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ESTIMATING CLV USING

AGGREGATED DATA: THE TUSCAN

LIFESTYLES CASE REVISITED
PETER S. FADER, BRUCE G. S. HARDIE, AND KINSHUK JERATH

he Tuscan Lifestyles case (Mason, 2003) offers a simple twist on the stan-
dard view of how to value a newly acquired customer, highlighting how standard
retention-based approaches to the calculation of expected customer lifetime
value (CLV) are not applicable in a noncontractual setting. Using the data pre-
sented in the case (a series of annual histograms showing the aggregate dis-
tribution of purchases for two different cohorts of customers newly “acquired”
by a catalog marketer), it is a simple exercise to compute an estimate of
“expected 5 year CLV.” If we wish to arrive at an estimate of CLV that includes
the customer’s “life” beyond five years or are interested in, say, sorting out the
purchasing process (while “alive”) from the attrition process, we need to use a
formal model of buying behavior that can be applied on such coarse data.

To tackle this problem, we utilize the Pareto/NBD model developed by
Schmittlein, Morrison, and Colombo (1987). However, existing analytical results
do not allow us to estimate the model parameters using the data summaries
presented in the case. We therefore derive an expression that enables us to do
this.The resulting parameter estimates and subsequent calculations offer useful
insights that could not have been obtained without the formal model. For
instance, we were able to decompose the lifetime value into four factors, namely
purchasing while active, dropout, surge in sales in the first year and monetary
value of the average purchase.We observed a kind of “triple jeopardy”in that the
more valuable cohort proved to be better on the three most critical factors.
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INTRODUCTION

Most standard introductions to the notion of customer
lifetime value (CLV) center around a formula similar to

(1)

(where m is the net cash flow per period, r is the reten-
tion rate, and d is the discount rate) and claim that this
is the appropriate starting point for the calculation of
lifetime value.

However, such an expression is not applicable in
many business settings, particularly those that can be
viewed as noncontractual. A defining characteristic
of a noncontractual setting is that the time at which 
a customer becomes inactive is unobserved by the firm;
customers do not notify the firm “when they stop
being a customer. Instead they just silently attrite”
(Mason, 2003, p. 55). This is in contrast to a contrac-
tual setting, where the time at which the customer
becomes inactive is observed (e.g., when the custo-
mer fails to renew his or her subscription, or contacts
the firm to cancel his or her contract). When the point
at which the customer disappears is not observed, we
cannot meaningfully utilize notions such as “reten-
tion rates” and therefore formulae along the lines of
(1) are not appropriate. We can, however, capture the
“silent attrition” phenomenon by using a probabilistic
dropout process for each customer. We can define the
“survival probability,” S(t), for each customer at a
given time t, (i.e., the probability that the customer is
“alive” at t). This leads to the following definitional
expression for expected CLV

(2)

where E[v(t)] is the expected value (or net cash flow)
of the customer at time t (if active). The challenge is
to operationalize (2) in any given setting. (See, for
example, Fader, Hardie, & Lee, 2005.)

One example of a noncontractual business setting is
presented in the Tuscan Lifestyles case (Mason, 2003).
This case provides a summary of repeat buying beha-
vior for a group of 7,953 new customers over a 5-year
period beginning immediately after their first-ever
purchase. These data are presented in Table 1.

E(CLV) � a
�

t�0

E[v(t)]S(t)
(1 � d)t ,

CLV � a
�

t�0
m

rt

(1 � d)t

We have five annual histograms for two groups of
customers—the first comprising 4,657 customers with
an initial purchase below $50 and the second compris-
ing 3,296 customers with an initial purchase greater
than or equal to $50. (Note that the “years” do not refer
to calendar time, but reflect time since initial purchase.)
The task in the case is to compute the value of a new
Tuscan Lifestyles customer (i.e., estimate CLV).

Besides highlighting the inapplicability of the stan-
dard CLV formula, the Tuscan Lifestyles case also
brings forth another important issue—the practical
limitations of obtaining detailed transaction-level
data. Even though many researchers have developed
general frameworks and specific methods for modeling
customer lifetime value (CLV) using disaggregate
data, few have carefully considered the difficult realities
of firms’ abilities (or inabilites) to deal with customer-
level data. While many reporting systems are able to
create simple data summaries for a fixed period of
time (e.g., an annual histogram of number of pur-
chases), the process of extracting raw individual-level
data can be a time-consuming task (especially if the
information technology group is not directly involved
with the project).

High-profile stories on data loss, such as the 2005
loss of tapes containing information on 3.9 million
Citigroup customers or the August 2006 loss of a
computer containing data on 26.5 million veterans
by a Department of Veterans Affairs (VA) subcon-
tractor, have justifiably made a number of compa-
nies wary of releasing customer-level data. Coupled
with rising consumer concerns about privacy, this
has motivated a major research stream in informa-
tion systems called privacy preserving data mining
(e.g., Agrawal & Srikant, 2000). However, the process
of “anonymizing” customer data can be challenging,
making it only more difficult for marketing to
get the information technology group to extract
the data required for modeling. Furthermore, there
are growing concerns regarding the extent to which
privacy is actually preserved in anonymized data-
bases (Mielikäinen, 2004).

