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THE ROLE OF WITHIN GROUP VARIANCE
IN THE DESIGN AND ANALYSIS OF
MARKET TESTS

This paper is concerned with the variance within
treatment groups for each of the three types of variables
(treatment, control and response) present in market experiments
and quasi-experiments. The effect of this within-group variance
on the interpretation of experimental results is outlined
conceptually, and illustrated through a set of realistic numerical
examples. A useful appreoach for incorporating within-group vari-
ance into the design and analysis of market tests, based on
Matusita's affinity between probability distributions, is also

introduced.



1. Introduction

The last decade has seen a marked increase in the use of experi-
ments and quasi-experiments to test the effectiveness of actual or
proposed marketing programs. This increase has been caused, in part,
by the increased availability of standardized data (including scanner
data), technological developments (e.g., split cable and two way
cable) and numerous methodological developments. Examples include
concept testing (Wind 1982, Chapter 10), product tests (e.g., taste
tests; Buchanan 1983:; Morrison 1981), advertising experiments (Wind
and Denny 1974), test markets (Blattberg and Golanty 1978; Pringle,
Wilson and Brody 1982; Urban 1970) and simulated test markets (Silk
and Urban 1978),

Some of these marketing tests are quasi-experiments {Cook and
Campbell 1979, p. 6) using nonequivalent group designs, since
individuals are not randomly assigned to treatment groups. Most
test markets fall in this category, though the system developed by
Information Resources, Inc. is a notable exception.l On the other
nand, many concept and product tests and simulated test markets are
true experviments which include random assignment. In this paper the
term "'market tests'" will refer both to the experimental and quasi-
experimental designs above.

Marketing experiments and quasi-experiments have been utilized
primarily for two purposes: (a) selection of the best of a2 set of
administered treatments {(i.e., products, concepts or marketing
programs) and (b) the use of the test results to define and develoo
an "ovtimal" treatment, which may not have been tested. Two examnles

of the latterare conjoint analysis based product optimization approaches
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such as the POSSE System (Green et al. 1981); and the estimation of

response functions for cone or more of the marketing mix variables. In all

of these cases the research- task can be viewed as the administration of

one or more treatments (e.g., ad campaigns) to one or more groups of

individuals (e.g., cities).

Common to these experiments and quasi-experiments is the use of average

measures to summarize the three major components of all experiments:

(a)

(b)

"Control" variables such as income or age of the
respondents in the test. The values of these variables
are often summarized as averages for each group of
individuals. 1In most of our examples we will use
respondent characteristics as the control variables,
although in practice marketing mix variables are also
sometimes used as controls in quasi-experiments.

Marketing mix treatment variables such as advertising

or price which are often defined in terms of average
level of advertising exposures or average retail price.

Response measures such as sales, share or intention to

buv which are often defined in terms of average level
of sales or share or intention tc buv in each experi-
mental cell.

Ignored in virtually 2l1] marketing tests are the other distributional

characteristics (and especially the variance) of the three sets of vari-

ables.

Although this limitation has been recognized, little has been

done to overcome it. Consequently the objectives of this paper are to:
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Illustrate the importance of within cell variance
comparisons in design and interpretation of market
experiments and quasi-experiments, as they relate to

the 3 sets of experimental variables (control, treatment
and response variables).

Describe the conditions under which reliance on average

measures can be misleading and the use of within cell
variance comparisons should be undertaken.

Outline some approaches for dealing explicitly with within-
cell variance comparisons.

Present two illustrations of the proposed approach as it
relates to:

(a) design of market tests, and

(b) analysis of the results of such tests.

Discuss extensions of the proposed anproaches to other
distibutional properties.

2. On the Importance of Within Cell Variance Comparisons

As mentioned above, in designing and evaluating any market tests

1.

the researcher is interested in control wvariables, treatment wvariables
{(i.e., marketing mix variables) and the response variables. These three
gsets of variables and the typical procedures for anal&zing them are
illustrated in Table 1. These practices clearly ignore possible differ-
ences across experimental cells with respect to the variances of the
variables. Therefore, incorporating the variance can lead, within each

of the sets of variables, to four conditions:

means and variances are the same across the experi-
mental cells (with respect to the control variables,
treatment variables, or response variables),



2. the means are the same byt the variances are different,
3. the means are different but the variances are the same, and

4. both the means and variances are different.

For each of the three types of wvariables in Table 1, it will be helpful to
briefly describe the role that within-group variance plays in market experi-

ments.

INSERT TABLE 1 ABOUT HERE

2.1 Control Variables

As Table 1 illustrates, these are often demographic, psychographic
or product usage characteristics of respondents which can have their own
effect on response measures like sales or intention to buy, or can mederate
the effect of marketing variables on response. The marketer has essentially
two strategies for coping with these effects. First, test and control
groups can be matched on these control variables, which usually involves
checking that the means of the control variables are approximately equal
across groups. An example here would be the use of cluster analysis to
choose test market regicns (Green, Frank and Robinson 1967). Second, the
control variables can be used as covariates, in effect adjusting the
responses in each group to legitimize comparisons across treatment
grouns. In principle, this adjustment should be performed for each
respondent. However the more common practice is to take an individual
- level response function - relating household sales to head of household's
age, for example - and use it to adjust the average response for a group,
based on the group's average on the control variable.

In focusing sclelv on the means of the control variables, the two

procedures above raise several questions, namely:



(a) from a theoretical standpoint, when can the mean be used?

(b) from a practical standpoint, how serious are the consequences in using
only the averages? and

(c) when means alone are not sufficient for representing the control variables,
how can a market test be designed to incorporate other characteristics of
the distribution?

Questions a and ¢ are answered in Sections 3 and 4, respectively, and while no
definitive answer can be given to question b, a systematic set of numerical examples
are constructed in the next section to shed some light on this issue.

