijt = N r
jt,

J∑

j=1

cijt ≤ 1

}
;

the indicator function ensures that the (augmented) individual choices and coupon variables

are exactly consistent with the aggregate information according to equations (3), (4), (5) and

(6); and Ω is set of all possible configurations of choices and coupon usage (Z,C) satisfying

these constraints. We note that the use of indicator functions to incorporate restrictions on

the parameters of a model has been previously proposed in the context of Bayesian estimation

by Gelfand, Smith and Lee (1992) and it has been used, for example, by McCulloch and

Rossi (1994) in their analysis of the multinomial probit model, where latent utilities are

sampled from truncated normal distributions. Using equation (7), the posterior density of

the parameters and the augmented data (Z,C) is proportional to the following expression:

(9) f(Z,C, θ, θ,D|S,N c, N r, X) ∝

(
N∏

i=1

N(θi| θ,D)
J∏

j=1

T∏

t=1

pijt(cit)
zijt

)
I{(Z,C)∈Ω}π(θ,D),
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where θ is a matrix containing each of the vectors of individual coefficients (θi); S denotes

the observed data matrix with the market shares of each of the J alternatives in each period;

X corresponds to a matrix containing marketing information for each of the J alternatives in

each of T periods (e.g., prices and brand dummies); N c and N r are matrices specifying the

total number of coupons and the number of redeemed coupons for each of the J alternatives

in each of T periods; N(·|θ,D) is the density of a multivariate random variable with mean

θ and variance-covariance matrix D; and π(θ,D) is the hyperprior for θ and D, which is

specified here as a standard Normal-Inverted Wishart prior (see Gelman, Carlin, Stern and

Rubin, 1995, p. 80).

After formulating the augmented likelihood and the posterior density, we discuss in the

next subsection the implementation of a Markov Chain Monte Carlo (MCMC) method for the

estimation of the parameters of the demand model. Specifically, for each of the parameters,

we generate draws from their full-conditional posterior distribution (Gibbs sampling) and we

use these values to make posterior inferences about these parameters and, hence, inferences

for assessing the effectiveness of coupons.

2.2 Estimation

As in Chen and Yang (2004) and Musalem, Bradlow and Raju (2004), the estimation method

here relies on the fact that after conditioning on the current values of the individual choices

and coupon usage variables, Z and C, the parameters {θi}
R
i=1, θ and D can be sampled

using standard Bayesian methods (Allenby and Rossi 2003); for brevity not described here.

Therefore, we focus on the problem of how to generate draws of the augmented individual

choices (Z) and coupons (C).

The procedure proposed in this section generalizes the pair-switching Gibbs sampler in-

troduced in Musalem, Bradlow and Raju (2004) which only considered one type of restriction

(market share). Under the generalization presented here, the augmented individual choices

and coupons for each period, (zt, ct), will be drawn directly and jointly from their full-
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conditional posterior distribution (Gibbs sampling) and these must satisfy the constraints

defined in equations (3), (4), (5) and (6). For computational convenience, we propose sam-

pling (zt, ct) by first assigning consumers to pairs and then sequentially updating the choices

and coupons in each pair. Specifically, suppose we consider the choices and coupons of con-

sumers i1 and i2 in period t, conditioning on all other parameters including the choices and

coupons of all other consumers. Then, using (9), the full-conditional posterior distribution

of the choices and coupons of these two consumers in period t is given by:

(10) f(zi1t, ci1t, zi2t, ci2t|∗) = K · I{(Z,C)∈Ω}

J∏

j=1

pi1jt(ci1t)
zi1jtpi2jt(ci2t)

zi2jt

where K is a normalization constant that depends on the values of all other parameters and

the observed aggregate data. Assuming that in a given iteration of the Markov Chain, the

values of Z and C satisfy constraints (3), (4), (5) and (6), it is easy to verify that when the

choices and coupons of all other consumers are held constant, there are only two instances of

{(zi1t, ci1t), (zi2t, ci2t)} that have a non-zero probability. The first corresponds to the current

values of {(zi1t, ci1t), (zi2t, ci2t)}, while in the second instance consumers i1 and i2 interchange

their choices and coupons in period t. Note that any other configuration would violate one

or more of the constraints (3), (4), (5) and (6). Accordingly, the full-conditional posterior

probability of the event where the choices and coupons of these two consumers take their

current values corresponds to:

(11) f(zi1t, ci1t, zi2t, ci2t|∗) =

J∏
j=1

pi1jt(ci1t)
zi1jtpi2jt(ci2t)

zi2jt

J∏
j=1

pi1jt(ci1t)
zi1jtpi2jt(ci2t)

zi2jt +
J∏

j=1

pi1jt(ci2t)
zi2jtpi2jt(ci1t)

zi1jt

,

while the complement of this expression defines the probability of interchanging the choices

and coupons of both consumers. Based on this result, the details of the procedure for

simulating Z and C are described in Appendix A. In the next subsection, we illustrate this
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method using a numerical experiment.

2.3 Numerical Experiment

In order to demonstrate the efficacy of this approach, we consider a small numerical example

with J = 3 brands, T = 50 periods and N = 500 consumers. The utility function of each

of these consumers includes four explanatory variables. The first two correspond to brand

dummies for the first two brands, the third is generated from a standard normal distribution

and the fourth variable is the coupon indicator (cijt). The true mean and variance of the

individual coefficients (θi) were chosen as θ =(1 1 -1 1)′ and D = I4, respectively, where I4

denotes the identity matrix with four rows and columns. In addition, coupons were randomly

assigned to the simulated consumers, where the probability of a receiving a coupon in a given

period was chosen to be equal to 0.3 for all consumers in all periods (i.e., P (
∑3

j=1 cijt = 1) =

0.3). Finally, each of these coupons is only valid for one purchase of a single brand, where the

corresponding brand is randomly selected with probability 1/3 (i.e., P (cijt = 1 |
∑3

j=1 cijt =

1) = 1/3, for all j).

Using only aggregate information (i.e., market shares, number of redeemed coupons and

number of coupons available for each brand in each period), we estimated θ and D according

to the procedure described in this section. The starting values for θ and D correspond to

θ = (0 0 0 0)’ and D = 0.1I4. The starting values for our MCMC sampler for Z (choices)

and C (coupons) are randomly chosen from a distribution that assigns the same probability

to any configuration of choices and coupons satisfying constraints (3), (4), (5) and (6).

In addition, the following hyperprior distributions are specified: θ ∼ N (0, 105) and D ∼

Inverted Wishart(6, 6I4), very weakly informative. The results are presented in Table 1 and

they are based on a single run of 200,000 iterations, where only the last 100,000 were used

for the estimation of θ and D, the mean and variance of the preference coefficients2.

2Extensive simulation suggests that this was sufficient for convergence.

10



== Insert Table 1 here ==

From the results in Table 1 we observe that the true values of θ and D are covered by

their 95% posterior-probability intervals and that the estimated posterior means are very

close to their true values, providing numerical support for the method introduced in this

section. In the next section, we discuss the first two generalizations of the scenario analyzed

here.

3 Multiple Coupons and Limited Information

In this section we introduce two extensions to the method described in §2. These extensions

are related to our assumptions about coupon usage and the information that the researcher

needs to collect in order to estimate the distribution of consumer preferences.

3.1 Multiple Coupons

In the previous section, we considered a situation where consumers may have at most one

coupon. In this section, we now allow consumers to simultaneously hold coupons for more

than one brand, while keeping all other assumptions from §2. This is a more realistic scenario

given that sometimes different manufacturers promote their brands simultaneously and it is

likely that a consumer might have access to coupons from more than one brand in a given

period. Accordingly, we replace A1 by:

(A1’) Multiple Coupons. Each consumer may have coupons for more than one brand in

each period.