Moreover, data protection laws in many countries
(particularly in Europe) complicate the process of
transferring raw data to the analyst (Carey, 2004;
Singleton, 2004), even to the extent of there being
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partial bans on transborder data flows. Given general
outsourcing trends, these laws can create real barriers
to the implementation of models built on individual-
level data.

For these reasons, it is often much harder to implement
CLV models than a casual reading of the marketing
literature might suggest. When the transaction data
are summarized across customers, such as in Table 1,
the concerns raised above evaporate. But this leads us
back to the issues at the heart of this paper: how to
compute CLV from such data.

Using the data provided above, we can easily arrive at
an estimate of “expected 5 years CLV.” But what about
the customer’s “life” beyond 5 years? And what if we
wish to know more than just the mean purchase rate?
For instance, suppose we are interested in sorting out
the purchasing process (while “alive”) from the attri-
tion process? Any serious examination of CLV—and
any corporate program that relies on it—should con-
sider such questions. Unfortunately they cannot be
answered using these data alone. This situation is not
unique; other researchers (e.g., Berger, Weinberg, &

Hanna, 2003) have also relied on aggregate data and
therefore are subject to similar limitations.

Thus, instead of using relatively simple “accounting”
methods to tally up the past value of each customer
segment, we need a formal model to capture the under-
lying purchase patterns and then project them out to
future periods. This is where a stochastic model of
customer behavior comes in. Such a model posits latent
probabilistic processes which are presumed to underlie
the observable behavior of each customer. In the CLV
setting, we need to develop a probabilistic model that
takes into account three distinct (but possibly inter-
related) processes: (1) the purchase frequency of a
customer while active, (2) the attrition in the customer
base over time, and (3) the monetary value of the
purchases.Suchamodelcanbefitusingrecordeddatafor
the early activity of the customer base and future pur-
chases can then be predicted. While the model is initially
conceptualized at the level of the individual customer, it
is then aggregated across a population of heterogeneous
customers and estimated using data at the segment level
or across the entire customer base (while still recognizing
the underlying sources of heterogeneity).

�$50 COHORT �$50 COHORT

YEAR YEAR

# ORDERS 1 2 3 4 5 # ORDERS 1 2 3 4 5

0 611 2739 3687 3730 3837 0 421 1643 2430 2535 2673

1 3508 1441 671 661 626 1 2354 1120 562 548 463

2 416 332 207 185 141 2 397 354 214 151 120

3 94 100 68 56 38 3 91 121 53 37 30

4 21 30 19 14 10 4 20 53 27 20 7

5 7 9 1 9 3 5 6 12 6 3 2

6 3 2 2 6 5 5 2 2 1

7 1 1 7 1 3 1

8 1 2 8 1

9 1 9 1

10 1 10

11 11

12 12

13 13 1

TABLE 1 Tuscan Lifestyles Data: Number of Purchases per Year (Not Including Initial Purchase) for Each of Two Cohorts
Grouped by Size of Initial Purchase
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In this paper, we invoke the Pareto/NBD framework
(Schmittlein, Morrison, & Colombo, 1987), a parsimo-
nious model of repeat buying behavior in a noncon-
tractual setting that provides excellent predictive
power using limited summary information about each
customer. However, in its original form, the parame-
ters of the Pareto/NBD cannot be be estimated using
aggregated data of the form given in Table 1. In the
next section, we derive an expression that enables us
to estimate the model parameters using such data.
We then fit the model to the data and examine the key
question: “What is a new Tuscan Lifestyles customer
worth?”

MODEL DEVELOPMENT

The Pareto/NBD is a powerful stochastic model of
purchasing in a noncontractual setting. It starts by
assuming that a customer’s relationship with the firm
has two phases: he or she is “alive” for an unobserved
period of time, then becomes permanently inactive.
While alive, the customer is assumed to purchase
“randomly” around his or her mean transaction rate.
As such, a customer’s sequence of purchases can
appear to be somewhat lumpy/uneven at times, even
though the unobserved buying rate is constant. The
unobserved time at which the customer becomes per-
manently inactive is also the outcome of a probabilis-
tic process governed by a dropout rate specific to the
customer. We assume that customers are heteroge-
neous: both the transaction rates and dropout rates
vary from person to person.

More formally, the assumptions of the model are as
follows:

i. Customers go through two stages in their “life-
time” with a specific firm: They are alive for some
period of time, then become permanently inactive.

ii. While alive, the number of transactions made by a
customer follows a Poisson process with transac-
tion rate l.

iii. A customer’s unobserved “lifetime” of length v (after
which he is viewed as being permanently inactive) is
exponentially distributed with dropout rate m.

iv. Heterogeneity in transaction rates across cus-
tomers follows a gamma distribution with shape
parameter r and scale parameter a.

v. Heterogeneity in dropout rates across customers
follows a gamma distribution with shape parame-
ter s and scale parameter b.

vi. The transaction rate l and the dropout rate m vary
independently across customers.