In answering these questions we will presume that the researcher is able to
identify the appropriate contrel variables -- those which have an effect on responses.
This identification may be based on published research, secondary data services and
past research conducted by the researcher's organization. However, in practice there
will always be some omitted control variables. Also, the ones included will often be
Tmeasured imperfectly. Both of these problems can lead to biased treatment effect
estimates when the measured controls are used as covariates, even if our procedures
below answering questions (a) - (c) are followed (Cook and Campbell 1979, pp. 159-202;
Lord 1960). So this investigation of wiﬁhin group variances does not resolve all of
the issues that arise in experimental and quasi-experimental designs. It simply

describes (and suggests a solution for) one such problem that typically confronts a

marketing researcher.

2.2 Treatment Variables

Reliance solely on the mean has been somewhat less of a problem in summarizing
marketing mix variables, largely because of the way those treatment variables are
applied, For most concept tests, product tests and simulated test markets a group of
individuals assigned to a certain treatment do receive identical levels of the stimuli.
So there is no within-group variance in the marketing mix variables. For example,
simulated test markets rigidly control the number of advertising exposures, shelf

facings, and the retail prices to which a respondent is exposed.



However, in situations where actual retail sales in a region comstitutes

the response measure, as is the case for test markets and some advertising
quasi-experiments, the situation is much the same as for control variables
described earlier. 1In test markets these treatment variables are usually described
by total advertising expenditures or GRP's (equivalent to the average exposures per
household) in a region, average retail price, average number of shelf facings, etc.
So, with the exception of studies which consider both reach and frequency of adver-
tising exposures, these test markets and advertising quasi-experiments again focus
only on the variables' averages. Consequently, the same three questions raised for
control variables are also relevant here (and, as it happens, are answered in the

same way).

2.3 Response Variables

For treatment and control variables the importance of within-group variance
stemmed from its effect on the distribution of responses in each group. The situation
is different for response variables, where any interest in the within-group variance
stems directly from the managerial significance of that variance. One example where
the response variables' variance is important concerns behavior-based market segmen-
tation. Consider a firm that runs its usual ad campaign in region A and an experi-
mental/new campaign in region B. Assume that, prior to the test, the distribution
across consumers of sales per capita in region A is (approximately) equal to the
distribution in region B. Assume also that the brand's mean sales per capita in a
suitable period after the campaigns have run is still equal in both regions, but the
variance in sales across households is now greater in region B than region A. So
region B has more people buying very large amounts of the brand, and alse more people

buying very small amounts. In this sense, region B is more
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"polarized”" about the brand than region A. 1If this volarization reflects
higher loyalty toward the brand by its heavier users, the experimental
campaign may be considered successful even though the average sales per capita
has not changed. And even if the polarization is not indicative of loyalty,
it suggests that the population in region B is more segmentable in terms of
brand usage. Efficiencies resulting from market segmentation in region B
again can mean that the new campaign is preferable to the old, without changing
average sales.

The opposite situation, where the variance is smaller with the new
campaign in region B, may also be of interest. A new advertising or
promotion strategy intended to increase sales among nonusers or light users
would be expected to increase the average per capita sales, and decrease the
variance in sales across households {since nonusers are acting more like
users). To evaluate the effectiveness of such a campaign it is helpful to
check that both these effects have occurred. If average sales increase but
the variance remains constant, it is possible that the sales increase simply
reflects stocking up by heavy users, and is borrowing against future sales.
This suspicion can be investigated with a longitudinal study of individual

households' purchases.

2.4 A Numerical Illustration

To demonstrate the importance of the variance we can consider the following
example in test market design. Different marketing programs are run in three
regions, and the results are to be evaluated using sales per capita in each
region. Since sales are known to vary with age, the three test regions have

i Y

been matched on this control variable, with average age = 38 years.



Resulting sales per capita are given in the top of Table 2, which imply that
the program used in region C 1s preferred to those in A and B.

INSERT TABLE 2 ABOUT HERE

However, a breakdown of sales per capita by age category, alsc in Table
2, suggests a different conclusion. For each region, the "Sales per Capita"
column in the table gives the response functieon linking age to sales. This
function is the same for regions A and C. However, in rerion B the sales per
capita outperformed those in A and C among consumers aged <25 and 50-65, and
equalled those in A and C among persons aged 25-50 and »65. So there is evidente
that the program in B is superior to those in A and C. 1If the distribution of
age were the same in all three regions then this response function for the
program in region B would have generated the highest sales per capita. Clearly,
the reason for the deceptive results in the top of Table 2 is that the age
distribution in the three regions is different, even though average age is the
same. The observed sales per capita in each region results from the interaction
of two different factors: the function linking sales to age for individuals, and
the distribtuion of age across individuals in that region. The next section gives
the general conditions where matching groups only on means can lead to these
deceptive findings, and also investigates the typical size of these effects.

3. Vhen Can An Average Comparison be Used and When

Should it be Supplemented with the Within Cell
Variance Comparison?

3.1 The Effect of Variance @n Expected Response

Returning to the previous example, one can develop the general relation

between the distribution of a control variable such as age, and the expected
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response. For a given value of age A and response measure S, let S = F(A) + e
represent the relation for individuals, where Efe] = 0. It will be
convenient to let g{A) denote the prbbability density function for the
distribution of age. Then the expected individual response in a group or
cell is E[S] = E[F(A)] where E indicates the expected value over the individuals
in the experimental cell.

While it is not always easy to express the expectation E[F(A)] in a
closed form, an approximation can be obtained using a Taylor series expansion

for F, Expanding F around the point A = E[A? yields:

S = F(A)ve = F(E[AD) + (A=EfA]) FOT(ECAD)

coee + eELADT P (BLAD 4oLl ve (1)

J
where F(J) (EIAD) is E-Eiél evaluated at A=ElA].
3l

Using the first three terms as an approximation to F(A) and taking the
expected value of both sides in (1} leads to the desired formula:

(2

E[SI=ECF(A)] 2 F(EQADY » —— var(alF@ eran. (2)

Relation (2) illustrates the impact of the variance of age on the expected
response measure S, C(learly, if F is linear the variance has no effect and
E{F(4)] = F(E[A)). Alternatively, when the second derivative of F is
negative at E[A] (e.g. F is concave) we will expect E[F(A)] to be less

than F(E[A]).

