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Abstract

Technological change can increase the productivity of the various factors of produc-

tion in equal terms, or it can be biased towards a specific factor. We directly assess

the bias of technological change by measuring, at the level of the individual firm, how

much of it is labor augmenting and how much is factor neutral. To do so, we develop a

framework for estimating production functions when productivity is multi-dimensional.

Using panel data from Spain, we find that technological change is biased, with both its

labor-augmenting and its factor-neutral components causing output to grow by about

1.5% per year.
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1 Introduction

When technological change occurs, it can increase the productivity of capital, labor, and

the other factors of production in equal terms, or it can be biased towards a specific factor.

Whether technological change favors some factors of production over others is central to

economics. Yet, the empirical evidence is relatively sparse.

The literature on economic growth rests on the assumption that technological change

increases the productivity of labor vis-à-vis the other factors of production. It is well known

that for a neoclassical growth model to exhibit steady-state growth, either the production

function must be Cobb-Douglas or technological change must be labor augmenting (Uzawa

1961), and many endogenous growth models point to human capital accumulation as a

source of productivity increases (Lucas 1988, Romer 1990). A number of recent papers

provide microfoundations for the literature on economic growth by theoretically establishing

that profit-maximizing incentives can ensure that technological change is, at least in the

long run, purely labor augmenting (Acemoglu 2003, Jones 2005). Whether this is indeed

the case is, however, an empirical question that remains to be answered.

One reason for the scarcity of empirical assessments of the bias of technological change

may be a lack of suitable data. Following early work by Brown & de Cani (1963) and

David & van de Klundert (1965), economists have estimated aggregate production or cost

functions that proxy for labor-augmenting technological change with a time trend (Lucas

1969, Kalt 1978, Antràs 2004, Klump, McAdam & Willman 2007, Binswanger 1974, Cain &

Paterson 1986, Jin & Jorgenson 2010).1 This line of research has produced some evidence of

labor-augmenting technological change. However, the intricacies of constructing data series

from national income and product accounts (Gordon 1990, Krueger 1999) and the staggering

amount of heterogeneity across firms in combination with simultaneously occurring entry

and exit (Dunne, Roberts & Samuelson 1988, Davis & Haltiwanger 1992) may make it

difficult to interpret a time trend as a meaningful average economy- or sector-wide measure

of technological change. Furthermore, this line of research does not provide any deeper

insights into the anatomy of the underlying productivity distribution. It also pays scant

attention to the fundamental endogeneity problem in production function estimation. This

problem arises because a firm’s decisions depend on its productivity, and productivity is

not observed by the econometrician, and may severely bias the estimates (Marschak &

Andrews 1944).2

While traditionally using more disaggregated data, the productivity and industrial or-

1A much larger literature has estimated the elasticity of substitution using either aggregated or disag-
gregated data whilst maintaining the assumption of factor-neutral technological change, see Hammermesh
(1993) for a survey.

2Intuitively, if the firm adjusts to a change in its productivity by expanding or contracting its production,
then unobserved productivity and input usage are correlated, resulting in biased estimates of the production
function. See Griliches & Mairesse (1998) and Ackerberg, Benkard, Berry & Pakes (2007) for reviews of this
and other problems involved in the estimation of production functions.
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ganization literatures assume that technological change is factor neutral. Hicks-neutral

technological change underlies, either explicitly or implicitly, most of the standard tech-

niques for measuring productivity, ranging from the classic growth decompositions of Solow

(1957) and Hall (1988) to the recent structural estimators for production functions that

resolve the endogeneity problem (Olley & Pakes 1996, Levinsohn & Petrin 2003, Ackerberg,

Caves & Frazer 2015, Doraszelski & Jaumandreu 2013, Gandhi, Navarro & Rivers 2013). In

their present form these techniques therefore do not allow us to assess whether technological

change is biased towards some factors of production.

In this paper, we combine firm-level panel data that is now widely available with ad-

vances in econometric techniques to directly assess the bias of technological change by

measuring, at the level of the individual firm, how much of technological change is labor

augmenting and how much of it is Hicks neutral. To do so, we develop a framework for

estimating production functions when productivity is multi-dimensional and has a labor-

augmenting and a Hicks-neutral component.

Our framework accounts for firm-level heterogeneity in the various components of pro-

ductivity by allowing their evolution to be subject to random shocks. As these productivity

innovations accumulate over time, they can cause persistent differences across firms. Be-

cause we are able to recover the components of productivity for each firm at each point in

time, we obtain a detailed assessment of the impact of technological change at the level it

takes place, namely the individual firm. In particular, we are able to assess the dispersion

and persistence in the components of productivity and to relate the speed and direction of

technological change to firms’ R&D activities.

To tackle the endogeneity problem in production function estimation, we build on the

insight of Olley & Pakes (1996) that if the decisions that a firm makes can be used to infer

its productivity, then productivity can be controlled for in the estimation. We extend their

insight to a setting in which productivity is multi- instead of single-dimensional. We infer the

firm’s productivity from its input usage, in particular its labor and materials decisions. The

key insight to identifying the bias of technological change is that Hicks-neutral technological

change scales input usage but, in contrast to labor-augmenting technological change, does

not change the mix of inputs that a firm uses. A change in the input mix therefore contains

information about the bias of technological change, provided we control for the relative

prices of the various inputs and other factors that may change the input mix.

We apply the resulting estimator to an unbalanced panel of 2375 Spanish manufactur-

ing firms in ten industries from 1990 to 2006. Spain is an attractive setting for examining

the speed and direction of technological change for two reasons. First, Spain became fully

integrated into the European Union between the end of the 1980s and the beginning of the

1990s. Any trends in technological change that our analysis uncovers for Spain may thus

be viewed as broadly representative for other continental European economies. Second,

Spain inherited an industrial structure with few high-tech industries and mostly small and
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medium-sized firms. R&D is widely seen as lacking (OECD 2007). Yet, Spain grew rapidly

during the 1990s, and R&D became increasingly important (European Commission 2001).

The accompanying changes in industrial structure are a useful source of variation for ana-

lyzing the role of R&D in stimulating different types of technological change.

The particular data set we use has several advantages. The broad coverage allows us

to assess the bias of technological change in industries that differ greatly in terms of firms’

R&D activities. The data set also has an unusually long time dimension, enabling us to

disentangle trends in technological change from short-term fluctuations. Finally, the data

set has firm-level prices that we exploit heavily in the estimation.3

The Spanish manufacturing sector also poses several challenges for identifying the bias of

technological change from a change in the mix of inputs that a firm uses. First, outsourcing

directly changes the input mix as the firm procures customized parts and pieces from its

suppliers rather than makes them in house from scratch. Second, the Spanish labor market

manifestly distinguishes between permanent and temporary labor. We further contribute

to the literature following Olley & Pakes (1996) by accounting for outsourcing and the

dual nature of the labor market and highlighting the importance of costly adjustments to

permanent labor for measuring the bias of technological change.

Our estimates provide clear evidence that technological change is biased. Ceteris paribus

labor-augmenting technological change causes output to grow, on average, in the vicinity

of 1.5% per year. While there is a shift from unskilled to skilled workers in our data, this

skill upgrading explains some but not all of the growth of labor-augmenting productivity.

In many industries, labor-augmenting productivity grows because workers with a given set

of skills become more productive over time.

At the same time, our estimates show that Hicks-neutral technological change plays an

equally important role. In addition to labor-augmenting technological change, Hicks-neutral

technological change causes output to grow, on average, in the vicinity of 1.5% per year.

Behind these averages lies a substantial amount of heterogeneity across industries and

firms. Our estimates point to substantial and persistent differences in labor-augmenting and

Hicks-neutral productivity across firms, in line with the “stylized facts” about productivity

in Bartelsman & Doms (2000) and Syverson (2011). Beyond these facts, we show that, at the

level of the individual firm, the levels of labor-augmenting and Hicks-neutral productivity

are positively correlated, as are their rates of growth.

Our estimates further indicate that firms’ R&D activities play a key role in determining

the differences in the components of productivity across firms and their evolution over

time. Interestingly, labor-augmenting productivity is slightly more closely tied to firms’

R&D activities than is Hicks-neutral productivity. Through the lens of the literature on

3There are other firm-level data sets such as the Colombian Annual Manufacturers Survey (Eslava,
Haltiwanger, Kugler & Kugler 2004) and the Longitudinal Business Database at the U.S. Census Bureau
that contain separate information on prices and quantities, at least for a subset of industries (Roberts &
Supina 1996, Foster, Haltiwanger & Syverson 2008, Foster, Haltiwanger & Syverson 2016).
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induced innovation and directed technical change (Hicks 1932, Acemoglu 2002), this may

be viewed as supporting the argument that firms direct their R&D activities to conserve on

labor.

Biased technological change has consequence far beyond the growth of output. To

illustrate, we use our estimates to show that biased technological change is the primary

driver of the decline of the aggregate share of labor in the Spanish manufacturing sector

over our sample period. Similar declines have been observed in many advanced economies

in past decades and have attracted considerable attention in the macroeconomics literature

(Blanchard 1997, Bentolila & Saint-Paul 2004, McAdam & Willman 2013, Karabarbounis

& Neiman 2014, Oberfield & Raval 2014).

The starting point of this paper is the literature on the structural estimation of pro-

duction functions. Olley & Pakes (1996), Levinsohn & Petrin (2003), Ackerberg et al.

(2015), and many others specify a Cobb-Douglas production function. Productivity is

single-dimensional or, equivalently, technological change is Hicks neutral by construction.4

To assess the bias of technological change, we generalize the Cobb-Douglas production

function and allow productivity to be multi-dimensional.

Our approach further differs from much of the previous literature by exploiting the pa-

rameter restrictions between the production and input demand functions, as in Doraszelski

& Jaumandreu (2013). This allows us to parametrically invert from observed input usage

to unobserved productivity and eases the demands on the data compared to the nonpara-

metric inversion in Olley & Pakes (1996), Levinsohn & Petrin (2003), and Ackerberg et al.

(2015), especially if the input demand functions are high-dimensional.5

Our paper is related to Van Biesebroeck (2003). Using plant-level panel data for the

U.S. automobile industry, he estimates a plant’s Hicks-neutral productivity as a fixed effect

and parametrically inverts from its input usage to the plant’s capital-biased (also called

labor-saving) productivity. Our approach is more general in that we allow all components

of productivity to evolve over time and in response to firms’ R&D activities.

Our paper is also related to Grieco, Li & Zhang (2016). Because their data contains

the materials bill rather than its split into price and quantity, they parametrically invert

from its input usage to a firm’s Hicks-neutral productivity and the price of materials that

the firm faces. In subsequent work in progress, Zhang (2014, 2015) applies the same idea

to infer a firm’s capital- and labor-augmenting productivity.6

Finally, our paper touches—although more tangentially—on the literature on skill bias

4As is well known, a Cobb-Douglas production function has an elasticity of substitution of one and
therefore cannot be used to separate different types of technological change. Our data rejects a Cobb-
Douglas production function (see Section 6).

5See Doraszelski & Jaumandreu (2013) for details on the pros and cons of the parametric inversion.
6While Grieco et al. (2016) and Zhang (2014, 2015) build on Doraszelski & Jaumandreu (2013) by

exploiting the parameter restrictions between the production and input demand functions, they differ by
plugging the recovered unobservables back into the production function. This avoids assumptions on the
law of motion for productivity. However, parameters of interest may cancel depending on the specification
of the production function (see Section 2.1 of Grieco et al. (2016) and Section 3 of Ackerberg et al. (2015)).
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that studies the differential impact of technological change, especially in the form of com-

puterization, on the various types of labor. Our approach is similar to some of the recent

work on skill bias (Machin & Van Reenen 1998, Black & Lynch 2001, Abowd, Haltiwanger,

Lane, McKinney & Sandusky 2007, Bloom, Sadun & Van Reenen 2012) in that it starts

from a production function and focuses on the individual firm. While we focus on labor

versus the other factors of production, the techniques we develop may be adapted to inves-

tigate the skill bias of technological change, although our particular data set is not ideal for

this purpose.

The remainder of this paper is organized as follows: Section 2 explains how we identify

the bias of technological change and previews our empirical strategy. Section 3 describes

the data and some patterns in the data that inform the subsequent analysis. Section 4 sets

out a dynamic model of the firm. Section 5 develops an estimator for production functions

when productivity is multi-dimensional. Sections 6–9 present our main results on labor-

augmenting and Hicks-neutral technological change. Section 10 explores whether capital-

augmenting technological change plays a role in our data in addition to labor-augmenting

and Hicks-neutral technological change. Section 11 concludes.

Throughout the paper, we adopt the convention that uppercase letters denote levels and

lowercase letters denote logs. Unless noted otherwise, we refer to output and the various

factors of production in terms of quantity and not in terms of value. In particular, we refer

to the value of labor as the wage bill and to the value of materials as the materials bill.

2 Labor-augmenting and Hicks-neutral productivity

We infer a firm’s productivity from its input usage, in particular its labor and materi-

als decisions. To separate labor-augmenting from Hicks-neutral productivity, we exploit

that the input mix is closely related to—and therefore contains information about—labor-

augmenting productivity. We also show that the constant elasticity of substitution (CES)

production function that we use in our application approximates, to a first order, the rela-

tionship between the input mix and labor-augmenting productivity that arises in a wider

class of production functions. To facilitate the exposition, we proceed in a highly simplified

setting. Our application extends the setting to accommodate the institutional realities of

the Spanish manufacturing sector.

Consider a firm with the production function

Yjt = F (Kjt, exp(ωLjt)Ljt,Mjt) exp(ωHjt) exp(ejt), (1)

where Yjt is the output of firm j in period t, Kjt is capital, Ljt is labor, and Mjt is

materials. The labor-augmenting productivity of firm j in period t is ωLjt and its Hicks-

neutral productivity is ωHjt. The production function in equation (1) abstracts from capital-

augmenting productivity for reasons explained in Sections 3 and 10. Finally, ejt is a random
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shock.

To relate the input ratio
Mjt

Ljt
to labor-augmenting productivity ωLjt, we assume that

(exp(ωLjt)Ljt,Mjt) is separable from Kjt in that the function F (·) in equation (1) is com-

posed of the functions G(·) and H(·) as

F (Kjt, exp(ωLjt)Ljt,Mjt) = G(Kjt,H(exp(ωLjt)Ljt,Mjt)), (2)

whereH(exp(ωLjt)Ljt,Mjt) is homogeneous of arbitrary degree.7 Without loss of generality,

we set the degree of homogeneity to one. Throughout we maintain that all functions are

differentiable as needed. As in Levinsohn & Petrin (2003), we finally assume that labor

and materials are static (or “variable”) inputs that are chosen each period to maximize

short-run profits and that the firm is a price-taker in input markets, where it faces Wjt and

PMjt as prices of labor and materials, respectively.

The input ratio
Mjt

Ljt
is therefore the solution to the ratio of the first-order conditions for

labor and materials

∂H(exp(ωLjt)Ljt,Mjt)
∂Ljt

exp(ωLjt)

∂H(exp(ωLjt)Ljt,Mjt)
∂Mjt

=

∂H(exp(ωLjt−(mjt−ljt)),1)
∂Ljt

exp(ωLjt)

∂H(exp(ωLjt−(mjt−ljt)),1)
∂Mjt

=
Wjt

PMjt
, (3)

where the first equality uses that H(exp(ωLjt)Ljt,Mjt) is homogeneous of degree one and,

recall, uppercase letters denote levels and lowercase letters denote logs.

Equation (3) implies that the input ratio
Mjt

Ljt
depends on the price ratio

PMjt

Wjt
and labor-

augmenting productivity ωLjt. Importantly, the input ratio
Mjt

Ljt
does not depend on Hicks-

neutral productivity ωHjt. This formalizes that the mix of inputs that a firm uses is related

to—and therefore contains information about—its labor-augmenting productivity but is

unrelated to its Hicks-neutral productivity. Intuitively, the labor and materials decisions

hinge on the marginal products of labor and materials. Because the marginal products are

proportional to Hicks-neutral productivity, materials per unit of labor as determined by the

ratio of the first-order conditions in equation (3) is unrelated to Hicks-neutral productivity.

In this sense, separating labor-augmenting from Hicks-neutral productivity does not rely

on functional form beyond the separability assumption in equation (2).8

The following proposition further characterizes the log of the input ratio mjt − ljt:

Proposition 1 The input ratio mjt − ljt has the first-order Taylor series

γ0L − σ
(
exp(ω0

Ljt − (m0
jt − l0jt))

)
(pMjt −wjt) +

(
1− σ

(
exp(ω0

Ljt − (m0
jt − l0jt))

))
ωLjt (4)

7Equation (2) immediately implies that F (Kjt, exp(ωLjt)Ljt,Mjt) is weakly separable in the partition
(Kjt, (exp(ωLjt)Ljt,Mjt)) (Chambers 1988, equation (1.26)). It is equivalent to F (Kjt, exp(ωLjt)Ljt,Mjt)
being weakly separable under some additional monotonicity and quasi-concavity assumptions (Goldman &
Uzawa 1964).

8One can forgo the separability assumption by relying more on functional form. Our empirical strategy
generalizes to, for example, a translog production function that does not satisfy equation (2).
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around a point (m0
jt − l0jt, p

0
Mjt − w0

jt, ω
0
Ljt) satisfying equation (3), where γ0L is a constant

and σ
(
exp(ω0

Ljt − (m0
jt − l0jt))

)
is the elasticity of substitution between materials and labor

in the production function in equation (1).

The proof can be found in Appendix A.

Our application uses a CES production function

Yjt =

[
βKK

− 1−σ
σ

jt + (exp(ωLjt)Ljt)
− 1−σ

σ + βMM
− 1−σ

σ

jt

]− νσ
1−σ

exp(ωHjt) exp(ejt),

where ν and σ are the elasticity of scale and substitution, respectively, and βK and βM

are the so-called distributional parameters.9 Depending on the elasticity of substitution,

the CES production function encompasses the special cases of a Leontieff (σ → 0), Cobb-

Douglas (σ = 1), and linear (σ → ∞) production function.

The ratio of the first-order conditions in equation (3) implies

mjt − ljt = σ lnβM − σ(pMjt − wjt) + (1− σ)ωLjt. (5)

Comparing equations (4) and (5) shows that the CES production function approximates,

to a first order, the input ratio mjt − ljt arising from an arbitrary production function

satisfying equation (2). This gives a sense of robustness to the CES production function.10

Our empirical strategy uses equation (5) to infer a firm’s labor-augmenting productivity

from its input mix. In doing so, we must control for other factors besides the relative prices

of the various inputs that may change the input mix, in particular outsourcing and the dual

nature of the Spanish labor market. With labor-augmenting productivity in hand, we use

the first-order condition for labor to recover Hicks-neutral productivity. The remainder of

our empirical strategy follows along the lines of Olley & Pakes (1996), Levinsohn & Petrin

(2003), Ackerberg et al. (2015), and Doraszelski & Jaumandreu (2013) by combining the

inferred productivities with their laws of motion to set up estimation equations.

Equation (5) has a long tradition in the literature, although it is used in a very different

way from ours. With skilled and unskilled workers in place of materials and labor, equation

(5) is at the heart of the literature on skill bias (see Card & DiNardo (2002) and Violante

(2008) and the references therein). With capital in place of materials, equation (5) serves

9We implicitly set the constant of proportionality β0 to one because it cannot be separated from an
additive constant in Hicks-neutral productivity ωHjt. We estimate them jointly and carefully ensure that
the reported results depend only on their sum. We similarly normalize the distributional parameter βL.
Technological change can therefore equivalently be thought of as letting these parameters of the production
function vary by firm and time. The nascent literature on heterogeneous production functions (Balat,
Brambilla & Sasaki 2015, Fox, Hadad, Hoderlein, Petrin & Sherman 2016, Kasahara, Schrimpf & Suzuki
2015) explores to what extent it is possible to let all parameters of the production function vary by firm and
time.