In this case, it is no longer necessary to impose the constraint specified in (6). In terms of

the estimation procedure, the absence of this constraint makes the joint sampling of choices

and coupons from their posterior distribution more difficult. In the case analyzed in the

previous section where we considered the choices and coupons of a pair of consumers, there
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were only two possible values that satisfy all the constraints: leave the choices and coupons

at their current values or interchange them. In the case of multiple coupons, however, the

number of feasible instances of z and c for a pair of consumers exponentially increases with

the number of brands J , which makes the computation of the full-conditional posterior

probability more cumbersome. As it will be shown later, this complexity can be reduced by

first drawing choices (Z) conditioning on imputed coupons and all other parameters, and

then drawing coupons (C) conditioning on imputed choices and all other parameters.

3.2 Limited Information

In Section 2, we also assumed that the researcher had access to data on the number of

redeemed coupons (N r
jt) and the number of consumers that received a coupon (N c

jt). The

latter information on received coupons is much harder to get in practice and hence the

extension presented here, which does not rely on this knowledge, is highly relevant for

practical applications. In contrast, one could try to estimate N c
jt by using data on the

number of distributed coupons. However, many factors contribute to make the effective

number of consumers that have a coupon in a given period to be different from the original

number of distributed coupons. For example, some coupons might never reach any consumer,

some consumers may lose their coupons, or some consumers may realize that they could have

used a coupon when the coupon has already expired.

Accordingly, we generalize the estimation procedure by only requiring knowledge of the

number of redeemed coupons, while the number of consumers that a received a coupon will

be estimated according to the methodology that we present below. Consequently, we replace

A2 by:

(A2’) Available Information: Redeemed Coupons. The researcher only observes ag-

gregate data regarding the total number of redeemed coupons for each brand in each

period while the total number of consumers that received a coupon is unknown to the

researcher.
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In addition, since it is possible that in some periods no coupons were available for a given

brand (i.e., cijt = 0 for all i), we define a latent indicator variable δjt which is equal to 1 if

coupons for brand j that are redeemable in period t were distributed, and it is equal to 0,

otherwise. This new definition combined with A2’ implies that we must replace constraint

(4) by the following condition:

(12) N r
jt ≤

N∑

i=1

cijt ≤ Nδjt.

We note that this last condition implies that when N r
jt > 0, δjt = 1. Therefore, only when

N r
jt = 0 there is uncertainty about δjt. In particular, if no coupons were redeemed, then

there are two alternative explanations: i) no coupons were available (δjt = 0), or, ii) coupons

were distributed (δjt = 1), but none of them was redeemed. In addition, we denote by rjt

the probability that a consumer will receive a coupon for brand j in period t, where rjt is a

function of δjt as shown below. We assume that each cijt is an independent Bernoulli random

variable such that P (cijt = 1) = rjt, for all i,j and t. In previous research (e.g., Erdem,

Keane and Sun 1999), these coupon-availability probabilities (rjt) have been estimated using

disaggregate data assuming that they are constant across periods (i.e., rjt = rj). In this

paper, we allow these probabilities to take different values in different periods and this is

implemented by defining rjt as follows:

(13) rjt = P (cijt = 1) = δjt

eαj+ξjt

1 + eαj+ξjt

where αj is a fixed effect that determines the baseline probability of receiving a coupon for

brand j and period t when δjt = 1; and ξjt is a zero-mean random effect that captures

deviations from the baseline level (αj). Furthermore, we specify the following prior and
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hyperprior distributions:

δjt ∼ Bernoulli(qj)

qj ∼ Beta(aj, bj)

αj ∼ N (0, σ2
j )

ξt ∼ MVN(0, Σ)

Σ ∼ Inverted Wishart(m0,Mo).

Finally, it is important to mention that the random effects for different brands (ξjt, ξj′t)

are allowed to be correlated via Σ. For example, a positive correlation would imply that

when more coupons are available for one brand, more coupons are also available for the other

brand (a consequence of many competitive coupon strategies).

3.3 Estimation

We first describe in this subsection the updating of the unobserved individual choices and

then we discuss how the updating of the coupon variables can be implemented.

3.3.1 Drawing choices from their full-conditional posterior distribution

As before, we start by considering pairs of consumers. In particular, suppose that we consider

the choices of consumers i1 and i2 in period t (zi1t, zi2t) conditioning on the coupon variables

(C) and all other parameters and assume that constraints (3), (4) and (5) are satisfied by

the current values of Z and C. Then, it follows that the only instances of (zi1t, zi2t) that

satisfy the market share constraint (equation (3)) are the current values and the instance

where these values are interchanged. In addition, it is necessary to take into account that a

change in the choices of these two consumers (zi1t, zi2t) may also affect the constraint related

to the number of redeemed coupons in period t (because z is also present in equation (5)).
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Accordingly, the interchange of choices is only feasible when the total number of redeemed

coupons for each brand is the same with and without interchanging zi1t by zi2t. The details

of this procedure are presented in Appendix B.

3.3.2 Drawing coupons from their full-conditional posterior distribution

In Section 2, it was not possible to update the coupons of a single consumer in a given period,

holding the coupons and choices of all other consumers and all other parameters constant.

The reason for this is that once the coupons of all other consumers are held constant, there is

only one value of the coupon variable for the corresponding consumer that satisfies condition

(4). Moreover, if this was implemented, the coupon variables would remain at their initial

values for every iteration of the Gibbs-sampler and, consequently, the Markov Chain would

not converge to the posterior distribution of the parameters.

In this section, however, since we have replaced the equality constraint specified in (4)

by inequality (12), it is possible to update the coupon variables of each consumer singly,

conditioning on the coupons of all other consumers and all other parameters. In particular,

we propose a Metropolis-Hastings (MH) step where a candidate vector of coupons for a single

consumer (c∗it) is randomly generated from a distribution that assigns equal probability to

every vector c∗it satisfying constraints (5) and (12). The details of this procedure are also

presented in Appendix B.

3.3.3 Drawing δ from its full-conditional posterior distribution

As we mentioned before, when the observed number of redeemed coupons for brand j in

period t is greater than zero, then by condition (12), δjt must be equal to 1. In addition, if

in a given iteration k there is a positive number of coupons assigned to brand j in period t

(i.e., if
N∑

i=1

cijt > 0), then δjt must also be equal to 1 (see condition (12)). However, when no

coupons are assigned, δjt must be imputed and we generate samples from its full-conditional
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posterior distribution by assigning δ
(k+1)
jt = 1 with the following probability:

(14) P (δ
(k+1)
jt = 1 | ∗ ) =

(
1

1+e
αj+ξjt

)N

qj

(
1

1+e
αj+ξjt

)N

qj + (1 − qj)

otherwise, δ
(k+1)
jt = 0; where

(
1

1+e
αj+ξjt

)N

is the probability that none of the N consumers

received one of the coupons distributed for brand j in period t.

3.4 Numerical Experiment

We construct a numerical example based on the same parameter values for θ and D as in §2.3.

The true values for the parameters that determine the coupon probabilities are specified as:

q = (0.25, 0.50, 0.75), α = (−1,−3,−5) and

Σ =





2.0 1.0 −1.0

1.0 2.0 0.0

−1.0 0.0 2.0




.