INSEKRT FIGURE 1 ABOUT HERE
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This effect of the variance when F is concave can easily be shown
graphically. The situation is depicted in Figure 1 where for ease of
illlustration the response function--F(A) and the distribution of the con-
trol variable age--g(A) are shown on the same graph. We are interested in
the expected value of F(A), The height of the density function g(A) in-
dicates the likelihood of occurrence of both A and the corresponding value
F(A), OSince F's values are represented on the vertical axis the distribu-
tion h{) for F(A) which results from g(A) can also be drawn on that axis.
For example, in PFigure 1 the likelihood that A:A1 is given by the length
of line 0102. Consequently, the likelihocod that F{4) = F(Al) is equal to
the length of 030u, which also equals the length of 0102. Since F is
concave, the values of F(A) above F(E[A]) (when compared to the ones below)
are concentrated closely around F(E{A]). Hence the distance 0506 on the
response axis is consgiderably smaller than the distance 0708 on the age
axis. The expecfed value of the responée S, E[S] = E[F(A)] is seen to be
less than F(E[A]). So in a test market setting if average age is the same
in two regions, F is concave, and the variances of age are unequal, the
region with the larger variance is expected to have a lower response.

The approximation (2) for the expected response can be easlily extended
to the case of multiple control variables Xl, ey Xk. The response S as
a function of the control variables is again S = F(Xl, ceeay Xk) +- ez
FIX) + e. Expanding F in a multivariate Taylor series around the point
(E[Xll. ceeny EEXk]) = E[X) (Fleming 1977, p. 94) and taking the expected

value of terms up to the second derivative leads to
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E[S]

ELF(Xy, vuuuy X)

.l ol 2
F(E[Xl) + - o Var[xi] Fii(E[ 1

1F, (EXD) (3)

+

Covtxi, X

i>j J

- 3 - e
(E(X]) is 135%21 evaluated at X = E[X].

where F
ij Xi xj

So as one would expect when more than one control variable is relevant, the

expected response S depends on both the variances and covariances of those

controls.

3.2 Effectiveness of Predictions Using the Mean vS. Mean and Variance

This discussion has given an informal argument for the benefits
obtained when the two-term approximation (2) to E[S] is used. To more
fermally investigate the use of the expectation and variance of a control
variable (A) to predict response, we must specify the shape of the response
function F(A)} and the distribution of the control variable A over the
population, Table 3 reports the results for the combination of three
response functions with four distributions for A, The response functions
used are sketched in figure 2 and the distributions for A are given in
Figure 3

As can be seen from the diagram, response F1 indicates that S in-
creases less than linearly with A, and for F2 S's increase with 4 is more
than linear, The functicn F3 exemplifies a unimodal response where S first

increases, then decreases with A. The general distribution chesen to
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represent A in cases l-4 (Figure 3 ) is the gamma distribution, with the

probability density function

T(r)

~ah

g(A) = (aa)™™1 e . A>0. (4)

With this two-parameter distribution the expected value and variance of A
are:

ElA]

r/e |,

Varla] r/a"

The gamma distribution is always unimodal, but otherwise is quite
flexible. This model is widely used to represent variables which are greater
than zero and have unimodal, right-skewed distributions (as do many demographic
and product-use characteristics). The particular values of the shape parameter
r chosen in cases 1-4 have been used previously for the distribution of income
{(McDonald and Jensen 1979) while o is simply a scale parameter which adjusts
the mean of the distribution. The four cases to be examined are based on two
dimensions: the density of the distribution, represented by the coefficient
of variation (small: r = 1; large: r = 2) and the mean (small: o = 2;

large: o =1).

The formulas for the expected response E{S5] = E{F(A)] when the three
functions Fl’ F2, F3 are combined with the gamma distribution for A are
derived in the Appendix. So for each response function F, E[Fi(A)] in
Table 3 is the exact expected response using these formulas. The
estimated response S using information on both the mean and variance of A,

denoted the M-V estimate in Table 3, was computed using equation (2).
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Finally, the estimate of the response using only ther mean - the M estimate
'in the exhibit - uses only the first term on the right in equation (2), To
indicate the extent to which the M=V estimate cutperforms the estimate
using the mean alone, the percent improvement for the former over the
latter is also reported, This is defined as

ABS(E[F,(A)] = M-Vestimate)
- -A'ES(E[Fi(A)] - Mestimate)

Percent Improvement = 100 1

where ABS{ ) indicates the absolute value. In addition to the percent

improvement, we are alsc interested in the absolute difference between the
exact expected response and the M estimate. That is, if the M estimate is
already accurate in an absolute sense, the percent improvement with the M-V

estimate lcses its importance.

For example, the combination of case 4 and response function Fl leads to
an 87% improvement in the error of M-V over that of M. The absolute difference
between the expected response E[FI(A)] and the M estimate is 1.41 - 1.33 = ,08.
Whether this discrepancy is "large" (and hence the 87% improvement is noteworthv)
depends on the managerial significance of the response measure Fl(A). For some
applications this bias may be negligible. On the other hand management might
well be interested in a difference in projected sales of 1.41 million units
versus 1.33 million units, especially if the breakeven point was 1.25 million
units.

With the exception of the F, - case 4 combination the percent improvement

3

for the M-V estimate ranges from 85% to 98%. 1In fact, the combination of case
4 with F3 is unlikely to occur in practice since this would imply that for almost

half of the values of the contrel variables the response is equal to zero. So

the results in Table 3 show that market tests which examine only the means of the
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design variables can lead the researcher's expected results to be far from
the actual results both in absolute terms (i.e., the size of E[Fl(A)]— M-esti-
mate) and relative to tests which also account for the variance in the design

variables.