Schmittlein, Morrison, and Columbo (1987) present a
careful justification of these assumptions. The empir-
ical validations of the model presented in Schmittlein
and Peterson (1994) and Fader, Hardie, and Lee (2005)
provide further (indirect) support for these assumptions.

Given these assumptions, it possible to derive expres-
sions for expected purchasing, mean (or median) life-
time, expected CLV, and so on. In order to compute
these quantities, we need to know the values of the four
model parameters: r, a (which characterize the distri-
bution of transaction rates across the customer base)
and s, b (which characterize the distribution of dropout
rates across the customer base).

If we start by assuming that we know the exact timing
of all the transactions associated with each customer, it
turns out that we can estimate the four model parame-
ters using a likelihood function that only requires
“recency” (the time of the last purchase) and “frequency”
(how many purchases occurred in a given time period)
information for each customer. However, in many situ-
ations we do not have access to such data; for example,
we may only have summaries such as those given in
Table 1. The problem with such a data structure is that
any longitudinal information about an individual cus-
tomer is lost. Suppose someone made two repeat pur-
chases in year 1; we do not know how many purchases
they made in years 2–5. Does this mean we cannot
apply the Pareto/NBD model?

If we reflect on the above model assumptions, we see
that they tell a “story” about customer behavior that is
not at all related to the nature of the data that might
be available to estimate the model parameters. (This
is the hallmark of a stochastic model—tell the story
first, then deal with data issues later.)

Let the random variable X(t, t � 1) denote the number
of transactions observed in the time interval (t, t � 1].
Referring back to the � $50 group in Table 1, we see
that X(0, 1) � 0 for 611 people, X(1, 2) � 1 for 1,441
people, and so on. If we can derive an expression for

Journal of Interactive Marketing DOI: 10.1002/dir



P(X(t, t � 1) � x) as implied by the Pareto/NBD model
assumptions, we can then use it as a means of estimat-
ing the four model parameters given the data in Table 1.

Suppose we know an individual’s unobserved latent
characteristics l and m. For x � 0, there are two ways
x purchases could have occurred in the interval 
(t, t � 1]:

i. the individual was alive at t and remained alive
through the whole interval, making x purchases
during this interval, or

ii. the individual was alive at t but “died” at some
point v (� t � 1), making x purchases in the inter-
val (t, v].

For the case of x � 0, there is an additional reason as to
why no purchases could have occurred in the interval (t,
t � 1]: The individual was “dead” at t. Given model
assumptions (ii) and (iii), we can derive the following
expression for the probability of observing x purchases
in the interval (t, t � 1], conditional on l and m:
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(3)

where dx � 0 equals 1 if x � 0, 0 otherwise.

In reality, we never know an individual’s latent char-
acteristics; we therefore remove the conditioning on 
l and m by taking into account the distributions of the
transaction and dropout rates, giving us

� a
x

i�0

[(l � m)]i

i!
,

 	 a l

l � m
bxa m

l � m
be	le	m(t�1)

� a l

l � m
bxa m

l � m
be	mt

� dx�0 c1 	 e	mt d �
lxe	le	m(t�1)

x!

P(X(t, t � 1) � x|l,m)

(4)

where

(5)

(6)B2 � d2F1ar � s � i, s � 1; r � s � x � 1; 
a 	 (b � t)
a � 1

bn (a � 1)r�s�i if a � b � t

2F1ar � s � i, r � x; r � s � x � 1; 
b � t 	 a

b � t � 1
bn (b � t � 1)r�s�i if a 
 b � t

B1 � d2F1ar � s, s � 1; r � s � x � 1; 
a 	 (b � t)

a
bnar�s if a � b � t

2F1ar � s, r � x; r � s � x � 1; 
b � t 	 a

b � t
bn (b � t)r�s if a 
 b � t

� arbsB(r � x, s � 1)
B(r, s)

eB1 	 a
x

i�0

�(r � s � i)
�(r � s)

1
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B2 f
� dx�0 c1 	 a b

b � t
b s d �

�1r � x 2
�1r 2x! a a

a � 1
b r a 1
a � 1

b x a b

b � t � 1
b s

P(X(t, t � 1) � x 0r, a, s, b)
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and 2F1(�) is the Gaussian hypergeometric function. 
(A step-by-step derivation of (3)–(6) is presented in
the technical appendix.)

Given data summaries of the form presented in
Table 1, we can estimate the four Pareto/NBD model
parameters via the method of maximum likelihood in
the following manner. Suppose we have a sample of T
period-specific histograms that give us the distribu-
tion of the number of purchases across a fixed set of
customers in each period (of equal length). Let nx,t be
the number of people who made x purchases in the tth
period. (Referring back to the � $50 group in Table 1,
T � 5, n0,1 � 611, n1,2 � 1,441, and so on.) The sample
log-likelihood function is given by

(7)

This can be maximized using standard numerical opti-
mization routines.