We specify a Beta(1,1) hyperprior distribution (i.e, Uniform(0, 1)) for q1, q2 and q3 (i.e.,

aj = bj = 1), a N (0, 1000) for each αj (i.e., σ2
j = 1000) and an Inverted Wishart(5, 5I3),

weakly informative for Σ. As we mentioned before, we only use aggregate data on market

shares and number of redeemed coupons for each brand in each period to estimate the

posterior distribution of the parameters of the model (i.e., we do not use data on how many

consumers received a coupon for each brand in each period and, of course, any individual-

level data). The starting values for θ, D and Z are the same as those used in §2.3, while

the initial values for αj and Σ correspond to αj = 0 and Σξ = I3. In the case of the coupon

variables (C), we first set an initial value for N c
jt equal to the integer part of N r

jt+0.3(N−N r
jt),

and we then randomly assign these N c
jt coupons among the N consumers. Using the method

proposed in §3.3 we obtained the results presented in Table 2, where the results are again
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based on a single run of 200,000 iterations with the last 100,000 used for estimation.

== Insert Table 2 here ==

From the results we observe that the true values of θ, D, α, q and Σ are covered by their

95% posterior-probability intervals and that the posterior means and posterior medians are

very close to the true values (within 1 posterior standard deviation).

4 Non-Immediate Expiration

In the preceding sections, we assumed that coupons immediately expire after one period.

If the length of a period is equal to a week or less, it might be reasonable to consider the

possibility that if a coupon is not used in a certain period, the coupon might still be valid

for redemption during the next period. Accordingly, we replace A3 by A3’, while keeping

all other assumptions from the previous section (i.e., A1’, A2’, A4, A5, A6):

(A3’) Non-Immediate Expiration. A coupon that has not been used in a given period,

might still be valid for redemption during the next period.

We note that the possibility of redeeming a coupon in a future period obviously depends

on factors that are unobserved to the researcher, such as whether the consumer will still hold

that coupon in the next period and the expiration date of the coupon. In particular, the

probability that a consumer has a valid coupon in period t, given that she had a coupon in

t − 1 that was not redeemed, is not necessarily equal to 1 (e.g., the coupon might expire or

the consumer might have lost the coupon). Consequently, we model this coupon carry-over

effect by specifying different coupon probabilities depending on whether a consumer had a

coupon in the previous period and whether that coupon was redeemed. These probabilities

for periods 2 to T are defined as follows:

rijt(cijt−1, zijt−1) = P (cijt = 1) = δjt

eαj+αJ+1cijt−1(1−zijt−1)+ξjt

1 + eαj+αJ+1cijt−1(1−zijt−1)+ξjt
, 2 ≤ t < T,(15)
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where αJ+1 measures the change in the coupon-availability probability that is triggered when

a consumer had a coupon in the previous period which was not redeemed. For example,

positive values of αJ+1 imply that if a coupon was available to consumer i in period t − 1,

but the consumer did not use it (i.e., if cijt−1(1 − zijt−1) = 1), then the probability that the

consumer will have a valid coupon in period t is higher.

In addition, it is also necessary to define coupon probabilities for the first period that do

not depend on cij0 or zij0, data usually unobservable. Hence, we instead specify a different

model for rij1, which is defined as follows3:

(16) rij1 = P (cij1 = 1) = δj1
eαj+γj

1 + eαj+γj
.

As in the previous section, we use a Normal hyperprior distribution for each of the

components of α and γ: αl ∼ N (0, σ2
αl

), l = 1, .., J + 1, γj ∼ N (0, σ2
γj

), j = 1, .., J . We

also note that γj will only be relevant if δj1 = 1. Therefore, only if the event that δj1 = 1

has significant (posterior) probability, will it be possible to estimate γj. If that probability

is very small, then we can simply ignore γj for any practical purposes.

Finally, it is important to mention that the specification of the coupon probabilities in

equation (15) introduces a correlation between choices and coupons of consecutive periods

(unless αJ+1 = 0). Accordingly, we must redefine the steps that are necessary to sample

choices and coupons (Z,C) from their full-conditional posterior distribution in order to

capture this autocorrelation in the (unobserved) time series of coupons and choices. These

modifications are explained in Appendix C.

4.1 Numerical Experiment

We constructed a numerical example based on the same parameter values for θ, D, q and

Σ as in §3.4. The true values for the new additional parameters are α = (−2,−1, 0, 2) and

3We note that even for consumer panel data, we only observe C when there is a coupon redemption. When
there is no redemption, we do not know whether the consumer had a coupon for a non-chosen alternative.
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γ = (1, 0,−1). In addition, we constrain δj1 to be equal to 1 for every brand (i.e., all brands

distributed coupons in period 1) in order to get meaningful estimation results for each of the

components of γ (in our real data analyses in §5 this is not required).

We use the same hyperprior distributions and starting values for θ, D, q, α and Σ as

in §3.4. The prior for each γj corresponds to N(0, 10) (i.e., σ2
γj

= 10, j = 1, ..., J) and the

starting value corresponds to γ = (0, 0, 0) . Using the method described in Appendix C, we

obtained the results presented in Table 3, where there results are based on a single run of

400,000 iterations with the last 200,000 used for estimation. From the results we observe

that the true values of θ, D, q, α, γ and Σ are covered by their 95% posterior-probability

intervals and, in most cases (25 out of 30 parameters) the posterior means are within 1

posterior standard deviation from the true values, but none deviate much.

== Insert Table 3 here ==

In summary, our simulations demonstrate the efficacy of our approach under the most

basic to more realistic conditions. We now apply these methods to a real data set.

5 Empirical Application

In this section, we apply the methods described in Sections 3 and 4 to a data set of purchases

in the ice cream product category. In order to provide an empirical validation of these

methods, we use a data set for which disaggregate data are available and we implement

two separate estimation procedures: disaggregate and aggregate estimation. While normally

this would not be available, fitting both methods and comparing their results provides an

empirical test to validate our methodology.

In the first case, we use disaggregate data on choices and coupon redemption for eight

different ice cream brands (Baldwin, Breyers, Country Charm, Deans Food, Dreyers Edys,

Fieldcrest, Private Label, Sealtest), which were generated by a panel of consumers at a single
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Table 5
Estimated Log-Marginal Likelihood

Model Disaggregate Estimation Aggregate Estimation
Immediate Expiration -15,105.956 -16,263.287
Non-Immediate Expiration -14,352.553 -12,573.062

store in an urban market in the period between June 1992 and June 1994. We selected a

total of 165 panelists that made at least four purchases during the 99 weeks of observation4.

In the second case, we only use the aggregate total number of choices and coupons redeemed

for each brand in each week. Finally, in both cases we specify a utility function that includes

a dummy variable for each brand (x1, ..., x8), prices (x9) and feature (x10). In addition,

we include a non-purchase option in order to capture category expansion effects. Table 4

presents summary statistics for this data set.

Using the methods presented in Sections 3 (immediate expiration) and 4 (non-immediate

expiration), we first assessed the degree of generality needed in the model. For model com-

parison purposes, we computed the log-marginal likelihood of the data (presented in Table

5) for each model (immediate and non-immediate expiration) under both estimation proce-

dures (aggregate and disaggregate)5. From these results and according to the criterion in

Kass and Raftery (1995) we find very strong empirical support for the second model (non-

immediate expiration) under both estimation procedures (aggregate and disaggregate). In

addition, we note that the fact that α9 (the coefficient for coupon carryover) is estimated

to be significantly different from zero (see Table 6b) also provides support for selecting the

second model instead of the first model.

4Given that the selected panelists made at least four purchases, we added the following constraint in the

aggregate estimation:
T∑

t=1

J∑
j=1

zijt ≥ 4, for i = 1, ..., 165. This constraint was included in order to make the

results from both estimation procedures comparable. This can be easily implemented in our Gibbs sampler
by assigning zero probability to any interchange of choices that violates this constraint.