10It also suggests that our “nonparametric” estimates of labor-augmenting technological change can be
fed into a growth decomposition along the lines of Solow (1957) and Hall (1988) to obtain a “nonparametric”
estimate of Hicks-neutral technological change. We leave this to future research.
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to estimate the elasticity of substitution σ in an aggregate value-added production function

(see Antràs 2004). More recently, Raval (2013) uses a variant of equation (5) obtained

from a value-added production function with capital- and labor-augmenting productivity

to estimate σ from firm-level panel data.11

Equation (5) is typically estimated by OLS. The problem is that labor-augmenting

productivity, which is not observed by the econometrician, is correlated over time and also

with the wage. We intuitively expect the wage to be higher when labor is more productive,

even if it adjusts slowly with some lag. This positive correlation induces an upward bias in

the estimate of the elasticity of substitution. This is a variant of the endogeneity problem in

production function estimation. Because we use equation (5) to recover labor-augmenting

productivity rather than directly estimate it, we are able tackle the endogeneity problem

with a combination of assumptions on the timing of decisions and the evolution of the

components of productivity.

3 Data

Our data comes from the Encuesta Sobre Estrategias Empresariales (ESEE) survey, a firm-

level survey of the Spanish manufacturing sector sponsored by the Ministry of Industry.

The unit of observation is the firm, not the plant or the establishment. Our data covers the

1990s and early 2000s. At the beginning of the survey in 1990, 5% of firms with up to 200

workers were sampled randomly by industry and size strata. All firms with more than 200

workers were asked to participate in the survey, and 70% of them complied. Some firms

vanish from the sample due to either exit (shutdown by death or abandonment of activity)

or attrition. These reasons can be distinguished in the data and attrition remained within

acceptable limits. To preserve representativeness, newly created firms were added to the

sample every year. We provide details on industry and variable definitions in Appendix B.

Our sample covers a total of 2375 firms in ten industries when restricted to firms with at

least three years of data. Columns (1) and (2) of Table 1 show the number of observations

and firms by industry. Sample sizes are moderate. Newly created firms are a large fraction

of the total number of firms, ranging from 26% to 50% in the different industries. There

is a much smaller fraction of exiting firms, ranging from 6% to 15% and above in a few

industries. Firms remain in the sample from a minimum of three years to a maximum of

16 years between 1990 and 2006.

The 1990s and early 2000s were a period of rapid output growth, coupled with stagnant

or, at best, slightly increasing employment and intense investment in physical capital, see

columns (3)–(6) of Table 1. Consistent with this rapid growth, firms on average report that

their markets are slightly more often expanding rather than contracting; hence, demand

11These latter forms of equation (5) rest on the assumption that capital is a static input that is chosen
each period to maximize short-run profits. In contrast, the literature following Olley & Pakes (1996) stresses
that the choice of capital has dynamic implications.
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tends to shift out over time.

An attractive feature of our data is that it contains firm-specific, Paasche-type price

indices for output and materials. We note that the variation in these price indices is partly

due to changes over time in the bundles of goods that make up output and, respectively,

materials (see Bernard, Redding & Schott (2010) and Goldberg, Khandelwal, Pavcnik &

Topalova (2010) for evidence on product turnover), and that these changes may be related to

a firm’s productivity. The growth of prices, averaged from the growth of prices as reported

individually by each firm, is moderate. The growth of the price of output in column (7)

ranges from 0.8% to 2.1%. The growth of the wage ranges from 4.3% to 5.4% and the

growth of the price of materials ranges from 2.8% to 4.1%.

Biased technological change. The evolution of the relative quantities and prices of

the various factors of production already hints at an important role for labor-augmenting

technological change. As columns (8) and (9) of Table 1 show, with the exception of

industries 7, 8, and 9, the input ratio
Mjt

Ljt
increases much more than the price ratio

PMjt

Wjt

decreases. One possible explanation is that the elasticity of substitution between materials

and labor exceeds 1. To see this, recall that the elasticity of substitution (Chambers 1988,

equation (1.12)) is

d ln
(
Mjt

Ljt

)

d ln (|MRTSMLjt|)
= −

d ln
(
Mjt

Ljt

)

d ln
(
PMjt

Wjt

) ,

where |MRTSMLjt| is the absolute value of the marginal rate of technological substitution

between materials and labor, and the equality follows to the extent that it equals the price

ratio
PMjt

Wjt
. However, because the estimates of the elasticity of substitution in the previous

literature lie somewhere between 0 and 1 (see Chirinko (2008) and the references therein

for the elasticity of substitution between capital and labor and Bruno (1984), Rotemberg &

Woodford (1996), and Oberfield & Raval (2014) for the elasticity of substitution between

materials and an aggregate of capital and labor), this explanation is implausible. Labor-

augmenting technological change offers an alternative explanation. As it makes labor more

productive, equation (4) implies that it directly increases materials per unit of labor. Thus,

labor-augmenting technological change may go a long way in rationalizing why the change

in the input ratio
Mjt

Ljt
exceeds the change in the price ratio

PMjt

Wjt
.

In contrast, columns (10) and (11) of Table 1 provide no evidence for capital-augmenting

technological change. The investment boom in Spain in the 1990s and early 2000s was fueled

by improved access to European and international capital markets. With the exception of

industries 5, 6, and 8, the concomitant decrease in the input ratio
Mjt

Kjt
is much smaller than

the increase in the price ratio
PMjt

PKjt
, where PKjt is the price of capital as measured by the

user cost in our data.12 This pattern is consistent with an elasticity of substitution between

12The user cost is a notably rough measure of the price of capital. In particular, the price of capital
includes adjustment costs, and as a shadow price, it is unobservable. The user cost, in contrast, is based
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materials and capital between 0 and 1. Indeed, capital-augmenting technological change

can only directly contribute to the decline in materials per unit of capital in the unlikely

scenario that it makes capital less productive.

Based on these patterns in the data we focus on labor-augmenting technological change

in the subsequent analysis. We return to capital-augmenting technological change in Section

10. In the remainder of this section we point out other features of the data that figure

prominently in our analysis.

Temporary labor. In recognition of the dual nature of the Spanish labor market, we

distinguish between permanent and temporary labor. We treat temporary labor as a static

input that is chosen each period to maximize short-run profits. This is appropriate because

Spain greatly enhanced the possibilities for hiring and firing temporary workers during the

1980s, and by the beginning of the 1990s had one the highest shares of temporary workers

in Europe (Dolado, Garcia-Serrano & Jimeno 2002). Temporary workers are employed for

fixed terms with no or very small severance pay. In our sample, between 72% and 84% of

firms use temporary labor and, among the firms that do, its share of the labor force ranges

from 16% in industry 10 to 32% in industry 9, see columns (1) and (2) of Table 2.

Rapid expansions and contractions of temporary labor are common: The difference

between the maximum and the minimum share of temporary labor within a firm ranges

on average from 20% to 33% across industries (column (3)). In addition to distinguishing

temporary from permanent labor, we measure labor as hours worked (see Appendix B). At

this margin, firms enjoy a high degree of flexibility: Within a firm, the difference between

the maximum and the minimum hours worked ranges on average from 43% to 56% across

industries, and the difference between the maximum and the minimum hours per worker

ranges on average from 4% to 13% (columns (4) and (5)).

Outsourcing. We account for outsourcing in our analysis. Outsourcing may directly

contribute to the shift from labor to materials that column (8) of Table 1 documents as

firms procure customized parts and pieces from their suppliers rather than make them in

house from scratch. As can be seen in columns (6) and (7) of Table 2, between 21% and

57% of firms in our sample engage in outsourcing. Among the firms that do, the share of

outsourcing in the materials bill ranges from 14% in industry 7 to 29% in industry 4. While

the share of outsourcing remains stable over our sample period, the standard deviation

in column (7) indicates a substantial amount of heterogeneity across the firms within an

industry, similar to the share of temporary labor in column (2).

Firms’ R&D activities. The R&D intensity of Spanish manufacturing firms is low by

European standards, but R&D became increasingly important during the 1990s (see, e.g.,

solely on observables (see Appendix B).
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European Commission 2001).13 Columns (8)–(10) of Table 2 show that the ten industries

differ markedly in terms of firms’ R&D activities and that there is again substantial hetero-

geneity across the firms within an industry. Industries 3, 4, 5, and 6 exhibit high innovative

activity. More than two-thirds of firms perform R&D during at least one year in the sample

period, with at least 36% of stable performers engaging in R&D in all years (column (8)) and

at least 28% of occasional performers engaging in R&D in some but not all years (column

(9)). The R&D intensity among performers ranges on average from 2.2% to 2.9% (column

(10)). Industries 1, 2, 7, and 8 are in an intermediate position. Less than half of firms

perform R&D, and there are fewer stable than occasional performers. The R&D intensity is

on average between 1.1% and 1.7% with a much lower value of 0.7% in industry 7. Finally,

industries 9 and 10 exhibit low innovative activity. About a third of firms perform R&D,

and the R&D intensity is on average between 1.0% and 1.5%.

4 A dynamic model of the firm

The purpose of our model is to enable us to infer a firm’s productivity from its input usage

and to clarify our assumptions on the timing of decisions that we rely on in estimation.

We extend the previous literature on the structural estimation of production functions

by allowing productivity to be multi-dimensional. We further contribute to the literature

following Olley & Pakes (1996) by accounting for outsourcing and the dual nature of the

Spanish labor market.

Production function. The firm has the CES production function

Yjt =

[
βKK

− 1−σ
σ

jt +
(
exp(ωLjt)L

∗
jt

)− 1−σ
σ + βM

(
M∗

jt

)− 1−σ
σ

]− νσ
1−σ

exp(ωHjt) exp(ejt), (6)

where Yjt is the output of firm j in period t, Kjt is capital, ωLjt is labor-augmenting produc-

tivity, ωHjt is Hicks-neutral productivity, and ejt is a mean zero random shock that is uncor-

related over time and across firms. Extending the setting in Section 2, L∗
jt = Λ(LPjt, LTjt) is

an aggregate of permanent labor LPjt and temporary labor LTjt and M∗
jt = Γ(MIjt,MOjt)

is an aggregate of in-house materials MIjt and outsourced materials (customized parts and

pieces) MOjt. The aggregators Λ(LPjt, LTjt) and Γ(MIjt,MOjt) accommodate differences in

the productivities of permanent and temporary labor, respectively, in-house and outsourced

materials; we do not further specify these aggregators.

The production function in equation (6) is the most parsimonious we can use to separate

labor-augmenting from Hicks-neutral productivity. It encompasses three restrictions. First,

technological change does not affect the parameters ν and σ, as we are unaware of evidence

suggesting that the elasticity of scale or the elasticity of substitution varies over our sample

13R&D intensities for manufacturing firms are 2.1% in France, 2.6% in Germany, and 2.2% in the UK as
compared to 0.6% in Spain (European Commission 2004).
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period. Second, the elasticity of substitution between capital, labor, and materials is the

same.14 We assess this restriction in Section 8. For now we note that previous estimates

of the elasticity of substitution between materials and an aggregate of capital and labor

(Bruno 1984, Rotemberg & Woodford 1996, Oberfield & Raval 2014) fall in the same range

as estimates of the elasticity of substitution between capital and labor (Chirinko 2008).

Third, the productivities of capital and materials are restricted to change at the same rate

and in lockstep with Hicks-neutral technological change.15 Treating capital and materi-

als the same is in line with the fact that both are, at least to a large extent, produced

goods. In contrast, labor is traditionally viewed as unique among the various factors of

production (Marshall 1920), and changes in its productivity are a tenet of the literature

on economic growth. The patterns in the data described in Section 3 further justify focus-

ing on labor-augmenting technological change. In Section 10, we explore more thoroughly

whether capital-augmenting technological change plays a role in our data in addition to

labor-augmenting and Hicks-neutral technological change.

Laws of motion. The components of productivity are presumably correlated with each

other and over time and possibly also correlated across firms. As in Doraszelski & Jau-

mandreu (2013), we endogenize productivity by incorporating R&D expenditures into the

model. We assume that the evolution of the components of productivity is governed by

controlled first-order, time-inhomogeneous Markov processes with transition probabilities

PLt+1(ωLjt+1|ωLjt, Rjt) and PHt+1(ωHjt+1|ωHjt, Rjt), where Rjt is R&D expenditures. De-

spite their parsimony, these stochastic processes accommodate correlation between the com-

ponents of productivity.16 Moreover, because they are time-inhomogeneous, they accom-

modate secular trends in productivity.

The firm knows its current productivity when it makes its decisions for period t and

anticipates the effect of R&D on its future productivity. The Markovian assumption implies

ωLjt+1 = Et [ωLjt+1|ωLjt, Rjt] + ξLjt+1 = gLt(ωLjt, Rjt) + ξLjt+1, (7)

ωHjt+1 = Et [ωHjt+1|ωHjt, Rjt] + ξHjt+1 = gHt(ωHjt, Rjt) + ξHjt+1. (8)

That is, actual labor-augmenting productivity ωLjt+1 in period t + 1 decomposes into ex-

14The elasticity of substitution between LPjt and LTjt, respectively, MIjt and MOjt depends on the
aggregators Λ(LPjt, LTjt) and Γ(MIjt,MOjt) and may differ from σ.

15A production function with capital-augmenting, labor-augmenting, and materials-augmenting produc-
tivity that is homogeneous of arbitrary degree is equivalent to a production function with capital-augmenting,
labor-augmenting, and Hicks-neutral productivity. Without loss of generality, we therefore subsume the com-
mon component of capital-augmenting, labor-augmenting, and materials-augmenting technological change
into Hicks-neutral productivity.

16Our empirical strategy generalizes to a joint Markov process Pt+1(ωLjt+1, ωHjt+1|ωLjt, ωHjt, rjt). While
R&D is widely seen as a major source of productivity growth (Griliches 1998, Griliches 2000), our empirical
strategy extends to other sources such as technology adoption, learning-by-importing (Kasahara & Rodrigue
2008), and learning-by-exporting (De Loecker 2013). Both extensions are demanding on the data, however,
as they increase the dimensionality of the functions that must be nonparametrically estimated.
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pected labor-augmenting productivity gLt(ωLjt, Rjt) and a random shock ξLjt+1. This pro-

ductivity innovation is by construction mean independent (although not necessarily fully

independent) of ωLjt and Rjt. It captures the uncertainties that are naturally linked to pro-

ductivity as well as those that are inherent in the R&D process such as chance of discovery,

degree of applicability, and success in implementation. Nonlinearities in the link between

R&D and productivity are captured by the conditional expectation function gLt(·) that we

estimate nonparametrically along with the parameters of the production function. Actual

Hicks-neutral productivity ωHjt+1 decomposes similarly.

Capital accumulates according to Kjt+1 = (1 − δ)Kjt + Ijt, where δ is the rate of

depreciation. As in Olley & Pakes (1996), investment Ijt chosen in period t becomes effective

in period t+ 1. Choosing Ijt is therefore equivalent to choosing Kjt+1.

In recognition of the dual nature of the Spanish labor market, we distinguish between

permanent and temporary labor. Permanent labor is subject to convex adjustment costs

CLP
(LPjt, LPjt−1) that reflect the substantial cost of hiring and firing that the firm may

incur (Hammermesh 1993, Hammermesh & Pfann 1996). The choice of permanent labor

thus may have dynamic implications. In contrast, temporary labor is a static input.

We further distinguish between in-house and outsourced materials. Outsourcing is,

to a large extent, based on contractual relationships between the firm and its suppliers

(Grossman & Helpman 2002, Grossman & Helpman 2005). The ratio of outsourced to in-

house materials QMjt =
MOjt

MIjt
is subject to (convex or not) adjustment costs CQM

(QMjt+1, QMjt)

that stem from forming and dissolving these relationships. The firm must maintain QMjt

but may scale MIjt and MOjt up or down at will; in-house materials, in particular, is a

static input. In the Online Appendix, we develop an alternative model of outsourcing that

assumes that both in-house and outsourced materials are static inputs that the firm may

mix and match at will, thereby dispensing with the costly-to-adjust ratio of outsourced to

in-house materials.

Output and input markets. The firm has market power in the output market, e.g., be-

cause products are differentiated. Its inverse residual demand function P (Yjt,Djt) depends

on its output Yjt and the demand shifter Djt.
17 The firm is a price-taker in input markets,

where it faces WPjt, WTjt, PIjt, and POjt as prices of permanent and temporary labor and

in-house and outsourced materials, respectively. In Section 6 we instead assume that the

firm faces a menu of qualities and wages in the market for permanent labor.

The demand shifter and the prices that the firm faces in input markets evolve according

to a Markov process that we do not further specify. As a consequence, the prices that the

firm faces in period t+1 may depend on its productivity in period t or on an average industry-

wide measure of productivity. Finally, the Markov process may be time-inhomogenous to

17In general, the residual demand that the firm faces depends on its rivals’ prices. In taking the model to
the data, one may replace rivals’ prices by an aggregate price index or dummies, although this substantially
increases the dimensionality of the functions that must be nonparametrically estimated.
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accommodate secular trends.

Bellman equation. The firm makes its decisions in a discrete-time setting with the goal

of maximizing the expected net present value of future cash flows. In contrast to its labor-

augmenting productivity ωLjt and its Hicks-neutral productivity ωHjt, the firm does not

know the random shock ejt when it makes its decisions for period t. Letting Vt(·) denote

the value function in period t, the Bellman equation for the firm’s dynamic programming

problem is

Vt(Ωjt) = max
Kjt+1,LPjt,LTjt,QMjt+1,MIjt,Rjt

P
(
X

− νσ
1−σ

jt exp(ωHjt),Djt

)
X

− νσ
1−σ

jt exp(ωHjt)µ

−CI(Kjt+1 − (1− δ)Kjt)−WPjtLPjt − CLP
(LPjt, LPjt−1)−WTjtLTjt

− (PIjt + POjtQMjt)MIjt − CQM
(QMjt+1, QMjt)− CR(Rjt)

+
1

1 + ρ
Et [Vt+1(Ωjt+1)|Ωjt, Rjt] , (9)

where

Xjt = βKK
− 1−σ

σ

jt +
(
exp(ωLjt)L

∗
jt

)− 1−σ
σ + βM

(
M∗

jt

)− 1−σ
σ , µ = Et [exp(ejt)] ,

Ωjt = (Kjt, LPjt−1, QMjt, ωLjt, ωHjt,WPjt,WTjt, PIjt, POjt,Djt) is the vector of state vari-

ables, and ρ is the discount rate. CI(Ijt) and CR(Rjt) are the cost of investment and R&D,

respectively, and accommodate indivisibilities in investment and R&D projects. The firm’s

dynamic programming problem gives rise to policy functions that characterize its invest-

ment and R&D decisions (and thus the values of Kjt+1 or, equivalently, Ijt and Rjt in

period t) as well as its input usage (LPjt, LTjt, QMjt+1, and MIjt). The latter is central to

our empirical strategy.