3.3 When Can Means Be Used?

As was noted above, if the response function F is linear the expected
value of S depends only on the average of the control variable(s) and not
on the variances. This result, with the addition of twoc more observations,
will give us the conditions where averages can be used to summarize the
the impact of oontrol variables and treatment variables on responses.

First, it is easy to show that the analysis of equations (1) - (4) for
control varilables can be extended in'the same way to the effect of market-
ing treatment variables on the expected response. If we let A now repre-
sent exposures to an advertisement, F(A) be the response of a household to

A exposures, and g{A) be the distribution of ad exposure across households
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in a region, equation (2) again gives the expected response per household
in this regioﬁ. This says that from the standpoint of within group
variance, all of the experiment's design variables (i.e, the control and
marketing treatment variables) behave according to the same relation (2).

The second observation of interest concerns the other properties of
the response S, besides its expectation. Returning to equation (1), if S
i= linearly related to A the expression for S = F(A) + e can be written
exactly as

S =F(A) + e = F(EAD + (A-ELADF VEAD + e . (5
Taking the variance of both sides in (5} and assuming that A and e are
uncorrelated yields

var(s1 = (F 1 (E[A10)%Var(a] « varlel. (6)
So if F is linear, the variance of A does not affect the expected respcnse

E(S], but it does affect the variance of the response.

Using these observations, it is clear that the averages of the design
variables can be effectively used for comparing results across treatment

groups if:

1. the variances of all design variables are equal across
cells of the experiment or gquasi-experiment, or

2., for all design variables with unequal variances across cells,

(a) the relation between the response measure(s)
and those design variables is linear, and

{b) the researcher is only interested in the
average of the response variable(s). In

particular, differences across cells in the
variance of the response are not of interest.

Both conditions Z2a and 2Zb mav fail to hold in practical market tests. In 2a,

note that the response must be linear over the entire range of the design
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variable. 'If we again take age as an example, consumption of some products
increases almost linearly with age - over a certain age range (e.g., 25-45
years). But that linearity typically breaks down in both the higher (over 55)
and lower (under 18) age categories, where purchases are less than a linear
response function would predict.

Condition 2b can also fail to hold. Strictly speaking, in situations
where cells are compared using analysis of variance the validity of the test
statistics depends on the assumption of equal variances in the response measure
across cells. However, most studies have found that ANOVA and MANOVA are robust
to violations of this homogeneity-of-variance assumption (Wildt and Ahtola 1978,
pp. 89-90). So unequal variances in the responses does not generally lead to
a failure of condition 2b. (In fairnmess, though, Glass et al. (1972, pp. 274-
275) found that this robustness for ANCOVA depends on the values of the co-

. variates.)

But condition 2b can fail to hold for another reascn. Namely, as noted
in Sectionm 2.3 the within-cell variances in the response variables can be of
interest in their own right. Such an inherent interest in a characteristic
of the responses which is not captured in the mean has two implications. First,
within~region variance in the design variables cannot be ignored even when the
responses are linked linearly with the control variables and marketing vari-
ables. In other words, tc ensure that the cells of a market test are compar-
able it is necessary that the within-cell variances (as well as the means) of
the design variables are equal across cells.

The second implication of an interest in within-cell variance for the
responses concerns the analysis of results from a market test. Usually, an
index of the difference between results in one cell and results in another is

used to summarize the findings. Such an index here should not depend solely
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on the average response ir a cell, but should {at least) include the variance
in response as well. So, from a methodological standpoint this development

of an index of between-cell differenceé in results from a market test and the
matching of cells in the design involve the same issue: measurement of differ-
ences between groups of multivariate observations, where the measure reflects
differences across groups in both the means and variances of the observations.
The next section is concerned with designing such a measure. Subsequently,
Sections 5 and 6 apply the measure to the matching of regions in designing a

test market and analyzing test market results, respectively,

4. Comparing Distributions Based on Both Means and Variances

To develop a distance between distributions based on the mean and
variance, it will be helpful to introduce some notation. For M
distributions, each of which are K-variate let the mean vector and
covariance matrix for distribution i be By and xi, respectively,

Similarly, let the K-vector of variable variances for distributiocn i be

ci‘. Then, intuitively, a distance between distributions i and j should

ry

take into account the difference between By and uj and also the difference
2 2
between oy and aj . ) .

One possible approach would be to let vy ® (”i r 03 } be the vector

of both means and variances for distribution i, Then a measure of the
distance between distributions i and j is

2 7
C = - YA (y, = 3
13 (Yi Y NoT

where the 2K x 2K matrix A_1 weights the differences in means and variances
for the K variables. When A is the covariance matrix of y; over the M

distributions, Dij2 is a Mahalanobis distance between the means and variances.
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Morrison (1967) has recommended the use of Mahalanobis distance as an input
to cluster analﬁsis. Clearly, when & is the identity matrix then Dij2 is
just the sgquared Euclidean distance between the means and variances in
one group with the corresponding means and variances in another.

The measure Dijz is easy to calculate, and is a very natural extension

of the Euclidean and Mahalancbis distances which are based only on means.

However, it does not take into account differences between distributions in
the covariances as well as the variances. As equation (4) demonstrated,
the expected response in an experiment's cell also depends on covariances
of the control variables. Matusita (1966, 1977) has introduced a measure

of distance between distributions which overcomes this shortcoming and has

several other attractive properties, Let g4 % - (Xqrenses xK) represent

the probability density function for distribution 1. Then Matusita's

distance is

2 _ 1/2 1/2.2 .
dij =/ ([gi (x)] - [gj (23] "%)° dx . (83
An important characteristic of dij2 is the fact that dij2 = 2 (T—Oij).
where
- 1/2 1/2
Dij =/ [gi (x)] [gj (x}1] dx (9)

and 0< pij < 1. pij is known as the affinity between two distributions,
and is a measure of their similarity. Matusita (1977) shows that affinity
is related to the error rate in discrimination between distributions. As
is generally true with discriminant analysis, given distributions
gi(x1,..., xK) and gj(x1. ey xK) one is trying to be able to classify
future observations as having come from gi or gj. Some proportion wi of
future sample values will actually come from 850 and the rest from gj, The

discriminant function partitions the K-dimensional space into two regions

ﬂi and Qj, where future points lying in region ﬂi will be said to come from
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B+ - With this decision rule the error rate is the expected
%
number of future cbservations misassigned; and an optimal partition (91.