5In the case of the aggregate estimation of both models and denoting by A the aggregate data, we report
(ln(p(A)) − ln(|Ω|)) instead of ln(p(A)), because |Ω| is constant under both models, and therefore this term
is irrelevant for model comparison purposes. See Appendix D for details on the estimation of the marginal
likelihood under the aggregate estimation procedures.
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In what follows, we focus the rest of our discussion on the results obtained for the selected

model (non-immediate expiration), which are reported in Table 6. In the case of γ and the

off-diagonal elements of D and Σ, we only report results for those elements that are estimated

to be significantly different from zero for at least one of the estimation procedures. According

to these results, we verified that the estimated 95% posterior probability intervals for each

parameter overlap each other under both estimations for all parameters (except for D66, D67,

D69). In terms of the demand parameters (see Table 6a), the estimated posterior means for

θ under both cases are fairly close (in most cases, within 1 posterior standard deviation from

each other). In the case of the variance of the preference coefficients (D), those corresponding

to the brand intercepts and price are estimated to be somewhat smaller under the aggregate

estimation, while the opposite is observed for the corresponding variance of the coefficients

of feature and coupon. In addition, we observe that the posterior standard deviations for θ

and D are higher, in general, in the case of the aggregate estimation, which reflects the fact

that there is higher uncertainty about the demand parameters when the estimation is based

only on aggregate data.

== Insert Tables 4, 6 and 7 here ==

From a managerial point of view and as it has been suggested by previous research

on aggregate estimation (e.g., Christen et al. 1997), a more relevant comparison of these

results can be obtained by computing the sets of own- and cross-price elasticities under

both estimation procedures (aggregate and disaggregate). Table 7 shows the estimated

posterior mean (first block of results), 2.5%-ile (second block) and 97.5%-ile (third block)

for each of these elasticities. These elasticities were computed assuming mean levels of

prices, feature and coupon availability. These results show that the two sets of elasticities

are reasonably close to each other and, therefore, both of them would generate similar

managerial recommendations for pricing purposes, suggesting that our aggregate results well

mimic the disaggregate ones.
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In terms of the parameters related to the coupon probabilities (α, γ, Σ and q), we also

observe a great degree of agreement between the two sets of estimated values (see Table

6b). In fact, the posterior means for each parameter under both estimations are within one

posterior standard deviation from each other (except for α3).

Finally, we performed a series of posterior predictive checks (Gelman, Meng and Stern

1996) of the results obtained from the aggregate estimation, the strongest possible check

of our approach. In particular, we computed the following check statistics from the im-

puted (Z,C) under the aggregate estimation and compare them to the “truth” using the

disaggregate data:

1. Total purchases: proportion of consumers making at least k purchases.

2. Penetration by brand: proportion of consumers choosing brand k at least once.

3. Number of different brands: proportion of consumers buying k different brands (during

the 99 weeks of data).

4. Coupon redemption: proportion of consumers redeeming at least k coupons.

5. Coupon penetration: proportion of consumers redeeming a coupon for brand k at least

once.

For each of these measures, we computed the corresponding true value using the dis-

aggregate data and then we compared these true values with those estimated under the

aggregate procedure. The results are presented in Figure 1 where k is represented on the

horizontal axis, the solid line represents the true values and the other three lines represent

the 2.5%, 50.0% and 97.5% posterior quantiles. From these posterior predictive checks we

observe that the true values for total purchases, coupon redemption and coupon penetration

are, in general, within their 95% posterior-probability intervals. For the other two measures,

penetration and number of different brands, the estimated values for 5 of the 8 levels are
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within their 95% posterior probability intervals. A discussion of some extensions to our

models that could potentially improve our results is presented in Section 7.

== Insert Figure 1 here ==

In summary, we conclude from these results that the aggregate procedure is doing a very

good job at estimating the unobserved individual data of coupons and choices, although it

appears that there is still room for improvement.

6 Discussion of Results and Managerial Implications

In this section, we relate the empirical results from our aggregate estimation to some of

the findings in the literature about the coordination of coupon promotions and pricing. In

addition, we also show how these results can be used to evaluate the impact of coupon

promotion strategies on brand switching and purchase incidence.

We note that it is also possible to conduct a series of other interesting analyses using

our empirical results from the aggregate estimation (results are available from the authors

upon request). For example, we can compare the price and coupon sensitivity of coupon

users and non-users within this product category and we can estimate what is the value of

using consumer preference information for determining whether to distribute a coupon to a

consumer. In particular, this last application would make targeting methods, such as those

proposed by Rossi, McCulloch and Allenby (1996), even more powerful given that one could

estimate the distribution of consumer preferences from aggregate data and then use data on

a single choice (e.g., the current transaction of the customer) to decide whether to give a

coupon to a consumer.
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6.1 Prices and Coupon Promotions

It has long been argued in the literature in marketing and economics that coupon promotions

can be viewed as a price discrimination device. In the case of a monopoly that can target

different segments of customers by setting different prices using coupons (third-degree price

discrimination), regular prices are supposed to rise when coupons are offered in order to

capture a higher revenue from non-users of coupons while still getting a fraction of the

coupon users to buy the product at the discounted price. Consequently, the monopolist can

collect higher profits by discriminating among coupon users and non-users. Anderson and

Song (2004) have shown, however, that this is not necessarily true when coupon promotions

are implemented as a form of second-degree price discrimination (i.e., coupons are available

to all consumers, but consumers self-select and only those willing to use them will get the

savings). In fact, in the case analyzed by Anderson and Song (2004), prices and coupons

may exhibit a synergistic effect on profits and, under certain conditions, a firm might be

better off by simultaneously lowering regular prices and offering coupons.

In the context of the empirical application presented in this paper, we can test whether

prices are higher or lower when coupons are being offered. A simple test is to compute

the ratio between the mean price for a given brand in periods t where δjt = 1 and the

corresponding mean price for periods t′ where δjt′ = 0. The results of this estimation are

reported in Table 8. Accordingly, we verified that the prices for the eight brands under

analysis are estimated to be on average lower when coupons are being offered, where the

estimated mean of this price ratio ranges between 0.95 and 0.98, however it is not significantly

different from 1 for any of the eight brands (results are available upon request). Therefore,

we conclude that coupons are not being used with the objective of charging a higher price

to non-users while still getting some coupon users to buy the product at a reduced price.

These results are similar to the findings of Anderson and Song (2004) across eight different

product categories and Nevo and Wolfram (2002) in the breakfast cereal product category,

although both papers offer different explanations for these results.
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== Insert Table 8 here ==

6.2 Purchase Incidence and Brand Switching

An important issue from a managerial point of view is to analyze some of the behavioral

consequences of coupons. In this respect, it is possible to decompose the incremental sales

obtained by a brand into its purchase incidence and brand-switching components. The

first corresponds to customers who switch from the no-purchase option, while the second

considers those customers who switch from other brands. For illustrative purposes, we focus

on brand 4 and we consider a period with mean levels of prices and feature and assume that

coupons for all other brands are not available. Accordingly, we compute the incremental

share of brand 4 for different levels of coupon distribution, ranging from 0% to 100% of

consumers receiving a coupon for that brand. The decomposition of the incremental sales

into its purchase incidence and brand switching components is shown in Figure 2.

From these results, we observe that a large proportion of the incremental sales corresponds

to changes in purchase incidence (91.1% at the maximum incremental sales level). Therefore,

coupons are primarily driving consumers to increase their consumption (at least in the short

term), rather than changing their preferences among brands within this product category.

7 Conclusions

In this article, we have presented new methods for the estimation of demand models using

aggregate data on choices and coupon redemption. These methods allow researchers to spec-

ify models of consumer behavior and coupon usage at the individual-level and then estimate

those models using only aggregate information. The main advantage of using models of

individual behavior is that they can be easily derived and justified from theories of consumer

behavior, such as random utility maximization. Consequently, the estimation results can

be directly interpreted in terms of their implications for consumer behavior, as opposed to
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the results obtained from reduced-form models of aggregate behavior. These results can

also be used to simulate the consequences of alternative coupon promotion strategies (policy

simulations).

