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Quantity discount pricing is a common practice used by business-to-business and business-to-consumer com-
panies. A key characteristic of quantity discount pricing is that the marginal price declines with higher

purchase quantities. In this paper, we propose a choice-based conjoint model for estimating consumer-level
willingness to pay (WTP) for varying quantities of a product and for designing optimal quantity discount pric-
ing schemes. Our model can handle large quantity values and produces WTP estimates that are positive and
increasing in quantity at a diminishing rate. In particular, we propose a tractable WTP function that depends on
both product attributes and product quantity and that captures diminishing marginal WTP. We show how such
a function embeds standard WTP functions in the quantity discount literature as special cases. We also demon-
strate how to use the model to estimate the consumer value potential, which is the product of the premium a
consumer is willing to pay and her volume potential. Finally, we propose a parsimonious experimental design
approach for implementation.

We illustrate the model using data from a conjoint study of online movie rental services. The empirical results
show that the proposed model has good fit and predictive validity. In addition, we find that marginal WTP in
this category decays rapidly with quantity. We also find that the standard choice-based conjoint model results
in anomalous WTP distributions with negative WTP values and nondiminishing marginal willingness-to-pay
curves. Finally, we identify four segments of consumers that differ in terms of magnitude of WTP and volume
potential, and we derive optimal quantity discount schemes for a monopolist and a new entrant in a competitive
market.
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1. Introduction
Quantity discounts represent a popular pricing prac-
tice used by business-to-business and business-
to-consumer companies. For example, Blockbuster
charges $8.99, $13.99, and $16.99 for one, two, and
three DVDs out-at-a-time plans, respectively. Disney
charges admission rates for Disney World that depend
on the number of days. For a 1-day admission, Dis-
ney charges adults $79, and for 10 consecutive days,
it charges $243. Similarly, consumer goods compa-
nies often charge lower per-unit prices for large pack-
ages of products, such as detergents, beers, and paper
towels (Allenby et al. 2004). Based on a sample of
472 brands, Gerstner and Hess (1987) find that a large
majority (91.5%) were sold at quantity discounts in
a supermarket in North Carolina. Other examples
include print advertising rates that vary with respect
to the number of ads placed per year and express mail
service rates that depend on shipment volume. One
key aspect of quantity discount pricing is that the

per-unit or marginal price declines with higher pur-
chase quantity.1

From a demand perspective,2 the rationale for
quantity discounts is that often consumers’ marginal
willingness to pay (WTP) decreases with increasing
quantity. A pricing scheme that mirrors consumers’
WTP patterns is more profitable to the firm than a
mere uniform price that charges the same price regard-
less of the number of purchased units (Dolan and
Simon 1997). A second rationale for quantity dis-
counts is consumers’ heterogeneity in WTP: heavy
users have higher marginal WTP for large quantities

1 There are several forms of nonlinear pricing such as multipart
tariff, multiblock tariff, and price points (see Dolan and Simon 1997,
p. 164). In this paper, we focus on the price-points form of quantity
discounts.
2 There is also a supply-side rationale for quantity discounts that
stems from the supplier’s cost savings (e.g., reduced production,
inventory, and transportation costs) when selling larger quantities
(Dolan and Simon 1997).

334



Iyengar and Jedidi: A Conjoint Model of Quantity Discounts
Marketing Science 31(2), pp. 334–350, © 2012 INFORMS 335

than light users (Dolan and Simon 1997, p. 174;
Wilson 1993). Thus knowledge of consumer-level WTP
for successive units of a product or service is critical
for designing optimal quantity discount schemes.

Conjoint analysis (Green and Srinivasan 1990) has
been gainfully utilized to assess the impact of price
on demand and estimate consumer WTP for prod-
ucts and services. Kohli and Mahajan (1991) intro-
duce an approach for measuring reservation price,
which corresponds to the price that equates the util-
ity of a new product to that of a status quo product.
Jedidi and Zhang (2002) further develop this method
to allow for the effect of new product introduction
on category-level demand. Chung and Rao (2003) and
Jedidi et al. (2003) describe methods for estimating
consumer WTP for product bundles. More recently,
Ding et al. (2005) and Park et al. (2008) propose
incentive-compatible conjoint procedures for eliciting
consumer WTP for product attributes. Miller et al.
(2011) compare the performance of four commonly
used approaches to measure consumers’ WTP to real
purchase data. They find that conjoint analysis does
well in inferring the true demand curve and deter-
mining the right pricing decision.

Most pricing applications of conjoint analysis do
not include quantity as an attribute in the design.
They implicitly assume that a consumer buys one unit
of a product at a single price and that consumer pur-
chase rates do not depend on price (Iyengar et al.
2008, Kim et al. 2004). Although it may seem trivial to
add quantity as a factor, there are several design and
analysis issues that traditional conjoint analysis may
encounter when estimating WTP for successive units
of a product.

First, the traditional conjoint design requires as
many price factors as quantity levels (i.e., a price fac-
tor for the first unit and a discount factor for each
of the subsequent quantity levels). For example, for a
product with six quantity levels, one needs to create
six corresponding price factors. If each price/discount
factor has three levels, then the full factorial is 6 × 36.
Thus a traditional conjoint design may work in situ-
ations where the range of quantity offered is limited,
but it may not be efficient when the range is large,
making the respondent task tedious. Second, the con-
joint part-worth function, although flexible, may not
result in WTP measures that are positive, monoton-
ically increasing in quantity, and characterized by
diminishing return. These properties are required for
a proper WTP estimation (see Haab and McConnell
1998). Failure to enforce these constraints can lead to
nonsensical measures of WTP and erroneous demand
curves. For example, in a conjoint study on midsize
sedans, Sonnier et al. (2007) obtain negative WTP
estimates for between 13% and 23% of the partici-
pants. In our study, the standard choice-based con-
joint model resulted in only two respondents (out of

250) with WTP estimates that satisfy the constraints
of diminishing marginal WTP and positivity.

Recently, a few models have been proposed to
account for volume in conjoint analysis. Kim et al.
(2004) introduce a volumetric conjoint model in which
product attributes are related to satiation parameters.
Iyengar et al. (2008) propose a choice-based conjoint
model that infers consumer usage levels as functions
of the product features and the price components of
a three-part tariff. Schlereth et al. (2010) use a WTP
function approach to derive optimal two-part tariffs.
However, none of these models is built to directly
handle quantity discounts in conjoint analysis.

In this paper, we build on this emerging litera-
ture and propose a choice-based conjoint model for
estimating consumer-level WTP values for varying
quantities of a product and for designing optimal
quantity discount pricing schemes. Our model can
handle large quantity values and produces WTP esti-
mates that are positive and increasing in quantity
at a diminishing rate. We show how the proposed
WTP function embeds two standard functions used
in the quantity discount literature as special cases.
In particular, we show how to use the WTP function
to estimate the consumer value potential, which we
decompose in terms of WTP for the first unit (which
captures price premium) and a WTP multiple (which
captures volume potential).

We also propose a parsimonious experimental
design approach for implementation that can han-
dle a large number of quantity and price levels. Two
critical features of the design are needed for deter-
mining the WTP values for different quantities of a
product: (i) the experiment must include purchase
quantity of the product as an attribute, and (ii) all
choice sets in the conjoint experiment must include
the no-purchase option. This latter feature is critical
for obtaining unambiguous dollar-metric estimates of
WTP (Haaijer et al. 2000).

We test our proposed model using data from a con-
joint experiment involving consumer choice of online
movie rental plans and compare our WTP distribu-
tions to those obtained from a standard choice-based
conjoint (CBC) model. We find that the marginal
WTP in this category decays rapidly with quantity.
We also find that the standard CBC model results in
anomalous WTP distributions with negative WTP val-
ues and nondiminishing marginal WTP estimates. For
example, 16% of the respondents would not purchase
a one-DVD plan from Netflix when offered for free,
even though 63% of these respondents are current
Netflix subscribers. We identify four segments of con-
sumers that differ in terms of their WTP premium and
purchase volume potential. An online movie rental
company could use such information to target its cus-
tomers based on their value potential to the firm.
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Finally, we use the parameter estimates to character-
ize consumer demand for online movie rental services
and to design optimal quantity discount schemes that
maximize gross contribution.

The rest of this paper is organized as follows. In §2,
we describe the proposed model. In §3, we report
an application of the model to the pricing of online
movie rental services. Section 4 discusses the empiri-
cal results. In §5, we use the estimation results to char-
acterize consumer demand for online movie rental
services, and in §6, we use them to derive opti-
mal quantity discount schedules. Section 7 concludes
the paper.