Investment and R&D decisions. The investment and R&D decisions depend on the

vector of state variables in our model. In the spirit of the literature on induced innovation,

the firm may account for current input prices (as they are part of Ωjt) and its expectation

of future input prices (through the continuation value in equation (9)).18

18The firm may further account for its expectation of future output demand and input supply conditions.
Because our empirical strategy infers the firm’s productivity from its labor and materials decisions, it is
not affected by including additional state variables to model the evolution of these conditions in our model
besides the demand shifter Djt.
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Input usage. We infer the firm’s productivity from its labor and materials decisions. The

first-order conditions for permanent and temporary labor are

νµX
−(1+ νσ

1−σ )
jt exp (ωHjt) exp

(
−
1− σ

σ
ωLjt

)(
L∗
jt

)− 1
σ

∂L∗
jt

∂LPjt
=

WPjt(1 +∆jt)

Pjt

(
1− 1

η(pjt,Djt)

) ,(10)

νµX
−(1+ νσ

1−σ )
jt exp (ωHjt) exp

(
−
1− σ

σ
ωLjt

)(
L∗
jt

)− 1
σ

∂L∗
jt

∂LTjt
=

WTjt

Pjt

(
1− 1

η(pjt,Djt)

) ,(11)

where η(pjt,Djt) is the absolute value of the price elasticity of the residual demand that the

firm faces, and by the envelope theorem, the gap between the wage of permanent workers

WPjt and the shadow wage is

∆jt =
1

WPjt

(
∂CLP

(LPjt, LPjt−1)

∂LPjt
−

1

1 + ρ
Et

[
∂Vt+1(Ωjt+1)

∂LPjt
|Ωjt, Rjt

])

=
1

WPjt

(
∂CLP

(LPjt, LPjt−1)

∂LPjt
+

1

1 + ρ
Et

[
∂CLP

(LPjt+1, LPjt)

∂LPjt
|Ωjt, Rjt

])
.

Equations (10) and (11) allow the mix of permanent and temporary labor to depend on the

firm’s productivity and the other state variables (through ∆jt).

Our data combines the wages of permanent and temporary workers into Wjt = WPjt(1−

STjt) +WTjtSTjt, where STjt =
LTjt

Ljt
is the (quantity) share of temporary labor and Ljt =

LPjt + LTjt is hours worked by permanent and temporary workers in our data. To make

do, we assume that the aggregator Λ(LPjt, LTjt) is linearly homogenous. This implies

L∗
jt = LjtΛ(1 − STjt, STjt),

∂L∗
jt

∂LPjt
= ΛP (1 − STjt, STjt), and

∂L∗
jt

∂LTjt
= ΛT (1 − STjt, STjt).

Using Euler’s theorem to combine equations (10) and (11) yields

νµX
−(1+ νσ

1−σ )
jt exp (ωHjt) exp

(
−
1− σ

σ
ωLjt

)
L
− 1

σ

jt Λ(1− STjt, STjt)
− 1−σ

σ

=

Wjt

(
1 +

∆jt

1+
WTjt

WPjt

STjt

1−STjt

)

Pjt

(
1− 1

η(pjt,Djt)

) =

Wjt

(
ΛP (1−STjt,STjt)

ΛT (1−STjt,STjt)
+

STjt

1−STjt
WPjt

WTjt
+

STjt

1−STjt

)

Pjt

(
1− 1

η(pjt,Djt)

) , (12)

where the second equality follows from dividing equations (10) and (11) and solving for ∆jt.

Because our data does not have the ratio
WPjt

WTjt
, we assume that

WPjt

WTjt
= λ0 is an (un-

known) constant19 and treat

ΛP (1−STjt,STjt)

ΛT (1−STjt,STjt)
+

STjt

1−STjt

λ0+
STjt

1−STjt

= λ1(STjt) as an (unknown) function of

STjt that must be estimated nonparametrically along with the parameters of the production

function. Because equation (12) presumes interior solutions for permanent and temporary

19In Appendix E, we use a wage regression to estimate wage premia of various types of labor. In the
Online Appendix, we extend the specification and demonstrate that the wage premia do not change much
if at all over time in line with our assumption that the ratio

WPjt

WLjt
is constant.
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labor, we exclude observations with STjt = 0 and thus LTjt = 0 from the subsequent

analysis.20

Turning from the labor to the materials decision, because the firm must maintain the ra-

tio of outsourced to in-house materials QMjt, the first-order condition for in-house materials

is

νβMµX
−(1+ νσ

1−σ )
jt exp (ωHjt)

(
M∗

jt

)− 1
σ

dM∗
jt

dMIjt
=

PIjt + POjtQMjt

Pjt

(
1− 1

η(pjt,Djt)

) , (13)

where PIjt + POjtQMjt is the effective cost of an additional unit of in-house materials.

Our data has the materials bill PMjtMjt = PIjtMIjt + POjtMOjt, the (value) share of

outsourced materials SOjt =
POjtMOjt

PMjtMjt
, and the price of materials PMjt. We assume PMjt =

PIjt + POjtQMjt so that the price of materials is the effective cost of an additional unit of

in-house materials. This implies Mjt = MIjt. To map the model to the data, we further

assume that Γ(MIjt,MOjt) is linearly homogenous and normalize Γ(MIjt, 0) = MIjt. This

implies M∗
jt = MIjtΓ

(
1,

PIjt

POjt

SOjt

1−SOjt

)
and

dM∗
jt

dMIjt
= Γ

(
1,

PIjt

POjt

SOjt

1−SOjt

)
. Rewriting equation

(13) yields

νβMµX
−(1+ νσ

1−σ )
jt exp (ωHjt)M

− 1
σ

jt Γ

(
1,

PIjt

POjt

SOjt

1− SOjt

)− 1−σ
σ

=
PMjt

Pjt

(
1− 1

η(pjt,Djt)

) . (14)

Because our data does not have the ratio
PIjt

POjt
, we assume that

PIjt

POjt
= γ0 is an (unknown)

constant and treat ln Γ
(
1, γ0

SOjt

1−SOjt

)
= γ1(SOjt) as an (unknown) function of SOjt.

21 Equa-

tion (14) presumes an interior solution for in-house materials; it is consistent with a corner

solution for outsourced materials. Indeed, absent outsourcing equation (14) reduces to the

first-order condition for in-house materials.

Our primary interest is the bias of technological change. We thus think of λ1(STjt)

and γ1(SOjt) as “correction terms” on labor and, respectively, materials that help account

for the substantial heterogeneity across the firms within an industry. Because we estimate

these terms nonparametrically, they can accommodate different theories about the Spanish

labor market and the role of outsourcing. For example, we develop an alternative model

of outsourcing in the Online Appendix that assumes that both in-house and outsourced

materials are static inputs that the firm may mix and match at will.

20Compare columns (1) and (2) of Tables 1 and 3 with columns (1) and (2) of Table 4 for the exact number
of observations and firms we exclude.

21We have experimented with assuming that
PIjt

POjt
= γ0(t) is an (unknown) function of time t and treating

ln Γ
(
1, γ0(t)

SOjt

1−SOjt

)
= γ1

(
γ0(t)

SOjt

1−SOjt

)
as an (unknown) function of γ0(t)SOjt. As we show in the Online

Appendix, not much changes. Equation (17) tends to yield somewhat lower estimates of σ compared to our
leading estimates in column (3) of Table 4. Compared to our leading estimates in columns (1) and (2) of
Table 7 equation (20) tends to yield somewhat lower estimates of βK and similar estimates of ν in the eight
industries where we have been able to obtain estimates. Our conclusions about the bias of technological
change remain the same.
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Labor-augmenting and Hicks-neutral productivity. From the labor and materials

decisions in equations (12) and (14) we recover (conveniently rescaled) labor-augmenting

productivity ω̃Ljt = (1− σ)ωLjt and Hicks-neutral productivity ωHjt as

ω̃Ljt = γ̃L +mjt − ljt + σ(pMjt − wjt)− σλ2(STjt) + (1− σ)γ1(SOjt)

≡ h̃L(mjt − ljt, pMjt − wjt, STjt, SOjt), (15)

ωHjt = γH +
1

σ
mjt + pMjt − pjt − ln

(
1−

1

η(pjt,Djt)

)

+

(
1 +

νσ

1− σ

)
xjt +

1− σ

σ
γ1(SOjt)

≡ hH(kjt,mjt, SMjt, pjt, pMjt,Djt, STjt, SOjt), (16)

where γ̃L = −σ ln βM , λ2(STjt) = ln
(
λ1(STjt)Λ (1− STjt, STjt)

1−σ
σ

)
, γH = − ln (νβMµ),

Xjt = βKK
− 1−σ

σ

jt + βM (Mjt exp (γ1(SOjt)))
− 1−σ

σ

(
1− SMjt

SMjt
λ1(STjt) + 1

)
,

and SMjt =
PMjtMjt

V Cjt
is the share of materials in variable cost V Cjt = WjtLjt + PMjtMjt.

Recall that uppercase letters denote levels and lowercase letters denote logs. The functions

h̃L(·) and hH(·) allow us to recover unobservable labor-augmenting productivity ω̃Ljt and

Hicks-neutral productivity ωHjt from observables, and we refer to them as inverse functions

from here on. Without loss of generality, we set βK + βM = 1 in what follows.

5 Empirical strategy

The endogeneity problem in production function estimation arises because a firm’s decisions

depend on its productivity, and productivity is not observed by the econometrician. How-

ever, if the firm’s productivity can be inferred from its decisions, then it can be controlled

for in the estimation. To do so, we combine the inverse functions in equations (15) and

(16) with the laws of motion for labor-augmenting and Hicks-neutral productivity in equa-

tions (7) and (8) into estimation equations for the parameters of the production function

in equation (6).

Labor-augmenting productivity. We use equation (15) to recover labor-augmenting

productivity ω̃Ljt and equation (7) to model its evolution. Substituting the inverse function

in equation (15) into the law of motion in equation (7), we form our first estimation equation

mjt − ljt = −σ(pMjt − wjt) + σλ2(STjt)− (1− σ)γ1(SOjt)

+g̃Lt−1(h̃L(mjt−1 − ljt−1, pMjt−1 −wjt−1, STjt−1, SOjt−1), Rjt−1) + ξ̃Ljt, (17)
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where the (conveniently rescaled) conditional expectation function is

g̃Lt−1(h̃L(·), Rjt−1) = (1− σ)gLt−1

(
h̃L(·)

1− σ
,Rjt−1

)

and ξ̃Ljt = (1− σ)ξLjt.
22

We allow g̃Lt−1(h̃L(·), Rjt−1) to differ between zero and positive R&D expenditures and

specify

g̃Lt−1(h̃L(·), Rt−1) = g̃L0(t− 1) + 1(Rjt−1 = 0)g̃L1(h̃L(·))

+1(Rjt−1 > 0)g̃L2(h̃L(·), rjt−1), (18)

where 1(·) is the indicator function and the functions g̃L1(h̃L(·)) and g̃L2(h̃L(·), rjt−1)

are modeled as described in Appendix C. Because the Markov process governing labor-

augmenting productivity is time-inhomogeneous, we allow the conditional expectation func-

tion g̃Lt−1(h̃L(·), Rjt−1) to shift over time by g̃L0(t − 1). In practice, we model this shift

with time dummies.

Compared to directly estimating equation (5) by OLS, equation (17) intuitively dimin-

ishes the endogeneity problem because breaking out the part of ω̃Ljt that is observable

via the conditional expectation function g̃Lt−1(·) leaves “less” in the error term. This also

facilitates instrumenting for any remaining correlation between the included variables and

the error term.

In our model, labor ljt, materials mjt, the wage wjt, and the share of temporary labor

STjt are correlated with the productivity innovation ξ̃Ljt (since ξ̃Ljt is part of ω̃Ljt). Note

that wjt = ln (WPjt(1− STjt) +WTjtSTjt) may be correlated with ξ̃Ljt even though the

firm takes the wage of permanent workers WPjt and the wage of temporary workers WTjt

as given because STjt may depend on ω̃Ljt and ωHjt through equations (10) and (11). We

therefore base estimation on the moment conditions

E
[
ALjt(zjt)ξ̃Ljt

]
= 0, (19)

where ALjt(zjt) is a vector of functions of the exogenous variables zjt as described in

Appendix C.

In considering instruments it is important to keep in mind that equation (17) models the

evolution of labor-augmenting productivity ω̃Ljt. As a consequence, instruments have to

be uncorrelated with the productivity innovation ξ̃Ljt but not necessarily with productivity

itself. Because ξ̃Ljt is the innovation to productivity ω̃Ljt in period t, it is not known to the

22Equation (17) is a semiparametric, partially linear, model with the additional restriction that the inverse

function h̃L(·) is of known form. Identification in the sense of the ability to separate the parametric and
nonparametric parts of the model follows from standard arguments (Robinson 1988, Newey, Powell & Vella
1999).
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firm when it makes its decisions in period t−1. All past decisions are therefore uncorrelated

with ξ̃Ljt. In particular, having been decided in period t−1, ljt−1 andmjt−1 are uncorrelated

with ξ̃Ljt, although they are correlated with ω̃Ljt as long as productivity is correlated over

time. Similarly, because STjt−1 and thus wjt−1 = ln (WPjt−1(1− STjt−1) +WTjt−1STjt−1)

are determined in period t− 1, they are uncorrelated with the productivity innovation ξ̃Ljt

in period t. We therefore use lagged labor ljt−1, lagged materials mjt−1, and the lagged

wage wjt−1 for instruments.

In contrast to the wage wjt, in our model the price of materials pMjt = ln (PIjt + POjtQMjt)

is uncorrelated with ξ̃Ljt because the ratio of outsourced to in-house materials QMjt is de-

termined in period t − 1. For the same reason, the share of outsourced materials SOjt =
POjtQMjt

PIjt+POjtQMjt
is uncorrelated with ξ̃Ljt. We nevertheless choose to err on the side of caution

and restrict ourselves to the lagged price of materials pMjt−1 and the lagged share of out-

sourcing SOjt−1 for instrument. Finally, time t and the demand shifter Djt are exogenous

by construction and we use them for instruments.

The reasoning that the timing of decisions and the Markovian assumption on the evo-

lution of productivity taken together imply that all past decisions are uncorrelated with

productivity innovations originates in Olley & Pakes (1996). The subsequent literature uses

it to justify lagged input quantities as instruments (see, e.g., Section 2.4.1 of Ackerberg

et al. (2007)). In Doraszelski & Jaumandreu (2013), we extend this reasoning to justify

lagged output and input prices as instruments (pp. 1347–1348). More recently, De Loecker,

Goldberg, Khandelwal & Pavcnik (2016) do the same to justify the lagged price of output

as instrument (p. 471).

A test for overidentifying restrictions in Section 6 cannot reject the validity of the

moment conditions in equation (19). As discussed there, this is in large part because the

aggregators Λ(LPjt, LTjt) and Γ(MIjt,MOjt) and the correction terms λ2(STjt) and γ1(SOjt)

associated with them account for quality differences between permanent and temporary

labor, respectively, in-house and outsourced materials and differences in the use of these

inputs over time and across firms. Absent these correction terms, one may be concerned

that unobserved quality lingers in quantities and, perhaps even more so, in prices. This may

lead to correlation between the lagged input prices wjt−1 and pMjt−1 and the productivity

innovation ξ̃Ljt and invalidate them as instruments. By controlling for the composition of

inputs, the correction terms in equation (17) absorb quality differences.23 Indeed, additional

checks suggest that there is limited reason to doubt that wjt−1 and pMjt−1 are uncorrelated

with ξ̃Ljt, in line with the test for overidentifying restrictions.

To the extent that a concern remains, it must thus draw on the notion that quality

differences at a finer level play an important role. We address this concern in two ways by

leveraging our data on the skill mix of a firm’s labor force. First, in our data the larger

23De Loecker et al. (2016) develop a model that links the quality of a firm’s inputs with the quality of its
output. This allows them to use the the observed output price to control for unobserved input prices and
quality. Depending on data availability, this may be an alternative to our approach.
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part of the variation in the wage across firms and periods can be attributed to geographic

and temporal differences in the supply of labor and the fact that firms operate in different

product submarkets (see Appendix E). This part of the variation is arguably exogenous and

therefore useful for estimating equation (17). The smaller part of the variation in the wage

can be attributed to differences in the skill mix and the quality of labor that may potentially

be correlated with the error term in equation (17).24 However, we show in Section 6 that

our estimates are robust to purging the variation due to differences in the skill mix from

the lagged wage wjt−1. Second, in Section 6 we explicitly model quality differences at a

finer level by assuming that the firm faces a menu of qualities and wages in the market for

permanent labor.

Hicks-neutral productivity. Substituting the inverse functions in equations (15) and

(16) into the production function in equation (6) and the law of motion for Hicks-neutral

productivity ωHjt in equation (8), we form our second estimation equation25,26

yjt = −
νσ

1− σ
xjt

+gHt−1(hH(kjt−1,mjt−1, SMjt−1, pjt−1, pMjt−1,Djt−1, STjt−1, SOjt−1), Rjt−1) + ξHjt + ejt.

(20)

We specify gHt−1(hH(·), Rjt−1) analogously to g̃Lt−1(h̃L(·), Rjt−1) in equation (18).

Because output yjt, materials mjt, the share of materials in variable cost SMjt, and the

share of temporary labor STjt are correlated with ξHjt in our model, we base estimation on

the moment conditions

E
[
AHjt(zjt)(ξHjt + ejt)

]
= 0,

where AHjt(zjt) is a vector of function of the exogenous variables zjt. As before, we exploit

the timing of decisions and the Markovian assumption on the evolution of productivity to

rely on lags for instruments. In addition, kjt = ln ((1− δ)Kjt−1 + Ijt−1) is determined in

period t− 1 and therefore uncorrelated with ξHjt.

Estimation. We use the two-step GMM estimator of Hansen (1982). Let νLjt(θL) = ξ̃Ljt

be the residual of estimation equation (17) as a function of the parameters θL to be estimated

24A parallel discussion applies to materials. Kugler & Verhoogen (2012) point to differences in the quality
of materials whereas Atalay (2014) documents substantial variation in the price of materials across plants
in narrowly defined industries with negligible quality differences. This variation is partly due to geography
and differences in cost and markup across suppliers that are arguably exogenous to a plant.

25There are other possible estimation equations. In particular, one can use the labor and materials
decisions in equations (12) and (14) together with the production function in equation (6) to recover ω̃Ljt,

ωHjt, and ejt and then set up separate moment conditions in ξ̃Ljt, ξHjt, and ejt. This may yield efficiency
gains. Our estimation equation (20) has the advantage that it is similar to a CES production function that
has been widely estimated in the literature.

26Equation (20) is again a semiparametric model with the additional restriction that the inverse function
hH(·) is of known form.
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and νHjt(θH) = ξHjt+ ejt the residual of estimation equation (20) as a function of θH . The

GMM problem corresponding to equation (17) is

min
θL


 1

N

∑

j

ALj(zj)νLj(θL)



′

ŴL


 1

N

∑

j

ALj(zj)νLj(θL)


 , (21)

where ALj(zj) is a QL × Tj matrix of functions of the exogenous variables zj , νLj(θL) is a

Tj × 1 vector, ŴL is a QL ×QL weighting matrix, QL is the number of instruments, Tj is

the number of observations of firm j, and N is the number of firms. We provide further

details in Appendix C.

The GMM problem corresponding to equation (20) is analogous. Equation (20) is con-

siderably more nonlinear than equation (17). To facilitate its estimation, we impose the

estimated values of those parameters in θL that also appear in θH . We correct the standard

errors as described in the Online Appendix. Because they tend to be more stable, we report

first-step estimates for equation (20) and use them in the subsequent analysis; however, we

use second-step estimates for testing.

6 Labor-augmenting technological change

From equation (17) we obtain an estimate of the elasticity of substitution and recover

labor-augmenting productivity at the firm level.

Elasticity of substitution. Tables 3 and 4 summarize different estimates of the elasticity

of substitution. To facilitate the comparison with the existing literature, we begin by

proxying for ω̃Ljt = (1 − σ)ωLjt in equation (5) by a time trend δ̃Lt and estimate by OLS.