In terms of the estimation procedure developed in this paper, the basic idea is to simulate

(data augment) the unobserved individual data taking into account: i) the probabilistic

assumptions about the unobserved individual behavior of consumers, and ii) the aggregate

information, which is incorporated by specifying restrictions to the unobserved individual

behavior. In this respect, the results from these methods may depend to some extent on the

appropriateness of the assumptions specified by the researcher, as it is always the case for

any empirical analysis. Consequently, future research should be aimed at generalizing the

methods presented here in order to accommodate alternative specifications for the choice

and coupon probabilities.

For example, potential problems associated with the IIA assumption at the individual

level could be eliminated by replacing the multinomial logit model by a nested logit or a

probit model. In addition, the demand model could be extended in order to consider effects

on both primary and secondary demand, while the coupon model could be modified in order

to explicitly model the decision to redeem a coupon as suggested by Chiang (1995). Other

extensions include estimating different effects for each coupon distribution vehicle (e.g., in-

pack, on-pack, peel-off; see Raju, Dhar and Morrison 1994) or for different face values (e.g.,

Krishna and Shoemaker 1992); allowing for different preference coefficients for users and

non-users of coupons (e.g., Bell and Chiang 2001); accounting for price-endogeneity in the

estimation of the demand model (e.g., Yang, Chen and Allenby 2003); examining competitive

effects (e.g., Besanko, Dubé and Gupta 2003); and exploring other assumptions about coupon

availability, such as non-random systems (Manchanda, Rossi and Chintagunta 2004).

Finally, we believe that there are several other potential applications of these methods

for dealing with aggregate data that may constitute valuable contributions to the market-

ing literature. In particular, other problems such as the study of customer retention, the

26



evaluation of sales force performance and the response of consumers to stockouts may be-

come interesting areas for the development of new methods for the estimation of models of

individual behavior using aggregate or limited information.
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Table 1
Results: Estimated posterior mean, standard deviation and quantiles for θ and D (single coupon).

θ1 θ2 θ3 θ4 D11 D22 D33 D44 D12 D13 D14 D23 D24 D34

mean 1.041 0.981 -1.010 1.150 1.321 1.264 0.986 0.719 0.017 0.074 0.055 0.013 0.137 -0.150
std.dev. 0.098 0.095 0.089 0.103 0.718 0.714 0.191 0.251 0.312 0.102 0.180 0.109 0.187 0.125

2.5% 0.894 0.836 -1.241 0.997 0.544 0.520 0.730 0.366 -0.411 -0.131 -0.291 -0.219 -0.165 -0.403
50.0% 1.027 0.967 -0.996 1.133 1.147 1.067 0.949 0.673 -0.043 0.076 0.048 0.018 0.116 -0.148
97.5% 1.291 1.221 -0.875 1.425 3.578 3.334 1.487 1.344 0.843 0.276 0.439 0.221 0.557 0.0888

True Values 1.000 1.000 -1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
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Table 2
Results: Estimated posterior mean, standard deviation and quantiles for θ, D, q, α and Σ

(limited information).

θ1 θ2 θ3 θ4 D11 D22 D33 D44 D12 D13 D14 D23 D24 D34

mean 1.064 1.008 -0.969 0.925 1.075 1.093 0.917 1.180 -0.011 0.057 0.109 -0.006 0.148 0.186
std.dev. 0.072 0.072 0.063 0.084 0.416 0.374 0.128 0.409 0.197 0.103 0.249 0.107 0.202 0.201

2.5% 0.933 0.876 -1.100 0.765 0.496 0.511 0.695 0.594 -0.373 -0.149 -0.388 -0.222 -0.259 -0.200
50.0% 1.061 1.005 -0.966 0.924 0.982 1.050 0.906 1.123 -0.024 0.058 0.117 -0.005 0.141 0.176
97.5% 1.218 1.161 -0.854 1.094 2.126 1.933 1.196 2.161 0.441 0.257 0.585 0.196 0.560 0.597

True Values 1.000 1.000 -1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

q1 q2 q3 α1 α2 α3 Σ11 Σ22 Σ33 Σ12 Σ13 Σ23

mean 0.408 0.560 0.655 -2.049 -1.095 0.182 1.704 2.397 1.584 0.8455 -0.278 -0.691
std.dev. 0.068 0.069 0.065 0.284 0.301 0.219 0.627 0.754 0.450 0.6192 0.380 0.524

2.5% 0.280 0.424 0.522 -2.597 -1.637 -0.264 0.864 1.336 0.939 -0.3089 -1.081 -1.776
50.0% 0.408 0.560 0.657 -2.058 -1.105 0.174 1.576 2.261 1.508 0.8163 -0.259 -0.681
97.5% 0.543 0.692 0.779 -1.477 -0.483 0.628 3.288 4.247 2.677 2.154 0.437 0.321

True Values 0.400 0.500 0.600 -2.000 -1.000 0.000 2.000 2.000 2.000 1.000 0.000 -1.000
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Table 3
Results: Estimated posterior mean, standard deviation and quantiles for θ, D, q, α, γ and Σ

(non-immediate expiration).

θ1 θ2 θ3 θ4 D11 D22 D33 D44 D12 D13 D14 D23 D24 D34

mean 1.077 1.005 -1.074 1.156 0.922 1.378 1.189 1.284 0.154 0.032 -0.077 -0.038 0.086 0.073
std.dev. 0.081 0.081 0.077 0.104 0.345 0.543 0.176 0.492 0.234 0.100 0.238 0.104 0.284 0.185

2.5% 0.932 0.864 -1.236 0.964 0.427 0.568 0.890 0.561 -0.214 -0.166 -0.524 -0.255 -0.394 -0.301
50.0% 1.072 0.998 -1.070 1.151 0.865 1.307 1.172 1.227 0.120 0.032 -0.081 -0.035 0.049 0.076
97.5% 1.248 1.183 -0.936 1.369 1.799 2.658 1.573 2.432 0.697 0.228 0.421 0.159 0.711 0.428

True Values 1.000 1.000 -1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

q1 q2 q3 α1 α2 α3 α4 γ1 γ2 γ3 Σ11 Σ22 Σ33 Σ12

mean 0.420 0.532 0.706 -2.477 -0.875 -0.264 2.419 1.415 -0.134 -0.782 1.895 2.727 1.717 0.507
std.dev. 0.069 0.070 0.064 0.278 0.286 0.287 0.744 0.306 0.314 0.400 0.716 0.923 0.486 0.568

2.5% 0.289 0.395 0.575 -3.046 -1.384 -0.804 0.448 0.829 -0.808 -1.580 0.954 1.454 1.002 -0.567
50.0% 0.418 0.533 0.709 -2.472 -0.890 -0.263 2.448 1.410 -0.119 -0.775 1.747 2.553 1.639 0.488
97.5% 0.559 0.668 0.822 -1.950 -0.258 0.308 3.854 2.036 0.439 -0.019 3.736 5.022 2.873 1.722

True Values 0.400 0.500 0.600 -2.000 -1.000 0.000 2.000 1.000 0.000 -1.000 2.000 2.000 2.000 1.000

Σ13 Σ23

mean 0.235 -0.622
std.dev. 0.517 0.526

2.5% -0.796 -1.799
50.0% 0.229 -0.575
97.5% 1.295 0.300

True Values 0.000 -1.000
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Table 4
Summary Statistics for the ice cream data.

Variable Mean Std. Dev. Min. Max. Obs.