2. The Conjoint Model
In this section, we first model consumer surplus as a
difference between consumer willingness to pay and
price. Next, we propose a WTP function for measur-
ing the maximum amount that a consumer is willing
to pay for a given quantity of a product (Wilson 1993).
Finally, we present the Bayesian multilevel procedure
we use for model estimation.

2.1. The Surplus Model
Consider a choice set consisting of J alternatives. Each
choice alternative j (j = 11 0 0 0 1 J ) represents a product
or a service that is described in terms of attribute lev-
els, product size or quantity of service offered, and
price (e.g., a movie rental plan for two DVDs out at
a time from Blockbuster for $13.99 a month). Thus,
in contrast to standard conjoint analysis, consumer
choice is based on both product attributes and quan-
tity offered. Embedding such a quantity component
in the conjoint design is a critical part of our measure-
ment of consumers’ WTP for successive units.

Let qj be the quantity offered for product alterna-
tive j . We assume that consumer i (i = 11 0 0 0 1 I) cannot
choose more than one alternative. Let p4qj5 be the
price associated with qj units of product j . The price
schedule p4qj5 represents a quantity discount scheme
whereby the marginal price successively decreases
with quantity. For example, Netflix charges a monthly
fee of p415= $9099 for a one-movie-at-a-time plan and
p425= $14099 for a two-movie-at-a-time plan. We spec-
ify the following surplus equation for consumer i and
product j :

Sij4qj1 p4qj55= WTPij4qj5− p4qj5+ �ij1 (1)

where WTPij4qj5 is the willingness to pay that con-
sumer i associates with qj units of product j , and �ij

is an error term that is observable to consumers but
unobservable to the researcher.

Let j = 0 denote the no-choice option. We set the
willingness to pay for zero quantity to 0 (i.e.,
WTPij405 = 05. Then using Equation (1), the surplus

corresponding to the no-choice option for consumer i
is Si040105= �i0.

The surplus model specified in Equation (1) is
derived from a quasi-linear utility function, which is
free of wealth effects. (The derivation is straightfor-
ward and can be obtained from the authors upon
request.) Thus, in terms of utility, the WTP or reser-
vation price in Equation (1) refers to the price that
equates the utility of q units of product j to the utility
of the no-choice option (see Jedidi and Zhang 2002).
The assumption of quasi-linearity of the utility func-
tion is reasonable for products and services whose
prices are relatively small compared with the total
budget but may not be adequate for products whose
demand depends on income such as cars (Nevo 2000,
p. 518). We check for the robustness of such an
assumption in our empirical application.

2.1.1. The WTP Function. We assume that the
willingness to pay that consumer i associates with
qj units of product j1WTPij4qj5, increases with quan-
tity but at a decreasing rate. Such an assumption
stems from consumer diminishing marginal utility or
satiation and has been a cornerstone of utility the-
ory (e.g., Baucells and Sarin 2007). Specifically, we
propose a WTP function where the marginal WTP
from the qth unit (q > 1) of product j is a frac-
tion of the marginal WTP from the (q − 1)th unit.
Let wij1 > 0 be consumer i’s WTP for the first unit
of product j , and let �

j
iq be her decay parameter

for product j and quantity q. Suppose for now that
this decay parameter is invariant across products;
i.e., �j

iq = �iq 40 <�iq ≤ 15 ∀ j = 11 0 0 0 1 J . (Later, we dis-
cuss the more general case where the decay parame-
ter can vary as a function of product features.) Then
the marginal WTP for the second unit is �i2wij1, and
the marginal WTPs for the third, fourth1 0 0 0 1 qth
units are �i2�i3wij11�i2�i3�i4wij11 0 0 0 1�i2�i31 0 0 0 1�iqwij1,
respectively. Summing the marginal WTPs up to the
qth unit, we obtain the following WTP function:

WTPij4qj5=wij1

qj
∑

k=1

k
∏

m=1

�im1 qj ≥ 11 (2)

where 0 <�im ≤ 1 is the WTP decay parameter for the
mth unit (m> 1) of product j . By definition, �i1 = 1.

As a special case, suppose the decay parameter
�im = �i (for all m > 1) does not vary with quantity.
Then the marginal WTPs for the first, second1 0 0 0 1 qth
units are wij11�iwij11�

2
iwij11 0 0 0 1�

q−1
i wij1, respectively.

Note that as 0 < �i ≤ 1, the marginal WTPs are pos-
itive and decreasing. In addition, the closer �i is to
1 (0), the smaller (larger) is the diminishing of the
marginal WTP. Note that the WTP function in Equa-
tion (2) reduces to WTPij4qj5 = wij1 when consumers
buy only one unit of a product.
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The WTP for q units in Equation (2) is the dis-
counted sum of marginal WTPs for each unit of prod-
uct j and is additively separable across quantities.
Such a WTP specification is suitable for product cat-
egories characterized by diminishing marginal util-
ity of consumption. This assumption holds for most
products and is commonly made in the economics lit-
erature (e.g., Gerstner and Hess 1987, Wilson 1993).
The WTP specification, however, may not be suit-
able for addictive product categories (Gordon and
Sun 2010) or products that command quantity pre-
mia. Furthermore, some product categories require a
minimum number of units of the product for the pur-
chase to have meaningful value to consumers. For
example, shoes and earrings have no value unless
bought in pairs. In these situations, one needs to rede-
fine quantity qj in terms of minimum purchase sizes
(e.g., pairs).

Substituting Equation (2) for WTPij4qj5 in Equa-
tion (1), we obtain the following, fully specified, sur-
plus function for consumer i and product j :

Sij4qj1 p4qj55 = wij1

qj
∑

k=1

k
∏

m=1

�im − p4qj5+ �ij

= Sij4qj1 p4qj55+ �ij1 (3)

where sij4qj1 p4qj55 is the systematic component of
surplus.

2.1.2. Special Cases. Our proposed WTP function
is general and subsumes standard WTP functions
commonly used in the quantity discount literature as
special cases. Two such functions are the power WTP
function (e.g., Shugan 1985) and the quadratic WTP
function (e.g., Lambrecht et al. 2007).

The power WTP function is defined as

WTPij4qj5=wij1q
�i
j 1 qj ≥ 11 (4)

where wij1 > 0 is the WTP for the first unit and 0 <
�i ≤ 1 is a parameter that enforces the diminishing
marginal willingness to pay. Translated in terms of
Equation (2), the power function implies the follow-
ing pattern of decay parameters:

�iq =
4q5�i − 4q − 15�i

4q − 15�i − 4q − 25�i
1 q > 10 (5)

Note that �iq ≥ 0 increases with q. For example,
if �i = 006, then �i2 = 0052, �i3 = 0087, �i4 = 00901 0 0 0 .
This means that the marginal WTP decays at a slower
rate with increasing quantity.

The quadratic WTP function is defined as

WTPij4qj5=



















�i0 +�i1qj − 005�i2q
2
j 1 if qj ≤

�i1

�i2
1

�i0 +
4�i15

2

2�i2
if qj >

�i1

�i2
1

(6)

where �i0 is an intercept term and �i1 ≥ 0 and �i2 ≥ 0
are parameters whose ratio represents a threshold
beyond which marginal WTP is 0. The quadratic
WTP function implies the following pattern of decay
parameters:

�iq =



































�i1 − 005�i244q5
2 − 4q − 1525

�i0Iq=2 +�i1 − 005�i244q − 152 − 4q − 2525

if 2 ≤ q ≤
�i1

�i2
1

0 if q >
�i1

�i2
1

(7)

where Iq=2 is an indicator variable that takes a value of
1 if q = 2 and 0 otherwise. Note that when �i0 = 0, the
decay parameter �iq is a decreasing function of q. For
example, if �i0 = 0, �i1 = 300, and �i2 = 005, then �i2 =

0082, �i3 = 0077, �i4 = 00711 0 0 0 0 This means that the
marginal WTP decays at a faster rate with increasing
quantity. When �i0 > 0, the decay parameter �iq has a
lower value at q = 2 but then decreases afterward.