MODEL ESTIMATION RESULTS

We first applied the basic model to the data in Table 1.
Using (7), we obtained the maximum likelihood
estimates of the model parameters for each of the two
cohorts of customers. We then generated the purchase
histograms for the first 5 years exactly as given and
compared these generated histograms to the original
data. Looking closely at the raw data (Table 1), we can
see that there is a large number of customers making
one repeat purchase in the first year (for both cohorts).
This number then drops sharply in the second year,
after which it declines smoothly. On the other hand, the
numbers of customers making more than one repeat
purchase do not show any sharp variations. While the
Pareto/NBD model is very flexible, it is not flexible
enough to capture this year 1 aberration—not only did
it miss the spike at x � 1, but in an attempt to capture
this surge in the first year, the predictions for the later
years were off as well.

Many researchers would be tempted to propose a more
complicated story of buyer behavior in order to accom-
modate this aberration. However, inspired by Fader
and Hardie (2002), we accommodate this year 1 devia-
tion simply by adding a “spike” in the probability of

LL(r,a,s,b) �a
T	1

t�0
a
�

x�0
nx,t ln [P(X(t, t � 1) �x 0r,a, s,b)].

TABLE 2 Parameter Estimates by Cohort

COHORT � � S � �

�$50 32.83 37.21 12.13 37.74 0.63

�$50 148.11 142.07 29.00 92.26 0.57

making one repeat purchase in the first year. (In the
absence of adequate knowledge of the true, underlying
data generation process, one can ex post consider the
characteristics of the collected data that might have
led to such patterns. For instance, Tuscan Lifestyles
might have offered a coupon to its new customers that
would expire 1 year after their initial purchases.)

More formally, we add a single parameter for each
group of customers to address this problem. We assume
that, within the first year after making the initial pur-
chase, a “hard-core” fraction p of the customers in the
cohort make exactly one repeat purchase that year,
with the remaining fraction 1 	 p purchasing accord-
ing to the basic Pareto/NBD process.

Under this augmented model, the probability that a
customer makes x purchases in the (t � 1)th period is

(8)

where PPNBD(�) is the basic Pareto/NBD Probability
given in (4). From here on, we will only use this
“Pareto/NBD with spike” model for the results and
analysis that follow. Applying the maximum likelihood
estimation procedure in the same manner as for the
basic Pareto/NBD model, we obtain the parameter
estimates for each group as reported in Table 2.

These parameters can be interpreted by plotting the
various mixing distributions that they characterize.
Figure 1 shows how the transaction rates (l) and the
dropout rates (m) vary across the members of each
cohort. The high values of r and a indicate that there

µp � (1 	p)PPNBD (X(t, t � 1) � x) if t � 0 and x � 1

(1 	 p)PPNBD(X(t, t � 1) � x) if t � 0 and x  1

PPNBD(X(t, t � 1) � x) if t � 0

P(X(t, t � 1) � x 0r, a, s, b, p) �
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FIGURE 1
Heterogeneity in Transaction and Dropout Rates for the Two
Cohorts
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FIGURE 2
Comparing the Actual (Solid Bar) and Fitted (Clear Bar) Distributions of the Number of Transactions per Year, by Cohort

These “stories” about the underlying behavioral ten-
dencies within each segment seem to be plausible (and
managerially interesting). Looking at the raw data
alone provides no intuition about the interplay between
the flow of transactions for active customers and the dif-
ference in dropout tendencies both within and across
each of the customer groups.

Even stronger support for the model is offered in
Figure 2; for each of the 5 years, we compare the
actual distribution of the number of transactions per
year with the corresponding fitted distribution
(computed using (8) and the parameter estimates
given in Table 2), by cohort. Table 3 shows the mean
absolute percentage error (MAPE) between the actu-
al and predicted numbers for the 5 years, individual-
ly and across all the years (combined). It is quite
remarkable to see how well a five-parameter model
can capture the different shapes that are seen with-
in each set of histograms. More importantly, the 
model seems to do an excellent job of following the
systematic “shift towards zero” as each group of cus-
tomers slows down its collective level of purchasing
over time. This is clear evidence that a substantial
degree of customer dropout is taking place, and
therefore confirms the need for the two different

is relatively little heterogeneity in the underlying
transaction rate l. Similarly, the high values of s and
b indicate that there is little heterogeneity in the
underlying dropout rate m. Nevertheless, there are
some noteworthy differences across the two groups. It
is clear that the transaction rates tend to be higher
for the � $50 group, albeit with a lower variance. The
dropout rates are much closer across the two groups,
but they tend to be slightly higher for the � $50
group. Finally, the p parameters indicate that a hard-
core of roughly 60% of the customers make just one
repeat purchase in the first year, and this proportion
is about the same for each group.
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behavioral processes at the heart of the Pareto/NBD
model.