S1 0.006 0.011 0.000 0.055 T= 99
S2 0.021 0.021 0.000 0.115 99
S3 0.011 0.016 0.000 0.085 99
S4 0.005 0.009 0.000 0.042 99
S5 0.008 0.020 0.000 0.133 99
S6 0.025 0.019 0.000 0.133 99
S7 0.016 0.020 0.000 0.103 99
S8 0.021 0.017 0.000 0.079 99

x91 3.461 0.594 1.990 3.990 T= 99
x92 3.162 0.410 1.690 3.490 99
x93 3.167 0.488 1.830 3.590 99
x94 3.152 0.489 1.740 3.590 99
x95 3.881 0.699 2.050 4.350 99
x96 1.609 0.141 0.850 1.690 99
x97 2.793 1.101 1.370 4.190 99
x98 2.580 0.180 1.990 2.890 99

x101 0.171 0.378 0.000 1.000 T= 99
x102 0.271 0.446 0.000 1.000 99
x103 0.183 0.378 0.000 1.000 99
x104 0.171 0.373 0.000 1.000 99
x105 0.126 0.312 0.000 1.000 99
x106 0.107 0.305 0.000 1.000 99
x107 0.117 0.283 0.000 1.000 99
x108 0.212 0.411 0.000 1.000 99

N r
1 0.162 0.889 0.000 8.000 T= 99

N r
2 0.242 0.959 0.000 8.000 99

N r
3 0.505 1.955 0.000 14.000 99

N r
4 0.162 0.792 0.000 7.000 99

N r
5 0.222 1.374 0.000 13.000 99

N r
6 0.192 1.811 0.000 18.000 99

N r
7 0.475 1.913 0.000 13.000 99

N r
8 0.444 1.263 0.000 10.000 99
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Table 6a
Empirical Results: Estimated posterior mean, standard deviation, 2.5% and 97.5%

quantiles for θ and D (non-immediate expiration, iterations 350,001-700,000).

Agg. Disagg.
mean (s.d.) 2.5% 97.5% mean (s.d.) 2.5% 97.5%

θ1 -2.337 (0.409) -3.217 -1.577 -2.464 (0.345) -3.152 -1.780

θ2 -0.937 (0.343) -1.648 -0.311 -1.195 (0.271) -1.730 -0.664

θ3 -2.284 (0.460) -3.310 -1.503 -1.836 (0.278) -2.391 -1.304

θ4 -2.947 (0.538) -4.145 -2.075 -2.667 (0.314) -3.327 -2.085

θ5 -1.937 (0.461) -2.940 -1.106 -1.516 (0.316) -2.165 -0.910

θ6 -2.140 (0.236) -2.689 -1.740 -2.643 (0.244) -3.136 -2.174

θ7 -2.105 (0.298) -2.755 -1.606 -2.120 (0.231) -2.590 -1.679

θ8 -1.417 (0.336) -2.124 -0.816 -1.624 (0.286) -2.206 -1.067

θ9 -1.329 (0.084) -1.501 -1.174 -1.371 (0.085) -1.542 -1.207

θ10 0.297 (0.156) -0.012 0.600 0.366 (0.095) 0.178 0.551

θ11 3.070 (0.499) 2.054 3.943 2.432 (0.344) 1.780 3.118
D11 2.024 (0.880) 0.836 4.386 2.795 (1.016) 1.309 5.120
D22 1.620 (0.742) 0.717 3.557 2.432 (0.733) 1.309 4.185
D33 2.347 (1.189) 0.870 5.581 2.535 (0.803) 1.250 4.357
D44 2.481 (1.296) 0.897 5.960 2.566 (0.870) 1.208 4.567
D55 3.403 (1.437) 1.279 6.946 2.687 (1.043) 1.183 5.168
D66 1.267 (0.440) 0.644 2.364 4.781 (0.915) 3.211 6.775
D77 1.754 (0.718) 0.798 3.512 3.141 (0.736) 1.898 4.753
D88 1.620 (0.671) 0.716 3.230 4.547 (1.125) 2.728 7.059
D99 0.251 (0.051) 0.173 0.369 0.371 (0.084) 0.242 0.570
D1010 1.368 (0.433) 0.716 2.407 0.514 (0.101) 0.346 0.738
D1111 3.402 (1.659) 1.209 7.670 2.229 (0.655) 1.221 3.757
D18 0.303 (0.595) -0.656 1.724 1.523 (0.837) 0.097 3.386
D34 0.072 (0.815) -1.622 1.831 1.532 (0.726) 0.339 3.198
D38 0.131 (0.659) -1.119 1.657 1.622 (0.783) 0.316 3.338
D39 -0.026 (0.139) -0.347 0.222 -0.395 (0.213) -0.878 -0.064
D48 0.290 (0.601) -0.784 1.649 1.526 (0.838) 0.117 3.334
D57 0.603 (0.722) -0.720 2.186 1.270 (0.722) 0.113 2.931
D59 -0.324 (0.195) -0.769 -0.032 -0.435 (0.253) -1.048 -0.068
D511 0.843 (1.243) -1.626 3.543 1.212 (0.590) 0.239 2.477
D67 -0.115 (0.361) -0.888 0.584 2.607 (0.663) 1.455 4.049
D68 0.052 (0.343) -0.647 0.733 1.843 (0.731) 0.559 3.406
D69 -0.061 (0.091) -0.258 0.108 -0.745 (0.229) -1.247 -0.356
D79 -0.139 (0.123) -0.417 0.070 -0.530 (0.212) -1.010 -0.185
D89 -0.089 (0.125) -0.376 0.118 -0.656 (0.252) -1.234 -0.261
D910 -0.170 (0.097) -0.388 -0.003 -0.008 (0.057) -0.119 0.107
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Table 6b
Empirical Results: Estimated posterior mean, standard deviation, 2.5% and 97.5%
quantiles for α, γ, Σ and q (non-immediate expiration, iterations 350,001-700,000).

Agg. Disagg.
mean (s.d.) 2.5% 97.5% mean (s.d.) 2.5% 97.5%

α1 -6.388 (1.795) -10.484 -3.288 -6.858 (2.158) -11.217 -3.077
α2 -6.944 (0.956) -9.020 -5.158 -7.160 (1.195) -9.757 -5.045
α3 -7.574 (1.246) -9.994 -5.045 -6.260 (1.087) -8.357 -4.220
α4 -7.821 (1.188) -10.443 -5.467 -6.701 (1.159) -9.031 -4.293
α5 -6.664 (1.443) -9.595 -4.157 -5.747 (1.246) -8.289 -3.284
α6 -6.908 (3.109) -13.791 -1.687 -5.618 (3.318) -13.432 -0.292
α7 -5.279 (1.639) -8.645 -2.392 -5.552 (2.671) -11.255 -1.550
α8 -5.872 (0.747) -7.385 -4.455 -5.633 (0.685) -7.007 -4.356
α9 8.267 (1.529) 5.491 11.789 7.375 (1.712) 4.427 11.011
γ8 2.906 (0.927) 1.068 4.665 3.231 (0.919) 1.424 5.037
Σ11 5.927 (4.308) 1.385 18.633 8.528 (6.491) 1.639 25.640
Σ22 4.605 (2.298) 1.577 10.505 6.008 (3.364) 1.844 14.591
Σ33 10.566 (4.878) 3.444 22.199 8.164 (3.805) 2.966 17.361
Σ44 8.264 (4.310) 2.794 19.596 6.921 (3.233) 2.361 14.769
Σ55 5.790 (3.579) 1.574 14.963 4.484 (2.494) 1.384 10.938
Σ66 10.534 (9.842) 1.697 38.974 8.865 (6.811) 1.589 29.027
Σ77 8.168 (5.055) 2.142 21.603 10.915 (7.622) 2.326 30.866
Σ88 2.905 (1.375) 1.136 6.359 3.106 (1.439) 1.201 6.656
Σ34 7.235 (3.737) 2.218 16.813 5.444 (2.590) 1.611 11.877
q1 0.466 (0.223) 0.119 0.933 0.585 (0.241) 0.143 0.979
q2 0.699 (0.176) 0.349 0.982 0.785 (0.160) 0.407 0.992
q3 0.785 (0.161) 0.414 0.992 0.662 (0.192) 0.304 0.980
q4 0.763 (0.176) 0.363 0.991 0.710 (0.193) 0.300 0.988
q5 0.531 (0.234) 0.152 0.968 0.459 (0.242) 0.108 0.960
q6 0.179 (0.189) 0.015 0.741 0.163 (0.202) 0.012 0.798
q7 0.280 (0.162) 0.092 0.750 0.343 (0.220) 0.090 0.916
q8 0.678 (0.156) 0.383 0.966 0.735 (0.137) 0.456 0.976
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Table 7
Results: Estimated posterior mean, 2.5% and 97.5% quantiles of the own- and cross-price elasticities of the 8 brands