A priori, we do not know whether the decay rate
is constant, declining, or increasing over successive
quantities. Past research has indicated that the rate at
which consumers satiate differs across products, peo-
ple, and contexts (e.g., Redden 2008). For instance,
research on eating behavior has found that people
satiate at a lower rate with food when they have
wine or beer as aperitifs compared with when they
have water or fruit juice (Westerterp-Plantenga and
Verwegen 1999). Thus the quadratic WTP function
may be a better model for consumers in the water or
fruit juice condition, whereas the power WTP func-
tion may be a better model for those in the wine or
beer condition. Restricting the analysis to either the
power WTP function or the quadratic WTP function
may therefore result in an erroneous conclusion about
consumer willingness to pay.3 The WTP function in
Equation (2) is sufficiently flexible to capture any pat-
tern of diminishing marginal willingness to pay.

To summarize, the power WTP function implies
an increasing � pattern over successive quantities,
whereas the quadratic function implies a decreas-
ing pattern. Therefore using either of these functions
implicitly imposes a certain pattern of decay on the
data. Thus, our WTP specification can be useful in
empirical applications where the pattern of decay is
unknown a priori and/or where the researcher is
interested in testing certain hypotheses about decay
pattern.

3 Simulation results show that the quadratic WTP model does
poorly in fitting data generated from a power WTP model, and
vice versa.
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2.1.3. Properties of the WTP Function. The pro-
posed WTP function in Equation (2) has desirable
properties. It admits nonnegative values and is an
increasing function of quantity but at a decreasing
rate (Wilson 1993). In addition, the WTP for q units is
a multiple of the WTP for the first unit, wij1. For exam-
ple, in the special case �im = �i for all m> 1, the WTP
for q units is given by wij1 × 41 + �i + �2

i + · · · + �
q−1
i 5.

One benefit of this property is that one can compute a
WTP multiple for an infinite quantity q. For the case
�im = �i, this multiple is �i/41 −�i5= 41 +�i +�2

i +

�3
i + · · · 5. To illustrate, for a consumer with �i = 005,

this WTP multiple is equal to 2. That is, this consumer
is willing to pay a maximum of twice his or her WTP
for the first unit for an offer with an infinite number
of units. Thus one could segment consumers based on
their WTP for the first unit, wij1, and their WTP mul-
tiple. The first component captures price premium,
and the second captures volume potential. In addi-
tion, one could score consumers based on their value
potential, which is the product of the WTP for the first
unit and the WTP multiple.

2.2. The Impact of Product Attributes on WTP
We now discuss how the product attributes (e.g.,
brand name, product features) impact consumers’
willingness to pay for the first unit and the decay
parameters.

To capture the impact of product attributes on the
WTP of the first unit, we reparametrize wij1 as follows:

wij1 = exp
( L
∑

l=1

�ilxjl

)

for i = 11 0 0 0 1 I1

j = 11 0 0 0 1 J 1 and l = 11 0 0 0 1L1 (8)

where xjl is the value of product j on attribute l, and
�il measures the impact of xjl on wij1 (part-worth). The
use of the exponential function ensures the positivity
of WTP for the first unit.

In Equation (2), we specify different decay param-
eters for different quantities. This nonparametric
specification works well for products sold in small
quantities but is infeasible for products sold in large
quantities. Moreover, we assume a common decay
parameter for all product variants (j = 11 0 0 0 1 J ).
Although this assumption may be acceptable for some
products (e.g., online DVD plans), it may not be
reasonable for others where the decay rate can dif-
fer across product variants (e.g., light versus dark
beers). To accommodate these issues and ensure
that the decay parameters fall in the (0, 1] interval,
we reparametrize them as a logistic function of both
quantity and product attributes. That is,

�
j
iq = 1

/(

1 + exp
(

�i0 + �i1q + �i2q
2
+

L
∑

l=1

�ilxil

))

for all i1 q > 11 (9)

where �i0 is an intercept; and �i1, �i2, and �il 4l =

11 0 0 0 1L5 capture the impact of quantity and product
features and variants, respectively, on the alternative-
specific decay parameter. The specification allows
different product variants (e.g., brands) to have dif-
ferent decay parameters. In addition, it allows for
different decay patterns of WTP over quantities. For
example, if both �i1 and �i2 are 0, then the decay
rate is constant across quantities (i.e., �

j
i = 1/41 +

exp4�i0 +
∑L

l=1 �ilxjl555. However, if �i1 is positive (neg-
ative) and �i2 is 0, then the decay coefficient becomes
smaller (larger) with increasing quantity (i.e., �

j
iq =

1/41 + exp4�i0 + �i1q +
∑L

l=1 �ilxjl555. Such a specifi-
cation captures the quadratic (power) WTP model.
In the empirical application, we test for these differ-
ent nested versions and a more general nonparametric
specification as in Equation (2).

2.3. Model Estimation
Consider a sample of I consumers, each choosing at
most one product alternative from a set of J alterna-
tives. Let t indicate a choice task. If consumer i con-
tributes Ti such observations, then the total number
of observations in the data is given by T =

∑I
i=1. Let

zijt = 1 if the choice of alternative j is recorded for
choice task t; otherwise, zijt = 0. Let j = 0 denote the
index for the no-choice alternative. Thus, zi0t = 1 if the
consumer chooses none of the alternatives.

We assume that consumers are surplus maxi-
mizers.4 On choice task t, let Sijt = Sijt4qj1 p4qj55 =

sijt4qj1 p4qj55 + �ijt and Si0t = �i0t denote the surplus
from alternative j and the no-choice option, respec-
tively. Thus, a consumer would choose alternative j
in choice task t if it has the maximum surplus 8Sijt >
Sikt1 k = 01 0 0 0 1 J 1 k 6= j9 and would choose none of the
alternatives if the no-choice option (j = 0) has the
maximum surplus 8Si0t > Sijt1 j = 11 0 0 0 1 J 9.

We assume that �ijt follows an independent and
identically distributed extreme value distribution
with scale parameter �i > 0 (see Ben-Akiva and
Lerman 1985, pp. 104–105).5 The scale parameter �i

is necessary because the price coefficient is normal-
ized to 1 in the surplus Equation (3). Therefore, con-
sumer i’s choice probability for product j on choice

4 Our consumer surplus maximization problem can lead to an inte-
rior solution. That is, it is optimal for a consumer to spend a frac-
tion of her budget on purchasing q units of product j (inside good)
and the remaining budget on other goods (outside good). This is
because the surplus function in Equation (3) is nonlinear in quan-
tity, and the budget set implied by the quantity discount p4q5 is
convex. The proof is available from the authors upon request.
5 We assume that the errors are independent because of the cyclical
design approach that we use for constructing the choice sets (see
§3.1). This is consistent with past work in choice-based conjoint
(e.g., Iyengar et al. 2008).
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occasion t, Prijt , and no-choice probability, Pri0t , are
given by

Prijt =
exp4�isijt4qj1 p4qj555

1 +
∑J

k=1 exp4�isikt4qk1 p4qk555
and

Pri0t =
1

1 +
∑J

k=1 exp4�isikt4qk1 p4qk555
0 (10)

As we model consumer surplus, the parameter
estimates directly provide the indifference reservation
price that makes a consumer indifferent between buy-
ing and not buying a certain quantity (i.e., a 50%
chance of buying). We can also use the parameter esti-
mates to calculate reservation prices that correspond
to other levels of probability of purchase. For instance,
we can compute a floor reservation price at or below
which a consumer would buy q units of product j
with almost certainty (e.g., a 95% chance of buying).
We compute this price by setting the no-choice prob-
ability (Pri0t5 to 5% and solving for p4q5. Similarly,
we can compute a ceiling reservation price that would
make a consumer almost certainly not buy the prod-
uct (e.g., a 5% chance of buying). Thus, we can com-
pute a WTP range for each consumer and quantity
level.6

For an individual i, let �i = 4�i11 0 0 0 1�iL5
′, �i =

4�i11 0 0 0 1�iL5
′, �i = 4�i01 �i11 �i25

′, and �i = 4�i1�i1 �i1�i5
be the joint vector of parameters. We use the choice
data to estimate the vector of parameters, �i, for each
individual. Because it is not possible to obtain suf-
ficient choice data to estimate separate models for
each individual, we use a Bayesian multilevel struc-
ture (Gelman and Hill 2007) that specifies how the
individual-level parameters vary in the population
and thereby statistically pool information across indi-
viduals. We assume that

�i ∼ N4�̄1è51 (11)

where �̄ and è are population-level parameters to be
estimated.