Another way of summarizing model fit is to compare
the model-based estimate of the average annual num-
ber of transactions per customer (E[X(t, t � 1)]) with
the observed averages (as computed using the data in
Table 1). Defining the random variable X(t) as the
number of transactions occurring in the interval 
(0, t], we know from Schmittlein et al. (1987) that

Clearly E[X(t, t � 1)] � E[X(t � 1)] 	 E[X(t)], so

(9)

For the five-parameter model (i.e., the basic
Pareto/NBD model augmented with a “spike” at x � 1
for the first year), we have

(10)

The correspondence between the model-based esti-
mates of the expected number of transactions per 

µ p � (1 	 p )
rb

a(s 	 1)
c1 	 a b

b � 1
b s	 1 d if t � 0

rb
a(s 	 1)

c a b

b � 1
b s	 1

	 a b

b � t � 1
b s	 1 d if t � 0.

E[X(t, t � 1) ƒ r, a, s, b, p] �

 �  
rb

a(s 	 1)
c a b

b � t
bs	1

	 a b

b � t � 1
bs	1 d .

E[X(t, t � 1) ƒ r, a, s, b] 

E[X(t) 0r, a, s, b] �
rb

a(s 	 1)
c1 	 a b

b � t
bs	1 d .

TABLE 3
Annual and Combined 5-Year MAPE
Between the Actual and Fitted Values
for Each Cohort

COHORT YEAR 1 YEAR 2 YEAR 3 YEAR 4 YEAR 5 COMBINED

�$50 10.1% 15.3% 12.9% 3.7% 7.2% 9.8%

�$50 12.1% 19.2% 10.9% 7.1% 6.1% 11.1%

customer per year and the actual annual averages is
examined in Figure 3. While there are some modest
deviations, the overall fit is good. Furthermore, these
annual deviations tend to cancel out. For the � $50
cohort, the actual average number of transactions
across the 5 years is 2.39, while the model estimate
is 2.40; for the � $50 cohort, both the actual and
predicted average number of transactions across the
5 years is 2.80.

One additional validation exercise is to determine how
robust the model is when we limit the number of
histograms used to estimate it. Such a task also serves
as a type of “holdout test” to see if it is appropriate to
project the behavioral patterns beyond the observed 
5-year period. Instead of using all 5 years of data to
estimate the model, we re-estimate the model using
only the first 3 years of data. We wish to see how well
we can predict the histograms for years 4 and 5 despite
the fact that no data from those years were used for
parameter estimation. Figure 4 offers a comparison
of the model predictions for this limited specification
and the actual values for years 4 and 5. The close
correspondence of these histograms provides strong
evidence of the model’s capabilities. The mean absolute
percentage errors for the predictions—individually
and across both years (combined)—are given in Table 4;
we note that they are only slightly worse than those
numbers obtained when the years 4 and 5 data were
used to estimate the model parameters (Table 3). This
is a tough test for any model, especially one that is
calibrated on such a limited amount of data.

Having established the validity of our modeling
approach, we now turn to the question that motivated
the Mason (2003) case in the first place.

WHAT IS A NEW TUSCAN LIFESTYLES
CUSTOMER WORTH?

The Pareto/NBD model enables us to predict the
expected transaction stream for a new customer.
However, to assess the expected lifetime value for a cus-
tomer, we also need to predict the monetary amount
associated with each purchase. Following Fader,
Hardie, and Lee (2005), if we can assume that the mon-
etary value of each transaction is independent of the
underlying transaction process—something we must do
here, given the nature of the data given in the Tuscan



Lifestyles case—the value per transaction (revenue per
transaction � contribution margin) can be factored out
and we can focus on forecasting the “flow” of future
transactions, discounted to yield a present value. Fader,
Hardie, and Lee (2005) call this quantity “discounted
expected transactions,” or DET; it is the effective 
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FIGURE 3
Comparing the Average Annual Number of Transactions per Customer with the Corresponding Model-Based
Estimates, by Cohort

TABLE 4

COHORT YEAR 4 YEAR 5 COMBINED

� $50 4.6% 10.0% 7.3%

� $50 8.3% 7.6% 8.0%

number of repeat transactions that a customer will
make, discounted back to the time of acquisition. In
other words, a transaction that occurs, say, 10 years in
the future, is only worth a fraction of a transaction at
time zero. DET is the sum of these “fractional transac-
tions” and therefore captures both the overall number of
them as well as their spread over time. This number 
of discounted expected transactions can then be res-
caled by a value “multiplier” to yield an overall estimate
of expected lifetime value:

E(CLV) � margin � E(revenue/transaction) � DET.