*
nj) makes this error rate as small as possible. Matusita (1977, p. 217)

notes that this error rate with an optimal partition will be less than or
equal to w1(1-wi) pij and must be greater than or equal to 1/2 wi(1-wi)
(Pij)2 . So, as expected, as the affinity increases from 0 to 1 (and so

the distance decreases from 2 to 0) the minimum error rate in discrimina-

tion also increases,

Matusita's affinity pij and distance dij2 have two other features

which are useful, First, as is evident in (8) and (9), pij and dij2 depend
in general con the entire distribution gi(x). So they ineclude, but are not
limited to, comparison based on means, variances and covariances. This
advantage will be taken up_again in section 7. Second, when it is
desirable to compare distributions based only on the first two moments, a
convenient special case of equation (9) is available. If the gi(x) .

i =21, ..., M represent normal distributions with mean vector ui and

covariance matrix zi then Matusita's affinity P, . becomes

ij
RN -1/4 )
= = = 1
i 2 T 172 ¢ (10
|27+ 17
i j
where
Toeam 0 e Ty ey
= 1 Mty My Oy j P T

and |I! indicates the determinant »f the matrix LI.
So, since di'2 = 2(1-Dij) , for normal distributions both Matusita's

affinity and distance are easy to compute knowing only the means, variances



and covariances.' When the covariance matrices Zi and Zj are equal pij is

ordinally equivalent to the Mahalanobis distance between two distributions.

In fact, when zi = L, = T equation (10) becomes

J
-1/8 T, .
where 'I'1 = (“i - “j) bad ("i - "j). So comparing (11} with (7), in the
nermal case when Zi = zj Matusita's affinity is related to the Mahalanobis
2
distance Dij by
-1/8 Dijz
p,. = e . (12)

Finally, we note that when the means are equal (vi = uj) but the covariance
matrices are different, Tz0 and equation (10) becomes
~1/4
1z
. W2 2 jl

P, . .
i J
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2

An axiomatic rationale for use of Matusita's distance dij has been

described by Kaufman and Mathai (1973). It is ordinally equivalent to
Renyi's entropy function for diseriminating between distributions (Renyi
1961: Aczel and Daroczy 1975) and has been used by Stein (1G65) for
measuring the dissimilarity of two posterior distributions., It is also
closely related {though not equivalent) to the Kullback-Leibler informaticn

for discriminating between two distributions (Kullback 1968; Goel and

DeGroot 1981). For example, Matusita's distance is symmetric, dij2 z

djiz’ while Kullback-lLiebler is not., Finally, dijz'

measures mentioned in this paragraph) is a special case of the so=called

{like all of the other
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"f-divergence” measure between distributions (Ali and Silvey 1966; Goel
1983).

The next two sections provide applications of Matusita's affinity to
the selection of test market regions and the analysis of test market
results, respectively, Equation (10) will be used to compute the affinity
pij between distributions. So implicitly it is assumed that the control
and response variables can be approximated, for these purposes, by the

normal distribution.

5. TIllustrative Application: Selection of Test Market Regions

In designing a test market to compare different marketing programs it
is usually desirable that the regions used for comparison be as similaé as
possible on some demographic {control) characteristics, This can be
accomplished by clustering possible test market regions, and choosing for
comparison sites that fall in the same cluster (Green, Frank and Robinson
1967). However, as the results of sections 2 and 3 indicate, it is
important to have regions which are comparable on variances, as well as
means of the contrel variables.

Thisz section describes the use of Matusita's affinity pij to cluster
24 planning regions in Texasz. These results are compared with the more
standard clustering of regions based only on the means. Our main finding
is that the two clustering sclutions bear only a slight resemblance to
each other. So the empirical evidence suggests that clustering based on
means alone is not an effective surrogate for c¢lustering on means,
variances and covariances. We expect that the same result would hold in

most cases where test market sites are being selected. However, since the



-2l

specific characteristics of this application will not match those in many
test market situations the generalizability of the conclusions here is an open
aguestion, |
Features defining the scope (and generalizability) of this study are:
1. Three control variables are used to assess the
similarity of regions: age, education and household
income. All are as measured by the U.,S. Bureau of the
Census. Excluded are other variables which can be
important in matching sites, such as usage
characteristics for the product being tested.
2. All 24 regions are in Texas. Given the wide variation
in the three demographic characteristics across Texas
this isqprobably not a serious restriction.
3. In many practical cases boundaries of test market sites
are defined by the media markets (e.g. areas of dominant

influence for television), not planning regions.
Although the planning regions are non-overlapping, cover
the entire state, and are generally centered around
metropolitan areas; they tend to be smaller than ADI's.
So the regions used here are more similar to those in
minitest market experiments (Wind 1982, pp 427-429).

k., For each of the 24 planning regions the means and
variances of the control variables were computed across
the subregions (usually zounties) lying within it. So
the subregion is the unit of analysis, and the data used
are the mean income, age and education for each

subregion provided by the census bureau., For example,
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thé computed within~region variance of income in a
region is the variance, over subregions, of the average
income in each subregion.

Conceptually, for a planning region it would be prefer-
able to evaluate the variance in income over individual
households, rather than the variance in average
subregion income. However, since census data on
individual respondent households are not generally
available the approach chosen here is more likely to be
a feasible option for a test marketer. For the state of
Texas there are between 10 and 71 subregions per

planning region.