The model parameters are estimated using a stan-
dard Bayesian estimation procedure using Markov
chain Monte Carlo (MCMC) methods (see Online
Appendix A at http://mktsci.journal.informs.org/).
This mixed logit procedure allows one to compute
WTP measures as part of the MCMC iteration pro-
cess and provides confidence intervals for WTP for
different quantities and at different levels of aggre-
gation. Hence managers can use such information
to design optimal quantity discount schemes or cus-
tomized pricing strategies for each consumer or con-
sumer segment.

6 Note that our model-based WTP range is distinct from the
ICERANGE proposed by Wang et al. (2007), as the latter arises from
consumer-level uncertainty in WTP.

3. An Empirical Application
We illustrate the model using data from a choice-
based conjoint experiment on DVD movie rentals by
mail. Subscribers to this service rent movies online,
receive them in DVD format by mail, and return them
by mail free of charge after watching. The sample con-
sists of 250 consumers. The online DVD rental cate-
gory was chosen for several reasons. DVD rental is
a product category that most consumers are famil-
iar with. In addition, consumers are familiar with the
various DVD rental plans offered by the two major
competitors (Netflix and Blockbuster).

3.1. Design of Conjoint Experiment
We used four attributes to create online movie rental
plans (conjoint profiles): (1) service provider, (2) num-
ber of movies out at a time offered under the plan,
(3) monthly price of the plan, and (4) Blu-ray movie
availability (yes or no). These are the same attributes
that online movie rental companies (e.g., Netflix) use
to describe their plans at the time of the study.

The service provider attribute has three levels:
a hypothetical new service with the generic name
MovieMail and the two leading brand names in the
category (Netflix and Blockbuster Online). These two
leading brands jointly accounted for 77.42% mar-
ket share of the online DVD rental market in 2008.7

We included a hypothetical new service to examine
the impact of brand name on the WTP curve. This
new service was described to respondents as follows:

MovieMail.com is a new online movie rental service
about to enter the market. Like Netflix and Blockbuster
Online, MovieMail operates by mail and promises to
have the same movie selection, search capabilities, and
mail delivery time.

Note that the attribute-level details of MovieMail
(e.g., price) were not included in the description; how-
ever, they were included as treatment variables in the
conjoint experiment.

The number of movies out at a time, q, has three
levels: low (one or two DVDs out at a time), medium
(three or four DVDs out at a time), and high (five
or six DVDs out at a time). Note that though each
level has two values, respondents will see only one
of these values in a particular DVD plan. For exam-
ple, if the number of movies at a time is “low” in a

7 The U.S. DVD and video sales and rental market was valued at
$7.6 billion in 2008; brick-and-mortar stores claimed 69% of the
revenue share. Mail-order companies such as Blockbuster and Net-
flix together commanded 24% of the market, whereas kiosks had a
mere 6% share and online streaming or download options an even
smaller 1% (see Mitra 2009). Thus Netflix and Blockbuster Online
commanded a 77.42% (= 24/31) share of the online DVD rental
market.
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particular conjoint profile, then we assign the respon-
dent a value of either one or two DVDs out at a time
randomly.

The monthly price attribute p4q5 has two com-
ponents: the base price level of the plan and the
depth of quantity discount. The base price for a
plan p is based on the price of the one-DVD-out-at-
a-time plan and has three levels: low ($5.99 or $6.99),
medium ($7.99 or $8.99), and high ($9.99 or $10.99).
The monthly price for a plan with no quantity dis-
count (i.e., uniform pricing) is p4q5 = p ∗ q. One way
to capture quantity discounts is through p4q5= p ∗ qb,
where b < 1 (decreasing block) measures the per-
cent increase in total monthly price when quantity
increases by 1%. We specify three levels for the depth
of quantity discount: low (b = 0088 or 0.84), medium
(b = 0080 or 0.76), and high (b = 0071 or 0.67). Similar
to the attribute number of movies out at a time, only
one base price value and one quantity discount rate
appear in a particular conjoint profile. When q = 6,
the b values correspond to the following quantity
discount rates: low (20% or 25% discount), medium
(30% or 35%), and high (40% or 45%). Suppose that
q = 3, p = $9099, and b = 0088 for a particular con-
joint profile. Then the monthly rate for such a plan is
p4q5= $9099 ∗ 30088 = $26014.

Our experimental design has two novelties. First,
because price and quantity can take large sets of
values, we adopt a randomized-block-design-type
approach where we initially establish low, medium,
and high intervals (the blocks) for each of the factors
and then randomly assign specific values from the
intervals for each respondent. This approach ensures
that each quantity, price, and discount value is tested
in the experiment. Second, unlike traditional conjoint,
we do not specify different prices for different quan-
tities. Instead, we decompose the price variable into
two components: the price of the first unit and the
depth of discount. This will result in a more parsi-
monious experimental design. In the context of our
study where we have three brand levels, two lev-
els for Blu-ray availability, and six quantity levels,
a full-blown traditional conjoint design would neces-
sitate six price/discount factors (one for each quantity
level). Assuming three levels for each price factor, this
results in a 3 × 2 × 6 × 36 design (26,244 profiles in
the full factorial), whereas our design is only 3 × 2 ×

3 × 3 × 3 (135 possible profiles). Even if one reduces
the quantity levels to three, the traditional design still
results in 486 = 3 × 2 × 3 × 33 full factorial profiles.
However, this design does not allow the testing of
every quantity and price value.

We used a cyclic design approach for constructing
choice sets (see Huber and Zwerina 1996). We first
generated six orthogonal designs of 18 profiles each
from the 34 ×2 full factorial using Proc Optex in SAS.

For each orthogonal plan, we then used the cyclic
design procedure to generate 18 choice sets with three
online movie rental plans each.

In the literature, the D0-error is the most widely
used measure of efficiency of a conjoint design
(e.g., Huber and Zwerina 1996). The lower the D0-
error, the higher the efficiency of the design and
therefore the greater the asymptotic efficiency of the
parameter estimates. For our conjoint design, the D0-
error is 0.09, which indicates a high level of efficiency.

Each participant in the study was randomly
assigned to one of the six choice designs. After the
conjoint task was explained, each participant was pre-
sented a sequence of 18 choice sets of movie rental
plans in show-card format. The participant’s task was
to choose at most one of the three alternatives (i.e., no-
choice is possible) from each choice set shown. See
Figure 1 for an example of a choice set that we used
in the conjoint experiment. We controlled for order
effects by randomizing the order of profiles across
subjects. We randomly selected 15 of the 18 choice
sets for model estimation and the remaining three for
holdout prediction.

3.2. Descriptive Results
As part of the conjoint survey, we also col-
lected information about respondents’ demographics
(e.g., income), their current movie rental provider,
the type of plan they subscribe to, and how many
DVDs they actually receive by mail in a month. Of the
250 respondents, 73.2% (25.2%) have Netflix (Block-
buster) as their current provider. The remaining 1.6%
subscribe to other online movie rental companies.
Overall, 29% of these respondents have a plan for one
DVD out at a time, 25% have a plan for two DVDs
out at a time, 38% have a plan for three DVDs out at a
time, 4% have a plan for four DVDs out at a time, and
the remaining 4% have plans for five or more DVDs
out at a time. This percentage breakdown compares
very well with that reported in FeedFliks8 and sug-
gests that our sample is representative of online DVD
rental users. Finally, we find that respondents on a
plan with one DVD out at a time receive an average
of 4.9 DVDs per month from their service provider.
Those with plans for two, three, and four DVDs out at
a time receive an average of 7.7, 10.4, and 13.8 DVDs
per month, respectively. Thus consumers with plans
for fewer DVDs are costlier to serve (per DVD) than
those with plans for more DVDs.

3.3. Model Specifications
We used the data from the conjoint experiment to esti-
mate four nested models. The models were selected

8 FeedFliks.com collects self-stated information from their regis-
tered users on various plan features such as number of DVDs out
at a time, the average rental period, and typical queue sizes.
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Figure 1 An Example of a Choice Set

to investigate various patterns in the decay of the
marginal WTP for successive quantities. In all mod-
els, we initially specify decay parameters that vary
over quantities but not product features (e.g., brand).
That is, �j

iq = �iq 40 < �iq ≤ 15 ∀ j = 11 0 0 0 1 J . Later, we
generalize the models to allow the decay parameters
to vary by product features as well. Let MMj , NFj ,
and BBj be 0/1 dummy variables indicating whether
MovieMail, Netflix, or Blockbuster, respectively, is the
service provider of plan j . Let BRj indicate whether
Blu-ray movies are offered in plan j . Then the general
model is specified as

sij4qj1 p4qj55=wij1

qj
∑

k=1

k
∏

m=1

�im − p4qj51 (12)

wij1 = exp4�i0 +�i1NFj +�i2BBj +�i3BRj1 (13)

where qj is the number of DVDs out at a time offered
under plan j and p4qj5 is the monthly price for the
plan. Note that MovieMail is used as the base service
provider in Equation (13). Thus the brand coefficients
should be interpreted relative to MovieMail.