As can be seen from columns (3) and (4) of Table 3, with the exception of industry 9, the

estimates of the elasticity of substitution are in excess of one, whereas the estimates in the

previous literature lie somewhere between 0 and 1 (Chirinko 2008, Bruno 1984, Rotemberg

& Woodford 1996, Oberfield & Raval 2014). This reflects, first, that a time trend is a poor

proxy for labor-augmenting technological change at the firm level and, second, that the

estimates are upward biased as a result of the endogeneity problem.

We address the endogeneity problem by modeling the evolution of labor-augmenting

productivity and estimating equation (17) by GMM. To illustrate the role of controlling

for the composition of inputs in our empirical strategy, it is helpful to abstract from the

distinction between permanent and temporary labor and in-house and outsourced materials.

To this end, we revert to the setting in Section 2 and assume that labor ljt and materials

mjt are homogenous inputs that are chosen each period to maximize short-run profits. This

implies λ1(STjt) = 1, λ2(STjt) = 0, and γ1(SOjt) = 0, so that the correction terms on labor

and materials vanish and equation (15) reduces to equation (5). Columns (5)–(10) of Table

3 refer to this simplified model. As expected the estimates of the elasticity of substitution
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are much lower and range from 0.45 to 0.64, as can be seen from column (5). With the

exception of industries 6 and 8 in which σ is either implausibly high or low, we clearly

reject the special cases of both a Leontieff (σ → 0) and a Cobb-Douglas (σ = 1) production

function.

Testing for overidentifying restrictions, however, we reject the validity of the moment

conditions in the simplified model at a 5% level in five industries and we are close to rejecting

in two more industries (columns (6) and (7)). To pinpoint the source of this problem, we

exclude the subset of moments involving lagged materials mjt−1 from the estimation. As

can be seen from columns (8)–(10), the resulting estimates of the elasticity of substitution

lie between 0.46 and 0.85 in all industries and at a 5% level we can no longer reject the

validity of the moment conditions in any industry.

To see why the exogeneity of lagged materials mjt−1 is violated contrary to the timing of

decisions in our model, recall that a firm engages in outsourcing if it can procure customized

parts and pieces from its suppliers that are cheaper or better than what the firm can

make in house from scratch. Lumping in-house and outsourced materials together pushes

these quality differences into the error term. As outsourcing often relies on contractual

relationships between the firm and its suppliers, the error term is likely correlated over time

and thus with lagged materials mjt−1 as well.

The correction term γ1(SOjt) in equation (17) absorbs quality differences between in-

house and outsourced materials into the aggregator Γ(MIjt,MOjt) and accounts for the

wedge that outsourcing may drive between the relative quantities and prices of materials and

labor. The correction term λ2(STjt) similarly absorbs quality differences between permanent

and temporary labor into the aggregator Λ(LPjt, LTjt) and accounts for adjustment costs

on permanent labor. As can be seen in columns (3)–(5) of Table 4, the correction terms

duly restore the exogeneity of lagged materials mjt−1 as we cannot reject the validity of the

moment conditions at a 5% level in any industry except for industry 7 in which we (barely)

reject.27 Our leading estimates of σ in column (3) of Table 4 lie between 0.44 and 0.80.

Compared to the estimates in column (8) of Table 3, there are no systematic changes and

our leading estimates are somewhat lower in five industries and somewhat higher in five

industries. In sum, accounting for outsourcing and adjustment costs on permanent labor is

an improvement over the assumption in Levinsohn & Petrin (2003) and many others that

labor and materials are homogenous and static inputs and a key step in estimating the

elasticity of substitution.

Additional checks: Lagged input prices. To uncover any potential weaknesses of

our leading specification, we supplement the omnibus test for overidentifying restrictions

with additional checks. Because the lagged wage wjt−1 and the lagged price of materials

27As noted in Section 4, we exclude observations with STjt = 0 and thus LTjt = 0 because equation (12)
presumes interior solutions for permanent and temporary labor. Compare columns (1) and (2) of Tables 1
and 3 with columns (1) and (2) of Table 4 for the exact number of observations and firms we exclude.
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pMjt−1 play a key role in the estimation of equation (17), we conduct two Sargan difference

tests to more explicitly validate their use as instruments. In case of wjt−1, we compute

the difference in the value of the GMM objective function when we exclude the subset of

moments involving pMjt−1 and when we exclude the subset of moments involving wjt−1

and pMjt−1; in case of pMjt−1 we proceed analogously.28 As can be seen in columns (6)–

(9) of Table 4, the exogeneity assumption on the lagged wage is rejected at a 5% level

in three industries, while that on the lagged price of materials cannot be rejected in any

industry. Viewing all these tests in conjunction, to the extent that a concern about our

leading specification is warranted, it appears more related to labor than to materials.

Below we use the available data on the skill mix to further model a firm facing a choice

of different qualities and wages in the market for permanent labor. For now we note that

our estimates of the elasticity of substitution are robust to purging the variation due to

differences in the quality of labor from the lagged wage wjt−1. In Appendix E, we use a

wage regression to isolate the part of the wage that depends on the skill mix of a firm’s labor

force. Using ŵQjt−1 to denote this part, we replace wjt−1 as an instrument by wjt−1−ŵQjt−1.

Compared to column (3) of Table 4, the estimates of the elasticity of substitution in column

(10) decrease somewhat in three industries, remain essentially unchanged in two industries,

and increase somewhat in five industries.29 The absence of substantial and systematic

changes confirms that the variation in wjt−1 is exogenous with respect to ξ̃Ljt and therefore

useful in estimating equation (17), in line with the test for overidentifying restrictions.

Labor-augmenting technological change. With equation (17) estimated, we recover

the labor-augmenting productivity ωLjt =
ω̃Ljt

1−σ
of firm j in period t up to an additive con-

stant from equation (15). In what follows, we therefore de-mean ωLjt by industry. Abusing

notation, we continue to use ωLjt to denote the de-meaned labor-augmenting productivity

of firm j in period t.

To obtain aggregate measures representing an industry, we account for the survey design

by replicating the subsample of small firms 70%
5% = 14 times before pooling it with the

subsample of large firms. Unless noted otherwise, we report weighed averages of individual

measures, where the weight µjt = Pjt−2Yjt−2/
∑

j Pjt−2Yjt−2 is the share of sales of firm j

in period t − 2. Using the second lag reduces the covariance between the weight and the

variable of interest and thus also the extent of reallocation in the sense of Olley & Pakes

(1996).

The growth of labor-augmenting productivity at firm j in period t is ∆ωLjt = ωLjt −

28To use the same weighting matrix for both specifications and not unduly change variances when we
exclude subsets of moments, we delete the appropriate rows and columns from the weighting matrix for our
leading specification.

29As we show in the Online Appendix, not much changes if we isolate the part of the wage that additionally
depends on firm size to try and account for the quality of labor beyond our rather coarse data on the skill mix
of a firm’s labor force (Oi & Idson 1999). Compared to column (3) of Table 4, the estimates of the elasticity
of substitution decrease somewhat in three industries, remain essentially unchanged in three industries, and
increase somewhat in four industries.
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ωLjt−1.
30 In line with the patterns in the data described in Section 3, our estimates imply an

important role for labor-augmenting technological change. As can be seen from column (1)

of Table 5, labor-augmenting productivity grows quickly, on average, with rates of growth

ranging from 0.9% and 1.7% per year in industries 10 and 7 to 14.5% and 14.6% in industries

6 and 2 and above in industry 5.

Ceteris paribus ∆ωLjt ≈
exp(ωLjt)L

∗
jt−1−exp(ωLjt−1)L

∗
jt−1

exp(ωLjt−1)L
∗
jt−1

approximates the rate of growth

of a firm’s effective labor force exp(ωLjt−1)L
∗
jt−1. To facilitate comparing labor-augmenting

to Hicks-neutral productivity, we approximate the rate of growth of the firm’s output Yjt−1

by ǫLjt−2∆ωLjt, where ǫLjt−2 is the elasticity of output with respect to the firm’s effective

labor force in period t − 2 (see Appendix D).31 This output effect, while on average close

to zero in industry 9, ranges from 0.6% per year in industry 7 to 3.0%, 3.1%, and 3.2%

in industries 6, 2, and 4, see column (2) of Table 5. Across industries, labor-augmenting

technological change causes output to grow by 1.6% per year.

Figure 1 illustrates the magnitude of the output effect of labor-augmenting technological

change and the heterogeneity in its impact across industries. The depicted index cumulates

the year-to-year changes and is normalized to one in 1991. Technological change appears

to have slowed in the 2000s compared to the 1990s: across industries, labor-augmenting

technological change causes output to grow by 2.1% per year before 2000 and by 1.0% per

year after 2000.

Dispersion and persistence. A substantial literature documents dispersion and per-

sistence in productivity (see Bartelsman & Doms (2000) and Syverson (2011) and the ref-

erences therein). To be able to compare labor-augmenting productivity to Hicks-neutral

productivity, we focus on ǫLjt−2ωLjt. Because ωLjt is de-meaned, ǫLjt−2ωLjt measures the

labor-augmenting productivity of firm j in period t relative to the average productivity,

suitably converted into output terms. We thus refer to ǫLjt−2ωLjt as labor-augmenting

productivity in output terms in what follows.

We measure dispersion by the interquartile range of ǫLjt−2ωLjt. As can be seen from

column (3) of Table 5, the interquartile range is between 0.24 in industry 9 and 0.70 in

industry 6. This is comparable to the existing literature.32 Turning from dispersion to

persistence, ǫLjt−2ωLjt is highly autocorrelated (column (4)), indicating that differences in

labor-augmenting productivity between firms persist over time.

30Given the specification of g̃Lt−1(h̃L(·), Rjt−1) in equation (18), we exclude observations where a firm
switches from performing to not performing R&D or vice versa between periods t − 1 and t from the
subsequent analysis. We further exclude observations where a firm switches from zero to positive outsourcing
or vice versa.

31Because ǫLjt depends on ωLjt as can be seen from equation (29), ∆ωLjt is systematically negatively
correlated with ǫLjt and systematically positively correlated with ǫLjt−1. Using ǫLjt−2 drastically reduces
the correlation between the constituent parts of the output effect of labor-augmenting technological change.

32For U.S. manufacturing industries, Syverson (2004) reports an interquartile range of log labor produc-
tivity of 0.66.
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Figure 1: Output effect of labor-augmenting technological change. Index normalized to one
in 1991.

Firms’ R&D activities. As can be seen from column (5) of Table 5, firms that perform

R&D have, on average, higher levels of labor-augmenting productivity in output terms

than firms that do not perform R&D in all industries. In seven industries the output ef-

fect of labor-augmenting technological change for firms that perform R&D, on average,

exceeds that of firms that do not perform R&D (columns (6) and (7)). Overall, our es-

timates indicate that firms’ R&D activities are associated not only with higher levels of

labor-augmenting productivity but by and large also with higher rates of growth of labor-

augmenting productivity. Firms’ R&D activities play a key role in determining the differ-

ences in labor-augmenting productivity across firms and the evolution of this dimension of

productivity over time.

Firm turnover. To assess the impact of firm turnover on the output effect of labor-

augmenting technological change, we classify a firm as a survivor if it enters the industry in

or before 1990 and does not exit in or before 2006, as an exitor if it enters the industry in

or before 1990 and exits in or before 2006, and as an entrant otherwise. Survivors account

for most of the output effect of labor-augmenting technological change. Their contribution

is 80% in industry 6 and above, except for industry 3 where the contribution of entrants is

26



on par with the contribution of survivors. In the remaining industries, the contribution of

entrants is small. The contribution of exitors is small in all industries.

Skill upgrading. In our data, there is a shift from unskilled to skilled workers. For

example, the share of engineers and technicians in the labor force increases from 7.2% in

1991 to 12.3% in 2006. While this shift has to be seen against the backdrop of a general

increase of university graduates in Spain during the 1990s and 2000s, it begs the question

how much skill upgrading contributes to the growth of labor-augmenting productivity.

To answer this question—and to further alleviate concerns about the quality and com-

position of labor—we leverage our rather coarse data on the skill mix of a firm’s labor force.

Besides the share of temporary labor STjt, our data has the share of white collar workers

and the shares of engineers and technicians, respectively.33

We assume that there are Q types of permanent labor with qualities 1, θ2, . . . , θQ and

corresponding wages WP1jt,WP2jt, . . . ,WPQjt. The firm, facing this menu of qualities and

wages, behaves as a price-taker in the labor market. In recognition of their different qualities,

L∗
Pjt = LP1jt+

∑Q
q=2 θqLPqjt is an aggregate of the Q types of permanent labor, with LPqjt

being the quantity of permanent labor of type q at firm j in period t. L∗
jt = Λ(L∗

Pjt, LTjt)

is the aggregate of permanent labor L∗
Pjt (instead of LPjt =

∑Q
q=1 LPqjt) and temporary

labor LTjt in the production function in equation (6). Permanent labor is subject to convex

adjustment costs CBP
(BPjt, BPjt−1), where BPjt =

∑Q
q=1WPqjtLPqjt is the wage bill for

permanent labor. The state vector Ωjt therefore includes BPjt−1, WP1jt,WP2jt, . . . ,WPQjt

instead of LPjt−1 and WPjt.

The first-order condition for permanent labor of type q is

νµX
−(1+ νσ

1−σ )
jt exp (ωHjt) exp

(
−
1− σ

σ
ωLjt

)(
L∗
jt

)− 1
σ

∂L∗
jt

∂L∗
Pjt

θq =
WPqjt(1 + ∆jt)

Pjt

(
1− 1

η(pjt,Djt)

) , (22)

where θ1 = 1 and the gap between the wage WPqjt and the shadow wage is

∆jt =
∂CBP

(BPjt, BPjt−1)

∂BPjt
−

1

WPqjt

1

1 + ρ
Et

[
∂Vt+1(Ωjt+1)

∂LPqjt
|Ωjt, Rjt

]

=
∂CBP

(BPjt, BPjt−1)

∂BPjt
+

1

1 + ρ
Et

[
∂CBP

(BPjt+1, BPjt)

∂BPjt
|Ωjt, Rjt

]
.

Equation (22) implies that θq =
WPqjt

WP1jt
at an interior solution. While our data does not

have WP1jt,WP2jt, . . . ,WPQjt, the wage regression in Appendix E enables us to recover θq

by estimating the wage premium
(
WPqjt

WP1jt
− 1
)
of permanent labor of type q over type 1.

Multiplying equation (22) by the share SPqjt of permanent workers of type q and sum-

33We have these latter measures in the year a firm enters the sample and every subsequent four years. We
take the skill mix to be unchanging in the interim.
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ming yields

νµX
−(1+ νσ

1−σ )
jt exp (ωHjt) exp

(
−
1− σ

σ
ωLjt

)(
L∗
jt

)− 1
σ

∂L∗
jt

∂L∗
Pjt

Θjt =
WPjt(1 + ∆jt)

Pjt

(
1− 1

η(pjt,Djt)

) ,

(23)

where Θjt = SP1jt +
∑Q

q=2 θqSPqjt = 1 +
∑Q

q=2

(
WPqjt

WP1jt
− 1
)
SPqjt is a quality index and

WPjt =
∑Q

q=1WPqjtSPqjt. Using Euler’s theorem to combine equations (11) and (23) yields

νµX
−(1+ νσ

1−σ )
jt exp (ωHjt) exp

(
−
1− σ

σ
ωLjt

)
L
− 1

σ

jt Λ((1 − STjt)Θjt, STjt)
− 1−σ

σ

=

Wjt

(
1 +

∆jt

1+
WTjt

WPjt

STjt

1−STjt

)

Pjt

(
1− 1

η(pjt,Djt)

) =

Wjt

(
ΛP ((1−STjt)Θjt,STjt)Θjt

ΛT ((1−STjt)Θjt,STjt)
+

STjt

1−STjt
WPjt

WTjt
+

STjt

1−STjt

)

Pjt

(
1− 1

η(pjt,Djt)

) , (24)

where the second equality follows from dividing equations (11) and (23) and solving for ∆jt.

We proceed as before by assuming that
WPjt

WLjt
= λ0 is an (unknown) constant and treating

ΛP ((1−STjt)Θjt,STjt)Θjt

ΛT ((1−STjt)Θjt,STjt)
+

STjt

1−STjt

λ0+
STjt

1−STjt

= λ1(STjt,Θjt) as an (unknown) function of STjt and Θjt that

must be estimated nonparametrically. Replacing λ2(STjt) = ln
(
λ1(STjt)Λ(1 − STjt, STjt)

1−σ
σ

)

by λ2(STjt,Θjt) = ln
(
λ1(STjt,Θjt)Λ((1 − STjt)Θjt, STjt)

1−σ
σ

)
in our estimation equation

(17) therefore accounts for types of permanent labor that differ in their qualities and wages.

The estimates of the elasticity of substitution in column (8) of Table 5 continue to hover

around 0.6 across industries, with the exception of industries 4 and 8 in which they are

implausibly low. Compared to column (3) of Table 4, they decrease somewhat in three

industries, remain essentially unchanged in two industries, and increase somewhat in five

industries. This further supports the notion that quality differences at a finer level than

permanent and temporary labor are of secondary importance for estimating equation (17).

We develop the quality index Θjt mainly to “chip away” at the productivity residual by

improving the measurement of inputs in the spirit of the productivity literature (Griliches

1964, Griliches & Jorgenson 1967, Jorgenson 1995a, Jorgenson 1995b). As can be seen from

column (11) of Table 5, skill upgrading indeed explains some, but by no means all of the

growth of labor augmenting productivity. Compared to column (1), the rates of growth

stay the same or go down in all industries. In industries 7, 8, 9, and 10 labor-augmenting

productivity is stagnant or declining after accounting for skill upgrading, indicating that

improvements in the skill mix over time are responsible for most of the growth of labor-

augmenting productivity. In contrast, in industries 1, 2, 3, 4, 5, and 6, labor-augmenting

productivity continues to grow after accounting for skill upgrading, albeit often at a much

slower rate. In these industries, labor-augmenting productivity grows also because workers

with a given set of skills become more productive over time.
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7 The decline of the aggregate share of labor

In many advanced economies the aggregate share of labor in income has declined in past

decades. While this decline has attracted considerable attention in the academic literature

(Blanchard 1997, Bentolila & Saint-Paul 2004, McAdam & Willman 2013, Karabarbounis

& Neiman 2014, Oberfield & Raval 2014) and in the public discussion following Piketty

(2014), its causes and consequences remain contested. We use our estimates to show that

biased technological change is the primary driver of the decline of the aggregate share of

labor in the Spanish manufacturing sector over our sample period.
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Figure 2: Aggregate share of labor in value added in National Accounts (left axis) and
aggregate share of labor in variable cost in sample and counterfactual (right axis). Latter
indices cumulate year-to-year changes using level in 1990 as base and average over industries
using their share of total value added in column (4) of Table A1 as weight.

Let V CLjt = WjtLjt be the wage bill, V Cjt = WjtLjt + PMjtMjt variable cost, and

SLjt =
V CLjt

V Cjt
the share of labor in variable cost of firm j in period t. Let V CLt =

∑
j V CLjt

and V Ct =
∑

j V Cjt be the corresponding industry-wide aggregates. We focus on the

aggregate share of labor in variable cost

SLt =
V CLt

V Ct
=
∑

j

V CLjt

V Cjt

V Cjt

V Ct
=
∑

j

SLjtθjt,
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where θjt =
V Cjt

V Ct
is the variable cost of firm j in period t as a fraction of aggregate variable

cost. As can be seen in Figure 2, the aggregate share of labor in variable cost closely tracks

the aggregate share of labor in value added in the Spanish manufacturing sector in the

National Accounts34 over our sample period.

The year-to-year change in the aggregate share of labor in variable cost is SLt − SLt−1.