First, the 24 regions were clustered based only on the means of the
three controls (income, age and education). For clustering, the average income,
age and education values were standardized acress planning regions, and the sum
of squared deviations on these three values was used as the distance measure.
The regions were clustered hierarchically using the BMDP2M program (Dixon,
1981) with average linkage as the criterion for forming groups. For the
resulting l0-cluster sclution regions that are within the same group are
clearly very similar on average income, age and education., However, there is not
a great deal of similarity in variances for regions in the same cluster.
Regions with small and large variances are frequently grouped together.

One example of this is regions 19 and 21, which were placed in the same
cluster. The means for the demographic variables in these 2 regions were,
respectively: income (10.86, 11.12), age (29.53, 30.48), and education

(8.13, 8.00), indicating close agreement. On the cther hand the variances of
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the demographic variables in regioms 19 and 21 were, respectively: income
(3.59, 12.97), age (1.95, 19.33), education (1.20, 1.08). So the profile of
variances in region 19 is not at all similar to that in region 21. Looking
only at the variances, regions 19 and 21 would not have been clustered together.
This example 1s typical of the results obtained.

The ability of clustering on means to (inadvertently) cluster on
variances as well was investigated further; by correlating each variable's
mean with its within-region variance, over the 24 regions. If these
correlations were high in absolute value, then regions which were similar
on means would also be similar on variances. These correlations were .50,
.24 and -.43 for income, age and education, respectively. From
the evidence here, it seems unrealistic te assume that regions
clustered on means will be roughly equivalent on variances as well,

As an alternative to this clustering approach, the regions
were grouped using Matusita's affinity °ij (equation (10)) as an
index of similarity. The information required for each region
consisted of the means, variances and covariances of income, age
and education. The hierarchical clustering routine BMDPIM was
employed with linkage based on the group centroids. Ten clusters
were chosen because, subjectively, this seemed to maximize the
similarity between the two clustering solutions (excliuding the
trivial cases of 1 cluster and 24 clusters). The correspondence
between this clustering solution and the one above based simply
on means is only slightly greater than would be expected by chance.
From a decision making standpoint they are not acceptable substi-

tutes for one another. So this empirical application highlights the
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shortcomings of test market site selection based only on means, and
iliustrates the use of an alternate method (Matusita's affinity) which is
conceptually preferable, uncomplicated, and uses data which are generally
available,

The results here do not prove that Matusita's affinity is the best
similarity measure for comparing distributions, and competitors which also
incorporate means and variances can be imagined. (One such distance measure
Dij was described in Section 4). But any such alternatives must implicitly
or explicitly weight the relative contribution of means, wvariances and co-
variances to such a measure., It is not obvious what these weights should be.

Consequently the affinity, being related to the errors in discriminating be-

tween distributions, provides at least a reasonable solution to this problem.

6. An Illustrative Application: Analysis of
Results from a Market Test
In contrast to the last section's application which used Matusita's

affinity in designing market tests, this section uses the affinity

to help analyze results from such a test. The objective of the test
market conducted here was to discover the effect of both advertising
expenditures and the method of distribution on sales for a consumer
nondurable. Three levels of advertising expenditure and twe distribution
methods ("Regular" and "Special"™) were chosen, so each test market region

was assigned to one of the 6 possible experimental cells.

INSERT TABLE 4 ABOUT HERE
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A separate index of sales was available from two different data sources
(i.e, research suppliers). These two data sources used different samples of
retail outlets within each region. The two resulting sales measures will be
denoted "Sales fram Source A" and "Sales fram Source B" below. Fram each source
the dependent variable of interest was ®sales in the region after the test minus
sales in the region prior tp the test, (The sites tested here are carmpletely
unrelated to the Texas regions discumsed in the last section.} There were 9
observations per experimental cell ..

The usual procedure for analyzing this type of data would involve camparing the
average change in sales (i.e., posttest sales - pretest sales) across the treatment
cells via ANOVA or MANOVA. If ANOVA is used the changes for sales from source A
are analyzed separately fram the changes in sales fram source B. Actually in this
case it was felt that some additional characteristics of the test sites could also
affect the change in sales. So those variables were added as covariates and a
multivariate analysis of covariance was performed. The MANCOVA results are listed
in Table 4. They suggest that the covariates ("within cells regression" in the
table) are not sigqnificant, nor is the main effect of advertising. On the other hand,
the interaction of advertising and distribution, the constant term, and possibly
the main effect of distribution are significant. The constant term's significance
says that, over all 6 cells, there is a trend in sales from the pre to post experimental
period.

While analyzing the differences in average sales change across cells, MANCOVA
ignores any differences across cells in within-cell variance for the 2 response
measures. As suggested in Section 2.3 we may also want to know, in each cell, how
the (bivariate) distribution of (Source A sales, Source B sales} has changed from
the pretest period to posttest period. But given the large number of

features (e.g., means, variances, covariances) which the distributions
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possess it can be difficult to know which observed changes are most important.
This is where the affinity sij can help. It can measure, for each experimental
cell, the degree to which the distribution of sales (across sites in that cell)
has changed over the treatment period. Then, for those cells where the greatest
change has occurred, the distribution's characteristics {e.g., means, variances)
can be examined to see which ones account for the change.

The statistical properties of the affinity are also available (Matusita
1966) to indicate whether the overall observed change in the distribution is
statistically significant.4 If the researcher had some hypotheses about
variances or cerrelations a priori, he or she would probably want teo examine
these directly. However if there are no a priori hypotheses, statistical tests
on the affinity measure can alert the researcher to potential differences in these
other distributional characteristics. Subsequently, specific tests for these

characteristics could be carried out.