in the ice cream product category (non-immediate expiration, aggregate and disaggregate estimation).

Agg. Disagg.
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

mean 1 -3.470 0.075 0.038 0.022 0.019 0.049 0.030 0.069 -3.008 0.052 0.026 0.016 0.021 0.032 0.024 0.057
2 0.021 -3.220 0.032 0.020 0.019 0.043 0.027 0.066 0.014 -2.587 0.027 0.013 0.019 0.029 0.016 0.037
3 0.022 0.066 -3.180 0.016 0.019 0.042 0.031 0.058 0.016 0.060 -3.118 0.026 0.021 0.034 0.024 0.069
4 0.025 0.081 0.032 -3.259 0.018 0.048 0.028 0.072 0.019 0.059 0.052 -3.102 0.021 0.025 0.028 0.072
5 0.020 0.073 0.035 0.017 -4.266 0.043 0.035 0.061 0.019 0.061 0.031 0.015 -3.580 0.027 0.033 0.036
6 0.019 0.060 0.029 0.016 0.016 -1.909 0.026 0.056 0.012 0.041 0.023 0.008 0.012 -2.276 0.051 0.058
7 0.018 0.056 0.032 0.015 0.019 0.040 -2.875 0.050 0.016 0.037 0.026 0.015 0.024 0.084 -3.040 0.043
8 0.020 0.070 0.030 0.019 0.017 0.043 0.025 -2.799 0.017 0.040 0.034 0.018 0.012 0.044 0.020 -3.107

2.5% 1 -4.167 0.027 0.008 0.009 0.005 0.025 0.013 0.034 -3.722 0.029 0.014 0.008 0.011 0.017 0.013 0.032
2 0.007 -3.720 0.014 0.009 0.007 0.027 0.012 0.035 0.008 -3.163 0.016 0.007 0.011 0.019 0.009 0.025
3 0.004 0.027 -3.899 0.005 0.007 0.021 0.013 0.024 0.008 0.033 -3.785 0.013 0.011 0.018 0.013 0.038
4 0.009 0.034 0.011 -3.926 0.006 0.026 0.012 0.034 0.009 0.032 0.029 -3.794 0.011 0.012 0.016 0.040
5 0.005 0.025 0.012 0.005 -5.044 0.020 0.015 0.026 0.008 0.033 0.016 0.007 -4.314 0.014 0.017 0.018
6 0.010 0.038 0.015 0.009 0.008 -2.214 0.014 0.034 0.006 0.027 0.012 0.004 0.007 -2.583 0.035 0.039
7 0.006 0.023 0.012 0.005 0.008 0.019 -3.533 0.024 0.007 0.021 0.013 0.007 0.013 0.049 -3.628 0.023
8 0.010 0.038 0.013 0.009 0.008 0.026 0.014 -3.292 0.009 0.027 0.020 0.010 0.007 0.030 0.012 -3.576

97.5% 1 -2.567 0.139 0.081 0.046 0.041 0.080 0.058 0.120 -2.126 0.086 0.050 0.031 0.038 0.057 0.044 0.095
2 0.040 -2.548 0.063 0.041 0.039 0.064 0.047 0.109 0.026 -2.067 0.047 0.024 0.032 0.045 0.031 0.055
3 0.047 0.127 -2.078 0.035 0.040 0.074 0.066 0.110 0.031 0.099 -2.227 0.048 0.039 0.070 0.047 0.123
4 0.052 0.164 0.067 -2.298 0.039 0.078 0.055 0.128 0.037 0.096 0.090 -2.364 0.039 0.049 0.051 0.118
5 0.046 0.137 0.077 0.038 -2.809 0.075 0.070 0.113 0.037 0.101 0.060 0.033 -2.563 0.046 0.068 0.061
6 0.033 0.090 0.052 0.029 0.030 -1.573 0.045 0.084 0.025 0.066 0.052 0.017 0.021 -1.943 0.083 0.093
7 0.037 0.099 0.072 0.032 0.040 0.067 -1.769 0.088 0.031 0.065 0.051 0.030 0.043 0.127 -2.090 0.082
8 0.037 0.115 0.058 0.035 0.033 0.065 0.044 -2.181 0.030 0.059 0.073 0.033 0.021 0.066 0.042 -2.506

Note: Cell entries (i, j) where i indexes row and j indexes column, give the percentage change in the market share of brand i corresponding to a 1% change in the price
of brand j.
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Table 8
Price Factor: ratio between the mean price for each brand j during periods t

when δjt = 1 and the mean price during periods t′ when δjt′ = 0.

Brand Mean Std. Dev. 2.5% 97.5%

1 0.981 0.046 0.903 1.072
2 0.958 0.031 0.910 1.020
3 0.980 0.054 0.891 1.092
4 0.986 0.058 0.877 1.111
5 0.952 0.047 0.854 1.035
6 0.955 0.053 0.786 1.016
7 0.976 0.098 0.804 1.165
8 0.978 0.014 0.955 1.006
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Figure 1: Posterior predictive checks.
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Figure 2: Decomposition of Incremental Share for Brand 4 vs. Coupon Distribution
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Appendix A: Sampling Choices and Coupons (single coupon case)

In this Appendix we describe the procedure to sample coupons and choices from their full-conditional
posterior distribution according to the assumptions from Section 2.

1. In each iteration (k) randomly select N/2 pairs of consumers without replacement and enu-

merate these pairs. Let (i1p, i2p) be the indexes of consumers in pair p and (z
(k)
i1pt, c

(k)
i1pt) and

(z
(k)
i2pt, c

(k)
i2pt) their choices and coupons in period t in the current iteration k, respectively.

2. For each period t and starting from the first pair, successively and jointly draw the choices

and coupons (z
(k+1)
i1pt , c

(k+1)
i1pt ) and (z

(k+1)
i2pt , c

(k+1)
i2pt ) from their full-conditional posterior distribu-

tion. Dropping the pair (p) and period (t) subscripts for notational convenience, we proceed

by assigning (z
(k+1)
i1

, c
(k+1)
i1

, z
(k+1)
i2

, c
(k+1)
i2

) = (z
(k)
i1

, c
(k)
i1

, z
(k)
i2

, c
(k)
i2

) according to the following
probability:

f
(
(z

(k+1)
i1

, c
(k+1)
i1

, z
(k+1)
i2

, c
(k+1)
i2

) = (z
(k)
i1

, c
(k)
i1

, z
(k)
i2

, c
(k)
i2

) | ∗
)

(17)

=

J∏
j=1

pi1j(c
(k)
i1

)
z
(k)
i1jpi2j(c

(k)
i2

)
z
(k)
i2j

J∏
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pi1j(c
(k)
i1

)
z
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i1jpi2j(c
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i2

)
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i2j +

J∏
j=1

pi1j(c
(k)
i2

)
z
(k)
i2jpi2j(c

(k)
i1

)
z
(k)
i1j

otherwise, exchange the choices and coupons of these two consumers by assigning:

(z
(k+1)
i1

, c
(k+1)
i1

, z
(k+1)
i2

, c
(k+1)
i2

) = (z
(k)
i2

, c
(k)
i2

, z
(k)
i1

, c
(k)
i1

).