Cumulated over our sample period, the decline of the aggregate share of labor ranges from

0.01 and 0.05 in industries 9 and 4 to 0.15 and 0.19 in industries 2 and 5, as can be seen in

column (1) of Table 6.35 To obtain insight into this decline, we build on Oberfield & Raval

(2014) and decompose the year-to-year change as

SLt − SLt−1 =
∑

j

θjt(SLjt − SLjt−1) +
∑

j

(θjt − θjt−1)SLjt−1.

The second term captures reallocation across firms. Our model enables us to further de-

compose the first term. Rewriting equation (15) yields

SLjt =
1

1 + exp (−γ̃L + (1− σ) (pMjt −wjt + ωLjt) + σλ2(STjt)− (1− σ)γ1(SOjt))
. (25)

The first term may thus be driven by a change in the price of materials pMjt relative to

the price of labor wjt, a change in labor-augmenting productivity ωLjt, a change in the

share of temporary labor STjt, and a change in the share of outsourced materials SOjt. To

quantify these drivers, we use a second-order approximation to SLjt − SLjt−1 as described

in Appendix F.

We report the decomposition of the year-to-year change, cumulated over our sample

period, in columns (2)–(7) of Table 6. The small size of the residual in column (7) indicates

that our second-order approximation to SLjt−SLjt−1 readily accommodates nonlinearities.

As can be seen in column (3), biased technological change emerges as the main force behind

the decline of the aggregate share of labor. Changes in input prices in column (2) attenuate

the decline. In contrast, the impact of temporary labor, outsourced materials, and reallo-

cation across firms in the remaining columns is sometimes positive and sometimes negative

and mostly small.

We use our model to compute the counterfactual evolution of the aggregate share of

labor absent biased technological change by zeroing out the change in labor-augmenting

productivity ωLjt in the decomposition of the year-to-year change. As can be seen in

Figure 2, absent biased technological change the aggregate share of labor remains roughly

constant over our sample period. We emphasize that this counterfactual holds fixed not

only reallocation across firms but also the evolution of input prices, temporary labor, and

outsourced materials. This may be questionable over longer stretches of time.

34Contabilidad Nacional de España, Bases 1986 and 1995, Instituto Nacional de Estadistica.
35We estimate SLt − SLt−1 as well as the various terms of the decomposition using firms that are in the

sample in periods t and t− 1.
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Our conclusion that biased technological change is the primary driver of the decline of

the aggregate share of labor echoes that of Oberfield & Raval (2014). Oberfield & Raval

(2014) develop a decomposition of the change in the aggregate share of labor in value added

in the U.S. manufacturing sector from 1970 to 2010. Perhaps the most important difference

between their decomposition and ours is that we directly measure the bias of technological

change at the level of the individual firm, whereas Oberfield & Raval (2014) treat it as the

residual of their decomposition. Despite this difference and the different data sets used,

the decompositions are complementary and both point to the overwhelming role of biased

technological change in the decline of the aggregate share of labor.

8 Hicks-neutral technological change

From equation (17) we obtain an estimate of the elasticity of substitution and recover labor-

augmenting productivity at the firm level. To recover Hicks-neutral productivity and the

remaining parameters of the production function, we have to estimate equation (20).

Distributional parameters and elasticity of scale. Table 7 reports the distributional

parameters βK and βM = 1− βK and the elasticity of scale ν. Our estimates of βK range

from 0.07 in industry 8 to 0.31 in industry 6 (column (1)). Although the estimates of the

elasticity of scale are rarely significantly different from one, taken together they suggest

slightly decreasing returns to scale (columns (2)). We cannot reject the validity of the

moment conditions in any industry by a wide margin (columns (3) and (4)).36

Price elasticity. Column (5) of Table 7 reports the average absolute value of the price

elasticity η(pjt−1,Djt−1) implied by our estimates. It ranges from 1.79 in industry 9 to 6.04

and 9.11 in industries 5 and 2 and averages 3.20 across industries.37

Elasticity of substitution: Lagrange-multiplier test. The production function in

equation (6) assumes that the elasticity of substitution between capital, labor, and mate-

rials is the same. We compare our leading specification to the more general nested CES

production function

Yjt =


βKK

−(1−τ)
τ

jt +

[(
exp(ωLjt)L

∗
jt

)−(1−σ)
σ + βM

(
M∗

jt

)−(1−σ)
σ

] −σ
1−σ

−(1−τ)
τ




−ντ
1−τ

exp(ωHjt) exp(ejt),

where the additional parameter τ is the elasticity of substitution between capital and labor,

respectively, materials. We show in the Online Appendix that our first estimation equation

36In light of this wide margin, we do not further probe the validity of lagged prices as instruments.
37For U.S. manufacturing industries, Oberfield & Raval (2014) report price elasticities in a somewhat

narrower range between 2.91 and 5.22 with a roughly comparable average of 3.91 across industries.
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(17) remains unchanged and generalize our second estimation equation (20). This allows us

to conduct a Lagrange-multiplier test for τ = σ. As can be seen in columns (6) and (7) of

Table 7, we cannot reject the validity of our leading specification in any industry.

Hicks-neutral technological change. With equation (20) estimated, we recover the

Hicks-neutral productivity ωHjt of firm j in period t up to an additive constant from equa-

tion (16); in what follows, we use ωHjt to denote the de-meaned Hicks-neutral productivity.

We proceed as before to obtain aggregate measures representing an industry.

The growth of Hicks-neutral productivity at firm j in period t is ∆ωHjt = ωHjt−ωHjt−1.

Ceteris paribus ∆ωHjt ≈
X

− νσ
1−σ

jt−1 exp(ωHjt) exp(ejt−1)−X
− νσ

1−σ
jt−1 exp(ωHjt−1) exp(ejt−1)

X
− νσ

1−σ
jt−1 exp(ωHjt−1) exp(ejt−1)

approximates

the rate of growth of a firm’s output Yjt−1 and is therefore directly comparable to the output

effect of labor-augmenting technological change. As can be seen from column (1) of Table

8, Hicks-neutral productivity grows quickly in five industries, with rates of growth ranging,

on average, from 1.2% per year in industry 8 to 4.4% in industry 1. It grows much more

slowly or barely at all in three industries, with rates of growth below 0.5% per year. While

there is considerable heterogeneity in the rate of growth of Hicks-neutral productivity across

industries, Hicks-neutral technological change causes output to grow by 1.4% per year.
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Figure 3: Hicks-neutral technological change. Index normalized to one in 1991.
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Figure 3 illustrates the magnitude of Hicks-neutral technological change. The depicted

index cumulates the year-to-year changes and is normalized to one in 1991.38 The hetero-

geneity in the impact of Hicks-neutral technological change across industries clearly exceeds

that of the output effect of labor-augmenting technological change (see again Figure 1).

Once again, technological change appears to have slowed in the 2000s compared to the

1990s: across industries, Hicks-neutral technological change causes output to grow by 2.7%

per year before 2000 and to shrink by 0.6% per year after 2000.

Dispersion and persistence. We measure dispersion by the interquartile range of ωHjt.

As can be seen from column (2) of Table 8, the interquartile range is between 0.37 in

industry 3 and 0.98 in industry 2.39 Hicks-neutral productivity appears to be somewhat

more disperse than labor-augmenting productivity in output terms. Once again, ωHjt is

highly autocorrelated (column (3)), indicating that differences in Hicks-neutral productivity

between firms persist over time.

Firms’ R&D activities. As can be seen from column (4) of Table 8, firms that per-

form R&D have, on average, higher levels of Hicks-neutral productivity than firms that do

not perform R&D in six industries but lower levels of Hicks-neutral productivity in four

industries. While there is practically no difference in industry 10, the rate of growth of

Hicks-neutral productivity for firms that perform R&D, on average, exceeds that of firms

that do not perform R&D in five industries (columns (5) and (6)). Overall, our estimates

indicate that firms’ R&D activities are associated with higher levels and rates of growth of

Hicks-neutral productivity, although firms’ R&D activities seem less closely tied to Hicks-

neutral than to labor-augmenting productivity. This is broadly consistent with the large

literature on induced innovation that argues that firms direct their R&D activities to con-

serve the relatively more expensive factors of production, in particular labor.40

Firm turnover. Similar to the output effect of labor-augmenting technological change,

survivors account for most of Hicks-neutral technological change. Their contribution is 62%

in industry 9 and above. While the contributions of entrants and exitors are small in most

industries, they are negative and more sizable in industries 2, 5, 7, 8, and 10. As a result, in

these industries the rate of growth of Hicks-neutral productivity is 0.7%, 3.0%, 1.2%, 1.7%,

and 1.2% amongst surviors compared to 0.5%, 2.0%, 0.1%, 1.2%, and 0.2% for all firms (see

again column (1) of Table 8).

38In industry 9, in line with column (1) of Table 8, we trim values of ∆ωH below −0.25 and above 0.5.
39For Chinese manufacturing industries, Hsieh & Klenow (2009) report an interquartile range of log total

factor productivity of 1.28.
40More explicitly testing for induced innovation is difficult because we do not observe what a firm does

with its R&D expenditures. One way to proceed may be to add interactions of R&D expenditures and input
prices to the laws of motion in equations (7) and (8). We leave this to future research.

33



Total technological change and its components. As productivity is multi-dimensional,

we take total technological change to be ǫLjt−2∆ωLjt + ∆ωHjt. Taken together, labor-

augmenting and Hicks-neutral technological change cause output to grow by, on average,

between 0.7% in industry 7 and 7.2% and 7.3% in industries 6 and 4, as can be seen in

column (7) of Table 8. Across all industries, total technological change causes output to

grow by 3.0% per year.

The output effect of labor-augmenting technological change ǫLjt−2∆ωLjt and Hicks-

neutral technological change ∆ωHjt are positively correlated in eight industries while the

correlation is zero or slightly negative in two industries (column (8)). The correlation

between labor-augmenting productivity in output terms ǫLjt−2ωLjt and Hicks-neutral pro-

ductivity ωHjt is positive in all industries. Overall, our estimates not only provide evidence

that productivity is multi- instead of single-dimensional but also suggest that the various

components of productivity are intertwined.

9 An aggregate productivity growth decomposition

In quantifying labor-augmenting and Hicks-neutral technological change in Sections 6 and

8, we leverage our firm-level panel data to follow individual firms over time. In this section,

we complement our findings by analyzing the aggregate productivity of the Spanish manu-

facturing sector and its growth over our sample period. To obtain insight into the drivers

of growth, we decompose aggregate productivity growth along the lines of Olley & Pakes

(1996).

Aggregate productivity φt =
∑

j µjtφjt in period t is a weighted average of the produc-

tivity of individual firms, where φjt is a measure of the productivity of firm j in period

t and µjt is its weight. We separately examine labor-augmenting productivity in output

terms ǫLjt−2ωLjt, Hicks-neutral productivity ωHjt, and total productivity ǫLjt−2ωLjt+ωHjt.

Throughout the weight µjt = (pjt+ yjt)/
∑

j(pjt+ yjt) is the share of the log of sales of firm

j in period t.

Following Olley & Pakes (1996) and Melitz & Polanec (2015), we decompose the growth

in aggregate productivity from period t1 to period t2 as

∆φ = φt2
− φt1

=
(
φS
t2
− φS

t1

)
+ µE

t2

(
φE
t2
− φS

t2

)
+ µX

t1

(
φS
t1
− φX

t1

)

=
(
φ̄
S
t2
− φ̄

S
t1

)
+NS

(
Cov

(
µjt2

µS
t2

, φjt2

)
− Cov

(
µjt1

µS
t1

, φjt1

))
+ µE

t2

(
φE
t2
− φS

t2

)
+ µX

t1

(
φS
t1
− φX

t1

)
,

(26)

where S, E, and X indexes the group of survivors, entrants, and exitors, respectively.

µG
t =

∑
j∈G µjt is the total weight of group G in period t, φG

t =
∑

j∈G

µjt

µG
t

φjt is the weighted

average restricted to group G, φ̄
G
t = 1

NG

∑
j∈G φjt is the unweighted average restricted to
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group G, and NG is the number of firms in group G. In the first line of the decomposition,

the first term captures the contribution of survivors to aggregate productivity growth, the

second that of entrants, and the third that of exitors. The second line further decomposes

the contribution of survivors to aggregate productivity growth into a shift in the distribution

of productivity (first term) and a change in covariance that captures reallocation (second

term).

As the decomposition pertains to the population of firms, applying it to the sample

of firms in our firm-level panel data is subject to a caveat. As before we account for the

survey design by replicating the subsample of small firms. We classify a firm as a survivor

if it enters the industry in or before period t1 and does not exit in or before period t2. We

further classify a firm as an entrant if it enters the industry after period t1 and as an exitor

if it exits the industry in or before period t2. Due to attrition and the periodic addition

of new firms to the sample, we observe productivity for a subset of survivors in period t1

and for another subset of survivors in period t2. Because we average over potentially quite

different subsets of firms, especially if periods t1 and t2 are far apart, our estimates of the

various terms in the decomposition may be noisy.

We report the change in aggregate productivity and its decomposition in equation (26)

in Table 9 for the period 1992 to 2006 and the three subperiods 1992 to 1996, 1997 to 2001,

and 2002 to 2006. The change in aggregate productivity in column (1) is consistent with

our findings in Sections 6 and 8. Aggregate labor-augmenting productivity in output terms

grew by 21.7% for the period 1992 to 2006 or about 1.6% per year. Aggregate Hicks-neutral

productivity grew by 19.7% or about 1.4% per year and aggregate total productivity by

41.4% or about 3.0% per year. For the later subperiods, technological change appears to

have slowed down, in particular in case of aggregate Hicks-neutral and total productivity.

Turning to the decomposition in columns (2), (5) and (6), survivors account for most

of the change in aggregate total productivity and its components, again in line with our

findings in Sections 6 and 8.41 With the possible exception of entrants for the subperiod

1992 to 1996, the contribution of entrants and exitors appears to be limited. Honing in

on survivors, shifts in the distribution of productivity are substantially more important

than changes on the covariance, as can be from columns (3) and (4). The contribution of

reallocation to the change in aggregate total productivity and its components is sometimes

positive and sometimes negative and mostly small.

10 Capital-augmenting technological change

As discussed in Section 3, the evolution of the relative quantities and prices of the various

factors of production provides no evidence for capital-augmenting technological change.

Our leading specification therefore restricts the productivities of capital and materials to

41Survivors account for less of the change for the period 1992 to 2006 than for the three subperiods simply
because the definition of survivor is more demanding if periods t1 and t2 are further apart.
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change at the same rate and in lockstep with Hicks-neutral technological change. A more

general specification allows for capital-augmenting productivity ωKjt so that the production

function in equation (6) becomes

Yjt =
[
βK (exp(ωKjt)Kjt)

− 1−σ
σ +

(
exp(ωLjt)L

∗
jt

)− 1−σ
σ + βM

(
M∗

jt

)− 1−σ
σ

]− νσ
1−σ

exp(ωHjt) exp(ejt).

(27)

We explore the role of capital-augmenting technological change in our data in two ways.

First, we follow Raval (2013) and parts of the previous literature on estimating aggregate

production functions (see Antràs (2004) and the references therein) and assume that capital

is a static input that is chosen each period to maximize short-run profits. In analogy to

equation (15), we recover (conveniently rescaled) capital-augmenting productivity ω̃Kjt =

(1− σ)ωKjt as

ω̃Kjt = γ̃K +mjt − kjt + σ(pMjt − pKjt) + (1− σ)γ1(SOjt)

≡ h̃K(mjt − kjt, pMjt − pKjt, SOjt), (28)

where γ̃K = −σ ln
(
βM

βK

)
and we use the user cost in our data as a rough measure of the

price of capital pKjt. Using our leading estimates from Section 6, we recover the capital-

augmenting productivity ωKjt =
ω̃Kjt

1−σ
of firm j in period t up to an additive constant;

in what follows, we use ωKjt to denote the de-meaned capital-augmenting productivity.42

∆ωKjt ≈
exp(ωKjt)Kjt−1−exp(ωKjt−1)Kjt−1

exp(ωKjt−1)Kjt−1
in column (1) of Table 10 approximates the rate of

growth of a firm’s effective capital stock exp(ωKjt−1)Kjt−1 and ǫKjt−2∆ωKjt in column (2)

the rate of growth of the firm’s output Yjt−1, where ǫKjt−2 is the elasticity of output with

respect to the firm’s effective capital stock (see Appendix D). As can be seen from column

(1), capital-augmenting productivity grows slowly, on average, with rates of growth of 0.8%

per year in industry 6, 2.2% in industry 10, and 5.6% in industry 1. The rate of growth is

negative in the remaining seven industries. The growth of capital-augmenting productivity

is especially underwhelming in comparison to the growth of labor-augmenting productivity

(see again column (1) of Table 5). The output effect of capital-augmenting technological

change in column (2) is also close to zero in all industries, although this likely reflects the

fact that capital is not a static input. As the user cost excludes adjustment costs, it falls

short of the shadow price of capital, and using it drives down the elasticity of output with

respect to the firm’s effective capital stock.

Second, we return to the usual setting in the literature following Olley & Pakes (1996)

42As an alternative to plugging our leading estimates from Section 6 into equation (28), in the Online
Appendix we use equation (28) to form the analog to our first estimation equation (17):

mjt − kjt = −σ(pMjt − pKjt)− (1− σ)γ1(SOjt)

+g̃Kt−1(h̃K(mjt−1 − kjt−1, pMjt−1 − pKjt−1, SOjt−1), Rjt−1) + ξ̃Kjt.

Consistent with measurement error in pKjt, the resulting estimates of σ are very noisy and severely biased
toward zero.
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and allow the choice of capital to have dynamic implications. We follow parts of the previous

literature on estimating aggregate production functions and proxy for ωKjt by a time trend

δKt. Our second estimation equation (20) remains unchanged except that

Xjt = βK (exp(δKt)Kjt)
− 1−σ

σ + βM (Mjt exp (γ1(SOjt)))
− 1−σ

σ

(
1− SMjt

SMjt
λ1(STjt) + 1

)
.

Columns (3)–(7) of Table 10 summarize the resulting estimates of βK , ν, and δK . The

estimates of βK and ν are very comparable to those in Table 5. Moreover, the insignificant

time trend leaves little room for capital-augmenting technological change in our data.

In sum, in line with the patterns in the data described in Section 3, there is little, if

any, evidence for capital-augmenting technological change in our data. Of course, our ways

of exploring the role of capital-augmenting technological change are less than ideal in that

they either rest on the assumption that capital is a static input or abstract from firm-

level heterogeneity in capital-augmenting productivity. An important question is therefore

whether our approach can be extended to treat capital-augmenting productivity on par

with labor-augmenting and Hicks-neutral productivity.

Recovering a third component of productivity, at a bare minimum, requires a third

decision besides labor and materials to invert. Investment is a natural candidate. In contrast

to the demand for labor and materials, however, investment depends on the details of the

firm’s dynamic programming problem. There are two principal difficulties. First, one has

to prove that the observed demands for labor and materials along with investment are

jointly invertible for unobserved capital-augmenting, labor-augmenting, and Hicks-neutral

productivity. Second, the inverse functions h̃K(·), h̃L(·), and hH(·) are high-dimensional.

Thus, estimating these functions nonparametrically is demanding on the data. In ongoing

work, Zhang (2015) proposes combining a parametric inversion that exploits the parameter

restrictions between production and input demand functions similar to our paper with a

nonparametric inversion of investment similar to Olley & Pakes (1996).

11 Conclusions

Technological change can increase the productivity of capital, labor, and the other factors

of production in equal terms, or it can be biased towards a specific factor. In this paper, we

directly assess the bias of technological change by measuring, at the level of the individual

firm, how much of technological change is labor augmenting and how much of it is Hicks

neutral.