Table 5 gives the results when this approach is applied to ocur test market
data. For each of the 6 cells, the affinity between the actual distribution of
responses and the expected distribution of responses is reported. This expected
distribution is the pretest distribution plus the overall trend in each of the
sales measures over time. Hence if the affinity = 1 for some experimental cell
then the treatment has had no effect on the bivariate distribution of sales. For
example, this affinitv is .797 for the cell with medium advertising expenditures
and the special distribution method. The expected and actual means, variances and
correlation for the two sales measures are also given in Table 5. These are the

quantities from which the affinity was computed.
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The experimental groups in the exhibit are listed in order of the size
of the change in the distribuytion, i.e., the size of the marketing program’s
effect. 8o cell I showed the greatest effect (lowest affinity) and cell VI
showed the least (i.e., highest affinity). That cells I and II show a large
treatment effect is consistent with the MANCOVA results for the means alomne.
The mean sales were especially low in cell I (low advertising, regular distri-
bution) and particularly high in cell IT (medium advertising, special distri-
bution).

However, ancther factor besides the means seems to account for the low
affinity between actual and expected results. The correlation between the
two sales measures has decreased. Among other possibilities, this would
occur if one of the sales measures responds more quickly or dramatically to
the treatment than the other measure. Cells I and II having the lowest
affinity values alsc highlights an important property of the measure oij'

It indicates the extent of change, but not the desirability of that

change from a managerial perspective. For that, the experimenter must

return to the specific characteristics of the distribution.

In summary, use of the affinity measure can help identify which

treatments have had the greatest effect on the distribution of the

dependent variables. In doing so, it shows whether those effects are

primarily due to differences in the mean of the response measure, or to

other characteristics of its distribution. Consequently, it draws the

experimenter's attention to that characteristic through which the treatment

has had the greatest effect on the distribution of response.
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7. Discussion

The main emphasis in the last three sections has been the description
of a measure of similarity (pij) and distance (dij) between distributions,
and their application to problems in design and analysis of market experi-
ments. Here, we discuss briefly the extension of these measures to other
characteristics of the distribution, and recommend specific steps for design-

ing and evaluating market experiments which stem from the results in this

paper.

7.1 Extension to Other Distributional Characteristics

The applications in sections 5 and 6, using equation (10), focus
comparisons on the first two moments of the distributions, However, when
percentiles of the distributions are known one can return to equatiocns (8)
or (9} to approximate dijz and Pij+ For matching test market regions this
i1s usually easy if only one contreol variable {s being considered, since
histograms giving the distribution of demographic characteristics (e.g.
age, income) or product usage characteristics (e.g. purchase rate) for each
region are often available.

When matching regions on multipie control variables which are
intercorrelated the procedure is slightly more involved. The entire
multivariate distribution of the control variables (8) and (9) is generally
not known. Instead, the histogram giving the marginal distribution of each
control variable, and the correlation of each pair of contreol variables,
can often be cbtained. Then the percentage points of the multivariate
distribution can be approximated using these marginals and correlations.

So a variety of methods for evaluating dij2 and pyy are possible, depending

J
on the data at hand.
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7.2 Recommendations for Market Experiments

The analysis in this paper of distributional properties, especially
within-group variance, for control, treatment and response variables leads
to the following recommended steps for designing and analyzing market
experiments:

1. Select the relevant control, treatment and response

variables.

2. Decide on the sample size and sampling frame for each of

the treatment and control groups.

3. Assess whether conditions 2a and 2b of section 3.3 are

satisfled. If not, when assigning individuals to
treatments, make certain that the different treatment
groups {or pairs of treatment and control groups) have
similar distributions for the control variables,
Matusita's affinity pij can be used to help accomplish
this matching.

4, In analyzing the results, see if the variances and
covariances of the dependent variable(s) are equal across
treatment cells. If so, a procedure such as analvsis of
variance can be used to examine differences in mezns. ‘If
not, the affinity can be used to identify which treatments

have the greatest effect on the distribution of response.
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To summarize, the analysis here provides some insight into the
consequences of using averages alone to summarize variables in market
experiments, contrasted with the use of both means and variances. A method
based on the affinity of distributions is described, which allows an
individual to incorporate these distributional characteristics. As the
applications in sections 5 and 6 demonstrate, this index could help improve
current analyses of average response to marketing variables, through better
controls. It could also help the researcher understand how marketing
programs affect the entire distribution of response measures such as
household sales and market share. The discussion and empirical examples
in this paper all relate to market experiments. However it is clear that the
same conclusions and methods apply more gemerally. They are relevant for all
experiments and quasi-experiments which compare responses for groups which

have received different treatments.



FOOTNOTES

1Information Resources, Inc. has individually - targetable cable television
capability for its panels of participating households. So, within a
geographic region, households can be randomly assigned to the particular
advertising campaigns (i.e., treatments) being tested. All purchases made
by those households at stores equipped with universal product code scanners
are recorded automatically by computer.

2For a more detailed description of these planning regions see Pluta, Wright
and Anderson (1982, pp. 9-14).

3The conplete cluster analysis results are available from the first author
in a longer version of this paper.

aIn the special case where the distributions being compared are multivariate
normal the sampling properties of Matusita's affinity have a familiar and
simple form. For exampie, let F represent the normal distributien

N{u, £.) and § represent the normal distribution estimated using an i.i.d.
sample of size"n from the distribution N(&, L.). BHere & need not equal u. It
is known that I, = £, = I, though I itself is"unknown. Then, denoting the
affinity between 5_ &nd F by o{(S_, F), -8 log ¢(5_, F) is the usual generalized
T2 statistic, which has the noncBntral F distribution (Matusita 1966, pp. 192-
193). With these results one can test, in particular, whether the affinity
among distributions is significantly different from 1. Used longitudinally,

it tests whether the distribution in one experimental cell has changed over
time. Used cross sectionally, it tests whether the distribution (pretest or
posttest) is the same across experimental cells.