The models vary in terms of how we specify the
decay parameters. The most general model is non-
parametric, with decay parameters represented by
five separate coefficients. That is,

�im = 1/41 + exp4�im55 for m= 21 0 0 0 161 (14)

where �im (m = 21 0 0 0 16) are individual-specific
parameters. Note that the logistic function ensures
that the decay coefficients fall in the (0, 1] interval.
We refer to this model, defined by Equations (12)–
(14), as the nonparametric decay model. Because of its
nonparametric form, this decay function is flexible.
One drawback, however, is that the specification is
not parsimonious, especially in cases where the quan-
tity variable takes a large set of values. In such cases,
it is difficult to estimate a model with a decay coeffi-
cient for each quantity unit.

The next model is a nested parametric form
where the decay coefficients are reparametrized as a
quadratic function of quantity. That is,

�im = 1/41 + exp4�i0 + �i1m+ �i2m
2551

m= 21 0 0 0 161 (15)

where the parameters �i0, �i1, and �i2 capture how the
decay coefficients vary with quantity. For comparison
purposes, we refer to the model in Equations (12),
(13), and (15) as the quadratic decay model. A compar-
ison of fit of this model relative to the nonparamet-
ric model provides evidence for the suitability of the
parametric form of the decay function.

To test other patterns in the decay of the marginal
WTP of successive quantities, we estimate two other
nested versions. The first model sets both �i1 and
�i2 to 0. In this model, for a consumer i, the decay
coefficient is constant across quantities; i.e., �im =

�i = 1/41 + exp4�i055 for m > 1. Thus, the marginal
WTP for the first, second, third, 0 0 0 1 qth unit is,
respectively, wij11�iwij11�

2
iwij11 0 0 0 1�

q−1
i wij1. We call

this model the constant decay model. The second
model sets �i2 to 0. In this model, the decay coefficient
varies with increasing quantity. If �i1 is positive (neg-
ative), the decay coefficient becomes smaller (larger)
with increasing quantity, and hence the marginal WTP
decays at a faster (slower) rate. We refer to this spec-
ification as the linear decay model. This model rep-
resents a quadratic (power) WTP function if �i1 is
positive (negative). Note that the words “linear” and
“quadratic” refer to the linear and quadratic terms,
respectively, in the exponential function in Equa-
tion (15). They do not connote that marginal WTP
decays linearly or quadratically.

4. Results
We used MCMC methods for estimating the models
(see Online Appendix A). For each model, we ran
sampling chains for 50,000 iterations. Convergence
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was assessed by monitoring the time series of the
draws and by assessing the Gelman-Rubin statistics
(Gelman and Rubin 1992). In all cases, the Gelman-
Rubin statistic was less than 1.1, suggesting that con-
vergence was satisfactory.9 We report the results based
on 30,000 draws retained after discarding the initial
20,000 draws as burn-in iterations.

4.1. Model Comparisons
We use log Bayes factor (log BF) to compare the
models. This measure accounts for model fit and
automatically penalizes model complexity (Kass and
Raftery 1995). In our context, log BF is the difference
between the log-marginal likelihood of the nonpara-
metric model (LMLM15 and that of a nested model
(LMLM25. We use the MCMC draws to obtain an esti-
mate of the log-marginal likelihood for each of the
models. Table 1 reports the results for all four models.

Kass and Raftery (1995) suggest that a value of
log BF = LMLM2 − LMLM1 greater than 5 provides
strong evidence for the superiority of a model. Hence
the LML results in Table 1 provide strong evidence
for the superiority of the linear decay model relative
to all other models.

The constant decay model, where �im = �i for all i
and m, performed relatively poorly (lowest LML).
This result suggests that the rate of decay in marginal
WTP, �i, is not constant over successive quantities.
The superiority of the quadratic decay model over the
nonparametric decay model suggests that there is no
need to estimate a decay coefficient for each quan-
tity unit. Similarly, the superiority of the linear decay
model over the quadratic decay model suggests that a
linear specification is sufficient for capturing the pat-
tern of decay in marginal WTP. Thus this parametric
specification is not only parsimonious but does very
well in capturing the shape of the WTP function.

4.2. Predictive Validity
To assess predictive validity, we calculate the hold-
out hit rate and validation log-likelihood (VLL) for
each model. This latter statistic has been used in the
Bayesian literature for assessing predictive validity
(e.g., Montoya et al. 2010). The estimated parameters
for each model were used to test that model’s predic-
tive validity for holdout samples. Recall that the cal-
ibration data for each respondent included 15 choice
sets, and the holdout sample included three choice
sets. The results in Table 1 indicate that the selected

9 The Gelman-Rubin statistic relies on running multiple MCMC
chains to test whether they all converge to the same posterior dis-
tribution. It takes a value of 1 when the within-chain variance of
the parameters is equal to the between-chain variance. Large (much
greater than 1) Gelman-Rubin statistics indicate that the between-
chain variance is substantially greater than the within-chain vari-
ance so that a longer simulation is needed.

Table 1 Model Performance Comparison

Model Holdout Holdout Actual plan
specification LML Log BF hit rate LL hit rate

Nonparametric −21144045 — 7002 −514014 5601
decay

Quadratic decay −21127095 16050 7102 −510030 5704
Linear decaya − 21099033 45012 7208 −485058 6001
Constant decay −21210092 −66047 6907 −529046 4803

Notes. LML denotes log-marginal likelihood. Holdout LL denotes holdout log-
likelihood.

aSelected model. The LML is highlighted in boldface.

linear decay model has the highest holdout hit rate
and VLL. The smaller differences in predictive valid-
ity among the linear, quadratic, and nonparametric
decay models are expected because the first model
is a special case of the latter two models. However,
the improvement in predictive validity for the linear
decay model over the constant decay model is more
noticeable when measured by VLL versus the hold-
out hit rate. This is expected because VLL is a more
sensitive measure, which explains its use in practice.

As a further validation, we use the individual-level
parameters and market prices for the available online
DVD plans to predict the respondents’ actual plans.
The two major players in the market are Blockbuster
and Netflix. In our sample, both companies account
for 98.4% of the market. Blockbuster offers three plans
(one to three DVDs out at a time), whereas Netflix
offers four (one to four DVDs out at a time). Thus
there are seven choices available to consumers. Using
the MCMC draws, we predicted the choice proba-
bility of each subject for each of these plans given
the monthly fee and brand name. Consistent with the
holdout task, we find that the linear decay model
predicts real behavior well: a 60% hit rate compared
to a 14% chance criterion and 35% maximum chance
criterion. This performance fares well with the more
general models and is superior to the constant decay
model, which results in a 48% hit rate. See Table 1.10

4.3. Robustness Checks
We conducted two robustness checks. The first checks
for the robustness of the quasi-linear utility assump-
tion underlying our model. The second tests whether
the decay parameters vary over product variants.

4.3.1. Robustness of the Quasi-Linear Utility
Assumption. We checked for the robustness of the
quasi-linearity assumption by comparing our empiri-
cal results to those obtained using WTP functions that

10 This validation exercise is a test of consistency rather than a test
of predictive validity. A more stringent test entails a delayed hold-
out task involving real behavior and using a data collection format
that is different from the one used in the calibration task. We thank
an anonymous reviewer for raising these points.
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are derived from non-quasi-linear utility functions.
Specifically, we use two non-quasi-linear utility speci-
fications. The first specifies the utility from the outside
good in a logarithmic form (Sudhir 2001), whereas the
second uses a power function. The estimation results
show no incremental gain from relaxing the quasi-
linearity assumption. In fact, both models have worse
log-marginal likelihood and validation log-likelihood
values than our proposed quasi-linear model, which
indicates overparametrization. Thus, the results of
both analyses suggest that our assumption of quasi-
linearity is robust. The details of these analyses can
be obtained from the authors upon request.