To this end, we develop a dynamic model of the firm in which productivity is multi-

dimensional. At the center of the model is a CES production function that parsimoniously

yet robustly relates the relative quantities of materials and labor to their relative prices and

labor-augmenting productivity. To properly isolate and measure labor-augmenting produc-
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tivity, we account for other factors that impact this relationship, in particular, outsourcing

and adjustment costs on permanent labor.

We apply our estimator to an unbalanced panel of 2375 Spanish manufacturing firms in

ten industries from 1990 to 2006. Our estimates indicate limited substitutability between

the various factors of production. This calls into question whether the widely-used Cobb-

Douglas production function with its unitary elasticity of substitution adequately represents

firm-level production processes.

Our estimates provide clear evidence that technological change is biased. Ceteris paribus

labor-augmenting technological change causes output to grow, on average, in the vicinity

of 1.5% per year. While skill upgrading explains some of the growth of labor augmenting

productivity, in many industries labor-augmenting productivity grows because workers with

a given set of skills become more productive over time. In short, our estimates cast doubt on

the assumption of Hicks-neutral technological change that underlies many of the standard

techniques for measuring productivity and estimating production functions.

At the same time, however, our estimates do not validate the assumption that tech-

nological change is purely labor augmenting that plays a central role in the literature on

economic growth. In addition to labor-augmenting technological change, our estimates show

that Hicks-neutral technological change causes output to grow, on average, in the vicinity

of 1.5% per year.

While we are primarily interested in measuring how much of technological change is la-

bor augmenting and how much of it is Hicks neutral, we also use our estimates to illustrate

the consequences of biased technological change beyond the growth of output. In particu-

lar, we show that it is the primary driver of the decline of the aggregate share of labor in

the Spanish manufacturing sector over our sample period. An interesting avenue for future

research is to investigate the implications of biased technological change for employment.

Recent research points to biased technological change as a key driver of the diverging expe-

riences of the continental European, U.S., and U.K. economies during the 1980s and 1990s

(Blanchard 1997, Caballero & Hammour 1998, Bentolila & Saint-Paul 2004, McAdam &

Willman 2013). Our estimates lend themselves to decomposing firm-level changes in em-

ployment into displacement, substitution, and output effects and to compare these effects

between labor-augmenting and Hicks-neutral technological change. This may be helpful for

better understanding and predicting the evolution of employment as well as for designing

labor market and innovation policies in the presence of biased technological change.
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Appendix A Proof of proposition 1

Rewriting the ratio of first-order conditions (3) yields

0 = ln
∂H (exp(ωLjt − (mjt − ljt)), 1)

∂Ljt
+ ωLjt − ln

∂H (exp(ωLjt − (mjt − ljt)), 1)

∂Mjt
+ pMjt − wjt

= f(mjt − ljt, pMjt − wjt, ωLjt).

Differentiating the so-defined function f(·) yields

∂f(mjt − ljt, pMjt − wjt, ωLjt)

∂(mjt − ljt)

=


−

∂2H(exp(ωLjt−(mjt−ljt)),1)
∂L2

jt

∂H(exp(ωLjt−(mjt−ljt)),1)
∂Ljt

+

∂2H(exp(ωLjt−(mjt−ljt)),1)
∂Mjt∂Ljt

∂H(exp(ωLjt−(mjt−ljt)),1)
∂Mjt


 exp(ωLjt − (mjt − ljt))

=
H (exp(ωLjt − (mjt − ljt)), 1)

∂2H(exp(ωLjt−(mjt−ljt)),1)
∂Mjt∂Ljt

∂H(exp(ωLjt−(mjt−ljt)),1)
∂Ljt

∂H(exp(ωLjt−(mjt−ljt)),1)
∂Mjt

=
1

σ (exp(ωLjt − (mjt − ljt)))
,

where the second equality uses that H(exp(ωLjt)Ljt,Mjt) is homogeneous of degree one
and the third equality uses that the elasticity of substitution between materials and labor
(Chambers 1988, equation (1.13)) for the production function in equation (1) simplifies to

σ (exp(ωLjt − (mjt − ljt))) =

∂H(exp(ωLjt−(mjt−ljt)),1)
∂Ljt

∂H(exp(ωLjt−(mjt−ljt)),1)
∂Mjt

H (exp(ωLjt − (mjt − ljt)), 1)
∂2H(exp(ωLjt−(mjt−ljt)),1)

∂Mjt∂Ljt

.

Similarly,

∂f(mjt − ljt, pMjt − wjt, ωLjt)

∂(pMjt − wjt)
= 1,

∂f(mjt − ljt, pMjt − wjt, ωLjt)

∂ωLjt
= −

1

σ (exp(ωLjt − (mjt − ljt)))
+ 1.

By the implicit function theorem, around a point (m0
jt − l0jt, p

0
Mjt − w0

jt, ω
0
Ljt) satisfying

f(m0
jt−l0jt, p

0
Mjt−w0

jt, ω
0
Ljt) = 0, there exists a continuously differentiable functionmjt−ljt =

g(pMjt − wjt, ωLjt) such that f(g(pMjt − wjt, ωLjt), pMjt − wjt, ωLjt) = 0 and

∂g(p0Mjt − w0
jt, ω

0
Ljt)

∂(pMjt − wjt)
= −

∂f(m0
jt−l0jt,p

0
Mjt−w0

jt,ω
0
Ljt)

∂(pMjt−wjt)

∂f(m0
jt−l0jt,p

0
Mjt

−w0
jt,ω

0
Ljt

)

∂(mjt−ljt)

= −σ
(
exp(ω0

Ljt − (m0
jt − l0jt))

)
,

∂g(p0Mjt − w0
jt, ω

0
Ljt)

∂ωLjt
= −

∂f(m0
jt−l0jt,p

0
Mjt

−w0
jt,ω

0
Ljt

)

∂ωLjt

∂f(m0
jt−l0jt,p

0
Mjt

−w0
jt,ω

0
Ljt

)

∂(mjt−ljt)

= 1− σ
(
exp(ω0

Ljt − (m0
jt − l0jt))

)
.
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The first-order Taylor series for mjt − ljt = g(pMjt − wjt, ωLjt) around the point (m0
jt −

l0jt, p
0
Mjt − w0

jt, ω
0
Ljt) follows immediately.

Appendix B Data

We observe firms for a maximum of 17 years between 1990 and 2006. We restrict the
sample to firms with at least three years of data on all variables required for estimation.
The number of firms with 3, 4,. . . , 17 years of data is 313, 240, 218, 215, 207, 171, 116,
189, 130, 89, 104, 57, 72, 94, and 160, respectively. Table A1 gives the industry definitions
along with their equivalent definitions in terms of the ESEE, National Accounts, and ISIC
classifications (columns (1)–(3)). Based on the National Accounts in 2000, we further report
the shares of the various industries in the total value added of the manufacturing sector
(column (4)).

In what follows we define the variables we use. We begin with the variables that are
relevant for our main analysis.

• Investment. Value of current investments in equipment goods (excluding buildings,
land, and financial assets) deflated by the price index of investment. The price of
investment is the equipment goods component of the index of industry prices computed
and published by the Spanish Ministry of Industry. By measuring investment in
operative capital we avoid some of the more severe measurement issues of the other
assets.

• Capital. Capital at current replacement values K̃jt is computed recursively from

an initial estimate and the data on current investments in equipment goods Ĩjt. We
update the value of the past stock of capital by means of the price index of investment
PIt as K̃jt = (1− δ) PIt

PIt−1
K̃jt−1 + Ĩjt−1, where δ is an industry-specific estimate of the

rate of depreciation. Capital in real terms is obtained by deflating capital at current

replacement values by the price index of investment as Kjt =
K̃jt

PIt
.

• Labor. Total hours worked computed as the number of workers times the average
hours per worker, where the latter is computed as normal hours plus average overtime
minus average working time lost at the workplace.

• Materials. Value of intermediate goods consumption (including raw materials, com-
ponents, energy, and services) deflated by a firm-specific price index of materials.

• Output. Value of produced goods and services computed as sales plus the variation of
inventories deflated by a firm-specific price index of output.

• Wage. Hourly wage cost computed as total labor cost including social security pay-
ments divided by total hours worked.

• Price of materials. Firm-specific price index for intermediate consumption. Firms
are asked about the price changes that occurred during the year for raw materials,
components, energy, and services. The price index is computed as a Paasche-type
index of the responses.

• Price of output. Firm-specific price index for output. Firms are asked about the price
changes they made during the year in up to 5 separate markets in which they operate.
The price index is computed as a Paasche-type index of the responses.
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• Demand shifter. Firms are asked to assess the current and future situation of the
main market in which they operate. The demand shifter codes the responses as 0,
0.5, and 1 for slump, stability, and expansion, respectively.

• Share of temporary labor. Fraction of workers with fixed-term contracts and no or
small severance pay.

• Share of outsourcing. Fraction of customized parts and pieces that are manufactured
by other firms in the value of the firm’s intermediate goods purchases.

• R&D expenditures. R&D expenditures include the cost of intramural R&D activi-
ties, payments for outside R&D contracts with laboratories and research centers, and
payments for imported technology in the form of patent licensing or technical assis-
tance, with the various expenditures defined according to the OECD Oslo and Frascati
manuals.

We next turn to additional variables that we use for descriptive purposes, extensions, and
robustness checks.

• User cost of capital. Computed as PIt(rjt+ δ−CPIt), where PIt is the price index of
investment, rjt is a firm-specific interest rate, δ is an industry-specific estimate of the
rate of depreciation, and CPIt is the rate of inflation as measured by the consumer
price index.

• Skill mix. Fraction of non-production employees (white collar workers), workers with
an engineering degree (engineers), and workers with an intermediate degree (techni-
cians).

• Region. Dummy variables corresponding to the 19 Spanish autonomous communities
and cities where employment is located if it is located in a unique region and another
dummy variable indicating that employment is spread over several regions.

• Product submarket. Dummy variables corresponding to a finer breakdown of the 10
industries into subindustries (restricted to subindustries with at least 5 firms, see
column (5) of Table A1).

• Technological sophistication. Dummy variable that takes the value one if the firm
uses digitally controlled machines, robots, CAD/CAM, or some combination of these
procedures.

• Identification between ownership and control. Dummy variable that takes the value
one if the owner of the firm or the family of the owner hold management positions.

• Age. Years elapsed since the foundation of the firm with a maximum of 40 years.

• Firm size. Number of workers in the year the firm enters the sample.

Appendix C Estimation

Unknown functions. The functions g̃L1(h̃L(·)), g̃L2(h̃L(·), rjt−1), gH1(hH(·)), and gH2(hH(·), rjt−1)

that are part of the conditional expectation functions g̃Lt−1(h̃L(·), Rjt−1) and gHt−1(hH(·), Rjt−1)
are unknown and must be estimated nonparametrically, as must be the absolute value of
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the price elasticity η(pjt,Djt) and the correction terms λ1(STjt), λ2(STjt), and γ1(SOjt).
Following Wooldridge (2004), we model an unknown function q(v) of one variable v by a
univariate polynomial of degree Q. We model an unknown function q(u, v) of two variables
u and v by a complete set of polynomials of degree Q (see Judd 1998). Unless otherwise
noted, we omit the constant in q(·) and set Q = 3 in the remainder of this paper.

Starting with the conditional expectation functions, we specify g̃L1(h̃L(·)) = q(h̃L(·) −
γ̃L), g̃L2(h̃L(·), rjt) = q0+q(h̃L(·)−γ̃L, rjt), gH1(hH(·)) = q(hH(·)−γH), and gH2(hH(·), rjt) =
q0+ q(hH(·)− γH , rjt), where q0 is a constant and the function q(·) is modeled as described
above. Without loss of generality, we absorb γ̃L and γH into the overall constants of our esti-
mation equations. Turning to the absolute value of the price elasticity, to impose the theoret-
ical restriction η(pjt,Djt) > 1, we specify η(pjt,Djt) = 1+ exp(q(pjt,Djt)), where the func-
tion q(·) is modeled as described above except that we suppress terms involving D2

jt andD3
jt.

Turning to the correction terms, we specify λ1(STjt) = q(lnSTjt) and λ2(STjt) = q(lnSTjt)
in industries 2, 3, and 10 and λ1(STjt) = q(ln(1 − STjt)) and λ2(STjt) = q(ln(1 − STjt))
in the remaining industries.43 Finally, we specify γ1(SOjt) = q(SOjt); this ensures that
γ1(SOjt) = 0 if SOjt = 0 in line with the normalization Γ(MIjt, 0) = MIjt.

Parameters and instruments. Our first estimation equation (17) has 36 parameters:
constant, σ, 15 parameters in g̃L0(t − 1) (time dummies), 3 parameters in g̃L1(h̃L(·)), 10
parameters in g̃L2(h̃L(·), rjt−1), 3 parameters in λ2(STjt), and 3 parameters in γ1(SOjt).

Our instrumenting strategy is adapted from Doraszelski & Jaumandreu (2013) and
we refer the reader to Doraszelski & Jaumandreu (2013) and the references therein for
a discussion of the use of polynomials for instruments. We use the constant, 15 time
dummies, the dummy for performers 1(Rjt−1 > 0), the demand shifter Djt, and a univariate
polynomial in lnSOjt−1 +mjt−1 interacted with 1(SOjt−1 > 0) (3 instruments). We further
use a complete set of polynomials in ljt−1, mjt−1, and pMjt−1 − wjt−1 interacted with the
dummy for nonperformers 1(Rjt−1 = 0) (19 instruments). In industries 5 and 8 we replace
pMjt−1 − wjt−1 by pMjt−1 in the complete set of polynomials. Finally, we use a complete
set of polynomials in ljt−1, mjt−1, and pMjt−1−wjt−1 and rjt−1 interacted with the dummy
for performers 1(Rjt−1 > 0) (34 instruments). This yields a total of 74 instruments and
74− 36 = 38 degrees of freedom (see column (4) of Table 4).

After imposing the estimated values from equation (17), our second estimation equation
(20) has 40 parameters: constant, βK , ν, 15 parameters in gH0(t − 1) (time dummies),
3 parameters in gH1(hH(·)), 10 parameters in gH2(hH(·), rjt−1), 3 parameters in λ1(STjt),
and 6 parameters in η(pjt,Djt).

As before, we use polynomials for instruments. We use the constant, 15 time dummies,
the dummy for performers 1(Rjt−1 > 0), the demand shifter Djt, a univariate polynomial
in pjt−1 (3 instruments), a univariate polynomial in pMjt−1 − pjt−1 (3 instruments), and a
univariate polynomial in kjt (3 instruments). We also use a complete set of polynomials in

Mjt−1
1−SMjt−1

SMjt−1
and Kjt−1 interacted with the dummy for nonperformers 1(Rjt−1 = 0) (9

instruments). Finally, we use a complete set of polynomials in Mjt−1
1−SMjt−1

SMjt−1
and Kjt−1 (9

instruments) and a univariate polynomial in rjt−1 interacted with the dummy for performers
1(Rjt−1 > 0) (3 instruments). This yields a total of 48 instruments and 48− 40 = 8 degrees

43To incorporate skill upgrading, we instead specify λ1(STjt,Θjt) = q(lnSTjt, lnΘjt) and λ2(STjt,Θjt) =
q(lnSTjt, lnΘjt) in industries 2, 3, and 10 and λ1(STjt,Θjt) = q(ln(1 − STjt), lnΘjt) and λ2(STjt,Θjt) =
q(ln(1 − STjt), lnΘjt) in the remaining industries, where the function q(·) is modeled as described above
except that we suppress terms involving (lnΘjt)

2 and (lnΘjt)
3.
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of freedom in industries 1, 2, 3, 6, 7, 9, and 10 (see column (3) of Table 7). In industries 4,
5, and 8, we add a univariate polynomial in ln(1−STjt−1) (3 instruments). We replace the
univariate polynomial in kjt by kjt in industries 4 and 8 and we drop Djt in industry 5.

Estimation. From the GMM problem in equation (21) with weighting matrix ŴL =[
1
N

∑
j ALj(zj)ALj(zj)

′
]−1

we first obtain a consistent estimate θ̂L of θL. This first step is

the NL2SLS estimator of Amemiya (1974). In the second step, we compute the optimal esti-

mate with weighting matrix ŴL =
[
1
N

∑
j ALj(zj)νLj(θ̂L)νLj(θ̂L)

′
ALj(zj)

′
]−1

. Throughout

the paper, we report standard errors that are robust to heteroskedasticity and autocorrela-
tion.

Implementation. Code for our estimator is available from the authors upon request
along with instructions for obtaining the data. We use Gauss 14.0.9 and Optmum 3.1.7.

To the reduce the number of parameters to search over in the GMM problem in equation
(21), we “concentrate out” the parameters that enter it linearly (Wooldridge 2010, p. 435).
To guard against local minima, we have extensively searched over the remaining parameters,
often using preliminary estimates to narrow down the range of these parameters.

Testing. The value of the GMM objective function for the optimal estimator, multiplied
by N , has a limiting χ2 distribution with Q−P degrees of freedom, where Q is the number
of instruments and P the number of parameters to be estimated. We use it as a test for
overidentifying restrictions or validity of the moment conditions.

Appendix D Output effect

Direct calculation starting from equation (6) yields the elasticity of output with respect to
a firm’s effective labor force:

ǫLjt =
∂Yjt

∂ exp(ωLjt)L∗
jt

exp(ωLjt)L
∗
jt

Yjt

=
ν
(
exp(ωLjt)L

∗
jt

)− 1−σ
σ

βKK
− 1−σ

σ

jt +
(
exp(ωLjt)L∗

jt

)− 1−σ
σ

+ βM

(
M∗

jt

)− 1−σ
σ

. (29)

Using equation (15) to substitute for ωLjt and simplifying we obtain

ǫLjt =
ν
1−SMjt

SMjt
λ1(STjt)

βK

βM

(
Kjt

Mjt exp(γ1(SOjt))

)− 1−σ
σ

+
1−SMjt

SMjt
λ1(STjt) + 1

. (30)

Recall from equation (12) that λ1(STjt) = 1 +
∆jt

1+
WTjt
WPjt

STjt
1−STjt

, where ∆jt is the gap between

the wage of permanent workersWPjt and the shadow wage. To facilitate evaluating equation
(30), we abstract from adjustment costs and set λ1(STjt) = 1.
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Direct calculation starting from equation (27) also yields the elasticity of output with
respect to a firm’s effective capital stock:

ǫKjt =
∂Yjt

∂ exp(ωKjt)Kjt

exp(ωKjt)Kjt

Yjt

=
ν (exp(ωKjt)Kjt)

− 1−σ
σ

(exp(ωKjt)Kjt)
− 1−σ

σ +
(
exp(ωLjt)L∗

jt

)− 1−σ
σ

+ βM

(
M∗

jt

)− 1−σ
σ

=
ν

1 +
PMjtMjt

PKjtKjt

(
1−SMjt

SMjt
λ1(STjt) + 1

) , (31)

where we use equations (15) and (28) to substitute for ωLjt and ωKjt, respectively. As with
equation (30), we set λ1(STjt) = 1 to evaluate equation (31).

Appendix E Wage regression

As column (1) of Table A2 shows, the coefficient of variation for the (level of the) wage Wjt

ranges from 0.35 to 0.50 across industries.44 The variance decomposition in columns (2)–(4)
shows that around one quarter of the overall variation is within firms across periods. The
larger part of this variation is across firms.

To explore the source of this variation, we regress the (log of the) wage wjt on the skill
mix of a firm’s labor force as given by the share of temporary (as opposed to permanent)
labor, the share of white (as opposed to blue) collar workers, and the shares of engineers
and technicians (as opposed to unskilled workers), time dummies, region dummies, product
submarket dummies, the demand shifter, and an array of other firm characteristics, namely
dummies for technological sophistication and identification of ownership and control as well
as univariate polynomials of degree 3 in age and firm size.