(11)

Fader, Hardie, & Lee (2005) present an expression for
DET as implied by the Pareto/NBD model. However,
we cannot use it in this setting because of the 

Years 4 and 5 and Combined MAPE
Between the Actual and Predicted Values
for Each Cohort (Given Parameters
Estimated Using the First 3 Years of Data)

≥ $50 Cohort< $50 Cohort

Year 4 Year 5 Year 4 Year 5

0 1 2 3 4 5 6 7+ 0 1 2 3 4 5 6 7+ 0 1 2 3 4 5 6 7+ 0 1 2 3 4 5 6 7+
0

2,000

4,000

0

1,500

3,000

FIGURE 4
Comparing the Actual (Solid Bar) and Predicted (Clear Bar) Distributions of the Number of Transactions in Years 4
and 5 (Given Parameters Estimated Using the First Three Years of Data), by Cohort
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modification to the basic model to accommodate the
more-than-expected number of people making just
one repeat purchase in the first year. We can there-
fore compute DET in the following manner:

(12)

where d is the annual discount factor and E[X(t, t � 1)]
is computed using the expression given in (10). As the
transactions can occur at any point in time during 
the year, we discount them as if, on average, they
occur in the middle of the year. Note that this expres-
sion for DET does not include the initial transaction
that signals the start of the customer’s relationship
with the firm. (If we wish to include this transac-
tion—which we would need to do if we wish to set an
upper bound for acquisition spend—we simply add 1
to our estimate of DET.)

Coming to the revenue/transaction component of the
definition of CLV, we note that the Tuscan Lifestyles
case only provides annual summary statistics of
the spending levels for each cohort (Mason, 2003,
Exhibit 3). While it is easy to conceptualize stochas-
tic models to capture the random variation in revenue/
transaction over time (Fader, Hardie, & Lee, 2005), 
it would be difficult to estimate reliably parameters 
of such a model given the limited data on monetary
value available here. Since the two groups were
defined on the basis of initial expenditure, this
removes much of the cross-sectional variation in rev-
enue/transaction. Thus, it is more appropriate to
assume a constant level for the purchase amounts
within each group of customers. The case data indi-
cate that the mean spending level across the 5 years
for the � $50 group is (32.09 � 41.78 � 51.05 � 52.43
� 53.63)/5 � $46.20 per transaction, while for the
� $50 group it is (93.46 � 74.02 � 67.75 � 67.12 �

78.26)/5 � $76.12. Finally, we follow the case and use
a fixed margin of 42% for every transaction, and a dis-
count factor of 10% for our CLV calculations.

Using (10) and (12), we find that DET equals 2.36 for
the � $50 group and 2.77 for the � $50 group. (In eval-
uating (12), we terminate the series at 100 years,
which effectively represents infinity.) It follows that
our estimate of expected CLV for the � $50 group is
$46, while the expected CLV for a randomly-chosen
member of the � $50 group is almost double

this value, at $89. Clearly, a customer who makes a
high-value first purchase with Tuscan Lifestyles is
more valuable in the long run compared to a customer
who makes a low-value first purchase; the lone data-
point of the value of the first purchase is reasonably
discriminating in determining a customer’s future
worth. Most of this difference is due to the fact that
the average order size is 65% higher for the � $50
cohort; in contrast, DET for the � $50 cohort is only
17% higher than the corresponding number for the
� $50 cohort.

The equivalent 5-year DET numbers using the annual
averages computed using the data in Table 1 are 2.04
and 2.39, resulting in “5-year lifetime value” estimates
of $40 and $76, respectively. Because of the truncation
at the end of 5 years, these numbers underestimate
the true expected lifetime value by 14%.

Some analysts may be willing to live with a 14% error
for the sake of analytical simplicity. However, we can-
not be sure that the underestimation will always be
so low, for instance, when the variation in transaction
rates and dropout rates is high. For the data at hand,
not only is the mean purchasing rate low and the
dropout rate high for both cohorts, but the variation
in transaction rates and dropout rates for the cohorts
is also quite low. In other studies (e.g., Fader, Hardie, &
Lee, 2005), considerably higher heterogeneity (along
with faster purchasing and slower dropout) have been
observed. Thus, the 14% underestimation in this case
is a very modest number; in many other settings, the
impact of ignoring the future when performing CLV
calculations will likely be much larger. And beyond
the CLV calculation per se, the use of the model offers
many other useful diagnostics as discussed earlier
and below.

Referring back to Figure 1, the between-cohort differ-
ences in the distributions of the dropout rates are
smaller than those for the transaction rates. While
the mean (b/(s 	 1)) and median (b(21/s 	 1)) lifetimes
are slightly higher for the � $50 cohort (3.5 and 
2.4 years versus 3.4 and 2.2 years), the differences in
the survival curves (Figure 5, left side) are negligible.
Thus, the differences in DET are driven by differ-
ences in the transaction rates. We note that the mean
of the transaction rate distribution is 0.88 (purchases
per annum while alive) for the � $50 cohort and 1.04
for the � $50 cohort. This difference is reflected in the

DET � a
�

t�0

E[X(t, t � 1)]
(1 � d)t�0.5 ,
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plots of expected cumulative transactions (undis-
counted), given on the right side of Figure 5.

As a final illustration of the value-added associated
with the use of a stochastic model of buyer behavior, let
us consider the question of variability in CLV (or DET).
To explore this, we simulate purchase sequences for
each customer, which are then discounted to give “dis-
counted transaction” numbers. The between-customer
distribution of this quantity is reported in Figure 6 for
both cohorts. This figure shows how the discounted
transactions are spread around the expected DET for
each cohort; computing the average of these numbers
yields the average DET for each cohort, as reported
above. We note that while the variance in transaction
rates is lower for the � $50 cohort (Figure 1), the 

variance in the discounted number of transactions is
actually higher for this cohort (2.67 versus 2.14 for the
� $50 cohort).