4.3.2. Assessing the Impact of Plan Features on
the Decay Parameters. To test whether the decay
parameters vary across product variants, we rees-
timated the models with decay parameters vary-
ing in terms of both quantity and plan features
(i.e., MovieMail, Netflix, Blockbuster, and Blu-ray). See
Equation (9). In all four models, we find that none
of the plan features significantly impacts the decay
parameters. In addition, all the LMLs are worse than
the corresponding values reported in Table 1. For
instance, the linear decay model with plan features
in the decay coefficients has LML and VLL equal to
−2110903 and −493087, respectively. Both quantities
are significantly worse than those of the linear decay
model (see Table 1). Thus, in this application, the
decay coefficients do not appear to vary across brands
or to be affected by whether the plan has Blu-ray
availability or not.

4.4. Parameter Values
We now discuss the parameter estimates from the
models. Table 2 summarizes the posterior distribu-
tions of the parameters by reporting their posterior
means and 95% posterior intervals. The middle pan-
els report the estimates for the three parametric decay
models, and the rightmost panel reports those for the
nonparametric decay model.

4.4.1. Scale Parameter. All models result in scale
parameter estimates that are statistically indistin-
guishable (i.e., their 95% posterior intervals overlap).

4.4.2. WTP for First Unit. All the models pro-
duce parameter estimates that are similar in mag-
nitude. Netflix (the market leader) has the highest
mean part-worth value. The mean part-worth value
for Blockbuster is not significantly different from
that of the unbranded online movie rental service
MovieMail, which we use as the base brand. The
mean part-worth value for Blu-ray is positive and sig-
nificant (zero value is outside the 95% posterior inter-
val). Translated in WTP values, for the selected lin-
ear decay model, consumers are willing to pay an
average of $12.47, $11.35, and $11.37 ($11.78, $10.73,

and $10.74) for a one-DVD-out-at-a-time plan with
(without) Blu-ray that is offered, respectively, by Net-
flix, Blockbuster, and MovieMail.11 Thus, on average,
consumers are willing to pay an additional $1.10 for
Netflix compared with MovieMail or Blockbuster and
about $0.65 to have movies in Blu-ray format. Cur-
rently, Netflix charges an additional $2 for the Blu-
ray option in its one-DVD-out-at-a-time plan, whereas
Blockbuster charges no additional fees. The free Blu-
ray option may indicate a strategic move by Block-
buster to compensate for its weaker brand equity. See
Reisinger (2009).

4.4.3. Decay Parameters. In the constant decay
model, the decay parameter is not significantly differ-
ent from zero. As �im = �i = 1/41+ exp4�i055 for m> 1,
this means that the average decay rate in the sample is
about �= 005. Thus the marginal WTP for the second
unit is half of the WTP of the first unit, the marginal
WTP for the third unit is one-fourth of the first unit,
and so on. One could use this decay pattern to esti-
mate a WTP multiple by calculating the sum of the
geometric series 1 +�+�2 +�3 + · · · = 1/41 −�5. Thus
the constant decay model implies a WTP multiple of
2 4= 1/41 − 00555. That is, on average, consumers are
willing to pay a maximum of twice their WTP for the
first unit for a plan that offers an “infinite” number
of movies out at a time.

The linear decay model shows that the decay rate
increases rapidly with larger quantity. On average,
we find that the marginal WTP for the second unit
is 79% of the WTP of the first unit (i.e., the average
of �i2 = 1/41 + exp4�i0 + 2�i155 in the sample), and the
marginal WTP for the third unit is �2�3 = 38% of the
WTP of the first unit. For the fourth, fifth, and sixth
units, the marginal WTP is, respectively, �2�3�4 = 7%,
�2�3�4�5 = 1%, and �2�3�4�5�6 = 001% of the WTP
of the first unit. Summed over an infinite quantity,
the linear decay model results in a WTP multiple
of 2.25 4= 1 + �2 + �2�3 + �2�3�4 + · · · 5. That is, on
average, consumers are willing to pay a maximum of
2.25 times the WTP for the first unit for a plan offering
an “infinite” number of DVDs out at a time.

The quadratic (nonparametric) decay model
resulted in decay rates similar to those from the lin-
ear decay model. For the quadratic (nonparametric)
decay model, the marginal WTP of the second, third,
fourth, fifth, and sixth units is, respectively, 0.75,
0.37, 0.12, 0.04, and 0.01 (0.76, 0.31, 0.15, 0.10, and
0.07) of the WTP of the first unit. For the quadratic
(nonparametric) model, the average WTP multiple
is estimated to be 2.30 (2.40). Figure 2 depicts the

11 The corresponding 95% posterior intervals for Netflix, Block-
buster, and MovieMail with Blu-ray are, respectively, (12044112049),
(11032111037), and (11034111039). Without Blu-ray, they are, respec-
tively, (11075111081), (10069110075), and (10071110076).
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Table 2 Parameter Estimates: Posterior Means and 95% Posterior Intervals

Parameter Constant Linear Quadratic Parameter Nonparametric
Parameter label decay decay decay label decay

WTP first-unit parameters
Intercept �0 2051 2036 2041 �0 2037

(2.39, 2.62) (2.27, 2.45) (2.31, 2.52) (2.28, 2.43)
Netflix �1 0008 0009 0009 �1 0009

(0.05, 0.12) (0.06, 0.13) (0.06, 0.12) (0.06, 0.12)
Blockbuster �2 −0002 −0001 0000 �2 0000

(−0006, 0.02) (−0004, 0.03) (−0003, 0.03) (−0004, 0.03)
Blu-ray �3 0005 0006 0006 �3 0006

(0.02, 0.08) (0.03, 0.09) (0.03, 0.09) (0.03, 0.09)

Decay parameters
Intercept �0 −0001 −4024 −4099 �2 −1019

(−0024, 0.25) (−5068, −2061) (−8031, −1068) (−1059, −0073)
q �1 1068 2045 �3 0037

(1.33, 1.90) (0.19, 4.78) (−0019, 0.92)
q2 �2 −0026 �4 −0025

(−0065, 0.11) (−2019, 0.66)
�5 −0079

(−4059, 0.84)
�6 −4016

(−4059, −1007)

Scale parameter � 0042 0048 0047 � 0045
(0.33, 0.51) (0.39, 0.58) (0.39, 0.57) (0.39, 0.52)

Notes. Coefficients for which 0 lies outside the 95% interval are highlighted in boldface. The 95% posterior confidence
intervals for parameters are shown in parentheses.

decay rates for all four estimated models. As the
figure shows, all the models except the constant
decay model have decay functions that are similar.
The constant decay model appears to understate the
decay rate for the first few units and overstate it for
the larger units.

4.4.4. WTP Range. Recall that we can use the
parameter estimates to calculate the floor (ceiling)
reservation price below (above) which a consumer
would almost certainly buy (not buy) a plan with

Figure 2 Decay Rates as a Function of Number of DVDs out at a Time
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Table 3 Floor, Indifference, and Ceiling Reservation Prices for
Netflix Plans Without Blu-ray

Number of DVDs Floor Indifference Ceiling
out at a time price ($) price ($) price ($)

1 5059 11078 17096
2 14094 21012 27031
3 19051 25069 31088
4 20041 26059 32077
5 20048 26067 32084
6 20051 26073 32086

q DVDs out at a time. To illustrate, Table 3 reports the
average floor and ceiling reservation prices for Net-
flix plans without Blu-ray that we obtained using the
selected linear decay model parameter estimates. For
completeness, the table also reports the average indif-
ference reservation prices, or WTP.

In summary, the empirical results show that the lin-
ear decay model has the best statistical fit and predic-
tive validity. These results suggest that the marginal
WTP in the online movie rental service category
decays rapidly with quantity.12

12 To test whether there are any systematic differences between Net-
flix and Blockbuster customers, we estimated the models only on
respondents who are current Netflix subscribers. The estimation
results show that the parameters of the full sample and those of
the Netflix sample are statistically indistinguishable.
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5. Demand Analysis
We now use the individual-level parameter estimates
to examine the extent of consumer heterogeneity in
WTP and characterize consumer demand for online
movie rental services.

5.1. Consumer Heterogeneity
To explore the extent of heterogeneity in the WTP
for the first unit and the WTP multiple in the
sample, we used the MCMC draws of the selected
linear decay model parameters to compute the pos-
terior mean values of these statistics for each con-
sumer in the sample. To illustrate, Figure 3 depicts
the consumer-level estimates for Netflix. Across con-
sumers, the average WTP for the first DVD without
Blu-ray is $11.78, and the 95% heterogeneity inter-
val is ($3.72, $23.67); the WTP multiple has a poste-
rior mean of 2.25 and 95% heterogeneity interval of
(1.0, 5.77).