To motivate this regression, assume that there are Q types of labor with wages W1jt,
W2jt, . . . , WQjt and write the wage as

Wjt =

Q∑

q=1

WqjtSqjt = W1jt


1 +

Q∑

q=2

(
Wqjt

W1jt
− 1

)
Sqjt


 ,

where Sqjt is the share of labor of type q and
∑Q

q=1 Sqjt = 1. Because

wjt ≈ w1jt +

Q∑

q=2

(
Wqjt

W1jt
− 1

)
Sqjt,

the coefficient on Sqjt in the wage regression is an estimate of the wage premium
(
Wqjt

W1jt
− 1
)

of labor of type q over type 1. Because we do not have the joint distribution of skills
(e.g., temporary white collar technician) in our data, we approximate it by the marginal
distributions (e.g., share of temporary labor) and ignore higher-order terms. As columns
(5)–(8) of Table A2 show, the estimated coefficients on the skill mix of a firm’s labor force
are often significant, have the expected signs, and are quite similar across industries. On

44The coefficient of variation for the price of materials ranges from 0.12 to 0.19 across industries.
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average across industries, temporary workers earn 36% less than permanent workers, white
collar workers earn 26% more than blue collar workers, engineers earn 85% more than
unskilled workers, and technicians earn 23% more than unskilled workers.

The wage regression also shows that some, but by no means all variation in the wage is
due to worker quality. To isolate the part of the wage that depends on the skill mix of a firm’s
labor force, we decompose the predicted wage ŵjt into a prediction ŵQjt based on the skill
mix and a prediction ŵCjt based on the remaining variables. ŵQjt and ŵCjt are positively

correlated. According to R2 =
V ar(ŵjt)
V ar(wjt)

in column (9), depending on the industry, the wage

regression explains between 63% and 76% of the variation in the wage, with an average of
70%. The skill mix by itself explains between 2% and 20% of the variation in the wage,

with an average of 10% (see R2
Q =

V ar(ŵQjt)
V ar(wjt)

in column (10)). In contrast, the remaining

variables explain between 36% and 64% of the variation in the wage, with an average of

48% (see R2
C =

V ar(ŵCjt)
V ar(wjt)

in column (11)). The larger part of the variation in the wage

therefore appears to be due to temporal and geographic differences in the supply of labor,
the fact that firms operate in different product submarkets, and other firm characteristics.

In developing the quality index Θjt, we assume that there are Q types of permanent

labor. We approximate the wage premium
(
WPqjt

WP1jt
− 1
)
of permanent labor of type q over

type 1 by the estimated coefficient on Sqjt in the wage regression and the share SPqjt =
LPqjt

LPjt
=

LPqjt

Ljt

/
LPjt

Ljt
of permanent labor of type q by

Sqjt

1−STjt
.

Appendix F Second-order approximation

Let Υjt = −γ̃L + (1 − σ) (pMjt − wjt + ωLjt) + σλ2(STjt) − (1 − σ)γ1(SOjt) and ∆Υjt =
Υjt −Υjt−1. Using equation (25) we write

SLjt − SLjt−1 = −SLjt(1− SLjt−1) (exp (∆Υjt)− 1)

≈ −SLjt(1− SLjt−1)

(
∆Υjt +

1

2
(∆Υjt)

2

)
,

where we replace exp (∆Υjt) − 1 by its second-order Taylor series approximation around
∆Υjt = 0. We allocate the interactions in (∆Υjt)

2 in equal parts to the variables involved.
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Antràs, P. (2004), ‘Is the U.S. aggregate production function Cobb-Douglas? New estimates
of the elasticity of substitution’, Contributions to Macroeconomics 4(1).

Atalay, E. (2014), ‘Materials prices and productivity’, Journal of the European Economic
Association 12(3), 575–611.

Balat, J., Brambilla, I. & Sasaki, Y. (2015), Heterogeneous firms: Skilled-labor productivity
and export destinations, Working paper, Johns Hopkins University, Baltimore.

Bartelsman, E. & Doms, M. (2000), ‘Understanding productivity: Lessons from longitudinal
microdata’, Journal of Economic Literature 38(3), 569–594.

Bentolila, S. & Saint-Paul, G. (2004), ‘Explaining movements in the labor share’, Contri-
butions to Macroeconomics 3(1).

Bernard, A., Redding, S. & Schott, P. (2010), ‘Multiple-product firms and product switch-
ing’, American Economic Review 100(1), 70–97.

Binswanger, H. (1974), ‘The measurement of technical change biases with many factors of
production’, American Economic Review 64(6), 964–976.

Black, S. & Lynch, L. (2001), ‘How to compete: The impact of workplace practices and in-
formation technology on productivity’, Review of Economics and Statistics 83(3), 434–
445.

Blanchard, O. (1997), ‘The medium run’, Brookings Papers on Economic Activity: Macroe-
comomics 1997(2), 89–158.

Bloom, N., Sadun, R. & Van Reenen, J. (2012), ‘Americans do IT better: US multinationals
and the productivity miracle’, American Economic Review 102(1), 167–201.

Brown, M. & de Cani, J. (1963), ‘Technological change and the distribution of income’,
International Economic Review 4(3), 289–309.

Bruno, M. (1984), ‘Raw materials, profits, and the productivity slowdown’, Quarterly Jour-
nal of Economics 99(1), 1–30.

Caballero, R. & Hammour, M. (1998), ‘Jobless growth: appropriability, factor substitution,
and unemployment’, Carnegie-Rochester Conference Series on Public Policy 48, 51–94.

Cain, L. & Paterson, D. (1986), ‘Biased technical change, scale, and factor substitution in
American industry, 1850-1919’, Journal of Economic History 46(1), 153–164.

Card, D. & DiNardo, J. (2002), ‘Skill-biased technological change and rising wage inequality:
Some problems and puzzles’, Journal of Labor Economics 20(4), 733–783.

Chambers, R. (1988), Applied production analysis: A dual approach, Cambridge University
Press, Cambridge.

46



Chirinko, R. (2008), ‘σ: The long and short of it’, Journal of Multivariate Analysis 30, 671–
686.

David, P. & van de Klundert, T. (1965), ‘Biased efficiency growth and capital-labor substi-
tution in the U.S., 1899-1960’, American Economic Review 55(3), 357–394.

Davis, S. & Haltiwanger, J. (1992), ‘Gross job creation, gross job destruction, and employ-
ment reallocation’, Quarterly Journal of Economics 107(3), 819–863.

De Loecker, J. (2013), ‘Detecting learning by exporting’, American Economic Journal:
Microeconomics 5(3), 1–21.

De Loecker, J., Goldberg, P., Khandelwal, A. & Pavcnik, N. (2016), ‘Prices, markups and
trade reform’, Econometrica 84(2), 445–510.

Dolado, J., Garcia-Serrano, C. & Jimeno, J. (2002), ‘Drawing lessons from the boom of
temporary jobs in Spain’, Economic Journal 112(480), 270–295.

Doraszelski, U. & Jaumandreu, J. (2013), ‘R&D and productivity: Estimating endogenous
productivity’, Review of Economic Studies 80(4), 1338–1383.

Dunne, T., Roberts, M. & Samuelson, L. (1988), ‘Patterns of firm entry and exit in U.S.
manufacturing’, Rand Journal of Economics 19(4), 495–515.

Eslava, M., Haltiwanger, J., Kugler, A. & Kugler, M. (2004), ‘The effects of structural re-
forms on productivity and profitability enhancing reallocation: Evidence from Colom-
bia’, Journal of Development Economics 75, 333–371.

European Commission (2001), ‘Statistics on innovation in Europe’, Enterprise DG, Brussels.

European Commission (2004), ‘European competitiveness report’, Enterprise DG, Brussels.

Foster, L., Haltiwanger, J. & Syverson, C. (2008), ‘Reallocation, firm turnover, and ef-
ficiency: Selection on productivity or profitability?’, American Economic Review
98(1), 394–425.

Foster, L., Haltiwanger, J. & Syverson, C. (2016), ‘The slow growth of new plants: Learning
about demand?’, Economica 83(329), 91–129.

Fox, F., Hadad, V., Hoderlein, S., Petrin, A. & Sherman, R. (2016), Heterogeneous pro-
duction functions, panel data, and productivity dispersion, Slide deck, Rice University,
Houston.

Gandhi, A., Navarro, S. & Rivers, D. (2013), On the identification of production functions:
How heterogeneous is productivity?, Working paper, University of Wisconsin.

Goldberg, P., Khandelwal, A., Pavcnik, N. & Topalova, P. (2010), ‘Multiproduct firms and
product turnover in the developing world: Evidence from India’, Review of Economics
and Statistics 92(4), 1042–1049.

Goldman, S. & Uzawa, H. (1964), ‘A note on separability in demand analysis’, Econometrica
32(3), 387–398.

47



Gordon, R. (1990), The measurement of durable goods prices, National Bureau of Economic
Research Monograph Series, University of Chicago Press, Chicago.

Grieco, P., Li, S. & Zhang, H. (2016), ‘Production function estimation with unobserved
input price dispersion’, International Economic Review 57(2), 665–690.

Griliches, Z. (1964), ‘Research expenditures, education and the aggregate agricultural pro-
duction function’, American Economic Review 54(6), 961–974.

Griliches, Z. (1998), R&D and productivity: The econometric evidence, University of
Chicago Press, Chicago.

Griliches, Z. (2000), R&D, education, and productivity: A retrospective, Harvard University
Press, Cambridge.

Griliches, Z. & Jorgenson, D. (1967), ‘The explanation of productivity change’, Review of
Economic Studies 34(3), 249–283.

Griliches, Z. & Mairesse, J. (1998), Production functions: The search for identification, in
S. Strom, ed., ‘Econometrics and Economic Theory in the 20th Century: The Ragnar
Frisch Centennial Symposium’, Cambridge University Press, Cambridge.

Grossman, G. & Helpman, E. (2002), ‘Integration versus outsourcing in industry equilib-
rium’, Quarterly Journal of Economics 117(1), 85–120.

Grossman, G. & Helpman, E. (2005), ‘Outsourcing in a global economy’, Review of Eco-
nomic Studies 72(1), 135–159.

Hall, R. (1988), ‘The relation between price and marginal cost in U.S. industry’, Journal of
Political Economy 96(5), 921–947.

Hammermesh, D. (1993), Labor demand, Princeton University Press, Princeton.

Hammermesh, D. & Pfann, G. (1996), ‘Adjustment costs in factor demand’, Journal of
Economic Literature 34(3), 1264–1292.

Hansen, L. (1982), ‘Large sample properties of generalized method of moments estimators’,
Econometrica 50(4), 1029–1054.

Hicks, J. (1932), The theory of wages, Macmillan, London.

Hsieh, C. & Klenow, P. (2009), ‘Misallocation and manufacturing TFP in China and India’,
Quarterly Journal of Economics 124(4), 1403–1448.

Jin, H. & Jorgenson, D. (2010), ‘Econometric modeling of technical change’, Journal of
Econometrics 157(2), 205–219.

Jones, C. (2005), ‘The shape of production functions and the direction of technical change’,
Quarterly Journal of Economics 120(2), 517–549.

Jorgenson, D. (1995a), Productivity. Volume 1: Postwar U.S. economic growth, MIT Press,
Cambridge.

Jorgenson, D. (1995b), Productivity. Volume 2: International comparisons of economic
growth, MIT Press, Cambridge.

48



Judd, K. (1998), Numerical methods in economics, MIT Press, Cambridge.

Kalt, J. (1978), ‘Technological change and factor substitution in the United States: 1929-
1967’, International Economic Review 19(3), 761–775.

Karabarbounis, L. & Neiman, B. (2014), ‘The global decline of the labor share’, Quarterly
Journal of Economics 129(1), 61–103.

Kasahara, H. & Rodrigue, J. (2008), ‘Does the use of imported intermediates increase
productivity? Plant-level evidence’, Journal of Development Economics 87, 106–118.

Kasahara, H., Schrimpf, P. & Suzuki, M. (2015), Identification and estimation of pro-
duction functions with unoberved heterogeneity, Working paper, University of British
Columbia, Vancouver.

Klump, R., McAdam, P. & Willman, A. (2007), ‘Factor substitution and factor-augmenting
technical progress in the United States: A normalized supply-side system approach’,
Review of Economics and Statistics 89(1), 183–192.

Krueger, A. (1999), ‘Measuring labor’s share’, American Economic Review 90(2), 45–51.

Kugler, M. & Verhoogen, E. (2012), ‘Prices, plant size, and product quality’, Review of
Economic Studies 79, 307–339.

Levinsohn, J. & Petrin, A. (2003), ‘Estimating production functions using inputs to control
for unobservables’, Review of Economic Studies 70(2), 317–341.

Lucas, R. (1969), Labor-capital substitution in U.S. manufacturing, in A. Harberger &
M. Bailey, eds, ‘The taxation of income from capital’, Brookings Institution, Washing-
ton, pp. 223–274.

Lucas, R. (1988), ‘On the mechanics of economic development’, Journal of Monetary Eco-
nomics 22(1), 3–42.

Machin, S. & Van Reenen, J. (1998), ‘Technology and changes in skill structure: Evidence
from seven OECD countries’, Quarterly Journal of Economics 113(4), 1215–1244.

Marschak, J. & Andrews, W. (1944), ‘Random simultaneous equations and the theory of
production’, Econometrica 12(3), 143–205.

Marshall, A. (1920), Principles of eocnomics, 8th edn, Macmillan, London.

McAdam, P. & Willman, A. (2013), ‘Medium run redux’, Macroeconomic Dynamics
17(4), 695–727.

Melitz, M. & Polanec, S. (2015), ‘Dynamic Olley-Pakes productivity decomposition with
entry and exit’, Rand Journal of Economics 46(2), 362–375.

Newey, W., Powell, J. & Vella, F. (1999), ‘Nonparametric estimation of triangular simulta-
neous equations models’, Econometrica 67(3), 565–603.

Oberfield, E. & Raval, D. (2014), Micro data and macro technology, Working paper, Federal
Trade Commission, Washington.

49



OECD (2007), ‘The policy mix for research, development and innovation in Spain: Key
issues and policy recommendations’, Directorate for Science, Technology and Industry,
Paris.

Oi, W. & Idson, T. (1999), Firm size and wages, in O. Ashenfelter & D. Card, eds, ‘Hand-
book of labor economics’, Vol. 3, Elsevier, Amsterdam.

Olley, S. & Pakes, A. (1996), ‘The dynamics of productivity in the telecommunications
industry’, Econometrica 64(6), 1263–1297.

Piketty, T. (2014), Capital in the twenty-first century, Belknap Press, Cambridge.

Raval, D. (2013), Non neutral technology differences, Working paper, Federal Trade Com-
mission, Washington.

Roberts, M. & Supina, D. (1996), ‘Output price, markups, and producer size’, European
Economic Review 40, 909–921.

Robinson, P. (1988), ‘Root-n-consistent semiparametric regression’, Econometrica
56(4), 931–954.

Romer, P. (1990), ‘Endogenous technological change’, Journal of Political Economy
98(5), S71–S102.

Rotemberg, J. &Woodford, M. (1996), ‘Imperfect competition and the effects of energy price
increases on economic activity’, Journal of Money, Credit and Banking 28(4), 549–577.

Solow, R. (1957), ‘Technical change and the aggregate production function’, Review of
Economics and Statistics 39(3), 312–320.

Syverson, C. (2004), ‘Product substitutability and productivity dispersion’, Review of Eco-
nomics and Statistics 86(2), 534–550.

Syverson, C. (2011), ‘What determines productivity?’, Journal of Economic Literature
49(2), 326–365.

Uzawa, H. (1961), ‘Neutral inventions and the stability of growth equilibrium’, Review of
Economic Studies 28(2), 117–124.

Van Biesebroeck, J. (2003), ‘Productivity dynamics with technology choice: An application
to automobile assembly’, Review of Economic Studies 70, 167–198.

Violante, G. (2008), Skill-biased technical change, in S. Durlauf & L. Blume, eds, ‘The New
Palgrave Dictionary of Economics’, 2nd edn, Palgrave Macmillan, New York.

Wooldridge, J. (2004), On estimating firm-level production functions using proxy variables
to control for unobservables, Working paper, Michigan State University, East Lansing.

Wooldridge, J. (2010), Econometric analysis of cross section and panel data, 2nd edn, MIT
Press, Cambridge.

Zhang, H. (2014), Biased technology and contribution of technological change to economic
growth: Firm-level evidence, Working paper, University of Hong Kong, Hong Kong.

Zhang, H. (2015), Non-neutral technology, firm heterogeneity, and labor demand, Working
paper, University of Hong Kong, Hong Kong.

50



Table 1: Descriptive statistics.

Rates of growthb

Obs.a Firmsa Output Capital Labor Materials Price M
L

PM

W
M
K

PM

PK

Industry (s. d.) (s. d.) (s. d.) (s. d.) (s. d.) (s. d.) (s. d.) (s. d.) (s. d.)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1. Metals and metal products 2365 313 0.045 0.051 0.008 0.030 0.017 0.022 -0.008 -0.021 0.049
(0.235) (0.192) (0.161) (0.327) (0.052) (0.316) (0.176) (0.373) (0.099)

2. Non-metallic minerals 1270 163 0.046 0.057 0.010 0.041 0.012 0.031 -0.012 -0.016 0.043
(0.228) (0.212) (0.177) (0.285) (0.058) (0.272) (0.147) (0.333) (0.104)

3. Chemical products 2168 299 0.060 0.062 0.015 0.044 0.008 0.029 -0.015 -0.019 0.044
(0.228) (0.182) (0.170) (0.274) (0.055) (0.250) (0.153) (0.313) (0.141)

4. Agric. and ind. machinery 1411 178 0.031 0.040 -0.003 0.018 0.015 0.022 -0.015 -0.021 0.041
(0.252) (0.190) (0.169) (0.347) (0.026) (0.335) (0.155) (0.390) (0.099)

5. Electrical goods 1505 209 0.059 0.041 0.010 0.048 0.008 0.038 -0.021 0.007 0.045
(0.268) (0.173) (0.205) (0.359) (0.046) (0.344) (0.174) (0.394) (0.095)

6. Transport equipment 1206 161 0.060 0.043 0.004 0.051 0.008 0.047 -0.019 0.008 0.033
(0.287) (0.164) (0.201) (0.375) (0.031) (0.343) (0.171) (0.396) (0.093)

7. Food, drink and tobacco 2455 327 0.023 0.047 0.003 0.012 0.021 0.009 -0.018 -0.035 0.049
(0.206) (0.177) (0.169) (0.286) (0.054) (0.295) (0.176) (0.328) (0.116)

8. Textile, leather and shoes 2368 335 0.004 0.031 -0.015 -0.009 0.015 0.006 -0.021 -0.040 0.040
(0.229) (0.189) (0.180) (0.348) (0.042) (0.355) (0.183) (0.385) (0.099)

9. Timber and furniture 1445 207 0.025 0.045 0.013 0.014 0.020 0.001 -0.019 -0.031 0.067
(0.225) (0.168) (0.184) (0.335) (0.031) (0.329) (0.171) (0.371) (0.123)

10. Paper and printing products 1414 183 0.031 0.052 -0.001 0.013 0.017 0.014 -0.017 -0.039 0.046
(0.187) (0.221) (0.149) (0.252) (0.074) (0.247) (0.159) (0.326) (0.122)

a Including STjt = LTjt = 0.
b Computed for 1991 to 2006.



Table 2: Descriptive statistics (cont’d).

Intrafirm max-min
Temp. labor Share Hours Hours Outsourcing With R&D
Obs. Share of temp. workeda per workera Obs. Share Stable Occas. R&D intens.