If we had sufficient data to estimate a stochastic
model for revenue/transaction, we could augment our
estimates of expected CLV by the full distribution of
CLV across the customer base (and associated sum-
mary statistics).

DISCUSSION AND CONCLUSIONS

The Tuscan Lifestyles case offers a simple new twist
on the standard view of how to value a newly acquired
customer, highlighting how standard retention-based
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approaches to the calculation of expected CLV are
impractical in a noncontractual setting. It is a sim-
ple exercise to use the data presented in the case to
arrive at an estimate of “expected 5-year CLV.”
However, if we wish to arrive at an estimate that
includes the customer’s “life” beyond 5 years or are
interested in, say, sorting out the purchasing process
(while alive) from the attrition process or computing
the distribution of CLV, we need to use a formal
model of buying behavior. While the Pareto/NBD
model is a natural starting point, existing results do
not allow us to estimate the model parameters using
the data summaries presented in the case. A key
contribution of this paper is the derivation of an
expression that enables us to do this.

Our estimated parameters and subsequent calcula-
tions offer useful insights that could not have been
obtained without the formal model. For instance, we
were able to decompose the expected CLV into four
factors, namely, purchasing while active, dropout,
surge in sales in the first year, and monetary value
of the average purchase. We observed a kind of
“triple jeopardy” in that the more valuable cohort
proved to be better on the three most critical factors
(i.e., all but the first-year sales surge). This observa-
tion by itself deserves additional study, and may be
the basis for an interesting “empirical generaliza-
tion” about CLV differences across groups. By simply
eye-balling the raw data, it might be possible to
identify the existence of these factors, but it is
impossible to assess their magnitudes, and, more
importantly, the difference in their magnitudes
across the two cohorts. For example, one can observe
a considerable dropout rate in both cohorts, but can-
not ascertain how the within-cohort distributions for
the dropout rates might be different. Similarly, a
spike in purchases in the first year is quite evident
from the histograms, but without the underlying
“organic” model of purchase, the magnitude of the
spike cannot be obtained.

It is easy to see how these insights and projections can
be of use to the management of Tuscan Lifestyles (and
many other firms that face similar issues). Besides
being able to judge the economic efficiency of different
kinds of acquisition strategies, the model presented
here can help managers determine better ways to
define cohorts—does it make the most sense to divide
customers on the basis of initial expenditure, or would

other kinds of splits yield more dramatic differences
between groups of customers? These differences should
be gauged not only in terms of overall expected CLV for
each group but also in terms of the Pareto/NBD model
components. Maybe a certain kind of split can lead to
a greater degree of homogeneity in each group’s trans-
action rates and/or dropout rates, thereby reducing
some uncertainty about their future behavior and
making it easier to target members of each group.
There are clearly many substantive benefits that arise
from this kind of analysis.

From a methodological standpoint, the move from
detailed transaction data to histograms raises other
questions as well. How about data structures that lie
somewhere in between these two extremes? For
instance, it is easy to imagine firms maintaining
“interval-censored” data, that is, period-by-period
counts for each customer. Some ideas about how to
develop models using this kind of data structure are
explored by Fader and Hardie (2005). Other questions
relate to the length of the “window” for the censoring
process (e.g., quarterly histograms versus yearly his-
tograms) and the number of histograms needed to
obtain stable parameter estimates. All in all, there
are many promising research opportunities to be pur-
sued down this path.

Although these methodological questions may be
straying pretty far from the original issues raised in
the Tuscan Lifestyles case, they provide proof of the
healthy links that exist between well-formed man-
agerial questions and appropriately constructed
empirical models. New developments in one area fre-
quently open up new possibilities in another area, to
the benefit of everyone on both sides. We see Tuscan
Lifestyles as the beginning of such a dialogue, and we
look forward to continuing the conversation.
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TECHNICAL APPENDIX

Schmittlein, Morrison, and Colombo (1987) and Fader and Hardie (2006) derive expressions for P(X(t) � x), where
the random variable X(t) denotes the number of transactions observed in the time interval (0, t], as implied by the
Pareto/NBD model assumptions. In this appendix, we derive the corresponding expression for P(X(t, t � 1) � x),
where the random variable X(t, t � 1) denotes the number of transactions observed in the time interval (t, t � 1].

Let us first review the assumptions underlying the Pareto/NBD model:

i. Customers go through two stages in their “lifetime” with a specific firm: they are “alive” for some period of
time, then become permanently inactive.

ii. While alive, the number of transactions made by a customer follows a Poisson process with transaction rate l.
This implies that the probability of observing x transactions in the time interval (0, t] is given by

It also implies that, assuming the customer is alive through the time interval (ta, tb],

iii. A customer’s unobserved “lifetime” of length v (after which he is viewed as being inactive) is exponentially
distributed with dropout rate m:

f (v �m) � me	mv.

iv. Heterogeneity in transaction rates across customers follows a gamma distribution with shape parameter r
and scale parameter a:

(A1)

v. Heterogeneity in dropout rates across customers follows a gamma distribution with shape parameter s and
scale parameter b:

(A2)

vi. The transaction rate l and the dropout rate m vary independently across customers.