We used K-means clustering to segment consumers
in our sample based on their mean WTP for first unit
and WTP multiple.13 We identified four segments of
consumers shown in Figure 3 based on a scree plot of
the percentage of variance explained by the clusters.
To profile these segments, we use self-stated behav-
ioral data that we collected in our survey. Table 4
reports the descriptive statistics of the four segments.

Segment 1 consists of 10.7% of the consumers
in the sample who have a high WTP for the
first unit (mean = $17093) and a high WTP multi-
ple (mean = 3081). Multiplying each consumer’s WTP
multiple by his or her WTP for the first unit is a
measure of the value potential of the consumer. Thus
segment 1 consumers are the most attractive with
an average value potential of $68.99 per consumer.
We call this segment the “high value” segment.

Segment 2 consists of light users who have a high
WTP for the first unit. The mean WTP for the first unit
in this segment is $18.22, and the mean WTP multi-
ple is 1.54. Of the total number of consumers in the
sample, 19.1% belong to this segment. The average
value potential per customer in this segment is $27.81.
We label this segment the “high premium” segment.

Segment 3, which represents 33.3% of the con-
sumers, consists of heavy users with a low willing-
ness to pay. The mean WTP multiple for this segment
is 3.72, and the mean WTP for the first unit is $7.31.
Thus the average value potential per customer in this
segment is similar to Segment 2 and is equal to $26.71.
We name this segment the “high volume” segment.

Segment 4, the least attractive segment, embodies
36.9% of the consumers. The mean WTP for the first

13 Equivalently, we could segment consumers based on their WTP
for plans for 1, 21 0 0 0 16 DVDs out at a time. We could also segment
them based on their WTP range for successive units.

Figure 3 WTP for the First DVD from Netflix Without Blu-ray and
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unit is $10.40, and the mean WTP multiple is 1.63.
Hence the mean value potential for this segment is
$16.93. We call this segment the “low value” segment.

The segmentation results appear to be concordant
with respondents’ self-stated behavior. Respondents
in the high volume segments (1 and 3) currently sub-
scribe to plans with a higher number of DVDs out at
a time and appear to watch more movies than respon-
dents in the low volume segments (2 and 4). These
results give some face validity for the proposed seg-
mentation scheme.

5.2. Willingness-to-Pay Distribution
for Successive Units

To further explore heterogeneity, Figure 4(a) displays
the cumulative WTP distribution for each successive
DVD of an online movie rental plan without Blu-ray
offered by Netflix (i.e., the percentage of consumers
whose WTP for the qth DVD is greater than a given
price) that we obtained from the selected linear decay

Table 4 Segments’ Description

1 2 3 4
(High (High (High (Low

Segment value) premium) volume) value)

Segmentation bases
WTP of first unit ($) 17093a 18022 7031 10040
WTP multiple 3081 1054 3072 1063

Behavioral descriptors
Number of DVDs in plan 3050 2009 2094 1076
Number of movies per week 3083 2080 3065 2061

Segment value potential ($) 68099 27081 26071 16093
Segment size (%) 10070 19010 33030 36090

aAverage across consumers in a segment.
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Figure 4 Cumulative WTP Distributions for Successive Units

(a) Proposed model

(b) Traditional conjoint model
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model. From the figure, we can determine that 68%
of consumers have a WTP greater than or equal to
$9.00 for the first DVD from Netflix. Similarly, 65.6%
of consumers have a WTP greater than or equal to
$5.00 for the second DVD. Note that, for the first
DVD, one could determine the potential demand at
any given price. The demand for the second DVD,
however, depends jointly on the prices of the first
and second DVDs. Similarly, the demand for the qth
DVD depends on the prices of 11 0 0 0 1 q DVDs. Con-
sequently, the information Figure 4(a) should not be
construed as demand curves for successive units.

Figure 4(b) shows the corresponding WTP
distributions that we obtained using the standard
choice-based conjoint model.14 The figure illustrates

14 In this analysis, we use five dummies to indicate the six quantity
levels, two dummies for brand name, one dummy for Blu-ray, and
price is treated as a continuous variable.

the limitations of using traditional conjoint analysis
for measuring WTP over successive units that we
discussed in §1.

First, at zero price, not all consumers purchase the
online DVD service from Netflix. Thus there are 16%
of consumers who would not purchase (i.e., have a
negative WTP for) a one-DVD plan when it is offered
for free even though 63% of these respondents are
current Netflix subscribers. Similarly, 12.4%, 22.4%,
21.2%, 37.2%, and 29.6% would not purchase a sec-
ond, third1 0 0 0 1 sixth DVD, respectively, if offered for
free. This anomalous result occurs because traditional
conjoint analysis does not constrain WTP to be pos-
itive. This finding is consistent with past research
(e.g., Sonnier et al. 2007). In contrast, our proposed
model ensures that WTP is always positive, as illus-
trated in Figure 4(a).

Second, note that the WTP curves in Figure 4(b)
intersect each other. For instance, at a price of $2.50,
79% of the consumers would purchase the first unit
and 82% would purchase the second unit. This is
anomalous because one would expect the demand
for the second unit to be lower than the demand for
the first unit. This happens because traditional con-
joint analysis does not impose diminishing marginal
WTP. Researchers in economics (e.g., Baucells and
Sarin 2007, Wilson 1993) have emphasized the need to
impose such a restriction. Without it, it is possible to
find situations such as the one described above, where
consumers may be willing to pay a higher amount
for a successive unit than for a previous one. In con-
trast, our proposed model explicitly accounts for such
a restriction.

5.3. Demand Profile
One approach to depict the demand curve for suc-
cessive units is to use Wilson’s (1993, p. 50) demand
profile method, which specifies, for each (per-unit)
price p, the number of consumers purchasing at least
q units. Figure 5 presents the demand profile for Net-
flix online movie rental plans without Blu-ray for
p = $7, $9, $11, $13, and $15.

For each price p, the demand profile represents
the distribution of purchase sizes q at that price. For
example, when the per-unit price is $9, 122 out of 250
(or 48%) consumers would be willing to buy Netflix
plans for two or more DVDs out at a time. Similarly,
for each unit q, the demand profile reveals the distri-
bution of marginal WTP for that unit. For example,
65 out of 250 (or 26%) consumers have marginal WTP
greater than or equal to $11 for the third (q = 3) unit.

Following Wilson (1993, p. 50), we used the
demand profile information to compute the price elas-
ticity for each successive unit of demand. For Net-
flix, an average price elasticity of demand for the first
DVD is −1015. That is, if Netflix increases its price
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Figure 5 Demand Profile for Netflix
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by 1%, its demand for one DVD out at a time would
decrease by 1.15%. For the second and third DVDs,
we find an average elasticity of −1042. For the fourth,
fifth, and sixth DVDs, the price elasticities are −1096,
−2025, and −3024, respectively. For comparison, we
also computed the average price elasticities for Block-
buster. For their plans, these elasticities are −1017 (for
one DVD at a time), −1065 (for two DVDs), −1079 (for
three DVDs), −2029 (for four DVDs), −2057 (for five
DVDs), and −3057 (for six DVDs). As expected, con-
sumers have a higher price sensitivity for Blockbuster
than they do for Netflix.

In summary, the demand analysis results illustrate
the kind of managerial insights that can be derived
from our proposed model. We now discuss how to
use the estimation results to design optimal quantity
discount schemes.

6. Quantity Discount Schedule Design
In this section, we use the demand profile method
(Wilson 1993) to design a quantity discount schedule
for a monopolist. Online Appendix B discusses the
design of a discount schedule for a new entrant in a
competitive setting. In both analyses, we assume that
the DVD rental service is available to all consumers
in the market and enjoys full awareness immediately
after launch.

Suppose that MovieMail is a monopolist and is con-
sidering offering four online movie rental plans. What
quantity discount schedule should it offer? To exam-
ine this question, we need to estimate the variable
cost that MovieMail would incur while serving cus-
tomers in different plans. Currently, Netflix incurs
a marginal cost of $1.22 per rented DVD. This cost
includes mailing costs, packaging costs, and royalty
fees.15 Recall that our survey results indicate that

15 Netflix reports that it mails about two million DVDs per
day (Netflix 2008). There are 313 mailing days (i.e., excluding

consumers rent, on average, 4.9, 7.7, 10.4, and 13.8
DVDs per month under plans for 1, 2, 3, and 4 DVDs
out at a time, respectively (see §3.2). Thus, assuming
that MovieMail has a cost structure similar to Netflix,
the plan-specific marginal costs would be c1 = $5098
4= $1022 ∗ 4095, c2 = $9039, c3 = $12069, and c4 = $16084
for plans for one, two, three, and four DVDs out at a
time, respectively.