Appendix B: Sampling Choices and Coupons (multiple coupons and limited in-
formation)

In this Appendix we describe the procedure to sample coupons and choices from their full-conditional
posterior distribution according to the assumptions from Section 3.

B.1) Sampling Choices:

1. In each iteration (k) randomly select N/2 pairs of consumers without replacement and enu-

merate these pairs. Let (i1p, i2p) be the indexes of consumers in pair p and (z
(k)
i1pt, z

(k)
i2pt) their

choices in period t in the current iteration k.

2. For each period t and starting from the first pair, successively and jointly draw the choices

of each pair of consumers (z
(k+1)
i1pt , z

(k+1)
i2pt ) from their full-conditional posterior distribution.

Dropping the pair (p) and period (t) subscripts for notational convenience, we proceed by

assigning (z
(k+1)
i1

, z
(k+1)
i2

) = (z
(k)
i2

, z
(k)
i1

) according to the following probability:

f
(
(z

(k+1)
i1

, z
(k+1)
i2

) = (z
(k)
i2

, z
(k)
i1

) | ∗
)

(18)

=
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p
z
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(k)
i1j+ci2jz

(k)
i2j=ci1jz

(k)
i2j+ci2jz

(k)
i1j

}

J∏
j=1

p
z
(k)
i2j

i1j p
z
(k)
i1j

i2j +
J∏

j=1
p

z
(k)
i1j

i1j p
z
(k)
i2j

i2j

,
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otherwise, let these choices remain at their current values by assigning: (z
(k+1)
i1

, z
(k+1)
i2

) =

(z
(k)
i1

, z
(k)
i2

). That is, the indicator function keeps the total number of redeemed coupons
constant.

Finally, we note that the full-conditional posterior probability in equation (18) can be rewritten
as follows:

f
(
(z

(k+1)
i1

, z
(k+1)
i2

) = (z
(k)
i2

, z
(k)
i1

) | ∗
)

=
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p
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i1j

i1j p
z
(k)
i2j

i2j

.(19)

B.2) Sampling Coupons:

1. In every iteration k, for each period t and for every consumer i, successively draw c
(k+1)
it as

follows:

(a) Let bi the brand chosen by consumer i in period t (i.e., zibit = 1).

(b) Let c∗it be such that:

i. c∗ibit
= c

(k)
ibit

(this condition is required in order to satisfy condition (5)), and,

ii. If δb′t = 1, generate c∗ib′t from a Bernoulli distribution with probability 0.5, for
all b′ 6= bi; otherwise, set c∗ib′t = 0, where the value of 0.5 was chosen in order to
construct a symmetric Jumping Kernel6.

(c) Accept c∗it, according to the following MH probability that takes into account the like-
lihood of coupons and choices:

(20) P
(
c
(k+1)
it = c∗it

)
=

J∏
j=1

pijt(c
∗
it)

zijt r
c∗ijt

jt (1 − rjt)
1−c∗ijt

J∏
j=1

pijt(c
(k)
it )zijt r

c
(k)
ijt

jt (1 − rjt)
1−c

(k)
ijt

,

otherwise, assign c
(k+1)
it = c

(k)
it .

Appendix C: Sampling Choices and Coupons (non-immediate expiration)

In this Appendix we describe the procedure to sample coupons and choices from their full-conditional
posterior distribution according to the assumptions from Section 4.

C.1) Sampling Choices:
As before, we consider the choices of a pair of consumers and we must decide whether to interchange
their choices or leave them at their current values. In this case, we follow the same procedure

6One might be able to find other values for this probability that may induce a more efficient sampling
of coupons from the posterior distribution. For example, one could potentially use the value of rjt in the
current iteration to generate a candidate vector of coupon indicator variables (c∗it).
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described in B.1 but we replace the full-conditional posterior probability in equation (19) by the
following expression:

f
(
(z

(k+1)
i1t , z

(k+1)
i2t ) = (z
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, 1 ≤ t ≤ T − 1;
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, t=T.

where h(·|·, ·) is the likelihood contribution of next-period coupons based on current coupons and
choices. This function is defined as follows:

(22) h(cijt+1| cijt, zijt) = (rijt+1(cijt, zijt))
cijt+1 (1 − rijt+1(cijt, zijt))

1−cijt+1 , t = 1, .., T − 1.

C.2) Sampling Coupons:
The updating of the coupon variables can be implemented following the same procedure de-

scribed in Appendix B but replacing the MH probability in (20) by the following expression:

P
(
c
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(23)

Appendix D: Estimation of the marginal likelihood

In what follows we derive an estimator of the marginal likelihood by generalizing the harmonic mean
method proposed by Newton and Raftery (1994). This generalization is needed for the aggregate
estimation procedures presented in this paper that are based on augmenting the aggregate data
(A) with unobserved sequences of choices (Z) and coupons (C).

Let ΩM denote the set of all values of (Z, C) consistent with the aggregate data (A) under model
M and let ϕ denote the collection of parameters that determine the likelihood of the augmented
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choices and coupons (i.e., ϕ = {θ, r}). We are interested in computing p(A|M), the marginal
likelihood of the aggregate data A under model M. For notational convenience, we drop the model
subscript (M) and we refer to p(A|M) and ΩM simply as p(A) and Ω, respectively. By noting
that

∫
p(ϕ)dϕ = 1, it is straightforward to verify that the marginal likelihood p(A) satisfies the

following equation:

1

p(A)
=

1

|Ω|

∑

(Z,C)∈Ω

∫
p(ϕ)

p(A)
dϕ.(24)

Using Bayes’ rule and noting that p(A|Z, C, ϕ) = 1 for any pair (Z, C) ∈ Ω, the following
identity can be easily derived:

1

p(A)
=

p(Z, C, ϕ|A)

p(Z, C, ϕ)
, ∀(Z, C) ∈ Ω.(25)

Using this identity in equation (24) we obtain:

1

p(A)
=

1

|Ω|

∑

(Z,C)∈Ω

∫
p(ϕ)

p(Z, C, ϕ)
p(Z, C, ϕ|A)dϕ

=
1

|Ω|

∑

(Z,C)∈Ω

∫
1

p(Z, C|ϕ)
p(Z, C, ϕ|A)dϕ

=
1

|Ω|
E

[
1

p(Z, C|ϕ)

∣∣A
]

.(26)

Consequently, using equation (26) we can estimate p(A) as follows:

(27) p̂(A) =
|Ω|

1
m

m∑
l=1

1
p(Z(l),C(l)|ϕ(l))

,

where each triplet
(
Z(l), C(l), ϕ(l)

)
is drawn from the posterior distribution p(Z, C, ϕ|A). Therefore,

this estimator corresponds to the harmonic mean of the likelihood of the augmented choices and
coupons amplified by |Ω|, where the values for

(
Z(l), C(l), ϕ(l)

)
can be obtained from the MCMC

output.
Finally, we note that if two models M1 and M2 share the same set of feasible combinations

of choices and coupons (i.e., ΩM1 = ΩM2 = Ω), then for the purposes of model selection, it is not
necessary to compute |Ω|, which is constant for these two models and, thus, it does not affect the
marginal-likelihood ratio p(A|M1)/p(A|M2).
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