Suppose we know an individual’s unobserved latent characteristics l and m. For x � 0, there are two ways x pur-
chases could have occurred in the interval (t, t � 1]:

i. The individual was alive at t and remained alive through the whole interval; this occurs with probability 
e	m(t�1). The probability of the individual making x purchases, given that he was alive during the whole inter-
val, is lxe	�/x!. It follows that the probability of remaining alive through the interval (t, t � 1] and making x
purchases is

(A3)
lxe	lxe	m(t�1)

x!
.

g (m 0s, b) �
bsms	1e	mb

�(s)
.

g(l 0r, a) �
arlr	1e	la

�(r)
.

�
[l(tb 	 ta)]xe	l(tb	ta)

x!
,   x � 0, 1, 2, # # # #P(X(ta, tb) � x ƒ l)

P(X(t) � x ƒ l) �
(lt)xe	lt

x!
,    x � 0, 1, 2, # # # #
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ii. The individual was alive at t but “died” at some point v (� t � 1), making x purchases in the interval (t, v].
The probability of this occurring is

which, noting that the integrand is an Erlang-(x � 1) pdf, equals

(A4)

These two scenarios also hold for the case of x � 0 but need to be augmented by an additional reason as to why
no purchases could have occurred in the interval (t, t � 1]: The individual was dead at the beginning of the
interval, which occurs with probability

1 	 e	mt. (A5)

Combining (A3)–(A5) gives us the following expression for the probability of observing x purchases in the interval
(t, t � 1], conditional on l and m:

(A6)

In reality, we never know an individual’s latent characteristics; we therefore remove the conditioning on l and
m by taking the expectation of (A6) over the distributions of � and M:

(A7)

Substituting (A1), (A2), and (A6) in (A7) gives us

(A8)

where

(A9)

(A10)

(A11)

(A12)g(m ƒ s, b)dl dmA4 � �
�

0
�

�

0

a l

l � m
bxa m
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x!
g(l ƒ r, a)g(m ƒ s, b)dl dm

A1 � �
�

0
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Solving (A9) and (A10) is trivial:

(A13)

(A14)

To solve (A11), consider the transformation Y � M/(� � M) and Z � � � M. Using the transformation technique
(Casella & Berger, 2002, Section 4.3, pp. 156–162; Mood, Graybill, & Boes, 1974, Section 6.2, p. 204ff), it follows
that the joint distribution of Y and Z is

(A15)

Noting that the inverse of this transformation is l � (1 	 y)z and m � yz, it follows that

which, recalling Euler’s integral for the Gaussian hypergeometric function,1 equals

(A16)

Looking closely at (A16), we see that the argument of the Gaussian hypergeometric function, , is

guaranteed to be bounded between 0 and 1 when a � b � t, thus ensuring convergence of the series representa-

tion of the function. However, when a� b� t we can be faced with the situation where , in which 

case the series is divergent.

Applying the linear transformation (Abramowitz & Stegun, 1972, equation 15.3.4)

(A17)

gives us

(A18)

We note that the argument of the above Gaussian hypergeometric function is bounded between 0 and 1 when
a 
 b � t. We therefore present (A16) and (A18) as solutions to (A11), using (A16) when a � b � t and (A18)
when a 
 b � t. We can write this as

(A19)A3 � arbsB(r � x, s � 1)
B(r, s)

B1

ar � s, r � x; r � s � x � 1; 
b � t 	 a

b � t
b.A3 �
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B(r � x, s � 1)

B(r, s) 2F1
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2F1aa, c	b; c;

z
z 	 1

 b,

a	1b � t 2
a

6 	1

a 	 1b � t 2
a
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a 	 (b � t)

a
b.ab

a
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1 See http://functions.wolfram.com/07.23.07.0001.01
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where

(A20)

To solve (A12), we also make use of the transformation Y � M/(� � M) and Z � � � M. Given (A15), it follows
that

which, recalling Euler’s integral for the Gaussian hypergeometric function, equals

(A21)

Noting that the argument of the Gaussian hypergeometric function is only guaranteed to be bounded between
0 and 1 when a � b � t, we apply the linear transformation (A17), which gives us

(A22)

The argument of the above Gaussian hypergeometric function is bounded between 0 and 1 when a 
 b � t. We
therefore present (A21) and (A22) as solutions to (A12): We use (A21) when a � b � t and (A22) when a 
 b � t.
We can write this as

(A23)

where

(A24)

Substituting (A13), (A14), (A19), and (A23) in (A8) gives us the following expression for the probability of
observing x transactions in the time interval (t, t � 1]:

(A25)

where expressions for B1 and B2 are given in (A20) and (A24), respectively.
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