MovieMail will choose a price discount scheme that
maximizes its gross contribution. To solve this prob-
lem, we use the price-point method suggested by
Wilson (1993). Table 5 reports the demand profile for
MovieMail for q = 1 to 4 DVDs and unit prices vary-
ing from $6 to $14 per DVD. At unit price p = $6, for
example, 215 consumers would subscribe to a plan
for one DVD out at a time or more from MovieMail,
and 193 of these consumers would subscribe to at
least a two-DVD-out-at-a-time plan. Thus the number
who would subscribe to exactly one DVD out-at-a-
time plan is 22 4= 215 − 1935. Table 5 also reports the
marginal cost of each plan.

We use the demand profile and marginal cost infor-
mation for each unit to determine the optimal price
for each successive DVD that maximizes gross con-
tribution. For the first DVD, the profit maximizing
price is $13 with a gross contribution of $638.82
4= 413 − 50985 ∗ 915. Thus, under a monopolist sce-
nario, MovieMail would achieve a market penetration
of 36.4% 4= 91/2505. That is, 36.4% of the consumers
would subscribe to at least a one-DVD plan if it is
priced at $13. Similarly, for the second DVD, the
profit-maximizing price is $10 with a gross contribu-
tion of 672.18 4= 410 − 30415 ∗ 1025. Thus, for a two-
DVD plan, the optimal price is $23 4= $13 + $105.
Using the information from Table 5, we can estimate
how many (among 91) consumers will subscribe to
at least the two-DVD plan. The table indicates that
there are 77 consumers willing to pay $22 4= 2 ∗ 115
and 63 consumers willing to pay $24 4= 2 ∗ 125 for
a two-DVD plan. Interpolating between these two
demand predictions, we note that there are about 70
(among 91) consumers willing to pay at least $23 for
a two-DVD plan. Similarly, the optimal price for a
three-DVD plan is determined to be $31. This price
appeals to about 58 (among 70) consumers. Finally,
the optimal price for a four-DVD plan is $39 and
would attract 40 (among the 58) consumers. Under
this discount scheme, 21 consumers (or 8.4%) would
subscribe to the one-DVD plan, 12 consumers (or 5%)
would subscribe to a two-DVD plan, 18 consumers (or
7%) to a three-DVD plan, and 40 consumers (or 16%)

Sundays) per year. Therefore Netflix ships a total of 626 million
DVDs per year. The total subscription cost, which includes mailing,
packaging, and royalty fees, is reported to be $761,133,000. There-
fore the cost per DVD is $1.22.



Iyengar and Jedidi: A Conjoint Model of Quantity Discounts
348 Marketing Science 31(2), pp. 334–350, © 2012 INFORMS

Table 5 Demand Profile of MovieMail and Optimal Discount Schedule
for a Monopolist

Demand for

Price per DVD 1st DVD 2nd DVD 3rd DVD 4th DVD

$6 215 193 145 106
$7 190a 145 116 82
$8 173 127 93 63
$9 155 115 76 47
$10 139 102 58 40
$11 120 77 51 30
$12 106 63 42 26
$13 91 51 37 17
$14 78 42 27 12
Marginal unit cost ($) 5098 3041 3030 4015b

Optimal gross 638082 672018 437010 242068
contribution ($)

Optimal marginal price ($) 13 10 8 8
Optimal plan price ($) 13 23 31 39

Note. Entries in boldface have maximum gross contribution and correspond
to optimal choices for the prices.

aReads as follows: 190 consumers would subscribe to a plan of one DVD
or more if the per-DVD price is $7.

bThis is the difference between the cost of a four DVDs out-at-a-time plan
and three DVDs out-at-a-time plan.

to a four-DVD plan. We obtain a similar discount
schedule when we use finer price intervals with $0.50
increments.

For comparison, suppose MovieMail is entering a
market where Netflix and Blockbuster are incum-
bents. Presently, Netflix (Blockbuster) offers four
(three) online movie rental plans. Both firms charge
$8.99, $13.99, and $16.99 for the one-, two-, and
three-DVD plans, respectively. For the four-DVD plan,
Netflix charges $23.99. Suppose MovieMail decided
to offer four online movie rental plans. Then the
optimal prices under this competitive scenario are
$8.22, $12.69, $16.40, and $21.82 for the one- to four-
DVD plans, respectively (see Online Appendix B).
As expected, competitive prices are much lower than
the ones under a monopolist setting. For example,
for the two-DVD plan, a monopolist charges about
$11.50 per DVD (i.e., $23 for the plan), whereas the
new entrant charges about $6 per DVD (i.e., $12 for
the plan). Thus, compared with the monopolist case,
consumers receive a price reduction of about $5 per
DVD because of competition.

7. Conclusions
Quantity discount pricing is commonly used by firms.
This pricing scheme charges consumers a per-unit
price that declines with purchase quantity. The critical
information for designing such a quantity discount
scheme is knowledge of consumers’ WTP for succes-
sive units of a product.

In this paper, we propose a choice-based conjoint
model for estimating consumer-level WTP values for

varying quantities of a product. We use a novel WTP
function that embeds standard WTP functions in the
literature as special cases. The derived WTP function
can handle large quantity values and allows WTP to
be positive and to increase with quantity at a decreas-
ing rate. A key benefit of this formulation is that
it enables the segmentation of consumers in terms
of WTP potential for the first unit (which measures
price premium) and WTP multiple (a measure of vol-
ume potential) and the scoring of consumers based
on their value potential to the firm. We also propose
a parsimonious experimental design approach for
implementation that does not entail as many price/
discount and quantity factors as required by a stan-
dard conjoint design.

We estimate four variants of the proposed model
using data we collected in a conjoint experiment
involving consumer choice of online movie rental
plans. We find that the linear decay model has the
best fit and predictive validity. Although parsimo-
nious, the constant decay model has poorer perfor-
mance, which suggests that WTP decays rapidly with
larger quantity.

We use the parameter estimates to quantify the dis-
tribution of WTP and WTP multiple in the sample.
For Netflix, the average WTP for a one-DVD plan
is about $11 and the average WTP multiple is 2.25,
which suggests an average of about $300 value poten-
tial per customer per year. Additionally, we find that
consumers are willing to pay an extra $1.10 for a
one-DVD plan from Netflix relative to MovieMail (a
fictitious brand name) and an extra $0.65 for the Blu-
ray option. Blockbuster, however, has no differential
brand value relative to MovieMail.

We compare the WTP distributions from our model
with those from a standard choice-based conjoint
model. The latter model gives anomalous WTP dis-
tributions with negative WTP values and nondimin-
ishing marginal WTP values. These results illustrate
the need to enforce the positivity and the diminish-
ing marginal WTP in a conjoint model when estimat-
ing WTP.

We identify four consumer segments that vary in
terms of WTP, WTP multiple, and value potential.
An online movie rental company could use such
information to target its customers based on their
value potential to the firm. We also illustrate how
to build a demand profile (Wilson 1993) using the
consumer-level WTP estimates. Finally, we use the
parameter estimates to design an optimal quantity
discount scheme that maximizes gross contribution.
We consider two scenarios: a monopolist and a new
entrant in a competitive market. As expected, the opti-
mal monopolist schedule resulted in higher per-DVD
prices than the competitive schedule.
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There are several avenues for future research. From
a measurement perspective, our choice task did not
provide any incentive for respondents to be truth-
ful. Although CBC is found to do well in inferring
WTP, future applications of the method should con-
sider incentive alignment when collecting calibration
and holdout choice data. In this paper, we assume
a quasi-linear utility function. Whereas this assump-
tion is standard in the WTP literature and is rea-
sonable in the context of our application, it may not
be reasonable for products whose demand is affected
by income. Future research should generalize our
model by fitting non-quasi-linear utility functions.
Our proposed conjoint model assumes only an alloca-
tive effect of price. Other research has found evidence
for both informative and allocative effects of price
(e.g., Rao 1984). Future research should generalize
the model to capture both effects (e.g., by conducting
two separate conjoint studies as in Rao and Sattler
2003). Finally, an area of managerial interest would be
to apply the model in other product categories and
especially in business-to-business settings, where the
quantity variable takes large values.

Electronic Companion
An electronic companion to this paper is available as part of
the online version that can be found at http://mktsci.journal
.informs.org/.
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