Industry (%) (s. d.) (s. d.) (s. d.) (s. d.) (%) (s. d.) (%) (%) (s. d.)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1. Metal and metal products 1877 0.260 0.243 0.448 0.069 1014 0.200 56 109 0.012
(79.4) (0.221) (0.197) (0.360) (0.090) (42.9) (0.193) (17.9) (34.8) (0.018)

2. Non-metallic minerals 1018 0.231 0.232 0.482 0.065 316 0.177 20 62 0.011
(80.2) (0.207) (0.183) (0.403) (0.063) (24.9) (0.179) (12.3) (38.0) (0.022)

3. Chemical products 1722 0.170 0.203 0.446 0.043 924 0.146 121 85 0.026
(79.4) (0.176) (0.185) (0.427) (0.038) (42.6) (0.183) (40.5) (28.4) (0.034)

4. Agric. and ind. machinery 1069 0.189 0.227 0.485 0.086 808 0.288 64 62 0.022
(75.8) (0.181) (0.181) (0.419) (0.166) (57.3) (0.263) (36.0) (34.8) (0.026)

5. Electrical goods 1221 0.245 0.280 0.559 0.063 763 0.181 83 61 0.029
(81.1) (0.206) (0.216) (0.452) (0.077) (50.7) (0.194) (39.7) (29.2) (0.040)

6. Transport equipment 962 0.206 0.239 0.555 0.131 637 0.233 60 56 0.028
(79.8) (0.198) (0.184) (0.415) (0.237) (52.8) (0.261) (37.3) (34.8) (0.049)

7. Food, drink and tobacco 2067 0.276 0.266 0.468 0.058 514 0.142 65 86 0.007
(84.2) (0.237) (0.215) (0.343) (0.065) (20.9) (0.172) (19.9) (26.3) (0.022)

8. Textile, leather and shoes 1726 0.238 0.291 0.489 0.062 1214 0.252 44 85 0.017
(79.2) (0.260) (0.244) (0.402) (0.086) (51.3) (0.237) (13.1) (25.4) (0.031)

9. Timber and furniture 1175 0.320 0.326 0.523 0.056 535 0.183 21 44 0.010
(81.3) (0.226) (0.234) (0.387) (0.076) (37.0) (0.201) (10.1) (21.3) (0.017)

10. Paper and printing products 1024 0.155 0.221 0.425 0.057 679 0.273 17 48 0.015
(72.4) (0.145) (0.196) (0.346) (0.065) (48.0) (0.253) (9.3) (26.2) (0.028)

a Computed as difference in logs.



Table 3: Elasticity of substitution.

OLS GMM incl. mjt−1 as instr. GMM excl. mjt−1 as instr.

Obs.a Firmsa σ δ̃L σ χ2 (df) p val. σ χ2 (df) p val.
Industry (s. e.) (s. e.) (s. e.) (s. e.)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1. Metals and metal products 2365 313 1.163 0.023 0.451 57.846 0.034 0.694 13.683 0.550
(0.104) (0.007) (0.096) (40) (0.113) (15)

2. Non-metallic minerals 1270 163 1.227 0.038 0.643 46.068 0.234 0.603 11.299 0.731
(0.119) (0.008) (0.086) (40) (0.126) (15)

3. Chemical products 2168 299 1.132 0.016 0.481 65.068 0.007 0.618 7.582 0.939
(0.095) (0.007) (0.099) (40) (0.124) (15)

4. Agric. and ind. machinery 1411 178 1.239 0.019 0.502 56.166 0.046 0.598 8.500 0.902
(0.166) (0.008) (0.114) (40) (0.103) (15)

5. Electrical goods 1505 209 1.402 0.017 0.469 60.674 0.019 0.458 17.457 0.292
(0.163) (0.009) (0.108) (40) (0.108) (15)

6. Transport equipment 1206 161 1.161 0.029 1.204 48.449 0.169 0.512 7.740 0.934
(0.218) (0.011) (0.089) (40) (0.162) (15)

7. Food, drink and tobacco 2455 327 1.421 0.015 0.614 70.492 0.002 0.707 15.088 0.445
(0.094) (0.008) (0.063) (40) (0.084) (15)

8. Textile, leather and shoes 2368 335 1.846 0.001 0.059 55.178 0.056 0.724 18.453 0.240
(0.169) (0.100) (0.077) (40) (0.162) (15)

9. Timber and furniture 1445 207 0.793 0.014 0.461 37.357 0.590 0.486 5.805 0.983
(0.117) (0.008) (0.089) (40) (0.102) (15)

10. Paper and printing products 1414 183 1.120 0.026 0.609 51.798 0.100 0.854 7.300 0.949
(0.107) (0.008) (0.057) (40) (0.077) (15)

a Including STjt = LTjt = 0.



Table 4: Elasticity of substitution (cont’d).

Sargan difference tests GMM with quality-
GMM w

−1 pM,−1 corrected wage as instr.
Obs.a Firmsa σ χ2 (df) p val. χ2 (df) p val. χ2 (df) p val. σ χ2 (df) p val.

Industry (s. e.) (s. e.)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

1. Metals and metal products 1759 278 0.535 48.882 0.111 40.773 0.024 34.044 0.107 0.456 52.058 0.064
(0.114) (38) (25) (25) (0.112) (38)

2. Non-metallic minerals 959 146 0.730 46.890 0.153 36.034 0.071 35.743 0.076 0.833 45.105 0.199
(0.098) (38) (25) (25) (0.096) (38)

3. Chemical products 1610 269 0.696 46.154 0.171 33.225 0.126 32.183 0.153 0.695 48.889 0.111
(0.102) (38) (25) (25) (0.072) (38)

4. Agric. and ind. machinery 979 164 0.607 42.420 0.286 29.398 0.248 25.684 0.425 0.762 44.227 0.225
(0.196) (38) (25) (25) (0.206) (38)

5. Electrical goods 1147 191 0.592 46.782 0.155 38.951 0.037 32.376 0.147 0.624 44.592 0.214
(0.123) (38) (25) (25) (0.125) (38)

6. Transport equipment 896 146 0.798 45.740 0.182 19.053 0.795 9.901 0.997 0.602 41.214 0.332
(0.088) (38) (25) (25) (0.097) (38)

7. Food, drink and tobacco 1963 306 0.616 53.931 0.045 53.454 0.001 28.523 0.284 0.766 38.379 0.452
(0.081) (38) (25) (25) (0.079) (38)

8. Textile, leather and shoes 1593 282 0.440 52.496 0.059 23.355 0.557 31.763 0.165 0.462 55.996 0.030
(0.186) (38) (25) (25) (0.149) (38)

9. Timber and furniture 1114 188 0.438 39.204 0.416 28.979 0.265 22.059 0.632 0.497 36.687 0.530
(0.093) (38) (25) (25) (0.094) (38)

10. Paper and printing products 938 162 0.525 44.508 0.217 23.642 0.540 19.822 0.756 0.449 43.009 0.265
(0.088) (38) (25) (25) (0.085) (38)

a Excluding STjt = LTjt = 0.



Table 5: Labor-augmenting technological change.

Firms’ R&D activities Skill upgrading
ǫL,−2ωL

a ǫL,−2ωL ǫL,−2∆ωL σ χ2 (df) p val. ∆ωL

Industry ∆ωL ǫL,−2∆ωL IQR AC R&D–No R&D R&D No R&D (s. e.)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1. Metals and metal products 0.091 0.021 0.368 0.707 0.189 0.024 0.018 0.582 44.868 0.206 0.104
(0.117) (38)

2. Non-metallic minerals 0.146 0.031 0.595 0.859 0.301 0.022 0.029 0.737 35.898 0.567 0.087
(0.092) (38)

3. Chemical products 0.061 0.016 0.465 0.892 0.196 0.020 0.001 0.618 47.832 0.132 0.053
(0.110) (38)

4. Agric. and ind. machinery 0.125 0.032 0.574 0.799 0.383 0.028 0.046 0.177 38.413 0.451 0.060
(0.172) (38)

5. Electrical goods 0.216 0.021 0.526 0.854 0.298 0.022 0.011 0.488 48.365 0.121 0.179
(0.129) (38)

6. Transport equipment 0.145 0.030 0.699 0.841 0.378 0.038 0.012 0.781 45.457 0.189 0.098
(0.101) (38)

7. Food, drink and tobacco 0.017 0.006 0.455 0.874 0.063 0.009 0.006 0.655 53.981 0.045 -0.007
(0.084) (38)

8. Textile, leather and shoes 0.038 0.009 0.389 0.844 0.186 0.012 0.009 0.120 41.931 0.304 0.000
(0.168) (38)

9. Timber and furniture 0.067 0.002 0.241 0.613 0.100 0.007 0.001 0.528 37.674 0.484 -0.023
(0.090) (38)

10. Paper and printing products 0.009 0.012 0.279 0.818 0.133 0.006 0.019 0.396 37.418 0.496 -0.011
(0.082) (38)

All industries 0.100 0.016 0.042

a Without replication and weighting.



Table 6: Aggregate share of labor in variable cost.

Growth of Decompositiona

Industry labor sharea pM − w ωL Temp. labor Outsourcing Reallocation Residual

(1) (2) (3) (4) (5) (6) (7)

1. Metal and metal products -0.107 0.011 -0.086 -0.034 0.011 -0.004 -0.004

2. Non-metallic minerals -0.153 0.011 -0.130 -0.004 -0.002 -0.026 -0.003

3. Chemical products -0.087 0.018 -0.152 0.041 -0.002 0.008 0.000

4. Agric. and ind. machinery -0.046 0.031 -0.064 -0.026 -0.007 0.016 0.004

5. Electrical goods -0.188 0.032 -0.178 0.021 -0.017 -0.040 -0.006

6. transport equipment -0.066 0.024 -0.119 0.027 0.003 0.003 -0.003

7. Food, drink and tobacco -0.060 0.022 -0.096 -0.013 0.024 -0.001 0.005

8. Textile, leather and shoes -0.057 0.017 -0.051 -0.034 0.006 0.016 -0.011

9. Timber and furniture -0.009 0.056 -0.046 -0.002 -0.002 -0.018 0.002

10. Paper and printing products -0.059 0.021 -0.092 -0.001 -0.001 0.013 0.000

a Computed for 1991 to 2006.



Table 7: Distributional parameters, elasticity of scale, and price elasticity

GMM Lagrange-
βK ν χ2 (df) p val. multiplier test

Industry (s. e.) (s. e.) η(p−1,D−1)
a χ2(1) p val.

(1) (2) (3) (4) (5) (6) (7)

1. Metals and metal products 0.232 0.941 3.207 0.921 2.371 1.023 0.312
(0.073) (0.029) (8)

2. Non-metallic minerals 0.225 0.911 4.528 0.807 9.114 0.489 0.485
(0.133) (0.063) (8)

3. Chemical products 0.136 0.934 1.109 0.997 2.431 0.342 0.559
(0.059) (0.041) (8)

4. Agric. and ind. machinery 0.139 0.806 8.251 0.509 1.802 1.126 0.289
(0.125) (0.088) (9)

5. Electrical goods 0.133 0.848 2.960 0.982 6.043 0.902 0.342
(0.038) (0.046) (10)

6. Transport equipmentb 0.308 0.923 2.163
(0.182) (0.061)

7. Food, drink and tobacco 0.303 0.931 2.415 0.966 2.255 0.295 0.587
(0.137) (0.040) (8)

8. Textile, leather and shoes 0.066 0.976 1.120 0.999 2.161 0.357 0.550
(0.097) (0.035) (9)

9. Timber and furnitureb 0.103 0.932 1.787
(0.107) (0.066)

10. Paper and printing products 0.227 0.936 3.846 0.871 1.902 1.716 0.190
(0.080) (0.036) (8)

a We trim 5% of observations at the right tail.
b We have been unable to compute the second-step GMM estimate.



Table 8: Hicks-neutral technological change.

Firms’ R&D activities
ωH

a ωH ∆ωH Total technological change
Industry ∆ωH IQR AC R&D–No R&D R&D No R&D ǫL,−2∆ωL +∆ωH corr(ǫL,−2∆ωL,∆ωH)a

(1) (2) (3) (4) (5) (6) (7) (8)

1. Metals and metal products 0.044 0.718 0.736 0.004 0.046 0.038 0.065 0.125

2. Non-metallic minerals 0.005 0.551 0.685 0.262 -0.019 0.041 0.036 0.350

3. Chemical products 0.019 0.367 0.872 0.002 0.022 0.011 0.035 -0.054

4. Agric. and ind. machinery 0.041 0.979 0.890 0.446 0.039 0.022 0.073 0.000

5. Electrical goods 0.020 0.697 0.844 0.723 0.009 0.055 0.041 0.024

6. Transport equipment 0.042 0.553 0.596 0.136 0.058 -0.031 0.072 0.350

7. Food, drink and tobacco 0.001 0.761 0.909 -0.146 0.007 0.000 0.007 0.470

8. Textile, leather and shoes 0.012 0.715 0.860 -0.199 -0.003 0.032 0.021 0.304

9. Timber and furniture 0.021b 0.772 0.772 -0.098 0.008 0.035 0.023b 0.689

10. Paper and printing products 0.002 0.607 0.878 -0.130 0.007 0.006 0.014 0.262

All industries 0.014 0.030

a Without replication and weighting.
b We trim values of ∆ωH below −0.25 and above 0.5. This amounts to trimming around one-third of observations.



Table 9: Aggregate productivity growth decomposition.

Change in Decomposition
aggregate Survivors

Period productivitya,b Total Shift Covariance Entrants Exitors

(1) (2) (3) (4) (5) (6)

ǫL,−2ωL 1992-2006 0.217 0.150 0.130 0.021 0.026 0.041
1992-1996 0.106 0.096 0.084 0.012 0.017 -0.006
1997-2001 0.067 0.064 0.066 -0.002 0.006 -0.003
2002-2006 0.066 0.061 0.074 -0.013 0.000 0.005

ωH 1992-2006 0.197 0.150 0.151 -0.001 0.030 0.017
1992-1996 0.098 0.062 0.060 0.002 0.036 0.001
1997-2001 0.050 0.055 0.056 -0.001 -0.008 0.003
2002-2006 -0.004 -0.012 -0.005 -0.007 0.001 0.008

ǫL,−2ωL + ωH 1992-2006 0.414 0.307 0.284 0.023 0.056 0.051
1992-1996 0.207 0.164 0.142 0.022 0.048 -0.006
1997-2001 0.103 0.099 0.100 0.000 -0.002 0.005
2002-2006 0.059 0.045 0.064 -0.019 0.001 0.014

a We trim 1% of observations at each tail of the productivity distribution separately for survivors, entrants, and exitors but pooled across
the start and end year.
b Changes over the subperiods do not add up because of trimming and because subperiods do not overlap.



Table 10: Capital-augmenting technological change.

GMM
βK ν δK χ2 (df) p val.

Industry ∆ωK ǫK ,−2 ∆ωK (s. e.) (s. e.) (s. e.)

(1) (2) (3) (4) (5) (6) (7)

1. Metals and metal products 0.056 0.004 0.254 0.903 0.036 2.555 0.923
(0.129) (0.055) (0.061) (7)

2. Non-metallic minerals -0.010 0.007 0.236 0.906 0.010 3.979 0.782
(0.102) (0.072) (0.072) (7)

3. Chemical products -0.018 0.001 0.125 0.942 -0.031 0.598 0.999
(0.068) (0.041) (0.092) (7)

4. Agric. and ind. machinery -0.020 0.000 0.182 0.801 0.031 9.026 0.340
(0.177) (0.081) (0.122) (8)

5. Electrical goods -0.078 0.000 0.129 0.845 -0.004 2.493 0.981
(0.041) (0.054) (0.056) (9)

6. Transport equipmenta 0.008 0.005 0.115 0.981 -0.143
(0.088) (0.050) (0.138)

7. Food, drink and tobacco -0.005 0.002 0.282 0.918 -0.045 2.279 0.943
(0.286) (0.058) (0.204) (7)

8. Textile, leather and shoes -0.085 -0.002 0.080 0.971 0.053 2.714 0.951
(0.143) (0.047) (0.135) (8)

9. Timber and furniturea -0.042 0.000 0.088 0.924 -0.021
(0.119) (0.067) (0.059)

10. Paper and printing products 0.022 0.007 0.229 0.935 0.005 3.066 0.879
(0.089) (0.033) (0.045) (7)

All industries -0.010 0.003

a We have been unable to compute the second-step GMM estimate.



Table A1: Industry definitions and equivalent classifications.

Classifications Share of Number of
Industry ESSE National Accounts ISIC (Rev. 4) value added subindustries

(1) (2) (3) (4) (5)

1. Ferrous and non-ferrous 12+13 DJ C 24+25 13.2 11
metals and metal products

2. Non-metallic minerals 11 DI C 23 8.2 8

3. Chemical products 9+10 DG-DH C 20+21+22 13.9 7

4. Agricultural and industrial 14 DK C 28 7.1 7
machinery

5. Electrical goods 15+16 DL C 26+27 7.5 13

6. Transport equipment 17+18 DM C 29+30 11.6 7

7. Food, drink and tobacco 1+2+3 DA C 10+11+12 14.5 10

8. Textile, leather and shoes 4+5 DB-DC C 13+14+15 7.6 11

9. Timber and furniture 6+19 DD-DN 38 C 16+31 7.0 6

10. Paper and printing products 7+8 DE C 17+18 8.9 4

All industries 99.5 84



Table A2: Variation in the wage and its determinants.

Wage Wage regression
CV Var Within Betw. Temp. White Engin. Tech.

Industry (%) (%) (s. e.) (s. e.) (s. e.) (s. e.) R2 R2
Q R2

C

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1. Metals and metal products 0.425 39.025 9.779 29.246 -0.425 0.127 1.106 0.316 0.651 0.094 0.480
(25.1) (74.9) (0.057) (0.097) (0.298) (0.094)

2. Non-metallic minerals 0.441 36.252 10.072 26.180 -0.098 0.124 0.896 0.246 0.742 0.020 0.643
(27.8) (72.2) (0.065) (0.159) (0.280) (0.181)

3. Chemical products 0.440 54.332 9.673 44.659 -0.465 0.461 0.592 0.203 0.755 0.197 0.376
(17.8) (82.2) (0.066) (0.074) (0.137) (0.099)

4. Agric. and ind. machinery 0.354 30.980 11.472 19.508 -0.273 0.285 0.803 -0.028 0.631 0.082 0.484
(37.0) (63.0) (0.067) (0.105) (0.226) (0.125)

5. Electrical goods 0.383 31.047 8.461 22.586 -0.374 0.219 1.092 0.312 0.661 0.200 0.356
(27.3) (72.7) (0.058) (0.073) (0.264) (0.087)

6. Transport equipment 0.393 40.666 12.876 27.790 -0.377 0.220 0.402 0.274 0.709 0.066 0.552
(31.7) (68.3) (0.079) (0.108) (0.300) (0.166)

7. Food, drink and tobacco 0.502 36.590 5.952 30.638 -0.451 0.115 1.292 0.357 0.753 0.097 0.481
(16.3) (83.7) (0.053) (0.053) (0.265) (0.154)

8. Textile, leather and shoes 0.449 16.565 3.654 12.911 -0.260 0.646 1.584 0.346 0.683 0.140 0.389
(22.1) (77.9) (0.048) (0.084) (0.402) (0.241)

9. Timber and furniture 0.392 14.646 3.643 11.003 -0.356 0.173 0.288 0.002 0.697 0.061 0.525
(24.9) (75.1) (0.051) (0.089) (0.377) (0.164)

10. Paper and printing products 0.464 51.667 10.003 41.664 -0.477 0.188 0.444 0.277 0.702 0.070 0.505
(19.4) (80.6) (0.099) (0.084) (0.210) (0.127)
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