APPENDIX

In general, the expected response E[S]:E[Fi(A)] when A has the gamma

distribution (3) can be written

EIF,(A)] = T F(A) —— (am)"™" ™ aa : (A1)
0 r'(r)
Substituting Fi(A) = AB in (A1) leads to the result
ELF, (1)) = Ea°] = o7° LB (42)
r{r)

S0 the expected response for functions Fl and Fz are obtained by
substituting 8 = .5 and 8 = 1,5, respectively, in (A2).

Similarly, the expectation of F3(A) can be written

4 r ¥y r
ELF,(A)] = / AT e™%% gp .25 5 3 arel m0A
0 I'(r) o r(r
r 4 a r _=ap r{r+1) > a rel _=ad
- s ()" ™ da - 22 s (ah) e 4a
a 0 I'(r+1) 4a 0 T'(r+2)
s o F e, - B2 a2, (A3)
G ' 2 G '

a Ya

where FG(alx,y) is the c.d.F. of the gamma distribution with shape
parameter X and scale parameter y. Equation (A3) is easily evaluated using

the relationship.
=1 _ a (ya)k
FG(a|x.y) 1= 31 7
k=0 k!

for integer values of x.



fable 1

COMMON PRACTICE REGARDING WITHIN-REGION VARIANCE
FOR TEST MARKET VARIABLES

VARIABLE
TYPE EXAMPLES TYPICAL PRACTICE
Respondents’ :
1l. Control = Income a) Matching on Means
Variables - Age
« Educatign b) Random selection followed by
examination of means
e¢) Means as covariates
2. Treatment - Advertising Selection of a number of
(Marketing Mix) ~ Distribution treatments (e.g. advertising
Variables - Pricing exposures, retail prices, etc.)
which vary with respect to their
average levels.
3. Response - Sales Choose one or more response
Yariables - Share measures and examine differences
- Intention in means (ANOVA, MANOVA).

to buy



Table 2

THE IMPACT OF VARIANCE IN CONTROL
VARIABLES ON RESPONSE

Evaluation Using Means

Region A B c

Control Variable:

Average Age , 38 38 38

Response Variable:

Sales per Capaita 2.98 3.11 3.18

Conclusicns: The 3 regions are comparable with respect to age. Region C
cutperforms A and B in terms of sales per capita.

The Impact of Within-Region Variance

SALES BY AGE CATEGORY

Region A B c
% in Sales per %2 in Sales per % in Sales per

Age Category Capita Category Capita Category Capita

25 22 2 23 2.5 18 2
25 - 34 18 4,5 20 4.5 21 4.5
35 - 49 18 5 16 5 21 5
50«65 20 3 17 3.5 21 3

265 22 1 24 1 19 1

Conclusions: The 3 regions are not directly comparable with respect to age,
Region B outperforms A and C on a sales per capita basis.



Table 3

PREDICTION OF EXPECTED RESPONSE USING
THE MEAN ONLY, vs. USING THE MEAN AND VARIANCE

Case 1 2 3 4

Distribution of A r ] | 1 2 2

e 2 1 2 1
E[A] 500 1.00 1.00 2.00
Var(A] . 250 1,00 . 500 2.00
ELF (A)] 627 . 886 . 940 1.33
Fi(A)zar> M-V estimate .619 .875 .937 1.32
A>0 M estimate . 707 1.00 1.00 1.41
Percent Improvement 90 90 95 87
E[Fz(A)] L8470 1.33 1.17 3.32
Fy(A)=a’*> M~V estinate 487 1.37 1.19 3. 36
A>Q M estimate . 354 1.00 1.00 2.83
Percent Improvement 85 88 88 g2
E[FS(A)J 375 .527 627 LBTU
FB(A)zA-.ZSAz M-V estimate .374 .500 .625 .500
O<A<H M estimate LU37 . 750 .750 1.00

Percent Improvement 98 88 98 47



TabLg 4

ANALYSIS OF THREE ADVERTISING LEVELS AND TWO DISTRIBUTION

STRATEGIES: TEST MARKET MANCOVA RESULTS
Wilks'
Approximate Degrees of Significance

Effect F=Statistic Freedom Level
Within Cells 1.333 4,90 264
Regression
Advertising X 2. 955 4,90 . 028
Distribution
Advertising .704 4,90 .591
Distribution 2. 444 2,45 .098
Constant 3. 492 2,45 . 039




Table 5

INCORPCRATING WITHIN-REGION VARIANCE
IN TEST MARKET RESULTS

Sales From Sales From
Experimental Source A Source B )
Cell® Affinity -Mean Variance Mean Variance Correlation

T Ad. L . 793 .057 . 00070 . 026 . 00036 . 996
Dist. R .050 . 00061 .025 .00041 . 862
iI Ad. M . 797 .05k .00037 .057 . 00097 .963
Dist., 3§ . 056 . 00015 . 064 . 00087 . . 808
II1 Ad. M . 318 . 066 . 00021 L0582 . 00030 -, 270
Dist. R .063 . 0006 044 . 00079 .199
v M. L .890 .071  .00090  .063 .00064 787
Dist, S . 084 . 00174 . 072 . 00046 . 602
v Ad., H . 902 . 048 . 00043 . 060 . 00053 . 973
Dist. R .Ooul .00013 . 055 .00016 . 8580
Ad, H .929 .054 . 00020 D43 .0007S . BUb
VI pist. s .051  .00015 .038  .00089 .934

[ 3
The experimental cell is indicated by the level of advertising

expenditures (Low = L, Medium = M, High = H) and type of
distribution (Regular = R, Special = S) used. For each cell the
first row indicates the expected value, and the second row gives

the actual value.



Figure 1

DISTRIBUTION OF RESPONSE F (A), WHERE
F IS A CONCAVE FUNCTION OF AGE A

h (F(A))

Og

F(A)

A EfA] Age A



Figure 2
RESPONSE FUNCTIONS FOR. S=F(A) + e

(A)
F, (A)




Figure 3

GAMMA DISTRIBUTION FOR THE CONTROL VARIABLE
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